
FINAL – ECON 416

MICHAEL WOOLEY

This paper shows how to solve for the equilibrium path out of a bank run for the model in Gertler and
Kiyotaki (2015). The solution method developed here can be described as “shooting backwards”: beginning
from a point near the steady state a candidate eqilibrium path can be solved for by working backwards in
a recursive manner. A satisfactory path for a given run state asset price (Q∗) will be one that hits certain
pre-determined equilibrium values at period 2, the period following the bank run. A complete solution will
consist of a path and a Q∗ that additionally satisfies a condition at the run period.

Section 1 reviews the model. The presentation tracks the exposition in Christiano, Dalgic, and Wen (2015)
quite closely; readers familiar with the model can skip ahead without missing anything. Section 2 finds and
discusses the features of the set of possible steady states, which are indexed by Q∗. The strategy for finding
the equilibrium path is described in Section 3.1. Results are presented and discussed in Section 4.

1.Model

1.1. Bankers. There is a unit measure of bankers. At the start of each period 1−σ bankers are randomly
chosen to exit. The remaining σ bankers survive and operate in period t. At the beginning of each period
a measure 1−σ of new bankers enter. Therefore, the number of bankers is constant across periods.

1.1.1. Banking Problem in No-Bank Run Period. Individual bankers have net worth nt and issue deposits dt.
They buy capital kbt at a price Qt subject to the balance sheet constraint
(1.1) Qtk

b
t =nt+dt.

Banks pay a gross interest rate R̄t on deposits dt to households in period t+1.
At each period a banker may choose either to default or not to default.

Non-Defaulting Banks. Consider a banker who chooses not to default at t. Then his net worth at t+1 is

nt+1 =
{
Qtk

b
t(Zt+1+Qt+1)−R̄tdt If no bank run in t+1.

Qtk
b
t

(
Zt+1+Q∗t+1

)
−xt+1R̄tdt If bank run in t+1.

where Q∗t+1<Qt+1 and 1.1 hold. In a bank run bank assets are wiped out. The term xt+1 represents the
recovery rate of depositors in a bank run state.
Participation Constraint. A banker who chooses not to default at period t has a recursive franchise value of
(1.2) Vt=max

dt

Et
[
β(1−σ)nt+1+βσmax

(
Vt+1,θQt+1k

b
t+1
)]
.

A banker that defaults can abscond with θ of his assets:
(1.3) θQtk

b
t

which leaves (1−θ)Qtkbt for the depositors. A banker therefore chooses to not to default if and only if the
value of not defaulting (1.2) dominates the value of defaulting (1.3):
(1.4) θQtk

b
t≤Vt.

Any bank that does not satisfy (1.4) will not receive deposits–households will choose to deposit elsewhere.1

1.1.2. Bankers’ Problem. Focusing on an equilibrium where bankers choose not to abscond, we get the following
maximization problem,

Vt=max
dt

Et[β(1−σ)nt+1+βσVt+1](1.5)

s.t.
θQtk

b
t≤Vt∀t.

Notice that banks only differ according to their net worth, nt. Consider the following scaling:

ψt ≡ Vt

nt
φt≡ Qtk

b
t

nt
.

Date: January 4, 2016.
1It is the households that are choosing to “participate” or not in the participation constraint.

1



FINAL – ECON 416 2

Then (1.5) can be rewritten as

ψt=max
φt

Et
{

[β(1−σ)+βσψt+1]nt+1

nt

}
(1.6)

s.t.
θφt≤ψt∀t.

Notice that the bankers are now choosing the leverage multiplier, φt, rather than deposits, dt.

1.1.3. Law of Motion of Individual Banker Net Worth. A banker’s net worth at t+1 is

(1.7) nt+1 =
{
kbt(Zt+1+Qt+1)−R̄tdt If no bank run in t+1.
kbt
(
Zt+1+Q∗t+1

)
−xt+1R̄tdt If bank run in t+1.

In the no run case a banker’s revenues may be rewritten as

kbt(Zt+1+Qt+1)=ntφt
Zt+1+Qt+1

Qt
.

Recalling from (1.1) that dt=Qtkbt−nt and φt=Qtkbt/nt we get

R̄tdt=R̄t
[
Qtk

b
t−nt

]
=R̄tnt[φt−1].

If a bank run occurs the banker is completely wiped out. Thus, the law of motion for a banker’s net worth
(1.7) may be rewritten as

(1.8) nt+1 =
{
nt

[
φt
Zt+1+Qt+1

Qt
−R̄t(φt−1)

]
If no bank run in t+1.

0 If bank run in t+1.

Furthermore, the fact that a banker is wiped out in a run implies that the recovery rate on deposits xt in
the event of a run is

xt+1 =
kbt
(
Zt+1+Q∗t+1

)
R̄tdt

<1.

1.1.4. Banker’s Problem, Again. Denote the probability of a bank run at period t+1 by Pt. Then using (1.8)
the banker’s problem (1.6) may be rewritten as

ψt=max
φt

Et(1−Pt)[β(1−σ)+βσψt+1]
[
φt
Zt+1+Qt+1

Qt
−R̄t(φt−1)

]
(1.9)

s.t.
θφt≤ψt∀t.

Since nt is absent from (1.9) this implies that all bankers choose the same leverage multiplier, φt.
Notice that because

Vt=ψtnt
and we now know that ψt is not a function of nt, it follows that nt=0 implies Vt=0. That is, the banker’s
franchise value is zero if they have no net worth.

A further constraint is needed to ensure that bankers will choose to have maximum leverage:

(1.10) θ>
Zt+1+Qt+1

Qt
−R̄t>0.

That is, the excess marginal value from non-default must be positive but less than the marginal gain from default,
θ. This ensures that banks will always accept deposits and, in particular, that they will maximize their leverage,

(1.11) φt=
ψt
θ

= 1
θ

(1−Pt)[β(1−σ)+βσψt+1]
[
φt
Zt+1+Qt+1

Qt
−R̄t(φt−1)

]
.

This inequality should be verified numerically.



FINAL – ECON 416 3

1.1.5. Aggregation. Since all bankers face the same problem, aggregate leverage Φt equals each individual
banker’s leverage, φt. Thus, we have the first equilibrium condition,2

(1.12) Φt=
β

θ
(1−Pt)[(1−σ)+σθΦt+1]

[
Φt
Zt+1+Qt+1

Qt
−R̄t(Φt−1)

]
The law of motion for aggregate banker net worth may also be found by making use of the scaling factors.

Let ζt(n) be the period t distribution for banker net worth. Then total net worth at t is given by

Nt≡
ˆ ∞

0
n·ζt(n)dn.

When there is no bank run at period t+1 total end-of-period net worth for bankers operating in t is:3

Ñt+1 =Nt
[
Φt
Zt+1+Qt+1

Qt
−R̄t(Φt−1)

]
.

Measure 1−σ of bankers are randomly chosen to exit at t+1. Their aggregate consumption is

Cbt+1 =(1−σ)Ñt+1 =(1−σ)Nt
[
Φt
Zt+1+Qt+1

Qt
−R̄t(Φt−1)

]
A measure σ of bankers from period t survive while a measure 1−σ of bankers enter with endowment wbt+1.
Denote the total endowment of new bankers by W b

t+1 =(1−σ)wbt+1. Then the law of motion for the aggregate
beginning-of-period net worth of bankers is

Nt+1 =σNt
[
Φt
Zt+1+Qt+1

Qt
−R̄t(Φt−1)

]
+W b

t+1(1.13)

1.2. Bank Run. In this model a bank run can only occur via an economic shock or decline in asset prices
Qt+1. It must, therefore, affect the entire banking system. In fact, under “normal” conditions a bank can
repay all of its depositors in full.
A Run on an Individual Bank. Recall that in the no-bank run case we had

(1.14) Zt+1+Qt+1

Qt
−R̄t>0.

If a bank is called on to pay back all of its deposits under normal conditions (i.e. when this condition holds) it
could do so. To see this use the aggregate analog to the balance sheet condition, QtKb

t =Dt+Nt, and multiply
both sides of (1.18) by QtKb

t :

Kb
t (Zt+1+Qt+1)>QtKb

t R̄t=[Dt+Nt]R̄t>DtR̄t.

That is, so long as Zt+1+Qt+1 is great enough, the bank can repay all of its depositors with interest DtR̄t.
The Possibility of a Run. Consider a case where (1.14) does not hold:

(1.15) Kb
t

(
Zt+1+Q∗t+1

)
<DtR̄t.

Here, Q∗t+1 denotes the price that banks could sell their assets for if they were forced to do so. It is quite
possible that households could set Dt+1 =Dt, which means that banks do not have to pay out any deposits
and the banking system continues to operate as usual.

If, however, households demanded all of their deposits back (i.e. Dt+1 =0), then the banks could not pay
back the deposits in full. In this case they would be insolvent.

Condition (1.15) relates not only to the solvency of the banks but also the agency problem. The individual
bank analog to (1.15) implies that the participation constraint is not met; if a household were to deposit savings
with a bank in these conditions, the bank would default. This is why Dt+1 =0 in equilibrium during the bank
run.4

2Notice that, besides substituting the φt’s for Φt, the leverage condition 1.11 has been used to substitute θΦt for ψt.
3The use of the Ñt+1 is meant to distinguish this end-of-period net worth from the beginning of period net worth that will

be of interest.
4If this reasonsing appears to be circular then I think that’s just becuase it is. The banks are only insolvent because Dt+1 =0

in equilibrium and Dt+1 =0 because the banks are insolvent. The actual occurence (though not th probability) of a bank run
is not coming from the fundamentals; its a sunspot shock.



FINAL – ECON 416 4

The Probability of a Bank Run. The above discussion shows that there is nothing within the model that
dictates whether a bank run will, in fact, occur or not. This will have to be specified exogenously. Recall that
the probability of a bank run was Pt. We will now specify that
(1.16) Pt=1−min{xt+1,1}
In terms of aggregate variables, the recovery rate on deposits, xt+1, is

xt+1 =
(
Zt+1+Q∗t+1

)
Kb
t

(Φt−1)NtR̄t
.

Aside: Entrant Banks During a Run. When (1.15) holds then Dt+1 =0. This implies that the 1−σ banks
that would have entered in t+1 do not accept deposits until t+2.

This is technically convenient because it ensures that banks that are run on can only sell to households.
It also ensures that Dt+1 =0.

1.3. Households. Households have log utility in consumption and a per-period endowment Wh
t =Ztωht . The

representative household has a budget constraint
Cht +Dt+QtKh

t +f
(
Kh
t

)
=Wh

t +RtDt−1+(Zt+Qt)Kh
t−1.

where f
(
Kh
t

)
:= α

2
(
Kh
t

)2 is the price paid by a household that manages its own capital.
Households choose deposits and capital at each period to maximize utility. The FOC for deposits is,

(1.17) (1−Pt)R̄tβ
Cht
Cht+1

+PtR̄txt+1β
Cht
C∗t+1

=1

while that for capital is

(1.18) (1−Pt)β
Cht
Cht+1

Zt+1+Qt+1

Qt+αKh
t

+Ptβ
Cht
C∗t+1

Zt+1+Q∗t+1
Qt+αKh

t

≤1.

The inequality in (1.18) is an equality whenever Kh
t >0.

Resource Constraint in a No-Run Equilibrium. The resource constraint in a no-run equilibrium is

(1.19) Cht +Cbt +α

2
(
Kh
t

)2≤Zt+Wh
t +W b

t .

1.4. No-Run Equilibrium Conditions. The equilibrium variables of interest are
Kh
t ,Dt,Qt,R̄t,Pt,C

h
t ,Φt,Nt.

1.4.1. Case t>2. At each t>2 an equilibrium path must satisfy:

Φt=
β

θ
(1−Pt)[(1−σ)+σθΦt+1]

[
Φt
Zt+1+Qt+1

Qt
−R̄t(Φt−1)

]
(1.20)

Nt+1 =σNt
[
Φt
Zt+1+Qt+1

Qt
−R̄t(Φt−1)

]
+W b

t+1(1.21)

Pt=1−xt+1(1.22)

1=(1−Pt)R̄tβ
Cht
Cht+1

+PtR̄txt+1β
Cht
C∗t+1

(1.23)

1=(1−Pt)β
Cht
Cht+1

Zt+1+Qt+1

Qt+αKh
t

+Ptβ
Cht
C∗t+1

Zt+1+Q∗t+1
Qt+αKh

t

(1.24)

Cht +Cbt =Zt+Wh
t +W b

t −
α

2
(
Kh
t

)2(1.25)

Φt=
Qt
(
1−Kh

t

)
Nt

(1.26)

Nt=Qt
(
1−Kh

t

)
−Dt(1.27)

Also recall the following auxiliary equations:

xt+1 =min
{(

Zt+1+Q∗t+1
)(

1−Kh
t

)
(Φt−1)NtR̄t

,1
}

Cbt = 1−σ
σ

[
Nt−W b

t

]
Wh
t =Ztωht .



FINAL – ECON 416 5

1.4.2. Case t=2. When t=2 the net worth of bankers is pinned down by
N2 =W b

2 +σW b
1 .

Thus, in the “usual” condition (1.27) (i.e. N2 =Q2
(
1−Kh

2
)
−D2), one of Q2,K

h
2 ,or D2 is pinned down given

the other two variables. In practice I will use this to determine D2 given Q2 and Kh
2 . This means that the

state vector at t=2 is s2 =
[
Q2 Kh

2 R̄2
]
.

Moreover, we say that the bankers that “entered” during the bank run period in fact only enter at t=2.
This ensures that N1 =0. It implies that the resource constraint at t=2 is

Ch2 +Cb2 =Z2+Wh
2 +W b

2 +W b
1−

α

2
(
Kh

2
)2
,

where, again, W b
1 +W b

2 =(1−σ)
(
wb1+wb2

)
.

1.5. Equilibrium in a Bank Run. Key to solving the above set of equation are the values Q∗t+1 and C∗t .
In order to make the bank run state the same at all periods, assume that

Zt=Z,Wh
t =Wh,W b

t =W b∀t.
The main exercise here considers a case when a run actually occurs at t= 1 but agents are aware of the
possibility of a run at later periods (that never actually precipitates).

Thus, suppose there is a bank run at t=1. ThenD1 =0 andKh
1 =1. Thus, the resource constraint simplifies to

Ch∗1 =Z1+Wh
1 −

α

2 .

Further, since bankers have no deposits to default on in period 2, the probability of a default in period 1
is zero: P1 =0. From condition (1.24)–the household deposit FOC–this implies

(1.28) 1=βC
h∗

Ch2

Z+Q2

Q∗1+α .

Condition (1.28) will determine whether we have a numeric solution or not.

1.6. Parameter Values. All that follows is based on the following set of parameter values:

α=0.008,θ=0.193,σ= .95,β=0.99
Wh=0.045,W b=0.00148/10,Z=0.0126.

2.Steady State Solution

There are two cases of interest for the steady state: x≥1 and x<1. Which of these cases applies depends
in turn on Q∗, which will take on a single value in equilibrium but may take on many different values as we
iterate to a solution.

The script ssEqnSet sets up the steady state equations for both cases. Script xGt1SS finds and confirms
the uniqueness of the steady state for when x≥1. For the case with x<1 the function ssFindLt finds the
steady state vector for a given Q∗. The main script for investigating the steady states is ssMapExplore.

2.1. Case x>15. When x>1 we have Pss=0. From (1.20)-(1.27) one can see that the asset price in a run
Q∗ only enters the system of equilibrium equations in cases where Pss 6=0. Thus, the steady state for this case
will only indirectly depend on the choice of Q∗.

Solving the system yields the following steady state vector of state variables:
(2.1)

[
Qgt Kh

gt Dgt R̄gt
]
:=
[
1.0497, 0.2480, 0.7512, 1.0101

]
.

As alluded to above, this steady state is not entirely independent of Q∗. This is because x itself depends
on both Q∗ and the state vector. In order for x≥1 we must therefore have

(2.2) x=
(Z+Q∗)

(
1−Kh

gt

)
Dgt·R̄gt

≥1.

Plugging the values from (2.1) into (2.2) and solving forQ∗ we find a value forQ∗ such that this inequality holds:
(2.3) Q∗gt=0.9965.

Thus, for all Q∗<Q∗gt we only need to worry about one steady state. In examining the case x<1 we will also
find that (2.1) is the unique feasible steady state for all Q∗≥Q∗gt.

5See xGtSS.



FINAL – ECON 416 6

2.2. Case x<16. When x<1 the solution will depend in a direct manner on Q∗ because Pss>0. Thus, this
case is slightly more complicated than the previous one. To find a steady state for this case we will make use
of fsolve. One potential problem with blindly using fsolve here is that the solution must satisfy several
non-linear inequalities. One way to increase the probability that the solution returned by the solver satisfies
these constraints is by submitting an initial guess that itself satisfies the inequalities. A procedure for doing
just this is outlined first. Then we discuss the solution.

2.2.1. Choosing an s0. In order to find a solution that is feasible it seems advisable to submit an initial guess
that is itself feasible. That is, an s0 that satisfies:

(Z+Q∗)
(
1−Kh

)
D·R̄

<1 [x]

1−σ
σ

[
Q
(
1−Kh

)
−D−W b

]
≥0

[
Cb
]

Z+Wh+W b−α2
(
Kh
)2− 1−σ

σ

[
Q
(
1−Kh

)
−D−W b

]
≥0

[
Ch
]

Z+Q
Q
−R̄>0 [Leverage]

Z+Q
Q
−R̄<θ [No-default]

Q,Kh,D,R̄≥0 [s]
Kh≤1

Non-negativity constraints for N and Φ are excluded because these are superseded by
[
Cb
]
.7

I will begin by drawing a Kh
0 ∈
[
Kh,K̄h

]
⊂ [0,1]. Then I will set x0∈(0,1). This will R̄ in terms of D:

R̄(D)=
(Z+Q∗)

(
1−Kh

0
)

D·x0
.

Set Cb0 :=κ1

[
Z+Wh+W b−α

2
(
Kh

0
)2] where κ1∈ [0,1] is an arbitrary constant. Then get Q in terms of D and

Kh:

Q(D)=
D+W b+ σ

1−σC
b
0

1−Kh
0

.

Finally, see if there is a D such that Z+Q(D)
Q(D) −R̄(D) =κ2θ, where κ2∈ (0,1) is an arbitrary constant. The

roots of this problem can be shown to be8

D∈
−[A−E−κ2θB]±

{
[A−E−κ2θB]2+4x0[1−κ2θ]EB

}1
2

2x0[1−κ2θ]
.

6Prototyped in ssFindLtProto.m. General function in ssFindLt.m. General function tested in ssFindLtTest.m.

7These are Q
(
1−Kh

)
−D≥0 for N and

Q
(

1−Kh
)

Q(1−Kh)−D
≥0 for Φ.

8

Z+Q(D)
Q(D)

−R̄(D)=κ2θ

:=A︷ ︸︸ ︷
Z ·
(
1−Kh

0
)

+Wb+
σ

1−σ
Cb

0+D

D+Wb+
σ

1−σ
Cb

0︸ ︷︷ ︸
:=B

−

:=E︷ ︸︸ ︷
(Z+Q∗)

(
1−Kh

0
)

D·x0
=κ2θ

A+D
D+B

−
E

D·x0
=κ2θ

Dx0[A+D]−E[D+B]=D·x0κ2θ[D+B]

Dx0A+D2x0−DE−BE=D2 ·x0κ2θ+D·x0κ2θB

D2 ·x0[1−κ2θ]+D·x0[A−E−κ2θB]−EB=0



FINAL – ECON 416 7

0.8 0.9 1 1.1
0.8

0.9

1

1.1

Qss

0.8 0.9 1 1.1
0.24

0.26

0.28

0.3
Kh

ss

0.8 0.9 1 1.1
0.5

0.6

0.7

0.8
Dss

0.8 0.9 1 1.1
1.00995

1.01

1.01005

1.0101

1.01015
R̄ss

Figure 2.1. Mapping from Q∗ to the Steady State Variables
The horizontal axis for all subfigures is Q∗. The dots represent individual points at which the steady state was found. The mapping
is constant for all Q∗ > 0.995, the point after which x≥ 1. The 45 degree line in the Qss subfigure demonstrates that, for all Q∗ in
a “reasonable” range, Qss >Q

∗. This is a necessary requirement of a solution because Q∗must reflects the return to households from
holding capital while Qss predominantly reflects the return to banks from holding capital. By assumption the return on capital to banks
is greater than that to households.

From this one can see that sufficient conditions for D to have a positive root is that A−E−κ2θB<0 and
κ2<1/θ. But since κ2<1<1/θ by assumption, this latter condition is automatically satisfied.

The function ssLtInitDraw carries out a brute force guess-and-check version of the above procedure.

2.3. Solving for the Steady State. To find the actual steady state we will first use ssLtInitDraw to find
a good initial guess, plug the guess into fsolve, then check to see if the solution satisfies the constraints. If
it doesn’t the process will be repeated. This turns out to be a fairly quick process: a steady state can be found
in about 0.10 seconds.

Figure 2.1 shows the mapping from Q∗ to the steady state variables. I find that the steady state at each
Q∗<Q∗gt is unique. Moreover, for all Q∗>Q∗gt I find that the proposed solution fails to satisfy the requirement
that x<1. Therefore, moving forward it is only necessary to consider one steady state for each Q∗.

3.Solving for the Equilibrium Path

The method I employ to find the equilibrium path can be thought of as “shooting backwards”. The basic
idea is to begin at a point near the steady state and solve the system backwards analytically until banker net
worth equals the period 2 banker net worth, N2 =(1+σ)W b. The period 1 condition (1.28) is then checked
and we iterate to a solution.

Two key problems must be solved to make the method work. First, a way of iterating backwards must
be found. In Subsection 3.1 I show that the problem can be reduced to finding the roots of a polynomial in
Kh
t whose coefficients are determined by

{
Qt+1,K

h
t+1,Dt+1,R̄t+1

}
and the run price Q∗. Second, one has to

choose an initial state vector to ensure that the backwards solution will terminate with N2 =(1+σ)W b. In
Subsection 3.2 I show that this problem can be reduced to a one-dimensional interpolation problem.



FINAL – ECON 416 8

3.1. Solving Backwards. Suppose that we have a vector of state variables
{
Qt+1,K

h
t+1,Dt+1,R̄t+1

}
for t>2

in addition to a run price Q∗. This section will show how to find the vector of state variables in the previous
period,

{
Qt,K

h
t ,Dt,R̄t

}
.

3.1.1. Simplifying the System. Return to considering the system of equations 1.20-1.27. Equations 1.22,
1.25, 1.26, and 1.27 yield solutions for Pt,Cht ,Φt,and Nt that can be substituted into 1.20, 1.21, 1.23, and
1.24. In a like manner the next period (t+1) counterparts of 1.25, 1.26, and 1.27 can be used to substitute
Qt+1,K

h
t+1,Dt+1, R̄t+1 for Cht+1,Φt+1,and Nt+1 in 1.20, 1.21, 1.23, and 1.24. We now have a set of four

equations (1.20, 1.21, 1.23, and 1.24) parametrized by Qt+1,K
h
t+1,Dt+1,R̄t+1 and Q∗. This set can be used

to solve for the four unknowns
{
Qt,K

h
t ,Dt,R̄t

}
.

While the above set of equations can be solved with, e.g., fsolve, time savings can be achieved with a further
simplification. Using MATLAB’s symbolic toolbox one can solve 1.20, 1.21, and 1.23 for Qt,Dt,R̄t as a function
of Kh

t and the parameters Qt+1,K
h
t+1,Dt+1,R̄t+1 and Q∗. Once this is done the solutions for Qt,Dt,R̄t may be

substituted into 1.24. We now have one equation 1.24 in one unknown–Kh
t . This is now a rootfinding problem.

That is, denoting the error function form of 1.24 by H
(
k;Qt+1,K

h
t+1,Dt+1,R̄t+1,Q

∗), a solutionKh
t must satisfy

H
(
k;Qt+1,K

h
t+1,Dt+1,R̄t+1,Q

∗)=0.

3.1.2. Finding and Excluding Roots. The general expression for H
(
k;Qt+1,K

h
t+1,Dt+1,R̄t+1,Q

∗) is unwieldy.9
However, plugging in numbers for the parameters one finds that H has a rather tractable form. In particular,
H is a fraction with fourth-order polynomials of k in the numerator and denominator, i.e.

(3.1) H
(
k;Qt+1,K

h
t+1,Dt+1,R̄t+1,Q

∗)= η4k
4+η3k

3+η2k
2+η1k+η0

δ4k4+δ3k3+δ2k2+δ1k+δ0
,

where the ηi’s and δj’s are functions of Qt+1,K
h
t+1,Dt+1,R̄t+1,and Q∗.

With the exception of one special but pertinent case, the roots of H will therefore just be the roots of the
numerator polynomial of 3.1. These roots may be solved for analytically using the roots function.10 The
special but pertinent case mentioned above occurs when the numerator and denominator have roots at the
same point. While it isn’t immediately clear to me how we ought to evaluate 0/0 I think it is clear that 0/0 6=0.
Thus, this isn’t a legitimate root.

Figure 3.1 shows a prototypical example of the H function. One can see that the numerator polynomial
has two roots. However, the H function only has one root. This is explained by the fact that the denominator
polynomial has a root that coincides with the numerator polynomial.

3.1.3. Files and Pseudocode. The main function for the solving backwards step is backSolve. It has three
principle child functions: kRootsBack, SvGt2[G,L]t1, and NlCon[Gt,Eq]2[GL]t1.11 Function kRootsBack
solves the rootfinding problem discussed in Subsection 3.1.2. The key child functions in kRootsBack return the ex-
pressions for the coefficients in 3.1. These functions follow the naming convention Kc[Gt,Eq]t2[G,L]t1 for the
numerator and Kdc[Gt,Eq]2[GL]t1 for the denominator. Function SvGt2[G,L]t1 returns the full state vec-
tor
{
Qt,K

h
t ,Dt,R̄t

}
once the rootKh

t is found with kRootsBack. Functions of the form NlCon[Gt,Eq]2[GL]t1
checks the set of constraints .

The functions SvGt2[G,L]t1 and Kc[d][Gt,Eq]2[GL]t1 are generated automatically using matlabFunc-
tion. The scripts in which the system is solved, substituted, and simplified for each case follow the naming
convention solve[Gt,Eq]2[G,L]1.

Algorithm 1 demonstrates the basic method for solving backwards. kRootsBack is straightforward: it takes[
Qt+1,K

h
t+1,Dt+1,R̄t+1,Q

∗] and returns the coefficients from the polynomials in 3.1. It then uses the roots
function to retrieve the set of roots and find the appropriate root. We then get the full period t state vector
by calling SvGt2[G,L]t1. Next we check that all of the constraints on the set of period t equilibrium values

9How unwieldy? If you want to see the whole thing you’ll need to allow MATLAB to print more than 25,000 characters in one
go. The numerical counterpart to it created using matlabFunction is 373kb (compared to maybe 6kb for a more-involved human-
generated function). Also, if you convert it into a function using matlabFunction be sure to set the option optimize to false.

10The roots function takes as arguments the coefficients of the polynomial. It turns out that there are a few nice functions
for extracting this information from 3.1 when the coefficients are still in their general, symbolic form. First, use the numden
function to separate the numerator and denominator of H. Then use the coeffs function to extract the coefficients from k.
In this last step it is necessary to specify that the argument of the polynomial is k (i.e. coeffs(H,k) rather than just coeffs(H)).
This will yield a 4x1 symbolic expression in terms of

{
Qt+1,Kh

t+1,Dt+1,R̄t+1,Q∗
}
. Finally, use matlabFunction to save the

coefficients as a numerical function with arguments
{
Qt+1,Kh

t+1,Dt+1,R̄t+1,Q∗
}
.

11That is, there are two separate functions called SvGt2Lt1 and SvGt2Gt1. Each deals with the case when xt+1 is Less than
and Greater than 1, respectively.



FINAL – ECON 416 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
k

-5

0

5

E
n
ti
re

H

0

N
u
m
er
at
or
/D

en
om

in
at
or

of
H

×1090

H
H - Num/Denom
Numerator
Denominator

Figure 3.1. Example of H
(
k :Qt+1,K

h
t+1,Dt+1,R̄t+1,Q

∗)
The true root is at approximately k=0.2979 while the phony root is at k=0.952. The “squiggle” in the blue/yellow lines at
k=0.952 reflects a combination of numerical imprecision (as the denominator goes to zero) and the discontinuity at approximately
k=0.952, the shared, phony root. The solid blue line is the H function while the dashed yellow line is the red line (numerator of
H) divided by the purple line (denominator of H). The point of plotting these two lines is to show that the decomposition of H
into numerator and denominator parts is, in fact, correct. We plot k∈ [0,1] w.l.o.g. because total capital in the economy is 1 and
Kh

t ≥0.

are satisfied by the proposed solution. This step should be a formality unless one goes out of one’s way to
find a pathological case.12

The final step is the only new part and the convention established here will be useful in the next path.
backSolve is agnostic about how many periods will elapse between the initial position on the path and a state
vector that will [hopefully] correspond to the period 2 state vector. The key to determining if the solution path
has hit or overshot the period 2 state vector is to find the banker net worth at each period. We know that
at t=2 banker net worth is N2 =(1+σ)W b and, in general, Nt=Qt

(
1−Kh

t

)
−Dt. Under the conjecture that

banker net worth is greater than (1+σ)W b for all t>2 along the equilibrium path, we can say that period
2 has been overshot whenever the Qt

(
1−Kh

t

)
−Dt<(1+σ)W b. We then cut off all remaining rows in the sp

matrix of state variables and return the matrix.
The key to finding a useful backwards solution path for a given Q∗ is to find a way to make the period

2 banker net worth actually hit the correct net worth: Q2
(
1−Kh

2
)
−D2 =N2 =(1+σ)W b. This can be done

by choosing an appropriate initial state vector [Q0,K
h
0 ,D0,R̄0] as an input to backSolve. This is the process

that will be described in Subsection 3.2.

3.2. Hitting (1+σ)W b. The last subsection demonstrated an economical method for finding the path of the
system given an initial state vector and Q∗. We now discuss how to find an initial state vector given Q∗. Ideal
initial state vectors will generate state vector paths that a) appear to converge to the relevant steady state

12An earlier draft of this function was in some ways more robust because it accommodated cases where xt+1>1 for some
periods and xt′+1<1 for others without returning an error. In the current exercise finding that xt+1 switched cases is probably
more indicative of a bug in the code rather than a part of a legitimate solution so the strategy of returning an error when this
case arises then determining whether it is, in fact, an error is probably a safe way of doing things here. In any case, this doesn’t
seem to be an issue in the final iteration of the code.



FINAL – ECON 416 10

Algorithm 1 Solving Backwards

INPUT: Initial state vector [Q0,K
h
0 ,D0,R̄0], Run Price Q∗

% Initialize output and time variables
sp = -100*ones(1000,4); % Matrix of state values
sp(1000,:) = [Q0,K

h
0 ,D0,R̄0]; % Begin at input vector

t = 999; % Period to be solved
endLoop = 0; % Stop while loop
while t > 2 & endLoop == 0

% Find the state vector at t
root = kRootsBack(sp(t+1,:),Q∗,t); % Find root
sp(t,:) = SvGt2Lt1(sp(t+1,:),root,Q∗); % Find state vector at t
% Check that constraints hold
if NlConGt2(sp(t,:),Q∗) == 0

return;
endif
% Check if banker net worth greater than banker net worth at t = 2
if Qt

(
1−Kh

t

)
−Dt>(1+σ)W b % If not, continue.

t = t - 1;
else % If is, stop.

sp = sp(t:end,:);
endLoop = 1;

endif
endwhile
Output: sp

and b) satisfy the banker net worth requirement at period 2: Q2
(
1−Kh

2
)
−D2 =N2 =(1+σ)W b. The first

requirement provides guidance on the neighborhood around which solutions ought to be sought out–within
some (ideally arbitrarily small) ε-ball of the steady state. The second can be used to evaluate whether the
path generated by a particular initial state vector is a good candidate solution path. This subsection first
discusses the set of initial state vectors that are searched. It then discusses a fairly quick13 method for finding
an initial state vector that satisfies the period 2 requirement.

3.2.1. The Set of Initial State Vectors. An initial state vector will ideally be as close to the steady state
associated with the given Q∗ as possible.14 One would think that the ideal would be to make the initial value
of a state variable just below the steady state if it approaches from below and likewise if it approaches from
above. But we don’t know this information unless we already know the solution paths. Even if we did know
the trajectories of the solution paths–as was the case here–we don’t know if the trajectories are the same for
all paths associated with all the Q∗ that will have to be found en route to a solution.

The approach taken here is to do a first order expansion of the state vector solution about the steady
state. Consider a function G that maps

{[
Qt+1,K

h
t+1,Dt+1,R̄t+1

]
,Kh

t ,Q
∗} to the period t state vector[

Qt,K
h
t ,Dt,R̄t

]
.15 If

[
Qss,K

h
ss,Dss,R̄ss;Q∗

]
is the steady state vector associated with Q∗, the set of initial state

vectors will be of the form

(3.2) G
([
Qss+γ,Kh

ss+γ,Dss+γ,R̄ss+γ
]
,Kh

ss+γ,Q∗+γ
)
=
[
Qss,K

h
ss,Dss,R̄ss;Q∗

]
+∇G

∣∣∣∣
ss

·γ

where γ is a deviation from the steady state to be determined and∇G
∣∣∣∣
ss

is the jacobian of G at the steady state.

The first thing to be said about 3.2 is that it seems to work. The second thing that ought to be mentioned is
that it works despite the fact that the initial state vector will be a) on the “wrong side” of the steady state for D
and b) discontinuous for R̄.What seems happen is that–while the initial state vector is a “bad” guess–it generates
a path that is in all subsequent periods continuous and altogether “nice”. Unfortunately, I can’t offer much of
an explanation as to why this works out so nicely right now. This is one of the weaker points of the solution.

In any case if we are ready to say that initial state vectors of the form 3.2 will be a good enough, then the
problem of choosing an initial state vector is now one of choosing the right γ.

13I think.
14And it can’t be equal to the steady state because the backwards solution to the steady state vector is...the steady state.
15The functions Sv[Gt,Eq]2[G,L]t1 do this.



FINAL – ECON 416 11

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
γ

×10-10

-0.001

0
(1+σ)Wb

0.001

0.002

N
et

W
o
rt
h
N

t
g
iv
en

Q
∗
=
0
.9
3

← 222 steps

← 221 steps ← 220 steps
← 219 steps

Circles o are last

steps for each γ.

Triangles △ are next-to-last

steps for each γ.

Figure 3.2. Final and Penultimate Banker Net Worth Values as a Function of γ
The triangles are for the penultimate period while the squares are for the final period. Each color represents the number of steps
from the initial point to the final point, which is determined by the fact that Nt<(1+σ)Wb at that point. The different colors
represent the number of steps on the path. For this example with Q∗=0.93 the blue is associated with 222 steps, the yellow with
221, the green with 220, and the maroon with 219.

3.2.2. Choosing γ to Satisfy N2 =(1+σ)W b. The basic strategy used to choose γ will be to solve backwards for
a few values of γ, save the resulting N2, then interpolate from N2 =(1+σ)W b to the correct γ. The backwards
solution procedure will complicate this basic idea a bit because–as can be seen from the final if condition
in Algorithm 1–backSolve only returns a path once the net worth N implied by a given state vector is less
than (1+σ)W b.

Figure 3.2 displays the mapping between γ and banker net worth Nt for the last two steps of the path. The
triangles are the second to last step while the circles are the last steps, a relationship that is determined by the
fact that Nt<(1+σ)W b. The different colors represent the number of steps on the path. For this example with
Q∗=0.93 the blue is associated with 222 steps, the yellow with 221, the green with 220, and the maroon with 219.

From Figure 3.2 one can see that for any Q∗ there will be numerous γ that will yield a path that terminates
with N2 =(1+σ)W b.16 Moreover, one can see that looking at only the last steps will be less-than-ideal at best
and possibly misleading whenever a new step is added. It will instead be ideal to keep track of the number of
steps in each path then look at a mix of the final and penultimate steps when interpolating. Finally, one can see
that we are interpolating a one-armed quadratic with slight but non-zero curvature. In order to get an accurate
result via interpolation it will be necessary to either a) do a highly-local linear interpolation or b) form a spline. In
the present coding configuration these methods will be about equal in terms of computational burden; the spline
requires the creation of four paths but it will generally require at least as many paths to zero in on a sufficiently
local linear approximation. Both methods will yield interpolations with errors on the same order of magnitude
and solutionQ∗’s that differ by about 1e−4. The current code interpolates with interp1 using method pchip.17

16It will turn out that the solution will be robust to the particular choice of γ used. I would conjecture that each possible
solution (i.e. the initial state vector corresponding to each γ for which N2 =(1+σ)Wb) is, in fact, a step on the full solution path.

17One can look at the results of a local linear approximation by changing the method in line 104 of qRunIterQ to linear.



FINAL – ECON 416 12

Algorithm 2 Finding the Right γ–qRunIterQ

INPUT: Run Price Q∗, initial γ grad0m, γ adjustment multiplier gradAdj
Find the steady state - ssRoute
Find Jacobian of state vectors at steady state - SvJLt1
First path:

Form initial state vector - ss + jacobian*grad0m
Get path - sp{1} = backSolve
Adjust γ - grad0m = grad0m*gradAdj

Second path: (Same substeps as first path)
Check to make sure number of steps is okay
Adjust γ - grad0m = (1/3)*grad0m*gradAdj
Third path: (Same substeps as first path)
Adjust γ - grad0m = (2/3)*grad0m*gradAdj
Fourth path:
(Same as first path)
Interpolation:

x = Cor-
rect N’s for each path (depending on number of steps in each path)
v = set of γ’s
Interpolate to find γ cor-
resonding to N=(1+σ)W b - interp1(x,v,(1+σ)W b,’method’,’pchip’)

Get path with interpolated γ. (Same substeps as first path.)
OUTPUT: Path with interpolated γ

3.2.3. Files and Pseudocode. The funtion qRunIterQ carries out this step.18 The steps in this function are
outlined in Algorithm 2. The user supplies Q∗ (Qri: Q-run-iteration), an initial γ (here called grad0m for
reasons that are murky at this point) and an adjustment multiplier called gradAdj. The function first finds the
steady state corresponding to the suppliedQ∗ and the jacobian of the state equations at the steady state.19 It then
runs backSolve with initial state vector formed according to 3.2 with γ=grad0m. A second run of backSolve
with γ=grad0m*gradAdj yields the second interpolation point.20 If the first path returned by backSolve hasM
steps in total, we would like the second backSolve path to haveM−1 steps.21 Assuming that this requirement
is met, two more paths are formed that use γ that are equally spaced between the first two γ. So in the normal
case the interpolations will be based on paths with γ =

{
grad0m, 1

3 ·grad0m*gradAdj, 2
3 ·grad0m*gradAdj,

grad0m*gradAdj
}
. Next, we need to form the set of banker net worths that will be used in interpolation. In a

normal case this will be Nend−1 for the path with γ=grad0m, Nend for γ=grad0m*gradAdj, and one of either
Nend or Nend−1 for the paths with intermediate γ depending on whether there are M or M−1 total steps.

3.3. Finding Q∗. The last subsection showed how to find an adequate candidate solution path given a Q∗.
This subsection shows how to find the correct Q∗. In equilibrium Q∗ must satisfy 1.28:

1=βC
h∗

Ch2

Z+Q2

Q∗+α .

Function qRunIterQ will return a solution path that will include Q2 and from which Ch2 may be derived. If
the Q∗ implied by 1.28 is the same Q∗ used to derive the solution path, then we have an equilibrium. If the Q∗
implied by 1.28 is not the same as the Q∗ used to compute the path, then a new Q∗ must be tried. Following
the suggestion in the handout, I use the Q∗ implied by 1.28 as the new guess to be tried.

18A closely related but deprecated function, qRunIter, is identical to qRunIterQ except that it carries out linear interpolation
based on two (generally distantly separated) choices of γ. It can be called by setting the M argument in the parent function
backUmbrella to the appropriate value. At this point it mostly exists to demonstrate that the curvature of the mapping to be
interpolated is too great to be ignored.

19The jacobian function SvJLt1 takes a lot of time to get into the cache–21% of the 4.147 second runtime of the test script
qRunIterQTest. Once this is done, though, the whole of qRunIterQ runs in 0.45 seconds.

20From examining figures like 3.2 for different Q∗ seems that setting gradAdj between 1.05 and 1.1 will work for most cases.
The full code can accommodate cases where gradAdj is either to big or small by making further adjustments and getting those
paths. From a speed perspective, though, it would be ideal to find an adjustment multiplier that works for almost all cases the
first time around.

21Assuming that gradAdj >1.



FINAL – ECON 416 13

Algorithm 3 Finding Q∗–backUmbrella

INPUT: Initial Q∗ guess (Q0), Required convergence tol-
erance (Tol), maximum number of Q∗ guess iterations to complete, ini-
tial γ (grad0m), Adjustment to γ (fradAdj), interpolation method (M)
Qri = Q0;
iter = 1;
WHILE iter < maxIter

path = qRunIterQ(Qri, grad0m, gradAdj);
Period-2-Equilibrium values = objEq2(path);
QrunP = βC

h∗

Ch
2

(Z+Q2)−α
if abs((QrunP - Qri)/Qri) < Tol

Equilibrium Found
Exit;

else
Qri = QrunP
iter = iter + 1;

end
ENDWHILE
OUTPUT: Equilibrium path

backUmbrella is the function that carries out this final step. Pseudocode for this function can be found in
Algorithm 3. The actual code is a bit more crowded in order to print out statuses concerning convergence and
the like but the idea is simple; run a function, check a condition, update if it doesn’t converge and exit if it does.

4.Results22

4.1. Equilibrium Values in a Run.

4.1.1. Price of Assets. In equilibrium Q∗=0.90087. This result is invariant to the initial guess of the equilibrium
Q∗ and the choice of γ.23

Figure 4.1 shows the mapping of Q∗ from iteration to iteration. In practice, I find that convergence is only
essentially monotone. That is, it is possible to have non-monotone Q∗ updates but only after the process has
already essentially converged.24

4.1.2. Other Equilibrium Values. The values of other equilibrium variables during a run are I think either
trivial or debatable. First, the trivial. Households hold all of the capital because banks have to sell all of
it to them to pay out depositors in the run; Kh∗= 1. Households remove all of their deposits in the run;
D∗=0. The probability of a run next period is zero because banks have no deposits to steal; P∗=0. Banks
are bankrupted by the run; N∗=0. Banks that exit are bankrupt and therefore consume nothing; Cb∗=0.
Households therefore have consumption Ch∗=Z+Wh−α

2 .
Bank leverage is Φ=D/(N+D). In the run both N and D are zero. From a conceptual and linguistic point

of view, I think that it makes the most sense to say that bank leverage is zero during the run. Leverage is all
about how much assets an entity has to spend over and above its own equity. To say that leverage in the run
is positive infinity makes it sound as if the banks have money to spend. This clearly is not the case, though.

Finally, there is the question of deposit interest rates during the run. One way to answer this would be
to use 1.23 and the fact that P∗=0 to find

R̄∗= 1
β

Ch2
Ch∗

=1.0523.

I don’t like this answer, though. The reason is that it seems to suggest that the market for deposits is clearing
because R̄∗=1.0523. However, the quantity of deposits during the run is not a function of the interest rate;
it’s a sunspot phenomenon. Conditional on there being a run it does not matter if R̄∗=1.5 or 1.0005. It is

22All results can be called from the script final.m.
23There does, however, seem to be a trade-off between γ and the level of convergence achieved. In particular, to achieve

closer convergence of Q∗ one must use a larger γ (i.e. 1e-5 as opposed to 1e-8 or 1e-10).
24For example, the specification used to create Figure 4.1 specified γ=1e−8 and a convergence level of 1e−8 (1e−06%).

Starting with Q∗guess = 0.98 backUmbrella runs for a total of 90 iterations before converging. Convergence is monotone and
negative for the first 66 iterations. At iteration 66 Q∗guess =0.90087077 and the percentage difference from the previous period
is −2.41e−5%; i.e. the process has already essentially converged. From iterations 67-90 the largest percentage difference between
periods is +2.19e−05%. The Q∗ returned by backUmbrella is 0.9008705918.



FINAL – ECON 416 14

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
Q∗ - Guess

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98
Q

∗
-
U
p
d
a
te

Q∗

eqn. = 0.90087

Figure 4.1. Mapping from a Guess of Q∗ to an Updated Guess of Q∗
This figure–created in the script qRunMapping–was formed by running backUmbrella twice with initial Q∗ of 0.98 in the first run
and 0.8 in the second.

non-optimal for an individual household to deposit in a bank at any interest rate because the bankrupt bank
will always run away with the deposit. One might then want to say that, in order for the market for deposits to
clear we must have R̄“=”+∞; otherwise banks will always be willing to accept some sort of deposit. Setting
aside the question of whether infinite prices make any sense it is enough to show that this line of argument
is flawed. Suppose that interest rates were arbitrarily high. How much deposits would a bank be willing to
supply in this environment? I think that the answer is, however much households are willing to provide. Why?
The bankrupt bank has no intention of paying the interest rate, it will always default and run away. The
interest rate has no bearing on this decision. Thus, I think it is wrong to go out looking for an interest rate
that will clear the market for deposits during the run period. Instead, I think it makes the most sense to just
say that interest rate during the run period is indeterminate.

4.2. The Equilibrium Path After a Run. Figure 4.2 shows the paths of equilibrium variables beginning
from period 2.

One noteworthy feature of this figure is that the net interest rate R̄t is below the steady state R̄ss at t=2
and then jumps above R̄ss at t= 3. At this point I do not think that this reflects an error in my code or
method but is instead a part of the true solution. In short, I think that households are willing to accept a
lower interest rate in order to deposit more funds with the banks. Households want to deposit with them to
reap the higher returns. However, the low net worth of banks limits their ability to take on leverage without
violating the incentive compatibility constraint. A lower interest rate makes the non-default option optimal for
banks despite their high leverage. From period 2 to period 3 bank net worth increases by 219%. This windfall
means that the banking sector can take on more deposits while lowering leverage.

In period 2 there is a relatively large probability of a run; a force that should push up interest rates. However,
I have argued that the desire of households to deposit in spite of low bank net worth will push down interest rates
and that, in fact, this opposite force will dominate. In period 3 the probability of a bank run is still quite high.
The ability of banks to take on deposits while respecting the incentive constraint increased substantially relative to
the previous period, though. Therefore, the bank run force will dominate and interest rates will be relatively high.



FINAL – ECON 416 15

20 40 60
0.9

0.95

1
Qt

20 40 60
0

0.5

1
Kh

t

20 40 60
0

0.5

1
Dt

20 40 60
1.009

1.01

1.011
R̄t

20 40 60
0

0.05
Pt

20 40 60
0

0.05
Nt

20 40 60
0

5

10
log(Φt)

20 40 60
0.054

0.055

0.056
Ch

t

20 40 60
0

2

4
×10-3 Cb

t

Figure 4.2. Equilibrium Paths

t
2 60 120 160 Steady State

Qt 0.9438 0.9799 0.9802 0.9802 0.9802
Kh
t 0.7018 0.2911 0.2854 0.2854 0.2854

Dt 0.2812 0.6458 0.6507 0.6507 0.6507
R̄t 1.0097 1.0099 1.0100 1.0100 1.0100
Pt 0.0407 0.0072 0.0068 0.0068 0.0068
Nt 0.0002 0.0489 0.0497 0.0497 0.0497
Φt 1256.4600 14.2176 14.0833 14.0823 14.0822
Cht 0.0557 0.0548 0.0548 0.0548 0.0548
Cbt 0.0000 0.0026 0.0026 0.0026 0.0026

Table 1. Equilibrium Values at Select Periods

4.3. Time To Reach The Steady State. Table 1 displays the values of equilibrium variables at select
periods after the steady state and the values of the variables in steady state. With the exception of Φt the
variables are all within 1e−4 of the steady state after 120 periods (approximately 30 years).

The method used here makes it relatively straightforward to consider later periods by choosing a smaller γ.
Looking at the column for t=160 one can see that Φt has almost converged to the steady state value by that time.

4.4. Comparing Steady States. Table 2 shows the steady state values side-by-side for the two parame-
terizations of the model. The biggest differences between the two are found in the probability of a run, Pss
followed by the banker net worth Nss and leverage Φss.

Recall that the probability of a run is determined by

Pss=1−
[Z+Q∗]

[
1−Kh

ss

]
Dss·R̄ss

.



FINAL – ECON 416 16

Current Handout %∆
W b 0.0011487/10 0.0011487/50 +160.93
Q∗ 0.9007 0.91 -1.0272
Qss 0.9802 0.98 +0.0204
Kh
ss 0.2854 0.28 +1.9102

Dss 0.6507 0.66 -1.4191
R̄ss 1.0100 1.0101 -0.0100
Pss 0.0068 0.0075 -9.7980
Nss 0.0497 0.047 +5.5857
Φss 14.0822 14.93 -5.8461
Chss 0.0548 0.055 -0.3643
Cbss 0.0026 0.0025 +3.9221
Table 2. Equilibrium Values at Select Periods

Minimum Number of Steps From Run to Steady State 170 120
Mean Periods in Steady State 147.47 148.09

(45.12) (39.24)
Mean Periods to Return to Steady State after Run 345.60 202.40

(73.21) (30.76)
Table 3. Summary Statistics from Simulation

Table displays means and standard deviations (in parentheses) of summary statistics from 1,000 simulations carried out by function
simuPath for 5,000 periods. The path used in the simulation was generated by backUmbrella. The path used is identical across simulations
and is stored in simuData.mat.

The decreases in Q∗ and Dss and increase in Kh
ss when W b = 0.0011487/10 relative to when W b =

0.0011487/50 all contribute to the decrease in Pss.

4.5. Simulation. The function simuPath simulates the economy. Table 3 presents summary statistics from
the simulation. One important deviation of the method used here from that suggested in the handout is that
the number of periods to the steady state is not set as a parameter. In my benchmark solution path there are
178 periods from the run period to the initial point near the steady state. I then cut off the last eight periods to
account for any odd results arising from the semi-arbitrary initial point.25 This longer path will make it appear
that it takes longer to return to the steady state. To account for this I include in simuPath the option to jump
to the steady state after a fixed number of periods. The two columns in Table 3 include simulation results for the
cases in which the minimum number of steps from the run period to the steady state are 170 and 120, respectively.

As expected the mean periods in steady state is similar across columns. Once the economy is in the steady
state the amount of time it stays in steady state is only a function of Pss=0.0068, which in turn only depends
on current and future variables, not past periods. The theoretical expectation of the mean periods in steady
state is 1/Pss=147.0588. This is quite close to the mean of mean periods in steady state across simulations.

The difference in mean periods to return to the steady state after a run are quite different across columns.
As mentioned above, this feature partly arises from the fact that, when the solution path is longer, it will
simply take more periods to reach the path. From this effect alone we might expect that the periods to return
to the steady state will be fifty periods greater in the first column relative to the second. Another factor
contributing to the longer time to return is that a run may occur while the economy is taking the last fifty
steps. In column 2 such a run would be counted as ending a rather short stretch in the steady state. In column
1 the economy is never counted as entering the steady state and there will be a minimum of 170 more periods
until the economy could be counted as being in steady state. A third effect increasing the time to return in
column 1 relative to column 2 is that the probability of a run is decreasing to the steady state value. However,
after 120 periods the probability of a run is almost identical to that in the steady state. Therefore, I do not
think that this factor plays a significant role in explaining the difference between columns.

25On this point see Subsection 3.2.1.



FINAL – ECON 416 17

References

Christiano, L. J., H. Dalgic, and X. Wen (2015). Gertler-kiyotaki: ’banking, liquidity, and bank runs in an
infinite horizon economy’, aer (2015). Technical report.

Gertler, M. and N. Kiyotaki (2015). Banking, liquidity, and bank runs in an infinite horizon economy.
American Economic Review 105(7), 2011–43.


	1. Model
	1.1. Bankers
	1.2. Bank Run
	1.3. Households
	1.4. No-Run Equilibrium Conditions
	1.5. Equilibrium in a Bank Run
	1.6. Parameter Values

	2. Steady State Solution
	2.1. Case x>1See xGtSS.
	2.2. Case x<1Prototyped in ssFindLtProto.m. General function in ssFindLt.m. General function tested in ssFindLtTest.m. 
	2.3. Solving for the Steady State

	3. Solving for the Equilibrium Path
	3.1. Solving Backwards
	3.2. Hitting (1+)Wb
	3.3. Finding Q*

	4. ResultsAll results can be called from the script final.m.
	4.1. Equilibrium Values in a Run
	4.2. The Equilibrium Path After a Run
	4.3. Time To Reach The Steady State
	4.4. Comparing Steady States
	4.5. Simulation

	References

