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The structural dynamics of macromolecular processes
Daniel Russel1, Keren Lasker1,2, Jeremy Phillips1,3,
Dina Schneidman-Duhovny1, Javier A Velázquez-Muriel1 and Andrej Sali1
Dynamic processes involving macromolecular complexes are

essential to cell function. These processes take place over a

wide variety of length scales from nanometers to micrometers,

and over time scales from nanoseconds to minutes. As a result,

information from a variety of different experimental and

computational approaches is required. We review the relevant

sources of information and introduce a framework for

integrating the data to produce representations of dynamic

processes.

Addresses
1 Department of Bioengineering and Therapeutic Sciences, Department

of Pharmaceutical, Chemistry, and California Institute for Quantitative

Biosciences, Byers Hall, Suite 503B, University of California at San

Francisco, 1700 4th Street, San Francisco, CA 94158-2330, USA
2 Blavatnik School of Computer Science, Raymond and Beverly Sackler

Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
3 Graduate Group in Biological and Medical Informatics, University of

California at San Francisco, USA

Corresponding author: Sali, Andrej (sali@salilab.org)
Current Opinion in Cell Biology 2009, 21:97–108

This review comes from a themed issue on

Cell structure and dynamics

Edited by Daniel J. Lew and Michael Rout

Available online 14th February 2009

0955-0674/$ – see front matter

# 2009 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.ceb.2009.01.022

Introduction
To understand the processes that maintain and replicate a

living cell, we need to describe the structural dynamics of

a few hundred core macromolecular processes [1]

(Figure 1), such as DNA replication by the replisome

[2], transcription of DNA into RNA by RNA polymerase

[3�], protein synthesis by the ribosome [4��,5], protein

folding by chaperonins [6,7], nucleocytoplasmic transport

through the nuclear pore complex [8], active transport

with molecular motors [9–11], assembly pathways of large

complexes [12–14], and protein degradation in the pro-

teasome [15–17]. These processes take place over a wide

variety of length scales from nanometers to micrometers,

and over time scales from nanoseconds to minutes. More-

over, the macromolecular systems can exist in different

structural states (conformational heterogeneity) and fol-

low different kinetic pathways during a single process

(kinetic heterogeneity) (Figure 2 and Table 1).
www.sciencedirect.com
No single technique, computational or experimental, is

able to span all relevant spatial and temporal scales

(Figure 3). For static complexes, for example, X-ray

crystallography can generate atomic structures of the

components, while single particle cryo-electron micro-

scopy (cryo-EM) can provide average mass density maps

of the whole assembly at nanometer resolution for the

whole assembly. For processes, computer simulations are

beginning to reach the microsecond time scale, while

various single molecule and stopped-flow techniques

come into play on the millisecond time scale. Thus, a

key challenge is to integrate different kinds of static and

dynamic characterizations at different resolutions to

obtain a comprehensive description of a process. As for

descriptions of static structures [18��,19], such an integ-

ration of data will have to be achieved through compu-

tational approaches.

We expect that inspiration for the needed computational

approaches will come from a wide range of fields that

model dynamic systems. Examples include motion cap-

ture techniques for movies, where the motions of markers

on an actor are tracked and used to restrain a general

model of locomotion to make an animated character move

like the actor [20]; kinematics in robotics, where motions

are designed to connect a set of states subject to con-

straints, such as driving a vehicle from one point to

another [21–23]; the master equation in chemical kinetics

that captures rates of transitions between different states

[24]; molecular dynamics simulations, where every

attempt is made to make the trajectories correspond to

reality [25�,26]; simplified physical simulations, such as

Brownian dynamics [25�,26] and modeling of transitions

[27]; and diffusion-based models of biological processes

[28]. However, none of these computational approaches

are always accurate, applicable on all time and size scales

of interest, capable of describing all properties of interest,

and able to include all available experimental data and

theoretical considerations. Such an integrative approach

still needs to be developed.

In this review, we describe a process as a set of key states

connected by transitions (Figure 2 and Table 1). Such a

model is similar to the flowchart diagrams that are typi-

cally used to provide high-level views of processes. A

representation of the process can vary in resolution,

ranging from schemes involving two key states to

high-resolution schemes with many key states and tran-

sitions between them. Some processes may be more

concisely and efficiently modeled at a given resolution
Current Opinion in Cell Biology 2009, 21:97–108
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Figure 1

Examples of dynamic macromolecular processes: (a) Locomotion of a cell is enabled by a reversible rotary propeller of the bacterial flagellum [119]. (b)

Nucleocytoplasmic transport of macromolecules occurs in a regulated fashion through the nuclear pore complex [120�]. (c) A number of cellular

functions, including muscle contraction, cell motility, cell division, and cytokinesis, depend on the assembly and maintenance of branched actin

filaments (http://www.cgl.ucsf.edu/chimera/ImageGallery/). (d) The folding of many proteins is catalyzed inside the chaperonin cavity [7] (http://

www.cgl.ucsf.edu/chimera/ImageGallery/). (e) The HIV-1 core assembles inside the maturing virion [121]. (f) Synthesis of ATP in mitochondria and

chloroplasts is catalyzed by ATP synthase (http://www.mrc-dunn.cam.ac.uk/research/atp_synthase).
by a continuum diffusion model or molecular dynamics,

particularly at high resolution where the number of states

becomes large. As in the static structure case, we can use

experimental and theoretical data to construct restraints

that limit the set of possible process models [18��]. For

example, a restraint can act to limit the distance between

two components of the system as a function of time. More

restraints are added as the evidence accumulates, redu-

cing the number of acceptable models.

Important tasks required to build a structural dynamics

model of a process are first, discovering key states and

determining their structures; second, finding which pairs

of key states interconvert; third, determining rates of

transitions between interconverting key states; and

fourth, computing trajectories for the transitions between

key states. The next four sections review how these four

challenges can be addressed by different techniques

(techniques referred to in italics are described in
Current Opinion in Cell Biology 2009, 21:97–108
Table 2). These challenges are inter-related and progress

toward resolving one may help resolve others.

Discovering key states and determining their
structures
Structural modeling of a dynamic process generally begins

with the determination of key states and their structural

characterization. If a conformationally homogenous sample

of a key state can be purified, the whole arsenal of

traditional structural biology techniques can be applied.

These techniques are reviewed from a computational

perspective in Ref. [18��]. Key states that are not suffi-

ciently stable can sometimes be stabilized by removing,

adding, or modifying parts of the system (eg, by adding

ligands) to block the transition to another state. For

example, in studies of the ribosome-bound nascent chain

by NMR spectroscopy, the RNA transcript was prepared

without a stop codon. This modification led to translation

arrest and allowed measurements to be taken on the partly
www.sciencedirect.com
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Figure 2

A representation of a process. (a) Several terms used in the text are illustrated by a process of four key states (circled solid shapes) connected by

transitions (arrows). (b) Conformational heterogeneity is illustrated by a sample consisting of complexes of varying composition and conformation. (c)

Illustration of kinetic heterogeneity, showing two (black and blue) of the many paths through the graph in (a). Definitions of the terms can be found in

Table 1.

Figure 3

An overview of the spatial and temporal coverage of the various methods. The x-axis represents the size of the systems that can be explored by

each method in nanometers. The y-axis represents the time scales that can be reached. The methods and abbreviations are described in

Table 2.

www.sciencedirect.com Current Opinion in Cell Biology 2009, 21:97–108
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Table 1

Brief descriptions of important terms used in the review

State A state is described by a three-dimensional structure of an assembly at some resolution. The structure may

be flexible and its description may be incomplete.

Key state The set of key states and transitions between them capture the essence of the process. Key states need not be

stable and can correspond to transition states.

Transition A transition occurs between a pair of key states that can interconvert directly without passing through other key states.

Trajectory A trajectory is a detailed sequence of states describing a transition between two key states, like frames in a movie.

Rate of transition Transition rates can be expressed in a variety of ways such as the probability of moving from one state to another

in a given period of time or rate constants.

Conformational

heterogeneity

Conformational heterogeneity implies that multiple states exist in a single sample of the system. Such heterogeneity

complicates bulk experimental measurements, often requiring single-molecule experiments.

Kinetic heterogeneity Kinetic heterogeneity results from different copies of the system following different transitions. For example,

different parts of the secondary structure of a protein can form independently and asynchronously before the

tertiary structure forms [110] and, during ribosome assembly, different interactions between proteins and RNA

can stabilize independently of one another [13].

Restraint A restraint restricts geometric and/or temporal properties of an assembly, such as the distance between two

components, the overall shape of the complex, or the time interval between two key states. A restraint is a scalar

function that quantifies the agreement between a restrained feature and the data.

Process representation A process is represented as a set of key states connected by transitions with associated trajectory and rate information.
produced protein [29]. In other work, the kiromycin anti-

biotic was used to stall translation in the Escherichia coli
ribosome to take cryo-EM snapshots of the elongation

factor Tu in complex with the ribosome [30]. Methods

that can be used to characterize transient states and hetero-

geneous states are discussed next.

Characterizing transient states

Key states of the system often exist only for a brief time as

the system changes from one stable state to another. To

provide structural information about such a transient key

state, the method must either quickly immobilize the key

state or have high enough temporal resolution to take the

measurement as the system changes. In the former

category, hydroxyl radical footprinting breaks a structure

into pieces over a few milliseconds, thus terminating the

time evolution of the system. This approach has been

used to monitor the early stages of ribosome assembly

after rRNA–protein encounter, following changes in the

structure of the 30S subunit [31��]. The results show that

the initial RNA–protein complexes refold during the

process. Fluorescent affinity tag purification allows visual-

ization of the target protein in live cells, followed by

extraction and detection of interacting macromolecular

partners. It has been used to localize specific interactions

of viral proteins with host–cell interaction partners at

different stages during a viral infection [32].

NMR spectroscopy and fluorescence-based methods can

monitor the assembly as it changes over time. Relaxa-

tion-dispersion NMR spectroscopy has been used to observe

transient states of small complexes of proteins that only

exist on the time scales of seconds [33,34,35��]. This new

method has not yet been applied to macromolecular
Current Opinion in Cell Biology 2009, 21:97–108
assemblies. Fluorescence tagging allows different types of

measurements to be taken and has been used extensively

in the determination of attributes of static structures. For

example, the stoichiometry of a particular subunit in an

assembly can be estimated by monitoring the fluctuations

in intensity as complexes with tagged subunits move

through the observed volume [36,37]. FRET can be used

for structure determination by successively tagging pairs

of proteins [38]. The detection of the addition or removal

of a subunit from a single complex can be accomplished

via fluorescence labeling of proteins [39] or polarization

fluorescence spectroscopy [40].

Disentangling conformationally heterogeneous states

Methods that measure average properties of the system are

typically comparatively easy to apply, but their precision is

limited by conformational and kinetic heterogeneity in the

sample. It is often difficult to create a sample containing

only a single key state, owing to multiple kinetic pathways

or inability to synchronize each step of a single pathway. To

avoid averaging over various states in a sample, single

molecule methods such as FRET and optical tweezers are

required [41�,42]. Unfortunately, single molecule methods

provide information about only a few variables at a time,

thus making it difficult to reproduce the state of the whole

assembly. Methods, such as cryo-electron tomography [43],

not traditionally included in the category of single molecule

techniques, also provide information about individual

copies of the system. For example, the expectation-max-

imization algorithm, together with a maximum likelihood

scoring function, is able to classify single particle cryo-EM

images corresponding to different states of the complex.

The classified images can then be used to produce struc-

tures of each of the well-populated states in the sample.
www.sciencedirect.com
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Table 2

A brief overview of the various experimental and computational methods mentioned in this review

Time resolved SAXS [46��,111] In time resolved small angle X-ray scattering (SAXS), a time course of the scattering profile is collected by

repeatedly exposing a sample in solution. The scattering profile provides low-resolution information about

the distribution of interatomic distances in the sample.

TROSY NMR [63,112] Transverse relaxation optimized spectroscopy (TROSY) is a variant of nuclear magnetic resonance (NMR)

spectroscopy that can be applied to large systems. This method isolates part of the system by replacing

the remaining hydrogen atoms with deuterium atoms. The chemical shifts of the hydrogen atoms can

then be monitored to measure local conformation and its changes.

PC/QMS [13] In pulse-chase monitored by quantitative mass spectrometry (PC/QMS), a complex is allowed to assemble

for some period, followed by a rapid dilution of nonbound proteins in solution with 14N labeled proteins.

Quantitative mass spectrometry then measures the relative populations of the heavy and light molecules,

producing an association rate estimate for accumulation in the complex.

Time resolved pullouts [113] The cells are rapidly frozen and the media is ground. The ground substrate is thawed and the protein pulled

out by affinity chromatography, bringing non-covalently attached along. These attached proteins can be

identified with mass spectrometry or other methods.

Time resolved hydroxyl radical

footprinting [31��]

A brief pulse of synchrotron radiation is used to create radicals near the RNA that cleave the solvent

exposed backbone. Sequencing of the resulting fragments allows the cleavage sites to be identified,

and hence determines which parts of the backbone were exposed. Exposure information, coupled

with secondary structure prediction, can be sufficient to reconstruct the shape of the RNA.

Flourescent tags [49��] Fluorescent tags are attached to particles and the system is observed through a microscope. When the

marked particles are separated by at least tens of nanometers, the individual dyes can be located.

Several different colors can be used at once to provide measurements of proximity. Fluorescent dyes suffer

from photo-bleaching that limits how long a single dye molecule can be used.

FRET [49��,114] In Förster resonance energy transfer (FRET) spectroscopy, two particles are tagged with appropriate

fluorophores. When the dyes are close to one another (several nanometers), they become coupled and

excitation of one, the FRET donor, causes emission by the other, the FRET acceptor. The strength of

this coupling depends on distance, allowing changes in distance to be detected.

Optical tweezers [115] A micron-sized polystyrene bead attached to part of the system is held in an optical trap. The trap can

be used either to hold the bead at a specified force or, alternatively, to set the displacement over time.

By restraining another part of the system (e.g. by immobilizing a bead attached to another part of the system),

a distance can be measured. Some recent setups allow a second bead to be trapped and manipulated

independently. Optical tweezers can apply forces of up to hundreds of piconewtons.

Molecular dynamics

[25�,26,71,74,75�]

The Newton’s equations of motion are integrated for the atoms of the system, relying on a molecular

mechanics force field. The result is a trajectory of the system, sampled with time steps on the order

of femtoseconds. The longest simulations approach microseconds in duration. Coarse-grained

representations, combining multiple atoms into a single particle, can reach millisecond time scales.

Normal modes dynamics

[116,117]

The assembly is represented as a collection of points connected by springs. The local dynamics of such

an object is approximated by a linear combination of a small basis set of harmonic motions, each with a

characteristic frequency. The trajectory is generated by an iterative extrapolation of local dynamics.

Motion planning [21,118] Motion planning algorithms are a large family of techniques taken from robotics that search for

noncolliding trajectories between two known states of the system. The most advanced

techniques can handle hundreds of parameters.
This technique has been applied to the E. coli ribosome and

the large T antigen of Simian Virus 40 [44].

Finding which pairs of key states interconvert
Given the set of key states, the allowed transitions need to

be determined. These transitions are between the pairs of

key states that can interconvert directly (i.e. without

passing through other states). The effort to determine

the connected key states involves using experimentally

measured time series or computational searches.

Using experimental time series

When the process involves rapid transitions between a

number of relatively stable key states, any temporal data
www.sciencedirect.com
that can distinguish between different mixtures of states

can be used to determine connectivity. Such data fitting

approaches enumerate sets of connections and determine

if rates exist that reproduce the experimental data for

each choice of connectivity. Successful applications in-

clude finding the topology of RNA folding using hydroxyl
radical footprinting [45] and monitoring virus capsid

assembly using time resolved SAXS [46��]. In the former

work, a five-state model of the folding process of a large

RNA molecule was proposed. The number of key states

was determined by clustering the rate at which various

parts of the molecule were protected during folding. To

find the best model, all possible graphs of five key states

and assignments of protected regions to states were
Current Opinion in Cell Biology 2009, 21:97–108
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enumerated and scored. The assignment of backbone

protection in each key state was sufficient to uniquely

determine the RNA conformations.

Using simulations of system dynamics

Various computational methods can be used to find both

key states and transitions between them. The most direct

approach is to simply simulate the assembly with molecu-
lar dynamics, and connect key states on the basis of the

molecular dynamics trajectories. Such approaches require

a high-resolution representation of the starting state. In

addition, the methods suffer from an inability to connect

states distant from each other, because of limitations in

the accuracy and length of molecular dynamics trajec-

tories. Nevertheless, this approach has been used exten-

sively for building models of processes occurring on

smaller spatial and temporal scales, such as protein fold-

ing [47] and lipid vesicle formation [48]. In both cases,

many simulations were run and the frames from the

resulting trajectories were clustered to give a small num-

ber of highly populated key states connected by less

populous transitions.

Determining rates of transitions between
interconverting states
Knowledge of how key states are connected captures

much of what we want to know about dynamic processes,

but a complete description requires determining the

transition rates between directly connected states in

the model. Different techniques can be applied to this

problem, depending on the properties of the system.

Monitoring an order parameter

An order parameter is a simple structural feature of the

system that changes during the transition of interest.

Fluorescent tags are useful for following individual particles

[49��], monitoring the accumulation in the target key

state [50��], tracking the orientation of a molecule [51],

and measuring relative distances [52�,53,54]. For

example, FRET fluctuations have been used to determine

transition rates between RNA folding states [55,56]. Dyes

were attached to immobilized RNA molecules so that the

two key states had different FRET efficiency [56].

Photons were then gathered from single molecules and

averaged over thousands of transitions. By using the

FRET efficiency measurements in narrow windows

around transitions, it was possible to monitor transitions

as short as the average photon emission interval as well as

to measure the time spent in each key state. Atomic force

microscopy can be used to monitor the height of an

assembly attached to a support at millisecond time scale

and nanometer resolution, as was done on GroEL [57].

Optical tweezers can be used to measure a single distance in

a single copy of the complex; for example, monitoring the

rate of RNA unfolding by a helicase [58] or translating by

the ribosome [59��]. Such experiments involve holding

part of the system under tension and monitoring how the
Current Opinion in Cell Biology 2009, 21:97–108
distance changes as the process proceeds. When applied

to translation, single translational steps could be observed

to occur with a median interval of 2.8 s and to take less

than a tenth of a second to complete. NMR spectroscopy can

use changes in the local environment of certain atoms,

such as their solvent accessibility, to measure rates of

conformational transitions on the microsecond to milli-

second time scale [60,61�]. NMR-based methods for

monitoring enzyme kinetics on the picosecond to seconds

time scale were reviewed in Ref. [61�].

Determining rates of addition of components to a

system

The process of assembling a complex is particularly

amenable to rate measurements as the transitions be-

tween key states involve primarily involve the accumu-

lation of new species. Pulse chase monitored by quantitative
mass spectrometry can measure the rate of addition of new

subunits to the assembly. The main application so far has

been elucidation of the ribosome assembly process [13].

SAXS can monitor the size of an assembly as it is built, and

was applied, for example, to measuring the rate of virus

capsid assembly [46��].

Computing trajectories for the transitions
between states
Trajectories connecting one key state to another can

contain a great deal of information, especially for models

with sparse key states. Generating a complete trajectory

typically requires computation, because experimental

methods generally cannot monitor all structural coordi-

nates for each molecule in an ensemble. The compu-

tational methods range from highly physically accurate,

but expensive methods (e.g. molecular dynamics simu-

lation) to less physically realistic but faster approaches

that allow us to compute trajectories between key states

more separated in time and space (e.g. normal modes
dynamics and motion planning).

Experimental restraints on trajectories

Hydroxyl radical footprinting has been used to monitor the

assembly process of the ribosome where the solvent

accessibility of the RNA backbone could be determined

with 10 ms precision in vivo [31��]. The resulting solvent

accessibility information was sufficient to determine the

folding nucleation sites and rates. While time resolved
SAXS can generally monitor only coarse shape of the

assembly, under certain circumstances with regular and

well-defined structures, the time-resolved data can be

used to reconstruct the whole trajectory. Examples in-

clude formation of insulin fibrils [62] and virus capsids

[46��]. Recently introduced TROSY NMR spectroscopy

allows detecting changes in the local environment of a

small part of the assembly, typically methyl groups,

during a dynamic process [63]. Applications include

monitoring conformational changes of a protein in

the GroEL-GroES chaperonin [64] and following
www.sciencedirect.com
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the transition between two conformations of the ClpP

protease [65��].

Computing trajectories

Computational approaches are generally needed to obtain

trajectories between key states. The gold standard is to

perform all atom molecular dynamics simulations of the sys-

tem in solvent. Such simulations require detailed structural

information about the components of the system and their

starting state, and can only simulate processes lasting less

than microseconds. Fortunately, molecular dynamics soft-

ware parallelizes efficiently and so can handle large systems

consisting of millions of atoms [66��,67,68]. Coarse graining

and multiscale methods can extend the reachable time

scales to fractions of a millisecond by representing many

atoms with a single particle and using force fields derived

from more detailed all-atom computations [69�,70–72,73�].
Adding intermediate key states along the transition can

make it easier to explore longer time scales [74].

An orthogonal approach to speeding simulations, at the

risk of losing the physical accuracy, is to add forces that

guide the evolution of the system. These forces can

minimize the time the simulation spends stuck in dead

ends and local minima. For example, each atom can be

constrained inside a ball centered at the final position of

the atom, as given by an X-ray crystallographic structure

[75�]. The radius of the ball is initially large enough to

include the initial position of the atom, and gradually

shrinks to zero during the simulation, forcing the atom to

converge on its final location.

Techniques such as normal modes dynamics and motion
planning further sacrifice physical realism to handle long
Figure 4

A model of the substrate degradation by the proteasome. The degradation

conjugation of the protein substrate and ubiquitins, degradation of the tagge

process is modeled by four key states and transitions between them, discu

proteasome, the E3 ligase enzyme, and the ubiquinated substrate protein. Th

substrate, (b) recruitment of polyubiquinated substrate, (c) storage of substr

regulatory particle. Arrows show transitions between states. As more inform

states, increasing the spatial resolution of each key state, and mapping traj

www.sciencedirect.com
time scales. Normal modes dynamics have been applied

to ribosomes [76,77], viruses [78–80], myosin [81,82], and

chaperonins [83] at time scales up to 10�8 s [84]. Motion

planning approaches have been applied to connecting the

open and closed conformations of the K-channel [85],

studying the folding pathways of proteins [86] and RNA

[87], and computing large-amplitude motions [88].

Example process: the ubiquitin–proteasome
protein degradation pathway
To illustrate our perspective on dynamic processes out-

lined above, we review recent studies toward elucidating

the dynamics of the 26S proteasome as part of the

ubiquitin–proteasome pathway (Figure 4). This pathway

plays a key role in regulating protein levels in eukaryotes

[17,89]. The ubiquitin–proteasome pathway involves tag-

ging the substrate protein by covalently attaching

multiple ubiquitin molecules, followed by degradation

of the tagged protein inside the 26S proteasome and the

release of the ubiquitin molecules. A number of key

biological questions remain unanswered, such as how

tagged substrates are recognized by the proteasome for

degradation, whether the proteasome disassembles

during the catalytic cycle, and how the substrate is

degraded within the proteasome. Addressing these ques-

tions is challenging, as some key states are transient and it

is difficult to prepare sufficient quantities of tagged sub-

strates.

The 26S proteasome consists of a 28-protein 20S core

particle chamber that is capped on both sides by a �20

proteins 19S regulatory particle. We chose to describe the

degradation process using four key states, as suggested by

the ‘chew and spew’ model [90], although alternative
process is part of a larger pathway, consisting of activation of ubiquitin,

d protein, and deubiquitination to recycle the ubiquitins. The degradation

ssed in more detail in the text. The modeled system involves the 26S

e four key states of the model are (a) 26S proteasome disassociated from

ate inside the proteasome, and (d) disassociated and disassembled 19S

ation is obtained, the model can become more detailed by adding key

ectories between key states.

Current Opinion in Cell Biology 2009, 21:97–108
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models have also been proposed [91]. The ‘chew and

spew’ model proposes that ATP hydrolysis in the pre-

sence of product peptides triggers controlled disassocia-

tion and disassembly of the 19S regulatory particle from

the 20S core particle (Figure 4). Next, we describe each of

the key states and the experimental and computational

techniques used for their characterization.

The first key state of the model consists of the ubiqui-

tinated substrate bound to the E3 ligase enzyme and a

26S proteasome. The structure of the 20S core particle

was solved by X-ray crystallography [92]. The identities

and interactions of proteins in the 19S regulatory particle

were revealed by affinity purification studies followed by

mass spectrometry [93–97]. A low-resolution structure of

the entire 26S molecule was determined by cryo-EM [98].

In the second key state, the ubiquinated-substrate/E3

complex is bound to the 26S proteasome via one of two

known ubiquitin receptors, Rpn10 or Rpn13 subunits of

the 19S regulatory particle [99–102]. Biochemical studies

have revealed that Rpn10 is bound to the polyubiquitin

chain [103] and recognizes targets via its ubiquitin-binding

motif [104]. The amino-terminal domain of Rpn13 shows

no similarity to Rpn10 ubiquitin-binding motif, as revealed

by NMR spectroscopy and X-ray crystallography.

In the third key state of our model, the protein substrate is

located within the 20S outer chamber, before degra-

dation. The existence of this key state is suggested by

cryo-EM and tandem mass spectrometry that determined

the stoichiometry and location of substrates within the

26S proteasome [16]. This study also observed structural

differences between the free and substrate-bound 26S

structure.

In the fourth key state, the 19S particle is disassembled

and disassociated from the 20S and the peptides have

been released. The disassembled complex has been

mapped by negative stain EM [90].

The transitions between the key states are less well

characterized. Between key states two and three, sub-

strates enter the 20S core particle through a gated channel

after being unfolded by energy-dependent translocation

through the ATPase ring [102,105]. The residues

involved in this gate as well as its open and closed

structure have been localized in the 20S core particle

of an archaeal proteasome using cryo-EM [106,107]. The

mechanism appears to be conserved in mammals [108].

The transition from the third to fourth key state involves

degradation of the substrate and disassociation of the

complex. NMR spectroscopy has been used to monitor

the 20S core particle during the degradation process. The

study revealed motions occurring on the tens of nanose-

conds time scale in the outer chamber walls that are
Current Opinion in Cell Biology 2009, 21:97–108
correlated with much slower motions on the millisecond

time scale in the catalytic chamber [109��]. The coupling

between substrate degradation and disassociation of 19S

regulatory particle is likely to be linked to conformational

changes in its AAA-ATPase ring. These changes have

been observed using biochemical studies [90].

Conclusions
Understanding macromolecular processes requires a wide

range of experimental and computational techniques. As

a result, we expect that integrative approaches will be

critical, even more so than in the static structure case.

Most existing models of dynamic processes have been the

result of ad hoc integration of experimental results via

simple models or mental constructions. But moving to

higher accuracy, precision, coverage, and efficiency

through incorporating all the available information will

require novel computational approaches.
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