
Socket Programming

Kameswari Chebrolu

Reference: Beej's Guide to Network Programming

Quote

I hear and I forget

I see and I remember

I do and I understand

 -- Chinese Proverb

Multiplexing/Demultiplexing

Application

Transport

Network

Application

Transport

Network

Application

Transport

Network

Demultiplexing: Deliver segments to the right socket

Multiplexing: Assemble segments such that they get delivered to right socket

Host-1 Host-2 Host-3

Source Port Destination Port

Other fields in header

Application Data

Transport Layer Segment

What is a socket?
 Socket: An interface between an application process and

transport layer

 The application process can send/receive messages to/from another
application process (local or remote) via a socket

 In Unix jargon, a socket is a file descriptor – an integer

associated with an open file

 Types of Sockets: Internet Sockets, unix sockets, X.25

sockets etc

 Internet sockets characterized by IP Address (4 bytes), port number

(2 bytes)

Socket Description

Types of Internet Sockets

 Stream Sockets (SOCK_STREAM)

 Connection oriented

 Rely on TCP to provide reliable two-way connected

communication

 Datagram Sockets (SOCK_DGRAM)

 Rely on UDP

 Connection is unreliable

Byte Ordering
 Two types of “Byte ordering”

 Big-Endian (Network Byte Order): High-order byte of

the number is stored in memory at the lowest address

 Little-Endian: Low-order byte of the number is stored in

memory at the lowest address

 Some hosts use this ordering

 Network stack (TCP/IP) expects Network Byte Order

Byte Ordering
 Conversions:

 htons() - Host to Network Short

 htonl() - Host to Network Long

 ntohs() - Network to Host Short

 ntohl() - Network to Host Long

Connectionless Protocol

socket()

bind()

bind()

recvfrom()

sendto()

socket()

recvfrom()

sendto()

Client Server

close() close()

Connection Oriented Protocol

socket()

connect()

bind()

accept()

send()

recv()

listen()

socket()

send()

recv()

Server Client

close() close()

socket() -- Get the file descriptor

 int socket(int domain, int type, int protocol);

 domain should be set to PF_INET

 type can be SOCK_STREAM or SOCK_DGRAM

 set protocol to 0 to have socket choose the correct protocol based on

type

 socket() returns a socket descriptor for use in later system calls or -1

on error

int sockfd;
sockfd = socket (PF_INET, SOCK_STREAM, 0);

bind() - what port am I on?
 Used to associate a socket with a port on the local machine

 The port number is used by the kernel to match an incoming

packet to a process

 int bind(int sockfd, struct sockaddr *my_addr, int addrlen)

 sockfd is the socket descriptor returned by socket()

 my_addr is pointer to struct sockaddr that contains information

about your IP address and port

 addrlen is set to sizeof(struct sockaddr)

 returns -1 on error

bind() - failure

 All ports below 1024 are reserved

 You can use ports above 1024 upto 65535 provided there are

not already in use

 Re-running a server may result in bind failure

 Why? Socket still around in kernel using the port

 Solution: Wait a minute or two or use function setsockopt() to clear

the socket

Socket Structures

 struct sockaddr: Holds socket address information

for many types of sockets

struct sockaddr {
 unsigned short sa_family; //address family AF_xxx
 unsigned short sa_data[14]; //14 bytes of protocol addr
}

Socket Structures

 struct sockaddr_in: A parallel structure that makes

it easy to reference elements of the socket address

 sin_port and sin_addr must be in network byte

order

struct sockaddr_in {
 short int sin_family; // set to AF_INET
 unsigned short int sin_port; // Port number
 struct in_addr sin_addr; // Internet address
 unsigned char sin_zero[8]; //set to all zeros
}

Populating the structure

 int inet_aton(const char *cp, struct in_addr *inp);

 inet_aton() gives non-zero on success; zero on failure

struct sockaddr_in my_addr;

my_addr.sin_family = AF_INET;

my_addr.sin_port = htons(MYPORT);
inet_aton(“10.0.0.5”,&(my_addr.sin_addr));

memset(&(my_addr.sin_zero),'\0',8);

struct in_addr {

 unsigned long s_addr; // that's 32-bit long, or 4 bytes

};

 To convert binary IP to string: inet_noa()

 printf(“%s”, inet_ntoa(my_addr.sin_addr));

• my_addr.sin_port = 0; //choose an unused port at

random

• my_addr.sin_addr.s_addr = INADDR_ANY; //use

my IP adr

Example
int sockfd;

struct sockaddr_in my_addr;

sockfd = socket(PF_INET, SOCK_STREAM, 0);

my_addr.sin_family = AF_INET; // host byte order

my_addr.sin_port = htons(MYPORT); // short, network byte order

my_addr.sin_addr.s_addr = inet_addr("10.0.0.1");

memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct

bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));

/****** Code needs error checking. Don't forget to do that ****** /

sendto() and recvfrom() - DGRAM style

 int sendto(int sockfd, const void *msg, int len, int flags, const

struct sockaddr *to, int tolen);

 sockfd: socket descriptor you want to send data to

 msg is pointer to the data you want to send

 to is a pointer to a struct sockaddr which contains the destination
IP and port

 tolen is sizeof(struct sockaddr)

 Set flags to zero

 Function returns the number of bytes actually sent or -1 on error

sendto() and recvfrom() - DGRAM style
 int recvfrom(int sockfd, void *buf, int len, int flags, struct

sockaddr *from, int *fromlen);

 sockfd: socket descriptor to read from

 buf: buffer to read the information from

 len: maximum length of the buffer

 flags set to zero

 from is a pointer to a local struct sockaddr that will be filled with
IP address and port of the originating machine

 fromlen will contain length of address stored in from

 Returns the number of bytes received or -1 on error

close() - Bye Bye!

 int close(int sockfd);

 Closes connection corresponding to the socket descriptor
and frees the socket descriptor

 Will prevent any more sends and recieves

Connectionless Protocol

socket()

bind()

bind()

recvfrom()

sendto()

socket()

recvfrom()

sendto()

Client Server

close() close()

Connection Oriented Protocol

socket()

connect()

bind()

accept()

send()

recv()

listen()

socket()

send()

recv()

Server Client

close() close()

Break

Connection Oriented Protocol

socket()

connect()

bind()

accept()

send()

recv()

listen()

socket()

send()

recv()

Server Client

close() close()

connect() - Hello!

 Connects to a remote host

 int connect(int sockfd, struct sockaddr *serv_addr, int addrlen)

 sockfd is the socket descriptor returned by socket()

 serv_addr is pointer to struct sockaddr that contains

information on destination IP address and port

 addrlen is set to sizeof(struct sockaddr)

 returns -1 on error

 No need to bind(), kernel will choose a port

Example
#define DEST_IP "10.2.44.57"

#define DEST_PORT 5000

main(){

 int sockfd;

 struct sockaddr_in dest_addr; // will hold the destination addr

 sockfd = socket(PF_INET, SOCK_STREAM, 0);

 dest_addr.sin_family = AF_INET; // host byte order

 dest_addr.sin_port = htons(DEST_PORT); // network byte order

 dest_addr.sin_addr.s_addr = inet_addr(DEST_IP);

 memset(&(dest_addr.sin_zero), '\0', 8); // zero the rest of the struct

 connect(sockfd, (struct sockaddr *)&dest_addr, sizeof(struct sockaddr));

 /******* Don't forget error checking ********/

listen() - Call me please!

 Waits for incoming connections

 int listen(int sockfd, int backlog);

 sockfd is the socket file descriptor returned by socket()

 backlog is the number of connections allowed on the

incoming queue

 listen() returns -1 on error

 Need to call bind() before you can listen()

accept() - Thank you for calling !

 accept() gets the pending connection on the port you are

listen()ing on

 int accept(int sockfd, void *addr, int *addrlen);

 sockfd is the listening socket descriptor

 information about incoming connection is stored in addr which

is a pointer to a local struct sockaddr_in

 addrlen is set to sizeof(struct sockaddr_in)

 accept returns a new socket file descriptor to use for this

accepted connection and -1 on error

Example
#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define MYPORT 3490 // the port users will be connecting to

#define BACKLOG 10 // pending connections queue will hold

main(){

 int sockfd, new_fd; // listen on sock_fd, new connection on new_fd

 struct sockaddr_in my_addr; // my address information

 struct sockaddr_in their_addr; // connector's address information

 int sin_size;

 sockfd = socket(PF_INET, SOCK_STREAM, 0);

 my_addr.sin_family = AF_INET; // host byte order

 my_addr.sin_port = htons(MYPORT); // short, network byte order

 my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP

 memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct

 // don't forget your error checking for these calls:

 bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));

 listen(sockfd, BACKLOG);

 sin_size = sizeof(struct sockaddr_in);

 new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size);

send() and recv() - Let's talk!
 The two functions are for communicating over stream sockets

or connected datagram sockets.

 int send(int sockfd, const void *msg, int len, int flags);

 sockfd is the socket descriptor you want to send data to (got from
accept())

 msg is a pointer to the data you want to send

 len is the length of that data in bytes

 set flags to 0 for now

 sent() returns the number of bytes actually sent (may be less than the

number you told it to send) or -1 on error

Example

char *msg = “hello!”;

int len, bytes_sent;

………

len = strlen(msg);

bytes_sent = send(sockfd, msg, len 0);

send() and recv() - Let's talk!
 int recv(int sockfd, void *buf, int len, int flags);

 sockfd is the socket descriptor to read from

 buf is the buffer to read the information into

 len is the maximum length of the buffer

 set flags to 0 for now

 recv() returns the number of bytes actually read into the buffer or
-1 on error

 If recv() returns 0, the remote side has closed connection on you

Connection Oriented Protocol

socket()

connect()

bind()

accept()

send()

recv()

listen()

socket()

send()

recv()

Server Client

close() close()

Break

Miscellaneous Routines
 int getpeername(int sockfd, struct sockaddr *addr, int

*addrlen);

 Will tell who is at the other end of a connected stream socket
and store that info in addr

 int gethostname(char *hostname, size_t size);

 Will get the name of the computer your program is running on

and store that info in hostname

Miscellaneous Routines
 Provides DNS service: struct hostent *gethostbyname(const char

*name);

 Example Usage:

struct hostent {

 char *h_name; //official name of host

 char **h_aliases; //alternate names for the host

 int h_addrtype; //usually AF_NET

 int h_length; //length of the address in bytes

 char **h_addr_list; //array of network addresses for the host

}

#define h_addr h_addr_list[0]

struct hostent *h;

h = gethostbyname(“www.iitb.ac.in”);

printf(“Host name : %s \n”, h->h_name);

printf(“IP Address: %s\n”,inet_ntoa(*((struct in_addr *)h->h_addr)));

http://www.iitk.ac.in/

Input/Output Multiplexing

 Some routines like accept(), recv() block

 Make sockets non-blocking

 Polling (consumes CPU time)

 Fork a separate process for each I/O channel

 Threading

 Select system call (HIGHLY RECOMMENDED)

sockfd = socket(PF_INET, SOCK_STREAM, 0);

fcntl(sockfd, F_SETFL, O_NONBLOCK);

Select()
 int select(int numfds, fd_set *readfds, fd_set *writefds, fd_set

*exceptfds, struct timeval *timeout);

 numfds: highest file descriptor + 1

 Readfds, writefds, exceptfds: set of file descriptors to monitor for

read, write and exception operations

 When select() returns, the set of file descriptors is modified to

reflect the one that is currently ready

 Timeout: select returns after this period if it still hasn't found any

ready file descriptors
struct timeval {

int tv_sec; // seconds

int tv_usec; // microseconds

};

Useful Macros

 FD_ZERO(fd_set *set)

 clears a file descriptor set

 FD_SET(int fd, fd_set *set)

 adds fd to the set

 FD_CLR(int fd, fd_set *set)

 removes fd from the set

 FD_ISSET(int fd, fd_set *set)

 tests to see if fd is in the set

Example

#define STDIN 0 // file descriptor for standard input

int main(void) {

struct timeval tv;

fd_set readfds;

tv.tv_sec = 2;

tv.tv_usec = 500000;

FD_ZERO(&readfds);

FD_SET(STDIN, &readfds);

// don’t care about writefds and exceptfds:

select(STDIN+1, &readfds, NULL, NULL, &tv);

Example Cont....

if (FD_ISSET(STDIN, &readfds))

printf("A key was pressed!\n");

else

printf("Timed out.\n");

return 0;

}

Summary

 Sockets help application process to communicate with each

other using standard Unix file descriptors

 Two types of Internet sockets: SOCK_STREAM and

SOCK_DGRAM

 Many routines exist to help ease the process of

communication

References
 Books:

 Unix Network Programming, volumes 1-2 by W. Richard
Stevens.

 TCP/IP Illustrated, volumes 1-3 by W. Richard Stevens and

Gary R. Wright

 Web Resources:

 Beej's Guide to Network Programming

(These slides followed 2001 version, there is a 2012 version
that includes IPv6)

