
Evolving SDN for Low-Power

IoT Networks
Michael Baddeley

PhD Candidate, University of Bristol

Toshiba Research Europe Ltd.

27 June 2018

1Michael Baddeley (m.baddeley@bristol.ac.uk)

Authors: Michael Baddeley, Reza Nejabati, George Oikonomou, and Dimitra Simeondou at the University of Bristol,

and Mahesh Sooriyabandara at Toshiba Research Europe Ltd.

Context: What is SDN?

Compare SDN to the OS on a computer:

• Network Applications => OS Applications.

• Specify network behaviour.

• Network Operating System => Computer OS.

• Compiles behaviour to network state.

• Infrastructure Layer => CPU/Mem. instructions.

• Applies network state to generic devices.

… it provides Network Programmability

Michael Baddeley (m.baddeley@bristol.ac.uk) 2

27 June 2018

Context: Low-Power IoT (IEEE 802.15.4)

Michael Baddeley (m.baddeley@bristol.ac.uk) 3

27 June 2018

IEEE 802.15.4 forms the basis of many
low-power IoT protocols:
• 6LoWPAN, ZigBee, WirelessHART, Thread,

ISA100.11a

Low-Power and Lossy Networks:
• Low data-rate (250kbps).

• Extremely low-power (<15mA to TX).

• Multi-hop mesh (10s to 100s of nodes).

• Used for data collection/sensor networks.

WWANWNANWLANWPANProximity

NFC
RFID

BLE
802.15.4

802.11
Wi-SUN

ZigBee-NAN

LTE-MTC
Sigfox
LoRa

Motivation: Why bring them together?

1. Network (Re) configurability

• How do we scale and adapt (extremely) large IoT networks as needs and requirements
change?

2. Global and centralized knowledge

• How to we identify issues within the mesh and find optimal solutions to these issues?

3. New business models and new solutions

• How do we slice the network resources to provide and operate a multi-tenant environment?

Michael Baddeley (m.baddeley@bristol.ac.uk) 4

27 June 2018

SDN assumes:

• Low-latency controller communication.

• Reliable links.

• Dedicated control channel.

• Large flowtables.

• Real-time network state.

IEEE 802.15.4 offers:

• Constrained Devices

• Small memory footprint (KB not GB!).

• Limited energy.

• Constrained Links

• Wireless, low-power, and lossy.

• Max frame size of 127B.

• Mesh Topology

• Motes need to self-organise (dist.
Protocols).

• "Downwards" communication is
hard.

• Mobility + dead branches.

Michael Baddeley (m.baddeley@bristol.ac.uk) 5

27 June 2018

Challenge: SDN in a Constrained Network

Michael Baddeley (m.baddeley@bristol.ac.uk) 6

27 June 2018

Question: How do we apply a
high-overhead architecture in an
extremely constrained
environment over a multi-hop
mesh topology?

Answer: With difficulty…

Challenge: Square peg, round hole

Michael Baddeley (m.baddeley@bristol.ac.uk) 7

27 June 2018

Challenge: Maintaining Node/Controller Link

There needs to be a link between the
controller and network nodes:

• Routing Protocol for Low Power and Lossy
Networks (RPL)

• Self-organising, self-healing.

• Nodes route through their parent.

• Designed for robust upwards collection of low-
rate sensor data.

• Downwards or point-to-point communication
can be difficult.

Michael Baddeley (m.baddeley@bristol.ac.uk) 8

27 June 2018

Challenge: Maintaining Node/Controller Link

This is an issue for SDN configuration of
the network:
• Messages from the controller to the rest of the

network need to navigate downwards along the
RPL topology, across multiple branches.

• This can result in replication of control messages
as the controller tries to configure nodes in the
network.

Michael Baddeley (m.baddeley@bristol.ac.uk) 9

27 June 2018

Challenge: Maintaining Node/Controller Link

This is an issue for SDN data collection
(for network state information):
• SDN data collection for network state can be

excessive (depending on application needs)

• Nodes further up the tree need to serve
messages from children, exacerbating energy
loss.

• Increases contention with other control and
application protocols (e.g. RPL control
messages: DIS, DIO, DAO).

1 3

2

4 6

5

C

UPDT 3

UPDT 1

UPDT 4

UPDT 6

UPDT 2 UPDT 5

• Change the peg…

• Change the hole

Michael Baddeley (m.baddeley@bristol.ac.uk) 10

27 June 2018

Approach: Get the peg to fit the hole

Michael Baddeley (m.baddeley@bristol.ac.uk) 11

27 June 2018

µSDN: Lightweight SDN for Contiki

Design principles:

• Minimize memory footprint

• Lightweight control protocol

• Interoperability with existing stack

• Embedded controller at DAG root

Objectives:

• Workable SDN for constrained networks

Challenges:

• Reduce the SDN overhead (delay + jitter)

• Reduce flowtable lookups (processing delay)

• Reduce flowtable size (memory limitations)

6LoWPAN

IPv6
RPL

μSDN

μSDN-UDP

μSDN Embedded Controller

MAC/RDC

IEEE 802.15.4

ICMPv6

UDP

Michael Baddeley (m.baddeley@bristol.ac.uk) 12

27 June 2018

µSDN: Cost of SDN Overhead

The rate of NSU (constant bit-rate) and FTQ/FTS (variable bit-rate) traffic patterns can severely
affect application-layer flows in terms of end-to-end delay and jitter.

Michael Baddeley (m.baddeley@bristol.ac.uk) 13

27 June 2018

µSDN: Optimize the Stack

Protocol Optimization:
• Eliminate fragmentation

• Reduce packet frequency

• Match on byte array/index

Architectural Optimization:
• Use source routing

• Throttle control requests

• Refresh flowtable entries

Memory Optimization:
• Re-use flowtable matches/actions

• Reduce buffer sizes

Controller Optimization:
• Reduce controller response times by including an

embedded controller within the mesh for simple tasks.

Michael Baddeley (m.baddeley@bristol.ac.uk) 14

27 June 2018

µSDN: Embed the Controller Within the Mesh

Inter-
ference

µSDN
Connector

Routing Firewall

Protocol to
Application

Mapping

Network State
+

Event Mapping

Etc…

Embedded SDN Controller:
• Implemented in Contiki.
• Application API:

• Programme network functions.
• Connector API:

• Multiple southbound protocols.
• Applications can update network state.
• Applications can subscribe to network state.
• Applications can map to protocol connectors.

RPL
Connector

Michael Baddeley (m.baddeley@bristol.ac.uk) 15

27 June 2018

µSDN: Minimal SDN Overhead

All evaluation was performed using ContikiMAC (an energy saving MAC layer) on a 30-node
network, comparing µSDN against a solely (Non-Storing mode) RPL-based network. In the µSDN
network, with traffic reduction techniques, Constant Bit Rate (CBR) overhead (180s) and Variable
Bit Rate (VBR) (10min) overhead combined makes up ~13% of the total network traffic.

Michael Baddeley (m.baddeley@bristol.ac.uk) 16

27 June 2018

µSDN: Minimal SDN Overhead

End-to-end delay and Packet Delivery Ratio (PDR) of application flow latency, with a packet sent
towards the sink node at a variable rate of 60s – 75s. With optimization of the SDN stack, similar
delay and latency is achieved for application traffic, in comparison to a solely RPL-based network.

Michael Baddeley (m.baddeley@bristol.ac.uk) 17

27 June 2018

µSDN: Minimal SDN Overhead

Association time and Radio Duty Cycle (RDC) for a 30-node network. With optimization of the
SDN stack, results are similar to a solely RPL-based network.

Michael Baddeley (m.baddeley@bristol.ac.uk) 18

27 June 2018

Use-Case: Reroute flows under interference

Setup:
• Source node S sends data from two applications

to the DAG Root / SDN Controller at rates of 0.25s
and 10s.

• Interference is generated on the same channel as
the network every 100ms for a duration of 15ms.

• SDN controller monitors incoming messages and
instructs S to send Flow 1 (a critical flow) along a
different route if the delivery rate is < X.

Michael Baddeley (m.baddeley@bristol.ac.uk) 19

27 June 2018

Use-Case: Reroute flows under interference

Results:
• Under RPL, Flow 0 and Flow 1

experience severe delay and jitter.
• Interference is intermittent so

RPL cannot self-heal.
• Under SDN, Flow 0 and Flow 1 are no

longer in contention.
• Flow 0 continues to experience

some interference.
• Flow 1 is rerouted and is no

longer subject to interference.

Michael Baddeley (m.baddeley@bristol.ac.uk) 20

27 June 2018

Conclusions

You can provide programmable low-power IoT with minimal SDN overhead:
• Optimize the SDN stack.

• Eliminate control message fragmentation.

• Eliminate unnecessary transmissions.

• Use source-routing on control messages.

• Embed the controller.

• µSDN codebase will be publicly available soon!

Time Scheduled Channel Hopping (TSCH) based networks:
• SDN concepts are a a big part of 6TiSCH (IPv6 over IEEE 802.15.4-2015 TSCH).

Larger Networks:
• How do we move from 100s -> 1000s of nodes?

Node/Controller communication is essential, but RPL overhead is excessive:
• Are there other ways to provide this link but retain robustness/mobility?

Michael Baddeley (m.baddeley@bristol.ac.uk) 21

27 June 2018

Questions?

