
Commute Time:

CT (i , j) = H(i , j) + H(j , i)

The Commute time CT (i , j) on a graph is the expected time
it takes a random walk to visit node j starting from node i
and return.

The hitting time H(i , j) of a random walk on a graph is the
expected time it takes to visit node j starting from node i .



The commute time distance can be expressed in terms of the
unnormalized and normalized Laplacian.

In terms of the eigen-system of the unnormalized Laplacian L:

CT (i , j) = vol(V )

|V |∑
α=2

1

λα

(
vαj − vαi

)2
(1)

In terms of the eigen-system of the normalized Laplacian Lsym:

CT (i , j) = vol(V )

|V |∑
α=2

1

λsymα

( v symαj√
Djj

−
v symαi√
Dii

)2
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Where vol(V ) =
∑

i Dii and |V | denotes the cardinality of the set
of nodes.



We can rewrite (1) and (2) in the following form:

CT (i , j) =
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α=2

(√vol(V )
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√
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CT (i , j) =
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λsymα Djj
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√
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λsymα Dii
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)2
The previous form express the CTD as Euclidean distances.



Commute time embedding:
Let Θ denote the new vector space that preserves the commute
time distance of the nodes of the graph. The new coordinate
matrix can be written:

In terms of the unnormalized Laplacian L:

Θ =
√
vol(V )Λ−1/2VT

In terms of the normalized Laplacian Lsym:

Θsym =
√
vol(V )Λ

−1/2
Lsym

VT
LsymD−1/2

Let m denote the new dimension in the embedded space and n the
dimension in the original space (m < n).
⇒ Θ and Θsym are m × n matrices, Λ and Λsym are m ×m
matrices and V and Vsym are n ×m matrices.
Notice that the columns of Θ and Θsym are vectors of Cartesian
co-ordinates.



Optimal embedding problem in terms of the unnormalized
Laplacian (as defined in the paper)
The objective function: ∑

ij

(yi − yj)
2Wij (3)

Which relates to the quadratic form of L:

1

2

∑
ij

(yi − yj)
2Wij = y′(D −W )y = y′Ly

The minimization problem can be reduced to finding a solution to:

arg min
y∈Rn

y′Ly (4a)

subject to y′Dy = 1 (4b)

y′D1 = 0 (4c)



The vector y that minimizes the objective function (4a) is given by
the smallest eigenvalue solution of the generalized eigenvalue
problem:

Ly = λDy

Recall:
λ is is an eigenvalue of Lrw with eigenvector y iff λ is an
eigenvalue of Lsym with eigenvector w = D1/2y .

Lsym w = λw

(D1/2 − D−1/2W )y = λD1/2y

(I − D−1W )y = λy

Lrw y = λy

(D−1L)y = λy

Ly = λDy

(5)



Optimal embedding problem in terms of the unnormalized
Laplacian
The unnormalized version of the optimal embedding problem is
given by minimizing the following objective function:

arg min
y∈Rn

y′Ly (6a)

subject to y′y = 1 (6b)

y′1 = 0 (6c)

Notice that this formulation is not the Laplacian eigenmap. The
solution to (6a) is associated to the standard eigenvalue problem:

Ly = λy



Optimal embedding problem in terms of the normalized
Laplacian
Let u = D1/2y. We can rewrite the objective function (3):∑

ij

(yi − yj)
2Wij =

∑
ij

( ui√
Dii
−

uj√
Djj

)2
Wij

Which relates to the quadratic form of Lsym:

1

2

∑
ij

( ui√
Dii
−

uj√
Djj

)2
Wij = u′Lsymu

arg min
u∈Rn

u′Lsymu (7a)

subject to u′u = 1 (7b)

u′(D1/2
1) = 0 (7c)



The vector u that minimizes the objective function in (7a) is given
by the smallest eigenvalue solution of the standard eigenvalue
problem:

Lsymu = λu

Notice that

arg min
y, y′Dy=1; Dy⊥1

y′Ly = arg min
u, u′u=1; u⊥D1/21

u′Lsymu



Commute time embedding for the Normalized Laplacian Lsym
The new Cartesian coordinate of the i :th data points:

xi =
√

vol(V )/λαDii · [v2i , v3i , ..., vmi ]

and:

xiα = vαi

√
vol(V )√
λαDii

, α > 1

vαi refers to the i :th component of the α eigenvector of Lsym.
The first eigenvector of Lsym:

v1i =

√
Dii

vol(V )
λ1 = 0



Statistical properties of the data point xiα
From the constraints (7b), (7c):{∑

i vαi
√
Dii = 0, for α > 1∑

i v
2
αi = 1, for all α

It follows that:

∑
i

vαi
√

Dii = 0⇒
∑
i

xiα

( Dii

vol(V )

)
= 0 = E [xiα] = µα (8)

∑
i

v2αi = 1⇒ E [X 2
iα]− E [Xiα]2 =

n∑
i=1

x2iα

( Dii

vol(V )

)
=

1

λα
(9)



Covariance Matrix

Λαα′ =
∑
i

xiαxiα′

( Dii

vol(V )

)
=

n∑
i=1

viαviα′
√
λαλα′

=
1

λα
γαα′ (10)

∑
i

vαivα′i = γαα′ (orthonormal)

{
γαα′ = 0, α 6= α′

γαα′ = 1, α = α′

Points are weighted by their degree.



Some questions to think about

What is the meaning of the eigenvalues λα?

What does it mean that the covariance matrix is diagonalized?

How can we relate to Principal Component Analysis?



The inverse of the eigenvalues correspond to the variance of
the data points when we project to one of the axis.

The variance is the inverse of the eigenvalues only if we are
using Cartesian coordinates.

From (10) it is clear that Λ is diagonalized given the
orthogonality of the eigenvectors.

The new Cartesian coordinates are uncorrelated and linearly
independent (but not independent).

The eigenvector space coincides with the Principal
Components in the projected space.



Commute time embedding for the unnormalized Laplacian L

xi =
√

vol(V )/λα [v2i , v3i , ..., vmi ]

Meaning that for the α dimension

xiα = viα

√
vol(V )√
λα

, α > 1

The first eigenvector of L:

v1i =
1√
|V |

, λ1 = 0



Statistical properties of the data point xiα
From the constraints (6b), (6c):{∑

i viα = 0, for α > 1∑
i v

2
iα = 1, for all α

it follows that:

∑
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∑
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)
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Covariance Matrix

Λαα′ =
∑
i

xiαxiα′

(
1

|V |

)
=
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viαviα′
√
λαλα′

Vol(V)
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Each data point contributes equally, regardless of the degree
distribution.

The spread of the points non trivially depend on the number
of nodes and volume.

Lsym is much simpler.


