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Convolutional networks

• Specialized kind of neural network for processing 
data that has a known, grid-like topology. 

• Examples include 
q time-series data, which can be thought of as a 1D 

grid taking samples at regular time intervals, 
q and image data, which can be thought of as a 2D 

grid of pixels.
• Convolutional networks are simply neural networks 

that use convolution in place of general matrix 
multiplication in at least one of their layers.
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Key Idea

• Replace matrix multiplication in neural nets with 
convolution

• Everything else stays the same
q Maximum likelihood
q Back-propagation
q etc.
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Convolution

• Convolution	is	just	a	weighted	average:	
q 𝑠 𝑡 = ∫𝑥 𝑎 𝑤(𝑡 − 𝑎)
q 𝑤 𝑡 is a probability density function. 
q 𝑤 = 0 for all negative arguments 

• Denoted 𝑠 𝑡 = 𝑥 ∗ 𝑤 𝑡
q 𝑥 is the input 
q 𝑤 is the kernel 
q The output is the feature map

• Discrete convolution 

𝑠 𝑡 = 𝑥 ∗ 𝑤 𝑡 = @
!"#$

%$

𝑥 𝑎 𝑤 𝑡 − 𝑎
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2D convolution

𝑆 𝑖, 𝑗 = 𝐼 ∗ 𝐾 𝑖, 𝑗 =*
!

*
"

𝐼 𝑚, 𝑛 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

q 𝑚 = 𝑖, 𝑖 − 1, 𝑖 − 2,…

q 𝑛 = 𝑖, 𝑖 − 1, 𝑖 − 2,…

q 𝐼 𝑖, 𝑗 𝐾 0,0 + 𝐼 𝑖, 𝑗 − 1 𝐾 0,1 + ⋯
• Convolution is commutative: 

𝑆 𝑖, 𝑗 = 𝐾 ∗ 𝐼 𝑖, 𝑗 =*
!

*
"

𝐾 𝑚, 𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)

q 𝑚 = 0, 1, 2, …

q 𝑛 = 0, 1 , 2, …
• Cross correlation: (what we will really use / no kernel flipping)

𝑆 𝑖, 𝑗 = 𝐼 ∗ 𝐾 𝑖, 𝑗 =*
!

*
"

𝐾 𝑚, 𝑛 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)

• Many machine learning libraries implement cross-correlation but call it 
convolution.



(Goodfellow 2016)

2D ”valid” Convolution

Figure 9.1
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Motivation 

• Scale up neural networks to process very large images / video sequences

q Sparse connections

o The kernel is smaller than the input: 𝑂 𝑚×𝑛 → 𝑂 𝑘×𝑛

q Parameter sharing

o The kernel is used at every position of the input 

q Equivariant representations

o Automatically generalize across spatial translations of inputs

o 𝑓 is equivariant to 𝑔 if 𝑓 𝑔 𝑥 = 𝑔(𝑓 𝑥 )

q Works with inputs of variable size

• Applicable to any input that is laid out on a grid (1-D, 2-D, 3-D, …)
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Sparse Connectivity (viewed from below)

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.2
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Sparse Connectivity (viewed from above)

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.3

𝑥#, 𝑥$, 𝑥% are the 
receptive field of 𝑠%
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Growing Receptive Fields

Figure 9.4

Even though direct connections in a convolutional 
net are very sparse, units in the deeper layers can 
be indirectly connected to all or most of the  xinput
image.
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Parameter Sharing

Convolution 
shares the same 

parameters 
across all spatial 

locations

Traditional 
matrix 

multiplication 
does not share 
any parameters

Figure 9.5
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Edge Detection by Convolution

-1 -1

Input

Kernel
Output

Figure 9.6

320×280

319×280



(Goodfellow 2016)

Efficiency of Convolution
Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Convolution Dense matrix Sparse matrix

Stored floats 2 319*280*320*280 
> 8e9

2*319*280 = 
178,640

Float muls or 
adds

319*280*3 = 
267,960 > 16e9

Same as 
convolution 
(267,960)
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Pooling 

• A typical layer of a convolutional network consists of three 
stages
q In the first stage, the layer performs several convolutions

in parallel to produce a set of linear activations. 
q In the second stage, each linear activation is run through 

a nonlinear activation function, such as the rectified linear 
activation function. This stage is sometimes called the 
detector stage. 

q In the third stage, we use a pooling function to modify the 
output of the layer further.

• A pooling function replaces the output of the net at a certain 
location with a summary statistic of the nearby outputs:
q The max pooling operation reports the maximum output 

within a rectangular neighborhood
q Average pooling, weighted average pooling, L2 norm, etc. 
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Convolutional Network 
Components

Figure 9.7
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Why pooling?
• Invariance:

q Pooling helps to make the representation become approximately 
invariant to small translations of the input. 

q Invariance to translation means that if we translate the input by a small 
amount, the values of most of the pooled outputs do not change. 

q Invariance to local translation can be a very useful property if we care 
more about whether some feature is present than exactly where it is.

q The use of pooling can be viewed as adding an infinitely strong prior 
that the function the layer learns must be invariant to small translations.

• Efficiency: 
q Pooling units summarize detector units by reporting summary statistics 

for pooling regions spaced k pixels apart rather than 1 pixel apart. 
q This improves the computational efficiency of the network 
q improved statistical efficiency and reduced memory requirements for 

storing the parameters.
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Max Pooling and Invariance to 
Translation

Figure 9.8

Stride = 1
Width = 3
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Cross-Channel Pooling and Invariance to 
Learned Transformations

Figure 9.9
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Pooling with Downsampling

Figure 9.10

Stride = 2
Width = 3
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Example Classification 
Architectures

Figure 9.11The specific strides and 
depths used in this 
figure are not advisable 
for real use
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Variants of the convolution function
• We use many convolutions in parallel (multi-channel)
• The input is a 4-d tensor (batch, r, g, b). Let’s ignore the batch index for the 

moment:

𝑍&,(,) = *
*,!,"

𝑉*,(+!,#,)+",#𝐾&,*,!,"

q 𝑖: output channel
q 𝑙: input channel (R,G,B)
q 𝑚, 𝑛: offsets (row, column) = 1,2,3, …
q 𝑗, 𝑘: row, column

• Convolution with stride: 

𝑍&,(,) = 𝑐 𝐾, 𝑉, 𝑠 = *
*,!,"

𝑉*, (,# ×.+!, ),# ×.+"𝐾&,*,!,"

Stride Output (row, column) Input (row, column)
𝑠 = 1 0,1,2, … 0,1,2, …
𝑠 = 2 0,1,2, … 0,2,4, …
𝑠 = 3 0,1,2, … 0,3,6, …

…
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Convolution with Stride

Figure 9.12

Stride 
of 2 
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Zero padding

• Valid: no zero-padding, the convolution kernel is 
only allowed to visit positions where the kernel is 
contained entirely within the image.
q input 𝑚, kernel 𝑘 ⇒ output 𝑚 − 𝑘 + 1

• Same: pad with enough zeroes to preserve the 
input dimension 
q input 𝑚 ⇒ output 𝑚

• Full: every input contributes to equal number of 
outputs
q input 𝑚 ⇒ output 𝑚 + 𝑘 − 1
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Zero Padding Controls Size

Figure 9.13

With zero
Padding (same) 

Without zero
Padding (valid)
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Kinds of Connectivity

Figure 9.14

Local connection:
like convolution,
but no sharing

Convolution

Fully connected

𝑍!,#,$ = #
%,&,'

𝑉%,#(&)*,$(')*𝐾!,#,$,%,&,'

𝑍!,#,$ = #
%,&,'

𝑉%,#(&)*,$(')*𝐾!,%,&,'
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Partial Connectivity Between Channels

Figure 9.15

A convolutional network 
with the first two output 
channels connected to 
only the first two input 
channels, and the 
second two output 
channels connected to 
only the second two 
input channels.
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Tiled convolution

Figure 9.16

Local connection
(no sharing)

Convolution
(one group shared

everywhere)

Tiled convolution
(cycle between

groups of shared
parameters)

𝑍!,#,$ = #
%,&,'

𝑉%,#(&)*,$(')*𝐾!,%,&,', #%,(*, $%,(*
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Three Operations

1. Convolution: (linear) like matrix multiplication

q Take an input, produce an output (hidden layer)

2. “Deconvolution”: like multiplication by transpose of a matrix

q Used to back-propagate error from output to input

q Reconstruction in autoencoder 

3. Weight gradient computation

q Used to backpropagate error from output to weights

q Accounts for the parameter sharing
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Gradient computation
• Image/input 𝑉, kernel 𝐾, conv. output 𝑍 = 𝑐 𝐾, 𝑉, 𝑠 , Cost function 𝐽 𝑉, 𝐾

𝑍!,#,$ = 𝑐 𝐾, 𝑉, 𝑠 = )
%,&,'

𝑉%, #() ×+,&, $() ×+,'𝐾!,%,&,'

• We receive 𝐺, 𝐺!,#,$ =
-.(0,1)
-3!,#,$

q Compute the gradient wrt weights of the kernel: 

𝑔 𝐺, 𝑉, 𝑠 !,%,&,' =
𝜕𝐽(𝑉, 𝐾)
𝜕𝐾!,%,&,'

=)
#,$

𝜕𝐽(𝑉, 𝐾)
𝜕𝑧!,#,$

𝜕𝑧!,#,$
𝜕𝐾!,%,&,'

=)
#,$

𝐺!,#,$𝑉%, #() ×+,&, $() ×+,'

q Compute the gradient wrt 𝑉:

ℎ 𝐾, 𝐺, 𝑠 %,4,5 =
𝜕𝐽(𝑉, 𝐾)
𝜕𝑉%,4,5

=)
!

)
#,& +.7.

#() ×+,&84

)
$,' +.7.

$() ×+,'85

𝜕𝐽(𝑉, 𝐾)
𝜕𝑧!,#,$

𝜕𝑧!,#,$
𝜕𝑉%,4,5

=)
!

)
#,& +.7.

#() ×+,&84

)
$,' +.7.

$() ×+,'85

𝐺!,#,$𝐾!,%,&,'
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Deconvolution 

• More generally, the function ℎ 𝐾,𝐻, 𝑠 is called 
deconvolution

• Can be used for reconstruction: 𝑅 = ℎ 𝐾,𝐻, 𝑠 in an 
autoencoder (similar to PCA) 

• To train:
q Receive a gradient 𝐸 (w.r.t. 𝑅)
q Compute the gradient w.r.t. 𝐾: 

o This is given by 𝑔(𝐻, 𝐸, 𝑠)
q Compute the gradient wrt 𝐻:

o This is given by 𝑐(𝐾, 𝐸, 𝑠)



(Goodfellow 2016)

Data types
Single channel Multichannel

1-D

Audio waveform (amplitude over time)
Channel: Amplitude

Dimension: T

Skeleton animation data
Each channel in the data represents the angle
about one axis of one joint of a character’s 
skeleton.

Channels: Angles
Dimesion: T

2-D

Audio data that has been transformed with 
a Fourier transform.
• Rows correpsond to frequencies. 

(equivariance to a shift in octaves)
• Columns correspond to different points 

in time. (equivariance to shifts in time)

Channel: Amplitude
Dimensions: F,T

Color Image Data
Channels: R,G,B
Dimensions: X,Y

3-D

Volumetric data such as provening from 
medical imaging technology

Channel: GrayScale
Dimensions: X,Y,Z

Color video data 
Channels: R,G,B
Dimesions: X,Y,T
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Structures output 
Recurrent Pixel Labeling

Figure 9.17
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Major Architectures

• Spatial Transducer Net: input size scales with output size, 
all layers are convolutional

• All Convolutional Net: no pooling layers, just use strided 
convolution to shrink representation size

• Inception: complicated architecture designed to achieve 
high accuracy with low computational cost

• ResNet: blocks of layers with same spatial size, with each 
layer’s output added to the same buffer that is repeatedly 
updated. Very many updates = very deep net, but without 
vanishing gradient.
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Watch

• https://www.youtube.com/watch?v=Xogn6veSyxA

https://www.youtube.com/watch%3Fv=Xogn6veSyxA

