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About this chapter

- Not a comprehensive survey of all of linear algebra

- Focused on the subset most relevant to deep

learning

- For a full introductory linear algebra course, |

recommend the course and book of Gilbert strang.

. https://ocw.mit.edu/faculty/gilbert-strang/

(Goodfellow 2016)


https://ocw.mit.edu/faculty/gilbert-strang/

Scalars

- A scalar Is a single number

Integers, real numbers, rational numbers, etc.

- We denote It with italic font:

a,n,T

(Goodfellow 2016)



Vectors

. A vector is a 1-D array of numbers:

—:L‘l-
L2

Ln

- Can be real, binary, integer, etc.

Example notation for type and size:

{’n

(Goodfellow 2016)



Matrices

- A matrix is a 2-D array of numbers:

[A1,1 A1,2]
A1 Aza |

Column

A €

(2.2)

- Example notation for type and shape:

DI XM




Tensors

- Atensor is an array of numbers, that may have

zero dimensions, and be a scalar

one dimension, and be a vector

two dimensions, and be a matrix

or more dimensions.

(Goodfellow 2016)



Matrix Transpose

(A1) = A, (2.3)

A12 Aza Aspo

. [ Aiqn Axq Az }

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

(AB)'! =B'A". (2.9)

(Goodfellow 2016)



Matrix (Dot) Product

C = AB. (2.4)

(2.5)

oooooooooooooooo



ldentity Matrix

o O =
o = O
_— O O

Figure 2.2: Example identity matriz: This is Is.

Ve e R", I,x = .



Systems of Equations

Ax =0 (2.11)
expands to
Ai.x=b (2.12)
Ay .z = b (2.13)
. (2.14)
A = by, (2.15)



Solving Systems of
Equations

- A linear system of equations can have:
- No solution
- Many solutions

- Exactly one solution: this means multiplication by
the matrix is an invertible function

(Goodfellow 2016)



Matrix Inversion

. Matrix mYerse

A=1I,. (2.21)
- Solving a system using an inverse:
Ax =b (2.22)
A Az = A7 (2.23)
It = A~ 'b (2.24)

- Numerically unstable, but useful for abstract
analysis



Invertibility

- Matrix can’t be inverted if...

. More rows than columns
. More columns than rows

- Redundant rows/columns (“linearly dependent”,
“low rank”)



NOorms

- Functions that measure how “large” a vector is

- Similar to a distance between zero and the point

represented by the vector
o f(x)=0=>z=0
o f(x+1vy) < f(x)+ fly) (the triangle inequality)
e Va € R, f(ax) = |a|f(x)

(Goodfellow 2016)



NOorms

« LP norm

Iell, = (; )

- Most popular norm: L2 norm, p=2

. L1 norm, p=1: llzlh = Zlfcél-

- Max norm, infinite p: ||z||« = max |z;|.

(2.31)

(2.32)



Special Matrices and
vectors

. Unit vector:

|lz|[2 = 1. (2.36)

- Symmetric Matrix:

A=A" (2.35)

. Orthogonal matrix:

A'A=AA"=1T. (2.37)
Alt=A




Eigendecomposition

- Elgenvector and eigenvalue:

Av = \v. (2.39)

- Elgendecomposition of a diagonalizable matrix:

A = Vdiag A\) VL. (2.40)

.- Every real symmetric matrix has a real, orthogonal

eigendecomposition:
A=QAQ (2.41)




Effect of Eigenvalues

Before multiplication

[ 1 I

After multiplication

1 I

(Goodfellow 2016)



Singular Value
Decomposition

- Similar to eigendecomposition

- More general; matrix need not be square

A=UDV"'. (2.43)

(Goodfellow 2016)



Moore-Penrose

Pseudoinverse
r = ATy

- |f the equation has:

- Exactly one solution: this Is the same as the inverse.

- No solution: this gives us the solution with the
smallest error || Az — yl|».

- Many solutions: this gives us the solution with the
smallest norm of x.

(Goodfellow 2016)



Computing the
Pseudoinverse

The SVD allows the computation of the pseudoinverse:

AT=VD'U', (2.47)

O

Take reciprocal of non-zero entries

(Goodfellow 2016)



Trace

TI'(A) — Z A’L,’b (2.48)

Tr(ABC) = Tr(CAB) = Tr(BC A) (2.51)

oooooooooooooooo



Learning linear algebra

- Do a lot of practice problems

. Start out with lots of summation signs and indexing
Into individual entries

- Eventually you will be able to mostly use matrix and
vector product notation quickly and easily



