Module hummingbird.ml.operator_converters.constants
Constants used in the Hummingbird converters are defined here.
Expand source code Browse git
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
"""
Constants used in the Hummingbird converters are defined here.
"""
BASE_PREDICTION = "base_prediction"
"""Alpha"""
LEARNING_RATE = "learning_rate"
"""Learning Rate"""
POST_TRANSFORM = "post_transform"
"""Post transform for tree inference"""
SIGMOID = "LOGISTIC"
"""Sigmoid post transform"""
SOFTMAX = "SOFTMAX"
"""Softmax post transform"""
TWEEDIE = "TWEEDIE"
"""Tweedie post transform"""
GET_PARAMETERS_FOR_TREE_TRAVERSAL = "get_parameters_for_tree_trav"
"""Which function to use to extract the parameters for the tree traversal strategy"""
REORDER_TREES = "reorder_trees"
"""Whether to reorder trees in multiclass tasks"""
ONNX_INITIALIZERS = "onnx_initializers"
"""The initializers of the onnx model"""
ONNX_INPUTS = "onnx_inputs"
"""The input of the onnx model"""
TEST_INPUT = "test_input"
"""The test input data for models that need to be traced"""
NUM_TREES = "n_trees"
"""Number of trees composing an ensemble"""
OFFSET = "offset"
"""offset of the sklearn anomaly detection implementation"""
MAX_SAMPLES = "max_samples"
"""max_samples of sklearn isolation forest implementation"""
Global variables
var BASE_PREDICTION
-
Alpha
var GET_PARAMETERS_FOR_TREE_TRAVERSAL
-
Which function to use to extract the parameters for the tree traversal strategy
var LEARNING_RATE
-
Learning Rate
var MAX_SAMPLES
-
max_samples of sklearn isolation forest implementation
var NUM_TREES
-
Number of trees composing an ensemble
var OFFSET
-
offset of the sklearn anomaly detection implementation
var ONNX_INITIALIZERS
-
The initializers of the onnx model
var ONNX_INPUTS
-
The input of the onnx model
var POST_TRANSFORM
-
Post transform for tree inference
var REORDER_TREES
-
Whether to reorder trees in multiclass tasks
var SIGMOID
-
Sigmoid post transform
var SOFTMAX
-
Softmax post transform
var TEST_INPUT
-
The test input data for models that need to be traced
var TWEEDIE
-
Tweedie post transform