
ECE521: Inference Algorithms and Machine Learning
University of Toronto

Solution to Assignment 3:
Unsupervised Learning and Probabilistic Models

Renjie Liao

March 27, 2017

1 K-means

1.1 Learning K-means [8 pt.]

1, [3 pt.] The loss function L(µ) is non-convex in µ. We use contradiction to prove the statement.
Assuming L(µ) is convex in µ. We consider a special case where B = 1, K = 2, D = 2, x = [x1, x2],
µ = [µ1,µ2] and x 6= 0. We can rewrite the loss function as L(µ) = min(‖x − µ1‖22, ‖x − µ2‖22).
Now we will show that for two specific constructions µ = [µ1,µ2] and µ′ = [µ′1,µ

′
2] and any

θ ∈ (0, 1), we have L(θµ + (1 − θ)µ′) > θL(µ) + (1 − θ)L(µ′). In particular, let µ1 = [x1, x2],
µ2 = [0, 0], µ′1 = [0, 0] and µ′2 = [x1, x2]. We have that L(µ) = 0 and L(µ′) = 0. Moreover, we
have,

L(θµ + (1− θ)µ′) = min(‖x− θµ1 − (1− θ)µ′1‖22, ‖x− θµ2 − (1− θ)µ′2‖22)
= min((1− θ)2‖x‖2, θ2‖x‖2). (1)

It is thus clear that L(θµ + (1− θ)µ′) > θL(µ) + (1− θ)L(µ′) = 0 for any θ ∈ (0, 1). Hence, we
have the contradiction.

2, [2 pt.] Referring to Fig. 1a.

3, [3 pt.] Referring to Fig. 1b - 1f. K = 5 might be the best as it gives the lowest loss function
value.

4, [2 pt.] The validation loss values are 12856.2089844, 2982.43554688, 1659.61975098, 1095.4954834,
921.618164062 when K = 1, 2, 3, 4, 5 respectively. Therefore, K = 5 is the best.
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1.1 Learning K-means [8 pt.] 1 K-MEANS

(a) Kmeans, training loss (b) Kmeans, K = 1

(c) Kmeans, K = 2 (d) Kmeans, K = 3

(e) Kmeans, K = 4 (f) Kmeans, K = 5
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2 MIXTURES OF GAUSSIANS

(a) Distance function. (b) Log probability.

2 Mixtures of Gaussians

2.1 The Gaussian cluster model

1, [3 pt.]

P (z|x) =

πk
(
σk
)−D

exp

{
− 1

2(σk)
2 (x− µk)>(x− µk)

}
∑K

j=1 π
j (σj)−D exp

{
− 1

2(σj)2
(x− µj)>(x− µj)

} (2)

2, [2 pt.] Referring to Fig. 2a.

3, [3 pt.] Referring to Fig. 2b. Using log-sum-exp is numerically more accurate and stable and
will help avoid issues like underflow or overflow.
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2.2 Learning the MoG 2 MIXTURES OF GAUSSIANS

GMM Kmeans
k=3 651434.875 1418950.625
k=5 352855.46875 1091327.0
k=10 211011.671875 1304746.25
k=15 209351.46875 486612.15625
k=20 207494.59375 484491.625
k=30 204230.015625 485255.78125

Table 1: Loss values on 100D dataset.

2.2 Learning the MoG

1, [2 pt.]

∇µ logP (x) = ∇µ log

(
K∑
k=1

P (x, z = k)

)

=
1∑K

k=1 P (x, z = k)

K∑
k=1

∇µP (x, z = k)

=
1∑K

k=1 P (x, z = k)

K∑
k=1

P (x, z = k)∇µ logP (x, z = k)

=
K∑
k=1

P (z = k|x)∇µ logP (x, z = k), (3)

where we use the fact f(x)∇x log(f(x)) = ∇xf(x).

2, [6 pt.] Referring to Fig. 3a. The best model parameters are: µ1 = [−1.09925008− 3.30307055],
µ2 = [1.299408670.30630079], µ1 = [0.09809401 − 1.5353744], σ1 = 0.19823763, σ2 = 0.19667165,
σ3 = 0.99854809, π1 = 0.32968238, π2 = 0.33281365 and π3 = 0.33750394.

3, [2 pt.] Referring to Fig. 3b - 3f. K = 3 is the best as the validation loss is the minimum.

4, [2 pt.] The loss function values of Kmeans and MoG with different K are listed in the table 1.
From the current trials, it seems that the number of clusters should be around 20. We visualize
the cluster assignments and cluster centers in terms of the first 2 dimensions of the 100D dataset
in Fig. 4a and Fig. 4b. It is hard to draw any conclusion from the learned results. It seems that
some clusters of GMM are collapsed while the ones of Kmeans are not.
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2.2 Learning the MoG 2 MIXTURES OF GAUSSIANS

(a) GMM training loss (b) GMM, K = 1

(c) GMM, K = 2 (d) GMM, K = 3

(e) GMM, K = 4 (f) GMM, K = 5

5



3 DISCOVER LATENT DIMENSIONS

(a) K = 5, 100D, Kmeans (b) K = 5, 100D, GMM

(a) Weight 1 (b) Weight 2 (c) Weight 3 (d) Weight 4

3 Discover Latent Dimensions

3.1 Factor Analysis

1, [2 pt.] First, we have,

P (x) =

∫
z

P (x|z)P (z)dz (4)

From the multivariate results appended in the assignment, we have,

P (z) = N (z|0, I)

P (x|z) = N (z|Wz + µ,Ψ)

P (x) = N (x|µ,Ψ +WW>) (5)

2, [3 pt.] The training, validation and testing marginal likelihoods are 8399.542, 1238.54980469
and 4644.74414062 respectively. The visualization of weights are in Fig. 5a - 5d. You can see that
the weight capture the some parts of digits. For example, Fig. 5a and 5c captures the shape of
“5” and Fig. 5b and 5d captures “3”.

3, [3 pt.]

The first component of PCA is [−2.72359396e−04,−2.61620560e−04, 9.99999929e−01] which approx-
imately corresponds to the maximum variance direction, i.e., x3.
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3.1 Factor Analysis 3 DISCOVER LATENT DIMENSIONS

The conditional distribution of s (posterior) of a new data point x∗ in a FA is: p(s|x∗) =
N
(
∼; ΣW TΨ−1(x∗−µ),Σ

)
(Eq(4) of Multivariate Gaussian Results) where Σ = (I+W TΨ−1W )−1.

Now let us definite Wproj , ΣW TΨ−1 = (I +W TΨ−1W )−1W TΨ−1. Therefore, Wproj is the “prin-
ciple component” matrix that transforms the observation data to the latent space of FA instead
of the W matrix.

The first component of Wproj is [3.48705414e − 01, 5.76612226e − 01, 4.26386575e − 08] which is
the maximum correlation direction, i.e. x1 + x2
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