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Quote 

I hear and I forget 

I see and I remember 

I do and I understand 

   -- Chinese Proverb 
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What is a socket? 
 Socket: An interface between an application process and 

transport layer 

 The application process can send/receive messages to/from another 
application process (local or remote) via a socket  

 In Unix jargon, a socket is a file descriptor – an integer 

associated with an open file 

 Types of Sockets: Internet Sockets, unix sockets, X.25 

sockets etc  

 Internet sockets characterized by IP Address (4 bytes), port number 

(2 bytes) 



Socket Description 



Types of Internet Sockets 

 Stream Sockets (SOCK_STREAM) 

 Connection oriented  

 Rely on TCP to provide reliable two-way connected 

communication 

 Datagram Sockets (SOCK_DGRAM) 

 Rely on UDP 

 Connection is unreliable  



Byte Ordering 
 Two types of “Byte ordering” 

 Big-Endian (Network Byte Order): High-order byte of 

the number is stored in memory at the lowest address 

 Little-Endian: Low-order byte of the number is stored in 

memory at the lowest address 

 Some hosts use this ordering 

 Network stack (TCP/IP) expects Network Byte Order  



Byte Ordering 
 Conversions: 

 htons() - Host to Network Short 

 htonl() - Host to Network Long 

 ntohs() - Network to Host Short  

 ntohl() - Network to Host Long 
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socket() -- Get the file descriptor 

 int socket(int domain, int type, int protocol); 

 domain should be set to PF_INET 

 type can be SOCK_STREAM or SOCK_DGRAM 

 set protocol to 0 to have socket choose the correct protocol based on 

type 

 socket() returns a socket descriptor for use in later system calls or -1 

on error 

int sockfd; 
sockfd = socket (PF_INET, SOCK_STREAM, 0);  



bind() - what port am I on? 
 Used to associate a socket with a port on the local machine 

 The port number is used by the kernel to match an incoming 

packet to a process 

 int bind(int sockfd, struct sockaddr *my_addr, int addrlen) 

 sockfd is the socket descriptor returned by socket() 

 my_addr is pointer to struct sockaddr that contains information 

about your IP address and port 

 addrlen is set to sizeof(struct sockaddr) 

 returns -1 on error 



bind() - failure 

 All ports below 1024 are reserved 

 You can use ports above 1024 upto 65535 provided there are 

not already in use 

 Re-running a server may result in bind failure 

 Why? Socket still around in kernel using the port 

 Solution: Wait a minute or two or use function setsockopt() to clear 

the socket 

 



Socket Structures 

 struct sockaddr: Holds socket address information 

for many types of sockets 

 

 

struct sockaddr { 
          unsigned short  sa_family;     //address family AF_xxx 
          unsigned short  sa_data[14]; //14 bytes of protocol addr 
} 
 



Socket Structures 
 

 struct sockaddr_in: A parallel structure that makes 

it easy to reference elements of the socket address 

 

 

 

 

 sin_port and sin_addr must be in network byte 

order 

struct sockaddr_in { 
          short int     sin_family;    // set to AF_INET 
          unsigned short int   sin_port;        // Port number 
          struct in_addr    sin_addr;       // Internet address 
          unsigned char    sin_zero[8];  //set to all zeros     
} 
 



Populating the structure 
 

 

 

 int inet_aton(const char *cp, struct in_addr *inp); 

 

 

 

 

 inet_aton() gives non-zero on success; zero on failure 

 

   

 

 
struct sockaddr_in  my_addr; 

my_addr.sin_family = AF_INET; 

my_addr.sin_port = htons(MYPORT); 
inet_aton(“10.0.0.5”,&(my_addr.sin_addr)); 

memset(&(my_addr.sin_zero),'\0',8); 

struct in_addr { 

    unsigned long s_addr; // that's 32-bit long, or 4 bytes 

};  



 To convert binary IP to string: inet_noa() 

  printf(“%s”, inet_ntoa(my_addr.sin_addr)); 

• my_addr.sin_port = 0; //choose an unused port at 

random 

• my_addr.sin_addr.s_addr = INADDR_ANY; //use 

my IP adr 

 

 

 

   

 

 



Example 
int sockfd; 

struct sockaddr_in my_addr; 

sockfd = socket(PF_INET, SOCK_STREAM, 0); 

my_addr.sin_family = AF_INET;         // host byte order 

my_addr.sin_port = htons(MYPORT);     // short, network byte order 

my_addr.sin_addr.s_addr = inet_addr("10.0.0.1"); 

memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct 

bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)); 

/******  Code needs error checking. Don't forget to do that ****** / 



sendto() and recvfrom() - DGRAM style 

 int sendto(int sockfd, const void *msg, int len, int flags, const 

struct sockaddr *to, int tolen); 

 sockfd: socket descriptor you want to send data to  

 msg is pointer to the data you want to send  

 to is a pointer to a struct sockaddr which contains the destination 
IP and port 

 tolen is sizeof(struct sockaddr) 

 Set flags to zero 

 Function returns the number of bytes actually sent or -1 on error  

 



sendto() and recvfrom() - DGRAM style 
 int recvfrom(int sockfd, void *buf, int len, int flags, struct 

sockaddr *from, int *fromlen); 

 sockfd: socket descriptor to read from 

 buf: buffer to read the information from 

 len: maximum length of the buffer 

 flags set to zero 

 from is a pointer to a local struct sockaddr that will be filled with 
IP address and port of the originating machine 

 fromlen will contain length of address stored in from 

 Returns the number of bytes received or -1 on error 



close() - Bye Bye! 

 int close(int sockfd); 

 Closes connection corresponding to the socket descriptor 
and frees the socket descriptor  

 Will prevent any more sends and recieves 
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Break 
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connect() - Hello! 

 Connects to a remote host 

 int connect(int sockfd, struct sockaddr *serv_addr, int addrlen) 

 sockfd is the socket descriptor returned by socket() 

 serv_addr is pointer to struct sockaddr that contains 

information on destination IP address and port 

 addrlen is set to sizeof(struct sockaddr) 

 returns -1 on error 

 No need to bind(), kernel will choose a port 



Example 
#define DEST_IP   "10.2.44.57" 

#define DEST_PORT 5000 

main(){ 

   int sockfd; 

   struct sockaddr_in dest_addr;   // will hold the destination addr 

   sockfd = socket(PF_INET, SOCK_STREAM, 0);  

    dest_addr.sin_family = AF_INET;          // host byte order 

    dest_addr.sin_port = htons(DEST_PORT);   // network byte order 

    dest_addr.sin_addr.s_addr = inet_addr(DEST_IP); 

    memset(&(dest_addr.sin_zero), '\0', 8);  // zero the rest of the struct     

    connect(sockfd, (struct sockaddr *)&dest_addr, sizeof(struct sockaddr)); 

  /******* Don't forget error checking ********/ 



listen() - Call me please! 

 Waits for incoming connections 

 int listen(int sockfd, int backlog); 

 sockfd is the socket file descriptor returned by socket()  

 backlog is the number of connections allowed on the 

incoming queue 

 listen() returns -1 on error 

 Need to call bind() before you can listen()  



accept() - Thank you for calling ! 

 accept() gets the pending connection on the port you are 

listen()ing on 

 int accept(int sockfd, void *addr, int *addrlen); 

 sockfd is the listening socket descriptor 

 information about incoming connection is stored in addr which 

is a pointer to a local struct sockaddr_in 

 addrlen is set to sizeof(struct sockaddr_in) 

 accept returns a new socket file descriptor to use for this 

accepted connection and -1 on error 



Example 
#include <string.h> 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#define MYPORT 3490    // the port users will be connecting to 

#define BACKLOG 10     // pending connections queue will hold 

main(){ 

    int sockfd, new_fd;  // listen on sock_fd, new connection on new_fd 

    struct sockaddr_in my_addr;    // my address information 

    struct sockaddr_in their_addr; // connector's address information 

    int sin_size; 

   sockfd = socket(PF_INET, SOCK_STREAM, 0);  



    my_addr.sin_family = AF_INET;         // host byte order 

    my_addr.sin_port = htons(MYPORT);     // short, network byte order 

    my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP 

    memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct 

    // don't forget your error checking for these calls: 

    bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)); 

    listen(sockfd, BACKLOG); 

    sin_size = sizeof(struct sockaddr_in); 

    new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size); 



send() and recv() - Let's talk! 
 The two functions are for communicating over stream sockets 

or connected datagram sockets. 

 int send(int sockfd, const void *msg, int len, int flags); 

 sockfd is the socket descriptor you want to send data to (got from 
accept()) 

 msg is a pointer to the data you want to send 

 len is the length of that data in bytes 

 set flags to 0 for now 

 sent() returns the number of bytes actually sent (may be less than the 

number you told it to send) or -1 on error 



Example 

char *msg = “hello!”; 

int len, bytes_sent; 

……… 

len = strlen(msg); 

bytes_sent = send(sockfd, msg, len 0); 

 

 

 



send() and recv() - Let's talk! 
  int recv(int sockfd, void *buf, int len, int flags); 

 sockfd is the socket descriptor to read from 

 buf is the buffer to read the information into 

 len is the maximum length of the buffer 

 set flags to 0 for now 

 recv() returns the number of bytes actually read into the buffer or 
-1 on error 

 If recv() returns 0, the remote side has closed connection on you  
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Miscellaneous Routines 
 int getpeername(int sockfd, struct sockaddr *addr, int 

*addrlen); 

 Will tell who is at the other end of a connected stream socket 
and store that info in addr 

 int gethostname(char *hostname, size_t size); 

 Will get the name of the computer your program is running on 

and store that info in hostname 



Miscellaneous Routines 
 Provides DNS service: struct hostent *gethostbyname(const char 

*name);   

 

 

 

 

 Example Usage: 

struct hostent { 

 char  *h_name;   //official name of host 

 char  **h_aliases;  //alternate names for the host 

 int   h_addrtype;  //usually AF_NET 

 int   h_length;   //length of the address in bytes 

 char  **h_addr_list; //array of network addresses for the host 

} 

#define h_addr h_addr_list[0] 

struct hostent *h; 

h = gethostbyname(“www.iitb.ac.in”); 

printf(“Host name : %s \n”, h->h_name); 

printf(“IP Address: %s\n”,inet_ntoa(*((struct in_addr *)h->h_addr)));  

http://www.iitk.ac.in/


Input/Output Multiplexing 

 Some routines like accept(), recv() block 

 Make sockets non-blocking 

 

 Polling (consumes CPU time) 

 Fork a separate process for each I/O channel 

 Threading 

 Select system call (HIGHLY RECOMMENDED) 

sockfd = socket(PF_INET, SOCK_STREAM, 0); 

fcntl(sockfd, F_SETFL, O_NONBLOCK); 



Select() 
 int select(int numfds, fd_set *readfds, fd_set *writefds, fd_set 

*exceptfds, struct timeval *timeout); 

 numfds: highest file descriptor + 1 

 Readfds, writefds, exceptfds: set of file descriptors to monitor for 

read, write and exception operations 

 When select() returns, the set of file descriptors is modified to 

reflect the one that is currently ready 

 Timeout: select returns after this period if it still hasn't found any 

ready file descriptors 
struct timeval { 

int tv_sec; // seconds 

int tv_usec; // microseconds 

}; 



Useful Macros 

 FD_ZERO(fd_set *set)  

 clears a file descriptor set 

 FD_SET(int fd, fd_set *set)  

 adds fd to the set 

 FD_CLR(int fd, fd_set *set)  

 removes fd from the set 

 FD_ISSET(int fd, fd_set *set) 

 tests to see if fd is in the set 



Example 

#define STDIN 0 // file descriptor for standard input 

int main(void) { 

struct timeval tv; 

fd_set readfds; 

tv.tv_sec = 2; 

tv.tv_usec = 500000; 

FD_ZERO(&readfds); 

FD_SET(STDIN, &readfds); 

// don’t care about writefds and exceptfds: 

select(STDIN+1, &readfds, NULL, NULL, &tv); 

 



Example Cont.... 

if (FD_ISSET(STDIN, &readfds)) 

printf("A key was pressed!\n"); 

else 

printf("Timed out.\n"); 

return 0; 

} 



Summary 

 Sockets help application process to communicate with each 

other using standard Unix file descriptors  

 Two types of Internet sockets: SOCK_STREAM and 

SOCK_DGRAM 

  Many routines exist to help ease the process of 

communication 
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