[bookmark: OLE_LINK9]Building, Integrating, and Deploying ClearScript
I. Welcome to ClearScript!
ClearScript is a library that allows you to add scripting to your .NET applications. It supports V8 (Windows, Linux, macOS) and JScript/VBScript (Windows only).
II. ClearScript NuGet package
Now that official ClearScript NuGet packages are available, you can simply add one to your project and skip to Section VII below.
Windows
Use Visual Studio’s NuGet Package Manager or dotnet add package to add the Microsoft.ClearScript (x86/x64) or Microsoft.ClearScript.win-arm64 package to your project. Remember to use the -v option on the dotnet command line to add pre-release packages.
Linux
Use dotnet add package to add the Microsoft.ClearScript.linux-x64, Microsoft.ClearScript.linux-arm, or Microsoft.ClearScript.linux-arm64 package to your project. Remember to use the -v option on the dotnet command line to add pre-release packages.
macOS
Use dotnet add package to add the Microsoft.ClearScript.osx-x64 package to your project. Remember to use the -v option on the dotnet command line to add pre-release packages.
III. Building ClearScript
[bookmark: OLE_LINK19][bookmark: OLE_LINK15][bookmark: OLE_LINK20][bookmark: OLE_LINK13]Windows
Important: This procedure requires a 64-bit Windows operating system running on x64 hardware.
[bookmark: OLE_LINK25]The ClearScript source code is hosted in a Git repository. If you’re installing Git for the first time, select the options Use Git from the Windows Command Prompt and Checkout Windows-style, commit Unix-style line endings. If you already have Git installed, use git-config to ensure that the core.autocrlf variable is set to true.
Use git-clone to download the ClearScript source code into a convenient directory. Use a directory at or near the root of a drive to avoid path length issues.
The provided project and solution files support Visual Studio 2022 and Visual Studio 2019 Version 16.4 or later. They produce architecture-neutral managed libraries that target .NET Framework 4.5, .NET Framework 4.7.1, .NET Core 3.1, and .NET 5.0. ClearScript does not support older environments. The output directory is bin\[Debug|Release].
Important: Ensure that .NET 5.0 SDK is installed before building ClearScript.
There are two ways to build ClearScript – with and without V8 support. If you don't need V8 support, simply build the ClearScript.NoV8 solution using Visual Studio. Note that this solution does not include test projects.
To build full ClearScript with V8 support, you must first acquire and build V8:
1. Important: This procedure currently requires Visual Studio 2022 or Visual Studio 2019. The V8 build does not yet support newer versions.
2. Important: Ensure that the path to your ClearScript root directory does not contain spaces or non-ASCII characters.
3. Important: Your Visual Studio installation must include the .NET desktop development, Desktop development with C++, and Universal Windows Platform Development workloads, as well as the C++ ARM build tools and C++ ARM64 build tools components.
4. Important: The V8 build also requires Windows 10 SDK version 10.0.19041.0 or later. Your Windows SDK installation must include the Debugging Tools for Windows feature.
5. Open a Visual Studio 2022 or 2019 developer command prompt and run the V8Update script from your ClearScript root directory:
[bookmark: OLE_LINK16]C:\Path\To\ClearScript> V8Update [/N] [Debug|Release] [Latest|Tested|<Revision>]
This script downloads the V8 source code and its dependencies and builds x86, x64, and arm64 V8 libraries in the specified configuration. It requires approximately 12GB of additional disk space and does not perform any permanent software installation on your machine.
The optional /N flag causes V8Update to reuse previously downloaded files if possible. It's useful for testing local V8 modifications.
Specifying Debug or Release is optional; the default is Release. If you need both variants, run the script twice as follows:
C:\Path\To\ClearScript> V8Update && V8Update /N Debug
Note: Depending on your PC hardware and internet connection, this step could take up to a half-hour or longer.
[bookmark: _Hlk482371988]By default, V8Update builds a V8 revision that has been tested with the current version of ClearScript. If you'd like to use a specific revision instead, place the desired branch name, commit ID, or tag on the V8Update command line. Browse here to view V8's revision history.
You are now ready to build the full ClearScript solution using Visual Studio 2022 or 2019.
Note: The first time you open the solution, Visual Studio may prompt you to upgrade one or more projects to the latest platform toolset or .NET Framework. We recommend that you select Cancel or Don't Upgrade. If you encounter issues building ClearScript’s unmanaged projects (ClearScriptV8.win-x86, ClearScriptV8.win-x64, and ClearScriptV8.win-arm64), ensure that their Windows SDK Version properties are set to an installed version of the Windows SDK.
Optional: The ClearScript repository includes the ClearScript Library Reference in HTML and Compiled HTML (.CHM) formats. If you'd like to rebuild these files, use Sandcastle Help File Builder with the provided project files (ClearScript\doc\[Web]Reference.shfbproj).
Linux
Important: This procedure requires a 64-bit Linux operating system running on x64 hardware.
Here’s how to acquire and build V8 and ClearScript on Linux:
1. Install the following packages: Git, .NET 5.0 SDK, Clang, GNU Make, Python 2, and pkgconf. For each of these, check your package manager first, and then the official website.
2. Important: To avoid V8 build issues, ensure that the python command launches Python 2.
3. Use git-clone to download the ClearScript source code into a convenient directory. Avoid very long directory paths.
4. Important: Ensure that the path to your ClearScript root directory does not contain spaces or non-ASCII characters.
5. Run the following command from your ClearScript root directory:
user@host:/path/to/ClearScript$ make -f Unix/Makefile [DEBUG=1] [CPU=[arm|arm64]]
Specifying DEBUG=1 is optional; the default configuration is Release. The output directory is bin/[Debug|Release].
Specify CPU=arm to cross-build for the arm architecture. This requires arm C++ cross-build tools, such as g++-10-arm-linux-gnueabihf on Ubuntu.
Specify CPU=arm64 to cross-build for the arm64 architecture. This requires arm64 C++ cross-build tools, such as g++-aarch64-linux-gnu on Ubuntu.
macOS
Here’s how to acquire and build V8 and ClearScript on macOS:
1. Install Xcode and .NET 5.0 SDK.
2. Important: To avoid V8 build issues, ensure that the python command launches Python 2.
3. Use git-clone to download the ClearScript source code into a convenient directory. Avoid very long directory paths.
4. Important: Ensure that the path to your ClearScript root directory does not contain spaces or non-ASCII characters.
5. Launch the Terminal app and run the following command from your ClearScript root directory:
user@host:/path/to/ClearScript$ make -f Unix/Makefile [DEBUG=1] [CPU=[x64|arm64]]
Specifying DEBUG=1 is optional; the default configuration is Release. The output directory is bin/[Debug|Release].
Specify CPU=x64 or CPU=arm64 to build for the corresponding architecture; the default is the current architecture.
IV. Building strong-named ClearScript assemblies (optional, Windows only)
ClearScript includes optional support for building strong-named assemblies. Use the following one-time procedure to enable this feature:
1. If the ClearScript solution is open in Visual Studio, close it.
2. Generate a cryptographic key pair in your ClearScript root directory:
[bookmark: OLE_LINK5]C:\Path\To\ClearScript> sn -k ClearScript.snk
3. Open the ClearScript solution in Visual Studio.
4. [bookmark: OLE_LINK12]Click Build → Transform All T4 Templates.
5. Rebuild the solution.
Once you've performed these steps, the ClearScript assemblies you build will have strong names.
V. Integrating and deploying ClearScript with your application
Windows (x86/x64)
Once you've built ClearScript, here's how to add it to your application:
1. Right-click your project in Visual Studio and select Add Reference.
2. In the Reference Manager window, click Browse and locate your ClearScript output directory (see above). Select ClearScript.Core.dll, ClearScript.Windows.dll, ClearScript.Windows.Core.dll, and ClearScript.V8.dll, click Add, and then click OK to exit Reference Manager.
3. Important: If you're using V8, you must also copy the following files from your ClearScript output directory to your application's directory:
ClearScriptV8.win-x86.dll
ClearScriptV8.win-x64.dll
Windows (arm64)
Once you've built ClearScript, here's how to reference it in your application:
C:\Path\To\MyApp> dotnet add reference D:\Path\To\ClearScript\NetCore\ClearScript.V8
Important: If your application fails to load ClearScript, ensure that the following ClearScript output files are present in your application’s output directory:
ClearScript.Core.dll
ClearScript.V8.dll
ClearScript.V8.ICUData.dll
ClearScriptV8.win-arm64.dll
Linux
Once you've built ClearScript, here's how to reference it in your application:
user@host:/path/to/MyApp$ dotnet add reference /path/to/ClearScript/NetCore/ClearScript.V8
Important: If your application fails to load ClearScript, ensure that the following ClearScript output files are present in your application’s output directory:
ClearScript.Core.dll
ClearScript.V8.dll
ClearScript.V8.ICUData.dll
ClearScriptV8.linux-[x64|arm64].so
macOS
Once you've built ClearScript, here's how to reference it in your application:
user@host:/path/to/MyApp$ dotnet add reference /path/to/ClearScript/NetCore/ClearScript.V8
Important: If your application fails to load ClearScript, ensure that the following ClearScript output files are present in your application’s output directory:
ClearScript.Core.dll
ClearScript.V8.dll
ClearScript.V8.ICUData.dll
ClearScriptV8.osx-[x64|arm64].dylib
VI. Machine-level (global) deployment (.NET Framework only, x86/x64)
[bookmark: _Debugging_with_ClearScript_1]You can deploy ClearScript at the machine level, making it available to all locally installed applications. For this to work, your ClearScript assemblies must have strong names. If you’re building ClearScript yourself, see Section IV for more information. The official ClearScript NuGet package contains strong-named assemblies.
To deploy ClearScript globally, install its managed assembly in the Global Assembly Cache:
[bookmark: _Hlk14466261]C:\Path\To\ClearScript\bin\Release> gacutil /i ClearScript.dll
Additionally, you must copy ClearScript’s V8 assemblies to the system folder:
On 32-bit Windows:
[bookmark: _Hlk14466280][bookmark: _Hlk14466717]C:\Path\To\ClearScript\bin\Release> copy ClearScriptV8.win-x86.dll %SystemRoot%\System32
On 64-bit Windows:
C:\Path\To\ClearScript\bin\Release> copy ClearScriptV8.win-x64.dll %SystemRoot%\System32
C:\Path\To\ClearScript\bin\Release> copy ClearScriptV8.win-x86.dll %SystemRoot%\SysWOW64
[bookmark: _Debugging_with_ClearScript]Important: The commands above require an elevated command prompt.
VII. [bookmark: _Debugging_with_ClearScript_2]Debugging with ClearScript and V8
V8 does not support standard Windows script debugging. Instead, it implements its own WebSocket-based debugging protocol. A convenient way to debug JavaScript code running in V8 is to use the Visual Studio Code IDE:
1. Install and launch Visual Studio Code.
2. Set up one or more ClearScript V8 debug configurations:
a. [bookmark: OLE_LINK18]Click File → Preferences → Settings to open your user settings.
b. Locate or search for the Launch configuration and click Edit in settings.json.
c. Add the highlighted section to the file:
"launch": {
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Attach to ClearScript V8 on port 9222",
 "type": "node",
 "request": "attach",
 "protocol": "inspector",
 "address": "localhost",
 "port": 9222
 }
]
}
d. You can specify additional configurations for different hosts, port numbers, and other options. See here for more information.
e. Click File → Save.
3. [bookmark: OLE_LINK2]Enable script debugging in your application by invoking the V8ScriptEngine constructor with V8ScriptEngineFlags.EnableDebugging and a TCP port number that matches one of your debug configurations. The default port number is 9222.
4. You can add the flag V8ScriptEngineFlags.AwaitDebuggerAndPauseOnStart to have the script engine stop and wait for a debugger connection before executing script code. Once attached, the debugger will be in a breakpoint state.
5. If you’d like to debug your application remotely, you must also do the following:
a. Construct your script engine with the additional flag V8ScriptEngineFlags.EnableRemoteDebugging.
b. Important: If necessary, configure your firewall to allow incoming connections to your TCP port.
6. Attach the Visual Studio Code debugger to your application:
a. [bookmark: OLE_LINK1]Click View → Run to bring up the Run Side Bar.
b. Click Run → Start Debugging to attach the debugger to your application.
Note: If you’re having issues with remote debugging, try disabling the debug.JavaScript.usePreview setting.
Note: You can also attach Visual Studio to your application for simultaneous debugging of script, managed, and native code.
VIII. Acknowledgments
We’d like to thank:
· The V8 team.
· The Jekyll team.
· Kenneth Reitz for generously providing the Httpbin service.
· Michael Rose for generously providing the So Simple Jekyll theme.
· Toptal for generously providing the Toptal JavaScript Minifier.
