Socket Programming Exercise:
SimpleFTP

This socket programming project is inspired by those of you who used “email” to transfer a file
from a VM guest machine to the VM host.

1. In this exercise, you have to write a client and server program, which uses TCP sockets
underneath, to transfer a file from the server to the client.

2. The program can be written in phases, with increasing levels of functionality in each step.

3. The exercise is to be done individually.

Phase-1: Plain File Transfer [6 marks]
1. Server called SimpleFTPServerPhasel.cpp

a) 2 command line arguments: portNum, fileToTransfer

i. Print usage on stderr and exit with exit-code 1, if wrong number of command line
arguments are given

ii. Print appropriate error message on stderr and exit with exit-code 2, if bind on given
port fails

iii. Print appropriate error message on stderr and exit with exit-code 3, if given file not
present or not readable

b) Server should listen on given port for incoming connection from client
i. STDOUT on successful bind “BindDone: portNum\n”
ii. STDOUT on successful listen “ListenDone: portNum\n”

iii. STDOUT on incoming connection “Client: ipaddr:port\n” where ipaddr and port are
the client-side info

c) Transfer the file over the TCP connection

i. STDOUT on successful transfer “TransferDone: xyz bytes\n” where xyz is the size
of the given file

d) Server can exit after one successful file transfer
2. Client called SimpleFTPClientPhasel.cpp
a) 2 command line arguments: serverIPAddr:port, fileToReceive

i. Print usage on stderr and exit with exit-code 1, if wrong number of command line
arguments are given



b)

d)

ii. Print appropriate error message on stderr and exit with exit-code 2, if connection to
server fails

iii. Print appropriate error message on stderr and exit with exit-code 3, if unable to
create/write the given/received file

Form a TCP connection to the given server[Paddr:port
i. STDOUT on successful connection “ConnectDone: server[PAddr:port\n”

Receive the file from the socket and write to local file name as given in command line
argument

i. STDOUT on successful file reception “FileWritten: xyz bytes\n”

Client can exit after one successful file reception

3. Marking scheme:

a)
b)

c)

Correct exit codes at server: 1
Correct exit codes at client: 1

Correct file transfer: 4

Phase-2: File Name from Client [3+1=4 marks]

1. Server called SimpleFTPServerPhase2.cpp, similar to phasel, except for the following

a)
b)

C)

d)
e)

Only one command-line argument, the portNum

Until “incoming connection from client”, behaviour is same as phase-1, including
various STDOUT

After forming incoming connection from client, read a null-terminated string of the
format “get fileName” where fileName is the file requested by the client

i. STDOUT after this “FileRequested: fileName\n”

ii. If incorrect format of string from client, STDOUT “UnknownCmd\n”, also print
appropriate error message on STDERR, and close the client connection

iii. If file not present or not readable, STDOUT “FileTransferFail\n”, also print
appropriate error message on STDERR, and close the client connection

After this, file transfer behaviour similar to phase-1, STDOUT after transfer similar too

DO NOT exit after file transfer, instead wait for the next connection from another client
(i.e. server never exits, is in a loop)

2. Client called SimpleFTPClientPhase2.cpp, similar to phasel, including command line

arguments

a)

On successful server connection, send null terminated string “get fileName” for the file
get request over the TCP connection



b) Remaining behaviour same as phasel client
3. Marking scheme:
a) Correct behaviour for fileName from client: 3

b) Server supports many clients, one after another: 1

Phase-3: Simultaneous Multiple Clients [3+2=5 marks]

1. Server called SimpleFTPServerPhase3.cpp, similar to phase2, except that it should support
at least 2 simultaneous clients

a) Note that the different simultaneous clients could have asked for different files

b) You do not have to use multiple threads (or multiple processes) for this; in fact I
recommend strongly that you instead use the select system call appropriately

2. Client called SimpleFTPClientPhase3.cpp, similar to phase2, except the following
a) It should take a third command-line argument receivelnterval
i. The client should receive a maximum of 1000 bytes every receivelnternal (in ms)

b) One of the purposes of this rate limiting feature of the client is to be able to easily test
multiple simultaneous clients at the server

c) Note that no rate limiting is required at the server side; TCP takes care of the flow
control!

3. Marking:
a) Correct server implementation: 3

b) Correct client implementation: 2

Phase-4: File Transfer in Both Directions [2+2+1=5
marks]
1. Server called SimpleFTPServerPhase4.cpp, similar to phase2/phase3, except the following

a) On successful incoming connection, read from the client either “get fileName” or “put
fileName”

b) If its a put command, the server should consider everything after the “null” of the above
string as contents of the file to be received, and write to that file locally

2. Client called SimpleFTPClientPhase4.cpp, similar to phase2/phase3, except to support the
put command as well

a) Command line arguments now: serverIPAddr:port, op, fileName, receivelnterval
b) Here op is either get or put

3. Marking scheme:



a) Correct server: 2
b) Correct client: 2

c) Server still supports simultaneous clients: 1



	Phase-1: Plain File Transfer [6 marks]
	Phase-2: File Name from Client [3+1=4 marks]
	Phase-3: Simultaneous Multiple Clients [3+2=5 marks]
	Phase-4: File Transfer in Both Directions [2+2+1=5 marks]

