
Exercise 1b: Differential Kinematics of the

ABB IRB 120

Prof. Marco Hutter∗

Teaching Assistants: Vassilios Tsounis, Jan Carius, Ruben Grandia†

October 3, 2017

Abstract

The aim of this exercise is to calculate the differential kinematics of an
ABB robot arm. You will practice on the derivation of velocities for a multi-
body system, as well as derive the mapping of between generalized velocities
and end-effector velocities. A separate MATLAB script will be provided for
the 3D visualization of the robot arm.

Figure 1: The ABB IRW 120 robot arm.

1 Introduction

The following exercise is based on an ABB IRB 120 depicted in figure 2. It is a
6-link robotic manipulator with a fixed base. During the exercise you will imple-
ment several different MATLAB functions, which you should test carefully since the

∗original contributors include Michael Blösch, Dario Bellicoso, and Samuel Bachmann
†tsounisv@ethz.ch, jan.carius@mavt.ethz.ch, ruben.grandia@mavt.ethz.ch

1

mailto:tsounisv@ethz.ch
mailto:jan.carius@mavt.ethz.ch
mailto:ruben.grandia@mavt.ethz.ch

Figure 2: ABB IRB 120 with coordinate systems and joints.

next exercises will depend on them. To help you with this, we have provided the
script prototypes at http://www.rsl.ethz.ch/education-students/lectures/

robotdynamics.html together with a visualizer of the manipulator.
Throughout this document, we will employ I for denoting the inertial world coor-
dinate system (which has the same pose as the coordinate system P0 in figure 2)
and E for the coordinate system attached to the end-effector (which has the same
pose as the coordinate system P6 in figure 2).

2 Differential Kinematics

Exercise 2.1

In this exercise, we seek to compute an analytical expression for the twist IwE =[
Iv

T
E Iω

T
E

]T
of the end-effector. To this end, find the analytical expression of

the end-effector linear velocity vector IvE and angular velocity vector IωIE as a
function of the linear and angular velocities of the coordinate frames attached to
each link.
Hint: start by writing the rigid body motion theorem and extend it to the case of a
6DoF arm.

Solution 2.1

2

http://www.rsl.ethz.ch/education-students/lectures/robotdynamics.html
http://www.rsl.ethz.ch/education-students/lectures/robotdynamics.html

P

Figure 3: Linear velocity of a point in a rototranslating frame.

Consider the coordinate frames shown in Fig.2. Frame 0 is fixed with respect to
the inertial frame I, while frame 1 has a linear velocity Iv01 and angular velocity

Iω01 with respect to frame 0. Thus, one has:

IvI1 = IvI0 + Iv01 = Iv01

IωI1 = IωI0 + Iω01 = Iω01

(1)

Consider a point P that is fixed with respect to frame 1. The linear velocity IvIP

of point P with respect to the fixed frame I is given by:

IvIP = IvI1 + I ṙ1P + IωI1 × Ir1P . (2)

If point P is fixed in frame 1, it is I ṙ1P = 0.
With this result in mind, consider now a planar two link robot arm with two revolute
joints. The coordinate frames are chosen as in Fig.2. Reasoning as before, the linear
velocity at the end of the kinematic chain can be found by propagating the linear
velocity contributions from the fixed frame I. Hence, one has:

IvI1 = IvI0 + IωI0 × Ir01
IvI2 = IvI1 + IωI1 × Ir12
IvIE = IvI2 + IωI2 × Ir2E

(3)

3

Figure 4: The kinematic structure of a planar two link robot arm.

Combining these results with the fact the frame 0 is fixed with respect to frame I
(i.e. IωI0 = 0, IvI0 = 0), the end-effector linear velocity is given by:

IvIE = IωI1 × Ir12 + IωI2 × Ir2E (4)

This result can be extended to the case of the ABB IRB 120, yielding:

IvIE = IωI1 × Ir12 + IωI2 × Ir23 + · · ·+ IωI5 × Ir56 + IωI6 × Ir6E
= Iv12 + Iv23 + · · ·+ Iv56 + Iv6E

(5)

The end-effector rotational velocity IωIE is obtained by summing the single joint
velocity contributions:

IωIE = IωI0 + Iω01 + Iω12 + · · ·+ Iω56 + Iω6E (6)

4

Exercise 2.2

This exercise focuses on deriving the mapping between the generalized velocities
q̇ and the end-effector twist IwE , namely the basic or geometric Jacobian IJe0 =[
IJ

T
P IJ

T
R

]T
. To this end, you should derive the translational and rotational

Jacobians of the end-effector, respectively IJP and IJR. To do this, you can start
from the derivation you found in exercise 1. The Jacobians should depend on the
minimal coordinates q only. Remember that Jacobians map joint space generalized
velocities to operational space generalized velocities:

IvIE = IJP (q)q̇ (7)

IωIE = IJR(q)q̇ (8)

Please implement the following two functions:

1 function J P = jointToPosJac(q)
2 % Input: vector of generalized coordinates (joint angles)
3 % Output: Jacobian of the end−effector translation which maps joint
4 % velocities to end−effector linear velocities in I frame.
5

6 % Compute the translational jacobian.
7 J P = zeros(3, 6);
8 end
9

10 function J R = jointToRotJac(q)
11 % Input: vector of generalized coordinates (joint angles)
12 % Output: Jacobian of the end−effector orientation which maps joint
13 % velocities to end−effector angular velocities in I frame.
14

15 % Compute the rotational jacobian.
16 J R = zeros(3, 6);
17 end

Solution 2.2

The translation and rotation Jacobians can be evaluated starting from the results
that were obtained in the previous exercises. By combining the analytical expres-
sions of the linear and angular end-effector velocities, one has:

IvIE = Iv01 + Iv12 + · · ·+ Iv56 + Iv6E

= Iω1 × Ir12 + Iω2 × Ir23 + · · ·+ Iω5 × Ir56 + IωE × Ir6E
= Iω1 × (IrI2 − IrI1) + Iω2 × (IrI3 − IrI2) + · · ·+ Iω5 × (IrI6 − IrI5)

= (Iω0 + Iω01)× (IrI2 − IrI1)

+ (Iω1 + Iω12)× (IrI3 − IrI2)

+ . . .

+ (Iω5 + Iω56)× (IrIE − IrI6)
(9)

Since the joints are of the revolute type, the relative motion between frames k − 1
and k will be defined by Iωk−1,k = Inkθ̇k, where Ink is a vector expressed in I
frame which defines the current rotation direction of joint k and θ̇ is the rate of
change in the angular position of joint k. Recalling that the composition rule of
angular velocities is:

Iωk = Iωk−1 + Iωk−1,k, (10)

5

one has:
IvIE = (Iω0 + Iω01)× (IrI2 − IrI1)

+ (Iω1 + Iω12)× (IrI3 − IrI2)

+ . . .

+ (Iω5 + Iω56)× (IrIE − IrI6)

= (In1θ̇1)× (IrI2 − IrI1)

+ (In1θ̇1 + In2θ̇2)× (IrI3 − IrI2)

+ . . .

+ (In1θ̇1 + · · ·+ In6θ̇6)× (IrIE − IrI6)

(11)

Expanding and reordering the terms in the last equation, one has

IvIE = In1θ̇1 × (IrIE − IrI1)

+ In2θ̇2 × (IrIE − IrI2)

+ . . .

+ In6θ̇6 × (IrIE − IrI6),

(12)

which, rewritten in matrix from, gives

IvIE =
[
In1 × (IrIE − IrI1) . . . In6 × (IrIE − IrI6)

] θ̇1...
θ̇6


= IJP (q)q̇,

(13)

where IJP (q) is the translation Jacobian matrix that projects a vector from the
joint velocity space to the cartesian linear velocity space.
Using the results obtained by solving Exercise 1, and taking into account that IωI0

and Iω6E are both equal to zero, one has

IωIE = Iω01 + Iω12 + · · ·+ Iω56

= In1θ̇1 + In2θ̇2 + · · ·+ In6θ̇6

=
[
In1 In2 . . . In6

]
· q̇

= IJR(q) · q̇,

(14)

where JR(q) is the rotation Jacobian matrix that projects a vector in the joint
velocity space to the Cartesian angular velocity space.

1 function J P = jointToPosJac(q)
2 % Input: vector of generalized coordinates (joint angles)
3 % Output: Jacobian of the end−effector orientation which maps joint
4 % velocities to end−effector linear velocities in I frame.
5

6 % Compute the relative homogeneous transformation matrices.
7 T I0 = getTransformI0();
8 T 01 = jointToTransform01(q(1));
9 T 12 = jointToTransform12(q(2));

10 T 23 = jointToTransform23(q(3));
11 T 34 = jointToTransform34(q(4));
12 T 45 = jointToTransform45(q(5));
13 T 56 = jointToTransform56(q(6));
14

15 % Compute the homogeneous transformation matrices from frame k to the
16 % inertial frame I.

6

17 T I1 = T I0*T 01;
18 T I2 = T I1*T 12;
19 T I3 = T I2*T 23;
20 T I4 = T I3*T 34;
21 T I5 = T I4*T 45;
22 T I6 = T I5*T 56;
23

24 % Extract the rotation matrices from each homogeneous transformation
25 % matrix.
26 R I1 = T I1(1:3,1:3);
27 R I2 = T I2(1:3,1:3);
28 R I3 = T I3(1:3,1:3);
29 R I4 = T I4(1:3,1:3);
30 R I5 = T I5(1:3,1:3);
31 R I6 = T I6(1:3,1:3);
32

33 % Extract the position vectors from each homogeneous transformation
34 % matrix.
35 r I I1 = T I1(1:3,4);
36 r I I2 = T I2(1:3,4);
37 r I I3 = T I3(1:3,4);
38 r I I4 = T I4(1:3,4);
39 r I I5 = T I5(1:3,4);
40 r I I6 = T I6(1:3,4);
41

42 % Define the unit vectors around which each link rotates in the ...
precedent

43 % coordinate frame.
44 n 1 = [0 0 1]';
45 n 2 = [0 1 0]';
46 n 3 = [0 1 0]';
47 n 4 = [1 0 0]';
48 n 5 = [0 1 0]';
49 n 6 = [1 0 0]';
50

51 % Compute the end−effector position vector.
52 r I IE = jointToPosition(q);
53

54 % Compute the translational jacobian.
55 J P = [cross(R I1*n 1, r I IE − r I I1) ...
56 cross(R I2*n 2, r I IE − r I I2) ...
57 cross(R I3*n 3, r I IE − r I I3) ...
58 cross(R I4*n 4, r I IE − r I I4) ...
59 cross(R I5*n 5, r I IE − r I I5) ...
60 cross(R I6*n 6, r I IE − r I I6) ...
61];
62

63 end
64

65

66 function J R = jointToRotJac(q)
67 % Input: vector of generalized coordinates (joint angles)
68 % Output: Jacobian of the end−effector orientation which maps joint
69 % velocities to end−effector angular velocities in I frame.
70

71 % Compute the relative homogeneous transformation matrices.
72 T I0 = getTransformI0();
73 T 01 = jointToTransform01(q(1));
74 T 12 = jointToTransform12(q(2));
75 T 23 = jointToTransform23(q(3));
76 T 34 = jointToTransform34(q(4));
77 T 45 = jointToTransform45(q(5));
78 T 56 = jointToTransform56(q(6));
79

80 % Compute the homogeneous transformation matrices from frame k to the
81 % inertial frame I.
82 T I1 = T I0*T 01;

7

83 T I2 = T I1*T 12;
84 T I3 = T I2*T 23;
85 T I4 = T I3*T 34;
86 T I5 = T I4*T 45;
87 T I6 = T I5*T 56;
88

89 % Extract the rotation matrices from each homogeneous transformation
90 % matrix.
91 R I1 = T I1(1:3,1:3);
92 R I2 = T I2(1:3,1:3);
93 R I3 = T I3(1:3,1:3);
94 R I4 = T I4(1:3,1:3);
95 R I5 = T I5(1:3,1:3);
96 R I6 = T I6(1:3,1:3);
97

98 % Define the unit vectors around which each link rotates in the ...
precedent

99 % coordinate frame.
100 n 1 = [0 0 1]';
101 n 2 = [0 1 0]';
102 n 3 = [0 1 0]';
103 n 4 = [1 0 0]';
104 n 5 = [0 1 0]';
105 n 6 = [1 0 0]';
106

107 % Compute the rotational jacobian.
108 J R = [R I1*n 1 ...
109 R I2*n 2 ...
110 R I3*n 3 ...
111 R I4*n 4 ...
112 R I5*n 5 ...
113 R I6*n 6 ...
114];
115

116 end

8

	Introduction
	Differential Kinematics

