Exercise 2a: Dynamics of the ABB IRB 120

Prof. Marco Hutter*
Teaching Assistants: Vassilios Tsounis, Jan Carius, Ruben Grandiaf

October 17, 2017

Abstract

In this exercise you will develop a tool which implements the equations of
motion of an ABB robot arm. To this end, you will need to compute the mass
matrix, the Coriolis and the centrifugal terms, and finally the gravity terms. A
MATLAB visualization of the robot arm is provided, as well as scripts which
initialize the kinematic and dynamic parameters of the arm. The partially
implemented MATLAB scripts, as well as the visualizer, are available at
|//www.rsl.ethz.ch/education-students/lectures/robotdynamics.htmll

Figure 1: The ABB IRW 120 robot arm.

*original contributors include Michael Blésch, Dario Bellicoso, and Samuel Bachmann
ﬂtsounisv@ethz.chL han.carius@mavt.ethz.chl, |ruben. grandia@mavt.ethz.ch|

http://www.rsl.ethz.ch/education-students/lectures/robotdynamics.html
http://www.rsl.ethz.ch/education-students/lectures/robotdynamics.html
mailto:tsounisv@ethz.ch
mailto:jan.carius@mavt.ethz.ch
mailto:ruben.grandia@mavt.ethz.ch

1 Introduction

The robot arm and the dynamic properties are shown in Figure 2] The kinematic
and dynamic parameters are given and can be loaded using the provided MATLAB
scripts. To initialize your workspace, run the init_workspace.m script.

|=P0O

Figure 2: ABB IRB 120 with coordinate systems and joints

This exercise focuses on implementing the mass matrix M(q), the Coriolis and
centrifugal terms b(q, q), and the gravity terms g(q). Before starting this exercise,
take a look at the generate model.m script to understand how the equations of
motion are generated. Most of the necessary functions are already provided for
you (for example generate kin.m and generate_jac.m) since this was solved in
previous exercises.

Exercise 1.1

Your task here is to fill in the missing code in the generate_eom.m script, which
generates all the quantities which are used in the equations of motion, as well as
the total mechanical energy of the system.

Hint: To generate time derivatives of the Jacobians, use the provided dAdt.m

function. It essentially calculates w given q and q:

1 function [dA] = dadt(A, g, dg)

2

3 dA = sym(zeros(size(A)));

4 for i=l:size (A, 1)

5 for j=l:size(A,2)

6 dA(i,Jj) = jacobian(A(i,]),q)*dq;
7 end

8 end

9 end

When you are done with the implementation, you should be able to execute the
generate model.n file (this may take a few minutes). This script will compute
all the kinematic and dynamic quantities symbolicallyﬂ and then save them as
MATALB *.m function files. These will be used later on to simulate the dynamics
of the robot in Simulink.

evaluate_problems.m can be used to validate your generated equations of motions.
Moreover, during simulation, the total energy can be used to validate your results
(e.g. if no external forces are acting on the system, the total mechanical energy
should remain constant over time).

Exercise 1.2

Open the visualization (run loadviz.m) and inspect the model abb_irb120.mdl.
Execute the simulation by pressing the play button in Simulink to see how the
model behaves under gravity. Double-click on the plot element to see how the
different quantities evolve. Does the total energy remain constant? You may adjust
the inputs tau or external force.

2 Software

There are several open-source software packages available today which do a very
good job at implementing the kinematics and dynamics of generic fixed-base and
floating-base systems. It is in general not a good idea to implement your own unless
for very simple systems. Popular packages that are in use in our lab include

° proNEﬂEI and proNeu,UQEI, are MATLAB tools which analytically derive the
kinematics and dynamics based on projected Newton-Euler methods. The
tools support both fixed-base and floating-base systems, as well as providing
visualization tools.

o RBD]EL a C++-based library that implements many rigid body algorithms
and closely follows the conventions and notations introduced by Featherstone
(Rigid body dynamics algorithms, Springer, 2014).

. RobCoGe also implements many modern rigid body dynamics algorithms
and generates code for a specific robot model.

Thttps://www.mathworks.com/help/symbolic/
*https://bitbucket.org/leggedrobotics/c_proneu
Shttps://bitbucket.org/leggedrobotics/proneu
4https://bitbucket.org/rbdl/rbdl
Shttps://robcogenteam.bitbucket.io/intro.html

https://www.mathworks.com/help/symbolic/
https://bitbucket.org/leggedrobotics/c_proneu
https://bitbucket.org/leggedrobotics/proneu
https://bitbucket.org/rbdl/rbdl
https://robcogenteam.bitbucket.io/intro.html

	Introduction
	Software

