
Exercise 2b: Model-based control of the ABB IRB

120

Prof. Marco Hutter∗

Teaching Assistants: Vassilios Tsounis, Jan Carius, Ruben Grandia†

October 31, 2017

Abstract

In this exercise you will learn how to implement control algorithms focused
on model-based control schemes. A MATLAB visualization of the robot arm
is provided. You will implement controllers which require a motion refer-
ence in the joint-space as well as in the operational-space. Finally, you will
learn how to implement a hybrid force and motion operational space con-
troller. The partially implemented MATLAB scripts, as well as the visualizer,
are available at http://www.rsl.ethz.ch/education-students/lectures/

robotdynamics.html.

Figure 1: The ABB IRW 120 robot arm.

∗original contributors include Michael Blösch, Dario Bellicoso, and Samuel Bachmann
†tsounisv@ethz.ch, jan.carius@mavt.ethz.ch, ruben.grandia@mavt.ethz.ch

1

http://www.rsl.ethz.ch/education-students/lectures/robotdynamics.html
http://www.rsl.ethz.ch/education-students/lectures/robotdynamics.html
mailto:tsounisv@ethz.ch
mailto:jan.carius@mavt.ethz.ch
mailto:ruben.grandia@mavt.ethz.ch

1 Introduction

The robot arm and the dynamic properties are shown in Figure 2. The kinematic
and dynamic parameters are given and can be loaded using the provided MATLAB
scripts. To initialize your workspace, run the init workspace.m script. To start
the visualizer, run the loadviz.m script.

Figure 2: ABB IRB 120 with coordinate systems and joints

2 Model-based control

In this section you will write three controllers which use of the dynamic model of
the arm to perform motion and force tracking tasks. The template files can be
found in the problems/ directory. Each controller comes with its own Simulink
model, which is stored under problems/simulink models/. To test each of your
controllers, open the corresponding model and start the simulation.

2.1 Joint space control

2

Exercise 2.1

In this exercise you will implement a controller which compensates for the gravita-
tional terms. Additionally, the controller should track a desired joint-space configu-
ration and provide damping which is proportional to the measured joint velocities.
Use the provided Simulink block scheme abb pd g.mdl to test your controller. What
behavior would you expect for various initial conditions?

1 function [tau] = control pd g(q des, q, q dot)
2 % CONTROL PD G Joint space PD controller with gravity compensation.
3 %
4 % q des −−> a vector Rˆn of desired joint angles.
5 % q −−> a vector Rˆn of measured joint angles.
6 % q dot −−> a vector in Rˆn of measured joint velocities
7

8 % Gains
9 % Here the controller response is mainly inertia dependent

10 % so the gains have to be tuned joint−wise
11 kp = 0; % TODO
12 kd = 0; % TODO
13

14 % The control action has a gravity compensation term, as well as a PD
15 % feedback action which depends on the current state and the desired
16 % configuration.
17 tau = zeros(6,1); % TODO
18

19 end

Solution 2.1

The control law can be implemented as:

τ = g(q) + kp(qd − q) − kdq̇, (1)

with g(q) the grativational terms computed from the dynamics, qd the desired
joint positions, q̇ the measured joint velocities, and kp and kd the proportional and
derivative gain matrices.

2.2 Inverse dynamics control

Exercise 2.2

In this exercise you will implement a controller which uses an operational-space
inverse dynamics algorithm, i.e. a controller which compensates the entire dynamics
and tracks a desired motion in the operational-space. Use the provided Simulink
model stored in abb inv dyn.mdl. To simplify the way the desired orientation is
defined, the Simulink block provides a way to define a set of Euler Angles XYZ,
which will be converted to a rotation matrix in the control law script file.

1 function [tau] = control inv dyn(I r IE des, eul IE des, q, q dot)
2 % CONTROL INV DYN Operational−space inverse dynamics controller ...

with a PD
3 % stabilizing feedback term.
4 %
5 % I r IE des −−> a vector in Rˆ3 which describes the desired ...

position of the
6 % end−effector w.r.t. the inertial frame expressed in the ...

inertial frame.
7 % eul IE des −−> a set of Euler Angles XYZ which describe the desired
8 % end−effector orientation w.r.t. the inertial frame.
9 % q −−> a vector in Rˆn of measured joint angles

3

10 % q dot −−> a vector in Rˆn of measured joint velocities
11

12 % Set the joint−space control gains.
13 kp = 0; % TODO
14 kd = 0; % TODO
15

16 % Find jacobians, positions and orientation based on the current
17 % measurements.
18 I J e = I Je fun solution(q);
19 I dJ e = I dJe fun solution(q, q dot);
20 T IE = T IE fun solution(q);
21 I r Ie = T IE(1:3, 4);
22 C IE = T IE(1:3, 1:3);
23

24 % Define error orientation using the rotational vector ...
parameterization.

25 C IE des = eulAngXyzToRotMat(eul IE des);
26 C err = C IE des*C IE';
27 orientation error = rotMatToRotVec solution(C err);
28

29 % Define the pose error.
30 chi err = [I r IE des − I r Ie;
31 orientation error];
32

33 % PD law, the orientation feedback is a torque around error ...
rotation axis

34 % proportional to the error angle.
35 tau = zeros(6, 1); % TODO
36

37 end

Solution 2.2

We can define a desired acceleration in operational-space as

Iẇd = kp · Iχerr − kd · Iw. (2)

Recalling that

Iẇ = IJ(q)q̈ + I J̇(q)q̇, (3)

which yields
q̈ = IJ(q)+(Iẇ − I J̇(q)q̇) (4)

we can write the control law as

τ = M(q)q̈d + b(q, q̇) + g(q)

= M(q)J(q)+(Iẇ − I J̇(q)q̇) + b(q, q̇) + g(q)
(5)

with g(q) the gravitational terms computed from the dynamics, qd the desired
joint positions, q̇ the measured joint velocities, and kp and kd the proportional and
derivative gain matrices.

4

Figure 3: Robot arm cleaning a window

2.3 Hybrid force and motion control

Exercise 2.3

We now want to implement a controller which is able to control both motion and
force in orthogonal directions by the use of appropriate selection matrices. As shown
in Fig. 3, there is a window at x = 0.1m. Your task is to write a controller that
wipes the window. This controller applies a constant force on the wall in x-axis
and follows a trajectory defined on y − z plane. To do this, you should use the
equations of motion projected to the operational-space. Use the provided Simulink
model abb op space hybrid.mdl, which also implements the reaction force exerted
by the window on the end-effector.

1 function [tau] = control op space hybrid(I r IE des, eul IE des, ...
q, dq, I F E x)

2 % CONTROL OP SPACE HYBRID Operational−space inverse dynamics controller
3 % with a PD stabilizing feedback term and a desired end−effector force.
4 %
5 % I r IE des −−> a vector in Rˆ3 which describes the desired ...

position of the
6 % end−effector w.r.t. the inertial frame expressed in the ...

5

inertial frame.
7 % eul IE des −−> a set of Euler Angles XYZ which describe the desired
8 % end−effector orientation w.r.t. the inertial frame.
9 % q −−> a vector in Rˆn of measured joint positions

10 % q dot −−> a vector in Rˆn of measured joint velocities
11 % I F E x −−> a scalar value which describes a desired force in the x
12 % direction
13

14 % Design the control gains
15 kp = 0; % TODO
16 kd = 0; % TODO
17

18 % Desired end−effector force
19 I F E = [I F E x, 0.0, 0.0, 0.0, 0.0, 0.0]';
20

21 % Find jacobians, positions and orientation
22 I Je = I Je fun solution(q);
23 I dJ e = I dJe fun solution(q, dq);
24 T IE = T IE fun solution(q);
25 I r IE = T IE(1:3, 4);
26 C IE = T IE(1:3, 1:3);
27

28 % Define error orientation using the rotational vector ...
parameterization.

29 C IE des = eulAngXyzToRotMat(eul IE des);
30 C err = C IE des*C IE';
31 orientation error = rotMatToRotVec solution(C err);
32

33 % Define the pose error.
34 chi err = [I r IE des − I r IE;
35 orientation error];
36

37 % Project the joint−space dynamics to the operational space
38 % TODO
39 % lambda = ... ;
40 % mu = ... ;
41 % p = ... ;
42

43 % Define the motion and force selection matrices.
44 % TODO
45 % Sm = ... ;
46 % Sf = ... ;
47

48 % Design a controller which implements the operational−space inverse
49 % dynamics and exerts a desired force.
50 tau = zeros(6,1); % TODO
51

52 end

Solution 2.3

According to the task specification, the 6D selection matrices read

Sm = diag([0, 1, 1, 1, 1, 1]), Sf = diag([1, 0, 0, 0, 0, 0]) . (6)

Note that their sum equals the identity matrix, i.e., every degree of freedom is either
force or position controlled. Now, given the pose error Iχerr, its derivative Iχ̇err,
and the desired end-effector force of this task Iftask, we can compute the inverse
dynamics control law in operational space as

Ifee, des = ΛSm(Kp Iχerr − Kd χ̇err) + Sf Iftask + µ + p . (7)

This is the virtual force that should act on the robot’s end-effector to track the
desired motion and force. We can convert this reference to task space via

τ = IJ
>
ee Ifee, des . (8)

6

	Introduction
	Model-based control
	Joint space control
	Inverse dynamics control
	Hybrid force and motion control

