ECEbH21: Inference Algorithms and Machine Learning
University of Toronto

Assignment 3:
Unsupervised Learning and Probabilistic Models

TA: Use Piazza for Q&A

Due date: Mar. 24 11:59 pm, 2017
Electronic submission to: ece521ta@gmail.com

General Note:

e In this assignment, you will implement learning and inference procedures for some of the
probabilistic models described in class, apply your solutions to some simulated datasets, and
analyze the results.

e Full points are given for complete solutions, including justifying the choices or assumptions
you made to solve the question. Both complete source code and program outputs should be
included in the final submission.

e Homework assignments are to be solved in the assigned groups of two or three. You are
encouraged to discuss the assignment with other students, but you must solve it within your
own group. Make sure to be closely involved in all aspects of the assignment.

1 K-means

K-means clustering is one of the most widely used data analysis algorithms. It is used to summarize
data by discovering a set of data prototypes that represent clusters of data. The data prototypes are
usually referred to as cluster centers. Usually, K-means clustering proceeds by alternating between
assigning data points to clusters and then updating the cluster centers. In this assignment, we
will investigate a different learning algorithm that directly minimizes the K-means clustering loss
function.

1.1 Learning K-means [10 pt.]

The K cluster centers can be thought of as K, D-dimensional parameter vectors and we can place
them in a K x D parameter matrix p, where the £ row of the matrix denotes the k'* cluster

1

mailto:ece521ta@gmail.com

2 MIXTURES OF GAUSSIANS [20 PT.]

center p,. The goal of K-means clustering is to learn p such that it minimizes the loss function,
L(p) =" mink | ||x, — p,||3. Even though the loss function is not smooth due to the “min”
operation, one may still be able to find its solutions through iterative gradient-based optimization.
The “min” operation leads to discontinuous derivatives, in a way that is similar to the effect of the
ReLU activation function, but nonetheless, a good gradient-based optimizer can work effectively.

1. Is the loss function £(p) convex in pu? Why or why not? Give a rigorous explanation. [3
pt.]

2. For the dataset data2D.npy, set K = 3 and find the K-means clusters g by minimizing
the £(p) using the gradient descent optimizer. The parameters p should be initialized by
sampling from the standard normal distribution. Include a plot of the loss vs the number
of updates. Hints: you may want to use the Adam optimizer for this assignment with fol-
lowing hyper-parameter tf.train. AdamOptimizer(LEARNINGRATE, betal=0.9, beta2=0.99,
epsilon=1e-5). The learning should converge within a few hundred updates. [2 pt.]

3. Run the algorithm with K = 1,2,3,4,5 and for each of these values of K, compute and
report the percentage of the data points belonging to each of the K clusters. Comment on
how many clusters you think is “best” and why? (To answer this, it may be helpful discuss
this value in the context of a 2D scatter plot of the data.) Include the 2D scatter plot of
data points colored by their cluster assignments. [3 pt.]

4. Hold 1/3 of the data out for validation. For each value of K above, cluster the training data
and then compute and report the loss for the validation data. How many clusters do you
think is best? [2 pt.]

2 Mixtures of Gaussians [20 pt.]

Mixtures of Gaussians (MoG) can be interpreted as a probabilistic version of K-means clus-
tering. For each data vector, MoG uses a latent variable z to represent the cluster assign-
ment and uses a joint probability model of the cluster assignment variable and the data vec-
tor: P(x,z) = P(2)P(x|z). For B IID training cases, we have P(X,z) = [[>_, P(Xn, 2,). The
Expectation-Maximization (EM) algorithm is the most commonly used technique to learn a MoG.
Like the standard K-means clustering algorithm, the EM algorithm alternates between updating
the cluster assignment variables and the cluster parameters. What makes it different is that in-
stead of making hard assignments of data vectors to cluster centers (the “min” operation above),
the EM algorithm computes probabilities for different cluster centers, P(z|x). These are computed

from P(z = k|x) = P(x,z = k’)/Z]K:1 P(x,z =7j).

While the Expectation-Maximization (EM) algorithm is typically the go-to learning algorithm to
train MoG and is guaranteed to converge to a local optimum, it suffers from slow convergence. In
this assignment, we will explore a different learning algorithm that makes use of gradient descent.

2.1 The Gaussian cluster model [8 pt.] 2 MIXTURES OF GAUSSIANS [20 PT.]

2.1 The Gaussian cluster model [8 pt.]

Each of the K mixture components in the MoG model occurs with probability 7% = P(z = k).
The data model is a multivariate Gaussian distribution centered at the cluster mean (data center)
pk € RP. We will consider a MoG model where it is assumed that for the multivariate Gaussian

for cluster k, different data dimensions are independent and have the same standard deviation, o*.

1. Derive the expression for the latent variable posterior distribution of a data point P(z|x) in
terms of the MoG parameters, {u*, o® 7%}, [3 pt.]

2. Modify the K-means distance function we derived above to compute the log probability

density function for cluster k: log NV (x; p*, o*°) for all pair of B data points and K clusters.

Include the snippets of the Python code [2 pt.]

3. Write a vectorized Tensorflow Python function that computes the log probability of the clus-
ter variable z given the data vector x: log P(z|x). The log Gaussian pdf function implemented
above should come in handy. The implementation should use the provided utils.logsumezp
function. Include the snippets of the Python code and comment on why it is important to
use the log-sum-exp function instead of using tf.reduce_sum. [3 pt.]

2.2 Learning the MoG [12 pt.]

The marginal data likelihood for the MoG model is as follows (here “marginal” refers to summing
over the cluster assignment variables):

P(X) =[] P(xa) = [[D_ Plza = k) P(x0 | 2 = k)

n=1 k=1
— H ZWkN(Xn ;b o)
n k

The loss function we will minimize is the negative log likelihood L(u, 0, 7) = —log P(X). The
maximum likelihood estimate (MLE) is a set of the model parameters pu, o, 7w that maximize the
log likelihood or, equivalently, minimize the negative log likelihood.

1. Direct gradient-based optimization appears to learn the MoG parameters without inferring
the cluster assignment variables, that is, without computing P(z|x). In fact, this inference is
implicit in the gradient computation. Show that for a single training example, the gradient
of the marginal log likelihood function is the expected gradient of the log joint probability
under its posterior distribution, V,log P(x) =), P(z = k|x)V,log P(x,z = k). [2 pt.]

2. Implement the loss function using log-sum-exp function and perform MLE by directly op-
timizing the log likelihood function using gradient descent in Tensorflow. Note that the
standard deviation has the constraint of ¢ € [0,00). One way to deal with this con-
straint is to replace 0% with exp(¢) in the math and the software, where ¢ is an uncon-
strained parameter. In addition, m has a simplex constraint, that is), 7 = 1. We

3

3 DISCOVER LATENT DIMENSIONS

can again replace this constrain with unconstrained parameter v through a softmax func-
tion 7 = exp(*)/ Y, exp(¥*). A log-softmax function is provided for convenience,
utils.logsoftmax. For the dataset data2D.npy, set K = 3 and report the best model pa-
rameters it has learnt. Include a plot of the loss vs the number of updates. [6 pt.]

3. Hold out 1/3 of the data for validation and for each value of K = 1,2,3,4,5, train a MoG
model. For each K, compute and report the loss function for the validation data and explain
which value of K is best. Include a 2D scatter plot of data points colored by their cluster
assignments. [2 pt.]|

4. Run both the K-means and the MoG learning algorithms on data100D.npy. Comment on how
many clusters you think are within the dataset and compare the learnt results of K-means
and MoG. [2 pt.]

3 Discover Latent Dimensions

3.1 Factor Analysis [Bonus: 6 pt.]

So far we have considered K-means and MoG for clustering the data. In both of these cases we
assume that each data point ‘belongs to’ or ‘is generated by’ one of K prototypes or causes. In
K-means, we make a hard decision about choosing one prototype for each data observation point.
In MoG, we assign points to clusters in a soft way, reflecting our uncertainty about the underlying
cause of each point by modelling the softmax distribution. However, these soft assignments merely
represent a probabilistic view over which of the K latent causes; we still believe that only one
underlying cause was used to generate each data point. In this question, we use Factor Analysis
to relax this constraint: there is now no restriction on the number of latent causes that generate
each point.

For the n'* data point, let s,, € R¥ be a vector of real-valued latent variables that have generated
the observation feature vector x,, € RP”. We assume the distribution of the latent variables is
modeled as a zero mean Gaussian with an identity covariance matrix: p(s,) = N (s,; 0,I). Our
observation feature vector x,,’s are real numbers, therefore allowing us to model the likelihood
with a Gaussian as well: p(x,|s,) = N(x,; Ws, + p, V). Here, p is the average value of the
input features, W is the weight matrix that projects the K-dimensional latent variables to the

vy 0 ... 0
. . . Yo ... 0] . . .
D-dimensional input space and ¥ = | . 0 .| is a diagonal covariance matrix.
0O 0 ... ¥p

3.1 Factor Analysis [Bonus: 6 pt.] 3 DISCOVER LATENT DIMENSIONS

Consider the marginal likelihood defined as:
P(X) =[] P(x.) = H/ P(s,)P(%y | sn)dsy,

B
— H N(s,; 0, N (x,; Ws, + w, V)ds,
n=1"8n
Intuitively, Factor Analysis is a probabilistic version of PCA in the same way as MoG to K-means.

1. Derive the marginal log likelihood of the factor analysis model for a single training example
and show that it is also a Gaussian distribution with the following mean and covariance
matrix: log P(x) = log [P(x|s)P(s)ds = logN (x; p, W+ WWT). (You may directly quote
the multivariate Gaussian results at the end of this handout.) [1 pt.]

2. Write a TensorFlow implementation that learns Factor Analysis models by directly maxi-
mizing the log likelihood function. Namely, we would like to adapt the weight matrix, the
mean of the data and the data covariance matrix by maximizing the marginal log likelihood:

W, ¥

B
max Z log P(x,)
n=1

Note that for the determinant of the covariance matrix, a numerical stable implementation is
to use a Cholesky decomposition that is log det{A} = . logdiag{L}? and L is the Cholesky
factor. This trick can be implemented in TensorFlow as:

log_det = 2.0 * tf.reduce_sum(tf.log(tf.diag_part(tf.cholesky(A))))

For the tiny hand-written digits dataset containing two classes “3” and “5” tinymmnist.npy,
train a factor analysis model by setting the number of latent dimension K = 4 and report
training, validation and test marginal log likelihood. Plot each row of the learnt weight
matrix as a set of 8x8 images similar to the neural network visualization in assignment 2.
Comment on the visualization and discuss what kind of latent dimensions factor analysis
has discovered from the dataset. (You would like to discuss what kind of variability has
the weight matrix captured about the handwritten digits of “3” and “5”, e.g. one latent
dimension is used to model the variability of the top part of those digits.) [3 pt.]

3. Geoffrey Hinton’s explanation on PCA and FA: Generate a toy dataset of 200 3-dimensional
data points {x), ... x?9} by first generating the latent states s from a 3-D multivariate
Gaussian distribution with zero mean and identity covariance matrix s ~ N(s; 0,1), s =

S1 T
sy | € R3. Now transform the latent states to 3-dimensional observations x = |z, | using
S3 T3

the following formula:

1 = 81
To = S1 + 000182
T3 = 1083

3.1 Factor Analysis [Bonus: 6 pt.] 3 DISCOVER LATENT DIMENSIONS

Use such dataset to train a PCA with a single principle component and a factor analysis
model with a single latent dimension. Show that PCA learns the maximum variance direction
(i.e. xg direction) while FA learns the maximum correlation direction(i.e. x; + 5 direction).

2 pt.]

Multivariate Gaussian Results

P(x) = N(x;p, A7) (1)

P(y|x) = N(y; Ax+b, L) (2)
P(y) =N(y;Ap+b, L'+ AATTAT) (3)
P(x]y) = N(x; 2{AL(y — b) + An, %) (4)
where, ¥ = (A + ATLA)™* (5)

	1 K-means
	1.1 Learning K-means [red 10 pt.]

	2 Mixtures of Gaussians [20 pt.]
	2.1 The Gaussian cluster model [8 pt.]
	2.2 Learning the MoG [12 pt.]

	3 Discover Latent Dimensions
	3.1 Factor Analysis [Bonus: 6 pt.]

