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Figure 1: The ABB IRW 120 robot arm.

Abstract

The aim of this exercise is to calculate the forward and inverse kinematics
of an ABB robot arm. In doing so, you will practice the use of different rep-
resentations of the end-effector’s orientation as well as how to check whether
your implementations are correct. Essentially, the task is to implement the
functions for computing the forward and inverse kinematics using symbolic
and numerical computations in MATLAB. A separate MATLAB script will
be provided for the 3D visualization of the robot arm.

1 Introduction

The following exercise is based on an ABB IRB 120 depicted in Figure 2. It is a
6-link robotic manipulator with a fixed base. During the exercise you will imple-
ment several different MATLAB functions, which you should test carefully since the
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following tasks are often dependent on them. To help you with this, use the provided
script prototypes (download from http://www.rsl.ethz.ch/education-students/

lectures/robotdynamics.html).

2 Forward Kinematics

Figure 2: ABB IRB 120 with coordinate systems and joints. The units are mm.

Throughout this document, we will employ I for denoting the inertial world coor-
dinate system (coordinate system P0 in Figure 2) and E for the coordinate system
attached to the end-effector (coordinate system P6 in Figure 2).
You should always check your solutions with the provided script evaluate problems.m.
This script compares your implementation with our solution on random data points.

Exercise 2.1

Define a vector q of generalized coordinates to describe the configuration of the ABB
IRB120. Recall that generalized coordinates should be complete and independent.
The former property means that they should fully described the configuration of
the robot while at the same time comprising a minimal set of coordinates. The
latter property refers to the fact that the each generalized coordinate must not be
a function of any of the others.

Solution 2.1

The generalized coordinates can be chosen as the single joint angles between subse-
quent links. Any other complete and independent linear combination of the single
joint angles is also a valid solution.

q = (q1, . . . , q6)
T ∈ R6 (1)
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Exercise 2.2

Assume from here on that the generalized coordinates q are the joint angles of the
robot arm numbered according to Figure 2. Positive angles imply rotations around
the positive coordinate axis.
Compute the homogeneous transformations matrices Tk−1,k(qk), ∀ k = 1, . . . , 6.
Additionally, find the constant homogeneous transformations between the inertial
frame and frame 0 (TI0) and between frame 6 and the end-effector frame (T6E).
Please implement the following functions (i.e., replace the zero assignments with
your solution):

1 function TI0 = getTransformI0()
2 % Input: void
3 % Output: homogeneous transformation Matrix from frame 0 to the ...

inertial frame I. T I0
4

5 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
6 TI0 = zeros(4);
7 end
8

9 function T01 = jointToTransform01(q)
10 % Input: joint angles
11 % Output: homogeneous transformation Matrix from frame 1 to frame ...

0. T 01
12

13 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
14 T01 = zeros(4);
15 end
16

17 function T12 = jointToTransform12(q)
18 % Input: joint angles
19 % Output: homogeneous transformation Matrix from frame 2 to frame ...

1. T 12
20

21 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
22 T12 = zeros(4);
23 end
24

25 function T23 = jointToTransform23(q)
26 % Input: joint angles
27 % Output: homogeneous transformation Matrix from frame 3 to frame ...

2. T 23
28

29 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
30 T23 = zeros(4);
31 end
32

33 function T34 = jointToTransform34(q)
34 % Input: joint angles
35 % Output: homogeneous transformation Matrix from frame 4 to frame ...

3. T 34
36

37 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
38 T34 = zeros(4);
39 end
40

41

42 function T45 = jointToTransform45(q)
43 % Input: joint angles
44 % Output: homogeneous transformation Matrix from frame 5 to frame ...

4. T 45
45

46 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
47 T45 = zeros(4);

3



48 end
49

50 function T56 = jointToTransform56(q)
51 % Input: joint angles
52 % Output: homogeneous transformation Matrix from frame 6 to frame ...

5. T 56
53

54 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
55 T56 = zeros(4);
56 end
57

58 function T6E = getTransform6E()
59 % Input: void
60 % Output: homogeneous transformation Matrix from the end−effector ...

frame E to frame 6. T 6E
61

62 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
63 T6E = zeros(4);
64 end

Solution 2.2

Remember that a homogeneous transformation matrix is expressed in the form

Thk(qk) =

[
Chk(qk) hrhk(qk)
01×3 1

]
. (2)

For the ABB IRB 120, each Thk(qk) is composed by an elementary rotation a single
joint axis and a translation defined by the manipulator kinematic parameters. By
defining the elementary rotations matrices about each axis as

Cz(ϕ) =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 (3)

Cy(ϕ) =

 cos(ϕ) 0 sin(ϕ)
0 1 0

− sin(ϕ) 0 cos(ϕ)

 (4)

Cx(ϕ) =

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 , (5)

one can write

T01(q1) =

[
Cz(q1) 0r01(q1)
01×3 1

]
(6)

T12(θ2) =

[
Cy(q2) 1r12(q2)
01×3 1

]
(7)

T23(q3) =

[
Cy(q3) 2r23(q3)
01×3 1

]
(8)

T34(q4) =

[
Cx(q4) 3r34(q4)
01×3 1

]
(9)

T45(q5) =

[
Cy(q5) 4r45(q5)
01×3 1

]
(10)

T56(q6) =

[
Cx(q6) 5r56(q6)
01×3 1

]
. (11)

Finally, the constant homogeneous transformations TI0 and T6E are simply the
identity matrix I4×4.
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Exercise 2.3

Find the end-effector position vector IrIE = IrIE(q). Please implement the follow-
ing function:

1 function I r IE = jointToPosition(q)
2 % Input: joint angles
3 % Output: position of end−effector w.r.t. inertial frame. I r IE
4

5 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
6 I r IE = zeros(3,1);
7 end

Solution 2.3

The end-effector position is given by the direct kinematics, represented in matrix
form by the homogeneous transformation TIE(q), which can be found by successive
concatenation of coordinate frame transformations.

TIE(q) = TI0 ·

(
6∏

k=1

Tk−1,k

)
·T6E =

[
CIE IrIE (q)
01×3 1

]
(12)

The end-effector position can then be found by selecting the fourth column of
TIE(q).

[
r (q)

1

]
= TIE(q) ·


0
0
0
1

 (13)

Exercise 2.4

What is the end-effector position for q =


π/6
π/6
π/6
π/6
π/6
π/6

?

Use Matlab (abbRobot.setJointPositions(q)) to visualize it.

Solution 2.4

From the direct kinematics equations found earlier, it is:

IrIE = IrIE (q) =

0.2948
0.1910
0.2277

 . (14)

Exercise 2.5

Find the end-effector rotation matrix CIE = CIE (q). Please implement the fol-
lowing function:

1 function C IE = jointToRotMat(q)
2 % Input: joint angles
3 % Output: rotation matrix which projects a vector defined in the
4 % end−effector frame E to the inertial frame I, C IE.
5

6 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
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7 C IE = zeros(3);
8 end

Solution 2.5

From the structure of the direct kinematics equations found earlier, it follows that
the end-effector rotation matrix is obtained by extracting the first three rows and
the first three columns from TIE(q). This operation can be compactly written in
matrix form:

CIE (q) =
[
I3×3 03×1

]
·TIE(q) ·

[
I3×3

01×3

]
. (15)

Exercise 2.6

Find the quaternion representing the attitude of the end-effector ξIE = ξIE (q).
Please also implement the following function:

• Two functions for converting from quaternion to rotation matrices and vice-
versa. Test these by converting from quaternions to rotation matrices and
back to quaternions.

• The quaternion multiplication q ⊗ p

• The passive rotation of a vector with a given quaternion. This can be im-
plemented in different ways which can be tested with respect to each other.
The easiest way is to transform the quaternion to the corresponding rotation
matrix (by using the function from above) and then multiply the matrix with
the vector to be rotated.

Also check that your two representations for the end-effector orientation match with
each other. In total you should write the following five functions:

1 function quat = jointToQuat(q)
2 % Input: joint angles
3 % Output: quaternion representing the orientation of the end−effector
4 % q IE.
5

6 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
7 quat = zeros(4,1);
8 end
9

10 function R = quatToRotMat(q)
11 % Input: quaternion [w x y z]
12 % Output: corresponding rotation matrix
13

14 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
15 R = zeros(3);
16 end
17

18 function q = rotMatToQuat(R)
19 % Input: rotation matrix
20 % Output: corresponding quaternion [w x y z]
21

22 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
23 q = zeros(4,1);
24 end
25

26 function q AC = quatMult(q AB,q BC)
27 % Input: two quaternions to be multiplied
28 % Output: output of the multiplication
29
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30 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
31 q AC = zeros(4,1);
32 end
33

34 function B r = rotVecWithQuat(q BA,A r)
35 % Input: the orientation quaternion and the coordinate of the ...

vector to be mapped
36 % Output: the coordinates of the vector in the target frame
37

38 % PLACEHOLDER FOR OUTPUT −> REPLACE WITH SOLUTION
39 B r = zeros(3,1);
40 end

Solution 2.6

CIE (q) = CI0 ·

(
6∏

k=1

Ck−1,k

)
·C6E (16)

ξ (q) = 1
2


√
c11 + c22 + c33 + 1

sgn(c32 − c23)
√
c11 − c22 − c33 + 1

sgn(c13 − c31)
√
c22 − c33 − c11 + 1

sgn(c21 − c12)
√
c33 − c11 − c22 + 1

 (17)

where cij = C(i, j).
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