Commute Time:
CT(i,j)=H(i,j)+ H({,i)

m The Commute time CT(i,j) on a graph is the expected time
it takes a random walk to visit node j starting from node i
and return.

m The hitting time H(i,j) of a random walk on a graph is the
expected time it takes to visit node j starting from node /.



The commute time distance can be expressed in terms of the
unnormalized and normalized Laplacian.

m In terms of the eigen-system of the unnormalized Laplacian L:
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m In terms of the eigen-system of the normalized Laplacian Lgym:
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Where vol(V) = )", Dij and | V| denotes the cardinality of the set
of nodes.



We can rewrite (1) and (2) in the following form:
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The previous form express the CTD as Euclidean distances.




Commute time embedding;:

Let © denote the new vector space that preserves the commute
time distance of the nodes of the graph. The new coordinate
matrix can be written:

m In terms of the unnormalized Laplacian L:
© = /vol(V)A~Y/2vT

m In terms of the normalized Laplacian Lgym:
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Let m denote the new dimension in the embedded space and n the
dimension in the original space (m < n).

= © and Oy, are m x n matrices, A and A5y, are m x m
matrices and V and V,,, are n x m matrices.

Notice that the columns of © and O, are vectors of Cartesian
co-ordinates.



Optimal embedding problem in terms of the unnormalized
Laplacian (as defined in the paper)
The objective function:
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Which relates to the quadratic form of L:
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The minimization problem can be reduced to finding a solution to:
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arg min  y'Ly (42)
subjectto  y'Dy=1 (4b)

yD1 =0 (4c)




The vector y that minimizes the objective function (4a) is given by
the smallest eigenvalue solution of the generalized eigenvalue
problem:

Ly = A\Dy
Recall:
A is is an eigenvalue of L,, with eigenvector y iff A is an
eigenvalue of Ls,,, with eigenvector w = D/2y
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Optimal embedding problem in terms of the unnormalized
Laplacian

The unnormalized version of the optimal embedding problem is
given by minimizing the following objective function:
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arg min  y'Ly (62)
subjectto  y'y=1 (6b)
y1=0 (6¢)

Notice that this formulation is not the Laplacian eigenmap. The
solution to (6a) is associated to the standard eigenvalue problem:

Ly =)y



Optimal embedding problem in terms of the normalized
Laplacian
Let u = D/2y. We can rewrite the objective function (3):
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Which relates to the quadratic form of Lgyy,:

1 < uj uj >2 /
= — =) Wy = uLymu
2 ZU: V' Dij vV Dj;

arg JE}RD" u'Leymu (7a)
subject to vu=1 (7b)
u'(DY21) =0 (7¢)



The vector u that minimizes the objective function in (7a) is given
by the smallest eigenvalue solution of the standard eigenvalue

problem:
Lsymu = Au
Notice that
arg min y'ly = arg min u'Lgymu
y, y'Dy=1; Dyll u, vu=1; ulD/21



Commute time embedding for the Normalized Laplacian L,
The new Cartesian coordinate of the i:th data points:

X; = VOl(V)/AaDIi . [V2i7 V3jy ey Vmi]

and:
Vvol(v)
VAaDji

Voi refers to the i:th component of the a eigenvector of Lgyy,.
The first eigenvector of Lgym:
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Statistical properties of the data point x;,
From the constraints (7b), (7c):
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It follows that:
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Covariance Matrix

Noor = zi:x,-ax,-a/ <\/0|D(I;/)) —

ViaVia/ :i’}/ )
YWD

>l

(10)
i=1

E VaiVa!i = Yao' (orthonormal)
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m Points are weighted by their degree.



Some questions to think about

m What is the meaning of the eigenvalues \,?

m What does it mean that the covariance matrix is diagonalized?

m How can we relate to Principal Component Analysis?




m The inverse of the eigenvalues correspond to the variance of
the data points when we project to one of the axis.

m The variance is the inverse of the eigenvalues only if we are
using Cartesian coordinates.

m From (10) it is clear that A is diagonalized given the
orthogonality of the eigenvectors.

m The new Cartesian coordinates are uncorrelated and linearly
independent (but not independent).

m The eigenvector space coincides with the Principal
Components in the projected space.



Commute time embedding for the unnormalized Laplacian L
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Meaning that for the o dimension
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Statistical properties of the data point x;,
From the constraints (6b), (6¢):
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it follows that:
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Covariance Matrix

ViaViar Vol(V) Vol(V)
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m Each data point contributes equally, regardless of the degree
distribution.

m The spread of the points non trivially depend on the number
of nodes and volume.

m Lgyy is much simpler.



