Moai Coding Style Guide

Version 1.0
August 21, 2011

Contents

@00] (=101 £SO PSSTSR i
This Guide IS NOT VEIY GOOccueiiiriiriiiiieiieieieie et 1
=] [To o] PSSR 1
o 001 1] o]0 (o] £ PR 1
FOIr EMPIOYEES ...ttt ettt e a et e et e s re e te et e s baenae e e e nraenreenes 1
Working Agreement — When to Reformat Codeccviveiiiiiieniiineeeee e 2
FOIMALLING ...ttt e te et e s b e e b e et e s be e te et e s reenteennenreenreenes 3
TADS VS, SPACES ...ttt bttt bbbttt 3
Visibility Qualifier INdentation...........cccccveverieieiie e 3
AIPhADELIZALION ... s 3
N T 11001 o SRR 3
[AV Lo [T £ F RSP URPRTROPTUR 4
CH+ Class DECIAratioNccueiieiieie et nne s 4
C++ Class IMpPIEMENTALIONcoiiiiiiie e 5
Obj-C Interface Indentation and AlIGNMENt..........cccooviiieiiciecee e 6
Preprocessor INAENTATION.oiiiiiiieieie e 7
BIOCK COMIMENTS......coiieiecie sttt te e e e e reeneesreeee e 7
LINE LBNGTN .o et 7
EXEIA SPACES ...ttt 7
ODj-C Parameter SPACINGooveieerieiieieesie ettt sa et ae e sne e 8
CH+ Parameter SPACINGeeovviieiieeeiesee st eiesee e ee e sreeae e saeesre e sreeeesneesneennas 8
Multi-Line Obj-C Method Call..........cccooiiiiiiiiie e 8
Multi-Line C++ Function Argument LiStS.........ccooveiiereiieieese s seese e see e sie e 9
Multi-Line Obj-C Method Declarationsccooveriiirnienenieneese e 10
Multi-Line C++ Function Declarationsccccocviieiieneiieneese e 10
BIACES. ..t 10
Braces fOr if/BISEveeeee s 11
Whitespace fOr OPEIALOrSueieeiueiieiieiie ettt 12
Pointer and Reference DecClarationcccceoveiiereiienieeie e 12
ODBJ-C FlE LAYOULceuiiiiie ettt sttt sttt 12
NaMING CONVENTIONSviiiieieeie ettt a et e st e teestesseesteeaesneesteeneeaneennen 14
Function Parameters and Local Variables ... 14
MEMDEN VArTabIES.ccvveiieeie ettt ae e nre s 14
Local use of C++ Class MEMDEIS.........coiiiiiieiiiiee e 14
Local use of C++ Static Class Methods...........cccevviieiierieiicsece e 14
GIODAIS ... et be e 14
RS- LU (o 0T | USSR 14
StAtIC GIODAIS ... 14
(O S L [l 1V [=1 1] 0T SRS 15
(O =T 0] 0] Fo (= O SURUURP 15
CONSTANTS. ...ttt e bbb e e sbb e e bb e e et r e e b e e nbre e 15
ODBJ-C ENUMETALIONS ...ttt sttt sttt sttt sbe e nnee e 15
Global C++ ENUMEIAtIONSocvveiiiieiieeie ettt sre e 16
TYPE NAIMES .ttt b et r e b s b e ne e nnnes 17

Class Name and Namespace POSEFIXESc.ovveririeiienienie e 17

[T o] UV LT SR 17
AACTONYIMIS ..ttt ettt e e sk e e e e bbb e e b e e e bb e e e be e e e bn e e annneeanes 18
(@] o] O 1Y 1= 1 o o USSR 18
ODBJ-C INIHIAHZELS ..ottt r e b 19
(@] o] Tl O o 10 (0 oo] SO R S SS 19
C++ Methods and FUNCHIONS........c.eioiiieccie ettt ree e 19
CH+ ACCESSOI METNOUS.......ciiviieieee et 19
MEthOd NAME VEIDS ... 20

This Guide is Not Very Good

Sorry. We’ll eventually capture every special case of our coding style, but we’re not there
yet. Those of us who have been doing this style for years now can do it consistently and
without any ambiguity. 1t’s tougher to distill that knowledge into a comprehensive
document, particularly across four languages (C, C++, Objective C and Java). It’s
tougher yet to organize that knowledge into an orderly and easily digestible fashion. By
its nature, a coding style is granular, particular and full of specific, single-purpose rules.

In this document we’ve done our best with C++ and Objective C, with a slight emphasis
on C++ as that is what the majority of our code base is written in.

Use this document to get a feel for some of the more obvious rules, but make a point to
look at the existing code base to pick up the nuances. When in doubt ask for clarification.

Religion

There are aesthetic, philosophical and practical reasons for every decision we’ve made
regarding our coding style. None of those matter. What matters is the thousands and
thousands of lines of code already written in this style. We are not going to rewrite this
code and, most likely, neither are you. For that reason we’ve decided to omit any kind of
explanation, justification, rationalization or argument from this document. Our goal is not
to persuade you to join our religion and worship our particular coding style; it is simply
to convey what that style is should you choose to use it as a contributor or be required to
use it as an employee.

For Contributors

Please consider using our coding style for your contributions to Moai. Of course we will
not reject contributions simply because they don’t match, but we’ll still want to reformat
your code before accepting it into the main project. We’ve found this makes it faster,
easier and more pleasant for us to maintain.

For Employees

It is very important to us that our code base remain consistently formatted, so leave your
personal coding style at the door when you come to work. Better yet, abandon your
personal style altogether and adopt our house style for everything you do. The majority of
code you write while working for us will be Moai and you can always unlearn our style
when it’s time for something new.

A poor strategy is to first write code in your old style and then convert to the house style
prior to review. You will only waste time and make mistakes. Learn to get it right the
first time, without the need for any revision.

The number one mistake coders make when learning our style is to omit the extra spacing
around parenthesis on one side of a function call, creating a lopsided appearance:

// watch out for this
foo (5);
foo (5);

// should be
foo (5);

The spacing rules in general prove difficult for some:

// this is a mistake
i =foo((a+b)/c);

// should be
i=foo (Ca+b)/c);

Try to learn the spacing rules and make them part of your muscle memory as you type.

Following these common mistakes are lapses in use of the divider comments and failure
to respect alphabetization, particularly when methods are being added to an existing file.

Working Agreement — When to Reformat Code

Four simple rules for when to apply the coding styles outlined in this guide:

1. Always style new code to the best of your ability.

2. Do not re-style existing code unless you have a legitimate sprint task that requires
you to rewrite or refactor it. We don’t want you to spend your time sitting around
re-styling code; if the code is working, leave it alone.

3. Whenever you see a code or header file that does not follow our file layout
guidelines (i.e. sections dividers and alphabetization), update it to match the
guidelines.

4. If you need to make a small change to a file (to add a method or class member, for
example), match the existing coding style of the file to the best of your ability.

Formatting

Tabs vs. Spaces
Use tabs, not spaces. Set tabs to display as four (4) spaces in your IDE settings.

Visibility Qualifier Indentation

Always indent by a single tab below any visibility qualifier:
// Do not do this
@protected

NSInteger mFoo;
NSInteger mBar ;

// This is 0K

public:
u32 mFoo;
u32 mBar ;

Alphabetization

Always alphabetize sections of functions and methods, whether declarations or
implementations. Do not group functions or methods by your opinion on how they might
be associated or seem to you to ‘go together.” The only system of order we desire for
functions and methods is alphabetization.

Alphabetization of member variable declarations is optional. These may be grouped by
your personal ideas about associations between them, or in any fashion.

If you are changing the code, always respect alphabetization. If you see sections of code
where function declarations or implementations are not alphabetized, assume it is a
mistake and fix their order. If you need to refactor code or rename methods, fix their
alphabetical order immediately upon renaming.

Alignment

You will frequently see sections of our code grouped into a columnar alignment based on
tabs. While alignment is encouraged, the only place where it is mandatory is in sections
of function or method declarations (as described later in this document).

Of course, you may align any part of your code that makes sense to you or seems to
improve readability. If you choose to align your code, use tabs instead of spaces.

// This is 0K
u32 mFoo;
string mBar ;
list < u32 > mBaz;

// This is 0K
void FuncA (u32 foo, u32 bar);
void FuncB (string foo);

Dividers

Code sections are delineated by dividers. Dividers should appear before anything having
to do with the section or paragraph they belong to. Pay special attention to where these
appear and make sure they appear in your code as well. Take care not to omit them or add
sections without them.

The “thick’ divider looks like this:

/7 //
// Title
// //

The “thin’ divider looks like this:

[~ e //

Section specific comments always go below their divider, never inside or above:
// //

// Title

// //

// Comments about this section

// Comments about this section

C++ Class Declaration

Indent each section of an the class declaration by a single indentation level. Do not
indent privacy scoping keywords. Alignment of member variable declarations is optional.
Always align the names and parameters of any member method declarations. You may
use different alignments for different sections of method declarations.

Always place a thick divider above the class declaration and a thin divider above any
section of method declarations.

// This is 0K

/7 //
// Foo
/7 //
class Foo {
private:

int mFoo;

int mBar ;

public:

void methodOne (int pl, int p2);
void methodTwo (int pl, int p2);
}:

If the class contains static C functions for export to Lua, prefix these functions with an
underscore, name them using camelCase and place them in their own, private declaration
block with a thin divider above them:

// This is 0K

//
// Foo
/7
class Foo {
private:
int mFoo;

int mBar ;

static int _luaFunctionOne (lua_State* L);
static int _luaFunctionTwo (lua_State* L);

void methodOne (int pl, int p2);
void methodTwo (int pl, int p2);

//

//

Class sections should first be private or protected then public. The only exception to this
rule is when a public section must absolutely be declared before e private or protected
section to make the values of internal enumerations or constants available. In this case,
use two public sections, one above and one below. Place only the minimum required

members in the top section:

// This is 0K

//
// Foo

//

class Foo {
public:

enum {
THING_ONE,
THING_TWO,
THING_THREE,
TOTAL_THINGS,
¥

private:
Thing mThings [TOTAL_THINGS];
public:

void methodOne (int pl, int p2);
void methodTwo (C int pl1, int p2);

C++ Class Implementation

//

//

The main section of a class implementation should have a thick divider containing the
class name as its header. Following this, each method implementation should be provided
alphabetically, with a single thin divider immediately preceding it.

//

//

// Foo

//

//

void Foo:methodOne (int pl, int p2) {
b

void Foo:methodTwo (int pl, int p2) {
b

If the class has a Lua API, place this in its own section above the class implementation. If
you require local functions, these two should be place in their own section. All functions
in all sections must be alphabetized.

// //
// local
// //
YA //
void localFunction () {
b
// //
// lua
// //
) —mm e //
int Foo:_ luaFunctionOne (lua_State* L) {

return O;
3
Y //
int Foo:_luaFunctionTwo (lua_State* L) {

return O;
¥
/7 //
// Foo
// //
[/ //
void Foo:methodOne (int pl, int p2) {
¥
/) //
void Foo:methodTwo (int pl, int p2) {
3

Obj-C Interface Indentation and Alignment

Indent each section of an interface declaration by a single indentation level. Do not
indent the visibility qualifier. Alignment of member variable declarations is optional.
Always align the names and parameters of any member method declarations. Always
place a thick divider above the interface declaration and a thin divider above the method
declarations.

// This is 0K

// //
// Foo

// //
@interface Foo : NSObject {

@private

NSInteger mFoo;
NSInteger mBar ;

}

-(void) methodOne :(int)pl param2:(int)p2;
-(void) methodTwo s int)pl param2:(int)p2;
@end

Preprocessor Indentation
Indent preprocessor conditionals as though they were any other part of the code.

void Foo) {

#ifdef _DEBUG

Log::Print (“debug build\n”);
#else

Log::Print (“release build\n”);
#endi f

}

Block Comments

Avoid block comments in code. Block comments are only to be used in file-level
documentation blocks or in class declarations as required by a documentation tool such as
Doxygen.

Line Length

We suggest your line lengths not exceed 80 characters, however you may choose to
ignore this limit if you feel that doing so will improve readability. In general, optimize
for vertical space over horizontal.

Extra Spaces

Include spaces after brackets and parentheses. Omit spaces between groups of brackets
or parentheses:

inti=a+b)*c)-d[191];
int i = (int)(floatFunc);
int i = getFuncPtr (Q(foo);

This applies to template parameters as well:

int i = foo < int >(bar);

The only exception to this rule is due to a shortcoming of C++’s grammar in which an
extra space must be left between template parameter braces to avoid confusion with the
bitwise shift operators:

// note the space between “> >” to differentiate from “>>~
list < vector < int > > veclList;

Add a space after a function names and array names when calling or indexing:

// This is OK

Foo (bar, baz);

int i table [j 1;

int i table [jJ 1L kK 1;

// Do not do this
Foo(bar, baz)
inti=table[J]1IL[Kk1;

Obj-C Parameter Spacing

If you are writing or calling a function using that uses keywords for each parameter, do
not put any spaces around the colons.

// This is OK
-(void) initVecWithX:(int)x y:(int)y z:(int)z;
[vec initVecWithX:1 y:2 z:3];

If you are writing or calling a function that omits additional keywords, then add a space
before each parameter:

// This is OK
-(void) initvVec :(int)x - int)y :(int)z;
[vec initVec :1 :2 :3];

C++ Parameter Spacing
Always add an extra space after each comma.

// Do not do this
int i = Foo(X,y,2z);

// Do not do this
int i = Foo(X,Y,Z);

// This is 0K
int i = Foo (X, VY, z);

Multi-Line Obj-C Method Call

When breaking a long method call, place a single keyword and parameter pair on each
line. Leave the object on the first line. Do not break the list unevenly or indent
arguments more than one tab. Respect normal indentation and brace rules for the
enclosing square brackets.

// Do not do this
int i = [foo funcWithParam:paraml
nextParam:param2 finalParam:param3];

// This is OK

int i = [foo
funcWithParam:paraml
nextParam:param2
finalParam:param3

1:

// This is OK
int i = [foo
funcWithParam:paraml
nextParam:param2
[bar funcWithParam:paraml otherParam:param2],
finalParam:param4

1:
If you have nested calls that you also wish to break up, indent them like any other scope.

// This is 0K

int i = [foo
funcWithParam:paraml
nextParam:param2
[bar
funcWithParam:paraml
otherParam:param2

finalParam:param4

1

If you are calling a function that omits keywords, leave the method name on the first line
of the call:

// Do not do this
int i = [foo
noKeywords :paraml
Zparam2
Zparam3

1

// This is 0K

int i = [foo noKeywords
Zparaml
Iparam2
sparam3

1:

You may place multiple parameters on one line if they naturally group, such as object-
key pairs for NSDictionaries or printf-style format strings and matching arguments.

Multi-Line C++ Function Argument Lists

If you choose to break up an especially long argument list for a function call, do not
break the list unevenly or indent arguments more than one tab. Respect normal
indentation and brace rules for the argument list delimiters. If you have nested calls that
you also wish to break up, indent them like any other scope.

// Do not do this
int 1 = MultiLineFuncExample (paraml, param2, param3,
param4, param5);

// This is OK

int i = MultiLineFuncExample (
paraml,
param2,

)s

// This is OK

int i = MultiLineFuncExample (
paraml,
param2,
NestedFunc (paraml, param2),
param4

);

// This is OK
MultiLineFuncExample (
paraml,
param2,
NestedFunc (
paraml,
param2
).

param4

Multi-Line Obj-C Method Declarations

After the method type, place each keyword and parameter pair on its own line, indenting
a single level from the declaration. Place the semicolon immediately after the final pair

// This is OK

-(void)
someMethod: (int)paraml
nextParam: (int)param2
finalParam: (int)param3;

If you have chosen to omit keywords, place each parameter on its own line. Place the
semicolon immediately after the final parameter

// This is OK

-(void) noTokens
:(int)paraml
:(Int)param2
:(int)param3;

If you have chosen to omit keywords and align parameter lists, leave the first parameter
on the same line as the method name and each subsequent parameter on its own line.
Place the semicolon immediately after the final parameter. You may add a line of
whitespace above or below the declaration to improve readability.

// This is 0K

-(void) noTokensA (id)paraml :(int)param2;
-(void) noTokensB :(iInt)paraml

(int)param2

(int)param3;
-(void) noTokensC :(string)paraml;

Multi-Line C++ Function Declarations

Break the argument list over multiple lines, but use the indentation level of the aligned
argument lists for the opening and closing parentheses, and indent the argument
declarations one level further.

void AlignedA (u32 param);
string AlignedB (u32 paraml,
u32 param2,
u32 param3
u32 AlignedC (’string param);
Braces

Place the opening brace of any scoped statement on the same line of the statement.
Indent the contents of the scope by a single level. Align the closing brace with the
statement.

// This is 0K

if (flag) {
printf (“hello\n”);

// This is 0K
class Foo {

10

u32 mBar;

¥

// This is OK
void Func O {

printf (“func\n”);
3

Do not put statements of any kind on the same line as a closing brace.

// Do not do this
if (flag) {

} else {

T

// This is 0K
if (flag) {
b

else {

}

Braces for if/else
Always use braces for if/else statements:

// Do not do this
if (foo) {
if (bar)
printf (“foo && bar\n”);
3

else
C “¥1(foo || bar)\n”);

// This is 0K
if (foo) {
if (bar) {
printf (“foo && bar\n”);
3

else {
(“1(foo || bar)\n”);

You may omit the braces from an “if” statements only if all three of the following
conditions are true:

1. Thereisno ‘else’ clause.

2. The body of the “if’ is a single ‘break,” ‘continue’ or ‘return statement.

3. The body of the “if” is on the same line as the “if’ statement.

// Do not do this
if (foo)
return;

// Do not do this
if (foo) return;
else printf (“bar\n”);

// This is 0K
if (foo) return;

Whitespace for Operators

Ensure there is a single space around any binary operators, including logical, bitwise and
assignment operators.

// Do not do this
foo=bar+baz;

// This is 0K
foo = bar + baz;

Omit the space immediately to the right of any unary operator (before the operand):

// Do not do this

foo = ~ bar;
foo = - bar;
foo = I flag;

// This is OK

foo = ~bar;
foo = -bar;
foo = Iflag;

Casting is formatted as a unary operator:

int i = C int)(foo /7 12.0F);
int i = (Int)bar;

Pointer and Reference Declaration
When declaring a pointer or reference variable, align the designator with the type name.

// Do not do this
Foo *foo;
Foo &foo;

// This is 0K
Foo* foo;
Fooé& foo;

The spacing rules for unary pointer operators are the same as all unary operators:

// This is 0K
foo = *bar;
foo &bar;

// Do not do this
foo * bar;
foo & bar;

Obj-C File Layout
The overall order for the contents of your header files should be:

Copyright notice
Imports
Global constants
Global variable externs
Forward declarations
Obj-C Class declarations

Members section

Methods section

Property directives (alphabetical)

12

Methods (alphabetical)

The overall order for the contents of your source files should be:

Copyright notice
Imports
File global constants
Globals
File globals
Obj-C class definitions
Nameless category declaration for private methods
Class definition
Synthesize directives (alphabetical)
Methods (alphabetical)
Protocol implementations (alphabetical)
Implemented protocol methods (alphabetical)

The sections marked as “alphabetical’ should be alphabetized within the file. As new
methods are added or methods are deleted, reorder the methods to keep them
alphabetized.

13

Naming Conventions

Function Parameters and Local Variables
Always use camelCase:

// This is OK
int localVvar;
void foo (int bar, int baz);

Variables of type lua_State* are an exception:

lua_State* L;

Member Variables
Always use TitleCase prefixed with a lowercase ‘m’:

// This is OK

int mMemberVar;

Local use of C++ Class Members

Access local class members using the ‘this’ pointer explicitely:

// local use of class member in method implementation
this->mSomeMember = this->SomeFunc ();

Local use of C++ Static Class Methods

When using a static method in a non-static member function of that same class, prefix the
static method name anyway:

// local use of static member function
void SomeClass::SomeFunc () {

int i = SomeClass::SomeStaticFunc ();

this->mSomeMember = this->SomeMemberFunc (i);

}

Globals
Always use TitleCase prefixed with a lowercase

g

// This is 0K
int gGlobalVar;

Static Locals
Always use camelCase:

// This is OK
static int localStaticVar;

Static Globals
Always use TitleCase prefixed with a lowercase ‘s’:

14

// This is OK
int sStaticGlobal;

C++ Static Members
Always use TitleCase prefixed with a lowercase ‘s’:

// This is 0K
int sStaticMember;

C++ Templates

Always use ALL_CAPS for C++ template parameters. Place the ‘template’ keyword and
parameter list on its own line.

// This is OK
template < typename PARAM_TYPE, typename RETURN_TYPE >
RETURN_TYPE Foo (const PARAM_TYPE& type);

Constants
Use or ALL_CAPS separated with underscores:

// This is OK
#define CONST_NAME 5
static const u32 CONST_NAME = 5;

Obj-C Enumerations

Choose a unique type name for the enumeration. Use TitleCase. Name the enumeration
using the unique name. Prefix each member of the enumeration with the unique name.

// This is 0K

enum EnumName {
EnumNameAlpha,
EnumNameBeta,
EnumNameGamma,

¥

If the enum is closely associated with a class, use the class name along with a modifier as
the unique name.

// This is OK
enum TableStyle {
TableStyleUgly,
TableStyleUglier,
TableStyleUgliest,
}:
You may optionally apply the convention for constants to the enum members:
// This is OK
enum EnumName {
ENUM_NAME_ALPHA,
ENUM_NAME_BETA,
ENUM_NAME_GAMMA ,
}:
Enumerations should always leave a trailing comma after the final member.

// Do not do this

15

enum EnumName {
EnumNameAlpha,
EnumNameBeta,
EnumNameGamma

¥

// This is 0K

enum EnumName {
EnumNameAlpha,
EnumNameBeta,
EnumNameGamma,

¥

Global C++ Enumerations
There are several acceptable styles for global enums under C++.

You may follow the enum naming convention described for Objective-C.

You may package the enum in a containing class, struct or namespace. If you do so, omit
the enum name from its members and instead use one of the naming conventions for
constants:

// This is OK
namespace EnumName {
enum {
ALPHA,
BETA,
GAMMA,
}:
}:

If the container exists only to hold the enum, use word ‘Type’ as the typename for the
enum:

// This is OK
namespace EnumName {
enum Type {
kAlpha,
kBeta,
kGamma,
}:
}:

If the container is a class or namespace that holds multiple enums, use descriptive names
for the enum type or omit enum types altogether. In any event, use the naming
convention for constants for the enum’s members.

// This is OK
class Foo {

enum Level {
ONE,
TWO,
THREE,

}:
enum Difficulty {

EASY,
MEDIUM,

16

HARD,
¥
¥

// This is 0K
class Foo {

enum {
kMaskOne
kMaskTwo
kMaskThree

oo
P
A
=

¥

enum {
kReady,
kSet,
kGo,

¥
¥

Enumerations should always leave a trailing comma after the final enum member.

// Do not do this

enum EnumName {
EnumNameAlpha,
EnumNameBeta,
EnumNameGamma

¥

// This is OK

enum EnumName {
EnumNameAlpha,
EnumNameBeta,
EnumNameGamma,

¥

Type Names

Types (including classes, structs, interfaces, protocols, enumerations and typedefs)
should always be named using TitleCase.

Class Name and Namespace Postfixes
The following class name postfixes usually have the following special meanings:

1. Base: An abstract base class or any class specifically intended to be inherited.

2. Mgr: A singleton object or a class containing only class methods meant to
manage static state. For example ‘GfxDeviceMgr.” May also be a namespace
containing global variables.

3. Shim: A template class meant to bridge a class to a base class while provide a
partial implementation for convenience. A shim will always accept a supertype as
a template parameter.

4. Util: A class containing only class methods and no state or a namespace
containing only functions. For example StringUtil.’

Library Initials

Library initials are two to four capitalized letters meant to identify a library or
framework. These letters do not have to be acronyms or contractions of a word: they are
simply the “initials’ of the framework.

17

Library initials should be prefixed before any member of the global namespace provided
that said member does not require a leading single letter prefix. For example:

MOAIClassName
MOAIEnumName
MOAIFuncName

In the case of global namespace members requiring a leading single letter prefix:

kMOAIConstValue
gMOAIGIobal
sMOAIStaticGlobal

The initials may be omitted from static globals:

sMOAlIStaticGlobal // OK
sStaticGlobal // also OK

In the case of namespace members requiring ALL_CAPS, prefix the initials followed by
an underscore:

MOAI_CONST_VALUE

Library initials need only be applied to multi-project source code. Project-specific source
code should not use library initials:

// It in multi-project source code
MOAIName

kMOAIConstName

MOAI_CONST_NAME

// If in project-specific code
Name

kConstName

CONST_NAME

Acronyms
Acronyms should always follow the case style of the name that includes them:

UfoClassName // TitleCase
gUfoGlobalVvar // camelCase
ufoLocalVvar // camelCase

UFO_CONST_NAME // ALL_CAPS

Acronyms should not contradict the case style of the name that includes them:

UFOClassName // wrong
gufoGlobalVar // no

UfoLocalVvar // do not
Ufo_CONST_NAME // bad

Obj-C Methods

Method names, keywords and parameters are always camelCase. You may use the
‘Apple style’ naming convention for methods with keywords.

18

// This is OK
-(void) someFuncWithParam:(int)paraml paramTwo:(int)param2;

Alternatively, you may omit keywords and use the ‘C style’ naming convetion.

// This is OK
-(void) someFunc :(int)paraml :(int)param2;

Obj-C Initializers
Always use ‘Apple style’ method naming for class initializers.

// Do not do this
-(void) init - int)paraml :(int)param2 :(int)param3;

// This is 0K
-(void) initWithParam:(int)paraml paramTwo:(int)param2;

Obj-C Protocols
As types, protocol names should be written in TitleCase and postfixed with the word

‘Protocol.” Protocol methods should be prefixed by the protocol name in camelCase.

// This is OK
@protocol FooProtocol
-(void) fooProtocolMethodOne;
-(void) fooProtocolMethodTwo;
@end

If a protocol is used as a delegate for a particular class, prefix the protocol with the class

name in TitleCase, and use the word ‘Delegate’ instead of ‘Protocol.’

// This is a delegate protocol for a class named “GSTable’
@protocol GSTableDelegate
-(void) gsTableDelegateMethodOne;
-(void) gsTableDelegateMethodTwo;
@end
C++ Methods and Functions

Always use TitleCase for the method name and camelCase for the parameter names.

// Do not do this
void func (int ParamOne, int ParamTwo, inte ParamThree);

// This is OK

void Func (int paramOne, int paramTwo, int paramThree);

C++ Accessor Methods

Use verb prefix. The following verb prefixes are reserved for C++ accessors:

1. Get: Returns a property.
2. 1s: Boolean a Boolean property.
3. Set: Sets a property.

// This is 0K

19

string
bool
void
void

GetName O:;

IsVisible O:;
SetName (string name);
SetVisible (bool visible);

Method Name Verbs

Affirm: Lazy initialization. If an object or member doesn’t exist, it will be
created and initialized. If it already exists, nothing is done. In the context of a
collection, adds an object to the collection only if object is not already in the
collection. Affirm may or may not have a return value.

Alloc: Creates a new instance of an object. The object will be retained (if
applicable).

Clear: Releases resources associated with an object. If object is a container,
removes all elements. Object should remain initialized and suitable for use after a
call to a Clear method.

Contains: Reserved for collections. Boolean check to see if the set contains an
object.

Init: Initialize an object. Obj-C: classes are not expected to allow re-
initialization; C++: classes should handle re-initialization.

Insert: Add an object to a collection.

New: Returns a new and retained instance of an object.

Release: Reserved for reference counted objects. Decrements an object’s
reference count.

Remove: Remove an object from a collection.

. Retain: Reserved for reference counted objects. Increments an object’s reference

count.

20

