
Exercise 1c: Inverse Kinematics of the

ABB IRB 120

Prof. Marco Hutter∗

Teaching Assistants: Vassilios Tsounis, Jan Carius, Ruben Grandia†

October 10, 2017

Abstract

The aim of this exercise is to calculate the inverse kinematics of an ABB
robot arm. To do this, you will have to implement a pseudo-inversion scheme
for generic matrices. You will also implement a simple motion controller based
on the kinematics of the system. A separate MATLAB script will be provided
for the 3D visualization of the robot arm.

Figure 1: The ABB IRW 120 robot arm.

∗original contributors include Michael Blösch, Dario Bellicoso, and Samuel Bachmann
†tsounisv@ethz.ch, jan.carius@mavt.ethz.ch, ruben.grandia@mavt.ethz.ch

1

mailto:tsounisv@ethz.ch
mailto:jan.carius@mavt.ethz.ch
mailto:ruben.grandia@mavt.ethz.ch

1 Introduction

The following exercise is based on an ABB IRB 120 depicted in Fig. 1. It is a
6-link robotic manipulator with a fixed base. During the exercise you will imple-
ment several different MATLAB functions, which, you should test carefully since the
following tasks are often dependent on them. To help you with this, we have pro-
vided the script prototypes at http://www.rsl.ethz.ch/education-students/

lectures/robotdynamics.html together with a visualizer of the manipulator.

Figure 2: ABB IRB 120 with coordinate systems and joints

Throughout this document, we will employ I for denoting the inertial world coor-
dinate system (which has the same pose as the coordinate system P0 in figure 2)
and E for the coordinate system attached to the end-effector (which has the same
pose as the coordinate system P6 in Fig. 2).

2 Matrix Pseudo-Inversion

The Moore-Penrose pseudo-inverse is a generalization of the matrix inversion op-
eration for non-square matrices. Let a non-square matrix A be defined in Rm×n.
When m > n and rank(A) = n, it is possible to define the so-called left pseudo-
inverse A+

l as
A+

l := (AT A)−1AT , (1)

which yields A+
l A = In×n. If instead it is m < n and rank(A) = m, then it is

possible to define the right pseudo-inverse A+
r as

A+
r := AT (AAT)−1, (2)

which yields AA+
r = Im×m. If one wants to handle singularities, then it is possible

to define a damped pseudo-inverse as

A+
l := (AT A + λ2In×n)−1AT , (3)

2

http://www.rsl.ethz.ch/education-students/lectures/robotdynamics.html
http://www.rsl.ethz.ch/education-students/lectures/robotdynamics.html

and
A+

r := AT (AAT + λ2Im×m)−1. (4)

Note that for square and invertible matrices, the pseudo-inverse is equivalent to the
usual matrix inverse.

Exercise 2.1

In this first exercise, you are required to provide an implementation of (3) and (4)
as a MATLAB function. The function place-holder to be completed is:

Listing 1: pseudoInverseMat.m

1 function [pinvA] = pseudoInverseMat(A, lambda)
2 % Input: Any m−by−n matrix.
3 % Output: An n−by−m pseudo−inverse of the input according to the ...

Moore−Penrose formula
4

5 % Get the number of rows (m) and columns (n) of A
6 [m, n] = size(A);
7

8 % TODO: complete the computation of the pseudo−inverse.
9 % Hint: How should we account for both left and right ...

pseudo−inverse forms?
10 pinvA = zeros(n, m);
11 end

3 Iterative Inverse Kinematics

Consider a desired position Ir
∗
IE =

[
0.5649 0 0.5509

]T
and orientation C∗IE = I3×3

which shall be jointly called pose χ∗e. We wish to find the joint space configuration q
which corresponds to the desired pose. This exercise focuses on the implementation
of an iterative inverse kinematics algorithm, which can be summarized as follows:

1. q← q0 . start configuration

2. while ‖χ∗e � χe (q)‖ > tol . while the solution is not reached

3. Je0 ← Je0 (q) . evaluate Jacobian for current q

4. J+
e0 ← (Je0)

+
. update the pseudoinverse

5. ∆χe ← χ∗e � χe (q) . find the end-effector configuration error vector

6. q← q + αJ+
e0∆χe . update the generalized coordinates (step size α)

Note that we are using the geometric Jacobian Je0, which was derived in the last
exercise. The boxminus (�) operator is a generalized difference operator that allows
“substraction” of poses. The orientation difference is thereby defined as the rota-
tional vector extracted from the relative rotation between the desired orientation
C∗IE and the one based on the solution of the current iteration CIE(q), i.e.,

∆ϕ = IϕEE∗ = rotMatToPhi(C∗IEC
T
IE(q)) . (5)

3

Exercise 3.1

Your task is to implement the iterative inverse kinematics algorithm by completing
the following two Matlab functions. Use rotMatToRotVec as a helper function to
calculate the pose error.

Listing 2: rotMatToRotVec.m

1 function [phi] = rotMatToRotVec(C)
2 % Input: a rotation matrix C
3 % Output: the rotational vector which describes the rotation C
4

5 % Compute the rotional vector
6 phi = zeros(3,1);
7 end

Listing 3: inverseKinematics.m

1 function [q] = inverseKinematics(I r IE des, C IE des, q 0, tol)
2 % Input: desired end−effector position, desired end−effector ...

orientation (rotation matrix),
3 % initial guess for joint angles, threshold for the ...

stopping−criterion
4 % Output: joint angles which match desired end−effector position ...

and orientation
5

6 % 0. Setup
7 it = 0;
8 max it = 100; % Set the maximum number of iterations.
9 lambda = 0.001; % Damping factor

10 alpha = 0.5; % Update rate
11

12 close all;
13 loadviz;
14

15 % 1. start configuration
16 q = q 0;
17

18 % 2. Iterate until terminating condition.
19 while (it==0 | | (norm(dxe)>tol && it < max it))
20 % 3. evaluate Jacobian for current q
21 I J = ;
22

23 % 4. Update the psuedo inverse
24 I J pinv = ;
25

26 % 5. Find the end−effector configuration error vector
27 % position error
28 dr = ;
29 % rotation error
30 dph = ;
31 % pose error
32 dxe = ;
33

34 % 6. Update the generalized coordinates
35 q = ;
36

37 % Update robot
38 abbRobot.setJointPositions(q);
39 drawnow;
40 pause(0.1);
41

42 it = it+1;
43 end

4

44

45 % Get final error (as for 5.)
46 % position error
47 dr = ;
48 % rotation error
49 dph = ;
50

51 fprintf('Inverse kinematics terminated after %d iterations.\n', it);
52 fprintf('Position error: %e.\n', norm(dr));
53 fprintf('Attitude error: %e.\n', norm(dph));
54 end

4 Kinematic Motion Control

The final section in this problem set will demonstrate the use of the iterative inverse
kinematics method to implement a basic end-effector pose controller for the ABB
manipulator. The controller will act only on a kinematic level, i.e. it will produce
end-effector velocities as a function of the current and desired end-effector pose.
This will result in a motion control scheme which should track a series of points
defining a trajectory in the task-space of the robot. For all of this to work we will
additionally need the following functional modules:

1. A trajectory generator, which will produce an 3-by-N array, containing N
points in Cartesian space defining a discretized path that the end-effector
should track.

2. A kinematics-level simulator, which will integrate over each time-step, the
resulting velocities generated by the kinematic motion controller of the previ-
ous exercise. This integration, at each iteration, should generate an updated
configuration of the robot which is then provided to the visualization for ren-
dering.

To save time during the exercise session, we have provided functions to implement
most of the grunt work regarding the aforementioned points. Execute and inspect
the motion control visualization.m function. It will start the motion control
simulation using inputs from your motion controller (which will be implemented in
kinematicMotionControl.m). The animation and corresponding plots will visual-
ize the performance of your controller. The function generateLineTrajectory.m

generates a straight-line trajectory defined between two points for a given path
duration and time step size.

Listing 4: motion control visualization.m

1 function [] = motion control visualization()
2 % Motor control visualization script
3

4 % ============== Trajectory settings ======================
5 ts = 0.05; % Set the sampling time (in ...

seconds)
6 r start = [0.4 0.1 0.6].'; % 3x1 (m)
7 r end = [−0.4 0.3 0.5].'; % 3x1 (m)
8 v line = 0.4; % 1x1 (m/s)
9 q 0 = zeros(6,1); % 6x1 (rad)

10 use solution = 1; % 0: user implementation, 1: ...
solution

11 % ===
12

13 % Load the visualization
14 f1 = figure(1); close(f1); loadviz;

5

15

16 % Initialize the vector of generalized coordinates
17 q = q 0;
18 abbRobot.setJointPositions(q);
19

20 % Generate a new desired trajectory
21 dr = r end − r start;
22 tf = norm(dr)/v line; % Total trajectory time
23 N = floor(tf/ts); % Number time steps
24 t = ts*1:N;
25 r traj = generateLineTrajectory(r start, r end, N);
26 v traj = repmat(v line * (dr).'/norm(dr), N, 1); % Constant ...

velocity reference
27 r log = NaN*zeros(size(r traj));
28 v log = NaN*zeros(size(v traj));
29

30 % Plot real trajectory
31 figure(2); clf; hold all
32 r h = plot(t, r log);
33 for i = 1:3
34 plot(t, r traj(:,i), '−−', 'Color', get(r h(i),'Color'));
35 end
36 title('End effector position in Inertial frame')
37 legend({'x','y','z','x {ref}','y {ref}','z {ref}'})
38

39 figure(3); clf; hold all
40 v h = plot(t, v log);
41 for i = 1:3
42 plot(t, v traj(:,i), '−−', 'Color', get(r h(i),'Color'));
43 end
44 title('End effector linear velocity in Inertial frame')
45 legend({'x','y','z','x {ref}','y {ref}','z {ref}'})
46

47 % Notify that the visualization loop is starting
48 disp('Starting visualization loop.');
49 pause(0.5);
50

51 % Run a visualization loop
52 for k = 1:N
53 startLoop = tic; % start time counter
54

55 % Get the velocity command
56 switch use solution
57 case 0
58 Dq = kinematicMotionControl(q, r traj(k,:).', ...

v traj(k,:).');
59 case 1
60 Dq = kinematicMotionControl solution(q, r traj(k,:).', ...

v traj(k,:).');
61 end
62

63 % Time integration step to update visualization. This would ...
also be used for a position controllable robot

64 q = q + Dq*ts;
65

66 % Set the generalized coordinates to the robot visualizer class
67 abbRobot.setJointPositions(q);
68 r log(k,:) = jointToPosition solution(q);
69 v log(k,:) = jointToPosJac solution(q)*Dq;
70

71 % Update the visualizations
72 for i = 1:3
73 set(r h(i), 'Ydata', r log(:,i));
74 set(v h(i), 'Ydata', v log(:,i));
75 end
76 drawnow;
77

6

78 % If enough time is left, wait to try to keep the update frequency
79 % stable
80 residualWaitTime = ts − toc(startLoop);
81 if (residualWaitTime > 0)
82 pause(residualWaitTime);
83 end
84 end
85

86 % Notify the user that the script has ended.
87 disp('Visualization loop has ended.');
88

89

90 end
91

92 function [r traj] = generateLineTrajectory(r start, r end, N)
93 % Inputs:
94 % r start : start position
95 % r end : end position
96 % N : number of timesteps
97 % Output: Nx3 matrix End−effector position reference
98 x traj = linspace(r start(1), r end(1), N);
99 y traj = linspace(r start(2), r end(2), N);

100 z traj = linspace(r start(3), r end(3), N);
101 r traj = [x traj; y traj; z traj].';
102 end

Exercise 4.1

The final exercise that combines the tools in the previous questions is to implement
a kinematic controller that tracks a single 3D line trajectory. When implementing
kinematicMotionControl.m, you can play around with the trajectory settings at
the top of the file. Investigate what happens if you specify a pose that the robot
cannot reach.

Listing 5: kinematicMotionControl.m

1 function [Dq] = kinematicMotionControl(q, r des, v des)
2 % Inputs:
3 % k : current iteration.
4 % q : current configuration of the robot
5 % r traj : desired Cartesian trajectory
6 % Output: joint−space velocity command of the robot.
7

8 % Compute the updated joint velocities. This would be used for a ...
velocity controllable robot

9 % TODO:
10 Dq = 0.1*ones(6,1);
11 end

7

	Introduction
	Matrix Pseudo-Inversion
	Iterative Inverse Kinematics
	Kinematic Motion Control

