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Can we predict tips for cab drivers in NYC?

I Public transportation is down, and ride-sharing usage is
up. (Pew Research)

I Why care about tips?
I Identify high value times and places
I Help MTA understand traffic patterns

I Insights could help optimize driver earnings and identify
areas that need more bus or metro access.
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Research questions

I Patterns in taxi usage over time
I When are taxis most heavily used?
I Which geographic zones rely most heavily on taxis?

I What factors are correlated with high tips?
I What are the strongest predictors of tips?
I What other data contribute, e.g., weather or

demographics?
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NYC Yellow Cab Data

I Taxi and Limousine Commission data from 2018
I The TLC released public taxi data from 2009 to present.
I Available free to access on Google BigQuery.

I What’s in the ride data?
I For 2018, the database contains 112,234,626 records of

Yellow Cab rides
I Records include pick-up and drop-off dates /times,

locations, trip distances, itemized fares, rate types,
payment types, and driver-reported passenger counts

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://console.cloud.google.com/marketplace/details/city-of-new-york/nyc-tlc-trips
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Data Preparation
I Data Cleaning

I We must eliminate erroneous records before
modeling—some data were poorly collected or
transmitted by the sensors.

I We find and remove observations with negative ride
durations, negative tip, fare, or distance, duplication,
zero passengers, etc.

I Make note of outliers, for later modeling
I Data Exploration

I We queried the public data with BigQuery’s native SQL
to find the distributions and correlations of the variables
of interest.

I Some notable outliers seemed like errors, but others
raised interesting questions

I Why is there a series of $10,000 trips all with plausibly
long distances?

I What’s the pattern behind the 3 million trips between
0 and 1 mile?
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The average day vs. selected holidays in 2018



Optimizing NYC
Taxi Gratuities

with ML

Lora Johns

Part I: The Goal
Question and Background

Part II: The Data
Origin of the Data

Manipulating the Data

Part III: The
Model
Motivations for the Stack

Feature Engineering and
Modeling

Model Evaluation and
Preliminary Results

Part IV: The Road
Agenda for Advancement

Questions or Comments

BigQuery for Machine Learning

I Why BigQuery?
I BigQuery is a serverless, scalable, and democratic cloud

data warehouse.
I It hosts many public datasets that users can join to

their uploaded data.
I Its data structure for nested records and distributed,

tree-based query engine mean that it can execute
ad-hoc SQL faster than if the data were stored in a
more usual format.

I Training ML models in the cloud
I We queried the public data and trained a model natively

to take advantage of Dremel and the wealth of public
data.

I BigQuery’s native SQL integrates with Python and R to
visualize and additionally analyze queries.
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Feature Engineering

I Time and geographic data
I Extracting the hour, day, and month allows us to

granularly analyze trip patterns over time by
neighborhood and borough.

I We can check whether a given (lat, long) is inside a taxi
zone polygon by solving a system of linear equations.

I Additional features
I holidays
I days of week
I rush hour
I overnight trip
I weekend
I airport trip
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Basic linear regression

I Base model
I We trained a linear regression model using L1

regularization and batch gradient descent.
I Using a hash function on unique row timestamps, we

pseudorandomly and reproducibly split the data into
train-test and evaluation sets.

I Training and evaluating
I We trained the model in the cloud using ML.CREATE,

with 20% of data for testing.
I The base model explained 0.63 percent of the variance

in the outcome (but we wouldn’t expect linear
regression to be the optimal model for tips).

I Using ML.EVALUATE on the holdout data, we see that
our R2 value increased by 0.3, indicating that we have
avoided overfitting.

I With ML.PREDICT, we can see the model’s actual
numerical predictions.
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A sample query to evaluate a model
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Batch gradient descent
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Top tips

I Queens tops the tip list.
1. Westerleigh
2. Newark Airport
3. Saint Michaels Cemetery/Woodside
4. Astoria Park
5. Jamaica Bay
6. Flushing Meadows-Corona Park
7. Randalls Island
8. LaGuardia Airport
9. Rikers Island

10. Baisley Park
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Low rides

I Staten Island is the most negatively correlated borough.

1. Arden Heights
2. Stapleton
3. Bloomfield/Emerson Hill
4. Far Rockaway
5. Charleston/Tottenville
6. Port Richmond
7. New Dorp/Midland Beach
8. Saint George/New Brighton
9. Rosedale

10. Mariners Harbor
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Interesting findings

I Thursday has the highest correlation with tips.
Saturday has the lowest.

I The feature most strongly correlated with tips was the
engineered airport variable.

I Toll amount, trip distance, fare amount, and hour of
the day were the next most correlated.
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Next steps

I The target and the cardinality of the data mean that a
polynomial regression or other model will likely perform
better.

I We will visualize the ride map and engineer features
such as distance from metro stops.

I Examining the model’s coefficients surfaced interesting
patterns in the data that will improve the input data.

I BigQuery allows for uploading TensorFlow models,
which may be a fruitful avenue to pursue.
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Thank you!
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