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In brief
Simeonov et al. develop an inducible

lineage recorder, enabling simultaneous

capture of lineages and transcriptomes

from single cells. Lineage reconstruction

in a metastatic pancreatic cancer model

reveals extensive bottlenecking and

subpopulation signaling, as well as

specific transcriptional states associated

with metastatic aggression and

predictive of worse outcomes in human

cancer.
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First we will cover some history, background, motivation, and context:

Cellular differentiation in composition, organization 
and function represents one of the major innovations 
of multicellular life. Determining the molecular mecha-
nisms that govern how cells differentiate in their state is 
thus a long- standing focus in stem cell and developmen-
tal biology1. A comprehensive record of changes in cell 
states as tissues and organs develop can give insights into 
the molecular mechanisms and order of events by which 
cells choose their terminal identities during embryo-
genesis or regeneration. It can provide clues as to how 
to manipulate cell fates in vivo, to predict the origins of 
developmental pathologies and cancer, and to re- create 
cell differentiation processes in vitro.

Recent advances in single- cell transcriptomics pro-
vide a powerful approach to mapping differentiation 
dynamics by densely sampling cells at different stages. 
These sampled cells together can be used to construct a 
continuum of cell states, or a ‘landscape’, a term histori-
cally inspired by Waddington’s metaphorical epigenetic 
landscape2. In this Review, we refer to such depictions 
as state manifolds, to reflect both their underlying 
high- dimensional nature and their routine representa-
tion as low- dimensional Euclidean surfaces or graphs. 
State manifolds can provide high- resolution descrip-
tions of cell trajectories as they transition between states 
during cell differentiation.

While they are powerful, state manifolds and 
state trajectories offer population- level views of dif-
ferentiation, without directly revealing the long- term 
dynamic relationships between individual cells or 
between cells and their progeny. The gold standard 
for linking cell states across periods of time is instead 
through prospective lineage tracing: the practice of label-
ling an individual cell at an early time point in order to 
track the state of its clonal progeny at a later time point. 

Traditionally reliant on microscopy, lineage- tracing 
approaches have recently evolved to allow the tracking of 
cell clones via sequencing of inherited DNA sequences, 
or ‘barcodes’. The migration to sequencing platforms 
has brought several advantages to lineage- tracing 
efforts: massive throughput, multiplexing and com-
patibility with other sequencing- based measurements  
(for example, RNA sequencing (RNA- seq)).

Recently, we and others have developed approaches 
to carry out single- cell omic- scale profiling while simul-
taneously reporting lineage information. These meth-
ods offer an opportunity to integrate complementary 
information about both cell lineage and cell state into 
synthesized views of differentiation dynamics. In this 
Review, we survey the currently available strategies for 
single- cell state manifold reconstruction and lineage 
barcoding, as well as omics methods for combining lin-
eage and state measurements in the same cells. Both the 
range of single- cell trajectory construction methods and 
their assumptions have been reviewed extensively else-
where3,4, as have foundational molecular strategies for 
lineage barcoding5,6. Here we aim to draw general lessons 
from reoccurring conflicts that have emerged between 
state and fate analyses, and we discuss biological results 
obtained from first applications of combining the two 
methods. As this is an emerging field, we also discuss 
current limitations and potential technical pitfalls in 
their application. Finally, we speculate on the emerging 
concepts that might arise.

Inferring cell histories from state manifolds
In measuring the instantaneous state of a cell, one might 
imagine collecting information on the copy number of 
every molecular species within a cell, their interactions 
and spatial organization, the position of the cell in its 

Cell differentiation
The process by which 
uncommitted progenitor cells 
are specified and transform 
into functional (and typically 
postmitotic) cells that carry  
out the specialized tasks of  
a particular tissue or organ.

Landscape
An informal term for a state 
manifold, typically used in 
developmental biology to 
represent the ensemble  
of cell states during their 
differentiation.

Lineage tracing meets single- cell 
omics: opportunities and challenges
Daniel E. Wagner1,2�ᅒ and Allon M. Klein  1�ᅒ

Abstract | A fundamental goal of developmental and stem cell biology is to map the developmental 
history (ontogeny) of differentiated cell types. Recent advances in high- throughput single- cell 
sequencing technologies have enabled the construction of comprehensive transcriptional atlases 
of adult tissues and of developing embryos from measurements of up to millions of individual cells. 
Parallel advances in sequencing- based lineage- tracing methods now facilitate the mapping of 
clonal relationships onto these landscapes and enable detailed comparisons between molecular 
and mitotic histories. Here we review recent progress and challenges, as well as the opportunities 
that emerge when these two complementary representations of cellular history are synthesized 
into integrated models of cell differentiation.
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CELL LINEAGE TRACING

Whole-organism lineage tracing by
combinatorial and cumulative
genome editing
Aaron McKenna,1* Gregory M. Findlay,1* James A. Gagnon,2* Marshall S. Horwitz,1,3

Alexander F. Schier,2,4,5,6† Jay Shendure1,7†

Multicellular systems develop from single cells through distinct lineages. However, current
lineage-tracing approaches scale poorly to whole, complex organisms. Here, we use genome
editing to progressively introduce and accumulate diverse mutations in a DNA barcode over
multiple rounds of cell division. The barcode, an array of clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 target sites, marks cells and enables the
elucidation of lineage relationships via the patterns of mutations shared between cells. In
cell culture and zebrafish, we show that rates and patterns of editing are tunable and that
thousands of lineage-informative barcode alleles can be generated. By sampling hundreds of
thousands of cells from individual zebrafish, we find that most cells in adult organs derive
from relatively few embryonic progenitors. In future analyses, genome editing of synthetic
target arrays for lineage tracing (GESTALT) can be used to generate large-scale maps of cell
lineage in multicellular systems for normal development and disease.

T
he tracing of cell lineages was pioneered in
nematodes by Whitman in the 1870s, at a
time of controversy surroundingHaeckel’s
theory of recapitulation, which argued that
embryological development paralleled evo-

lutionary history (1). This line of work culminated
a century later in the complete description of
mitotic divisions in the roundwormCaenorhabditis
elegans—a tour de force facilitated by its visual
transparency as well as the modest size and in-
variant nature of this nematode’s cell lineage (2).
Over the past century, a variety of creative

methods have been developed for tracing cell
lineage in developmentally complex organisms (3).
In general, subsets of cells are marked and their
descendants followed as development progresses.
Theways inwhich cellmarking has been achieved
includedyesandenzymes (4–6), cross-species trans-
plantation (7), recombinase-mediated activation
of reporter gene expression (8,9), insertionof foreign
DNA (10–12), and naturally occurring somatic
mutations (13–15). However, despite many power-
ful applications, these methods have limitations
for the large-scale reconstruction of cell lineages
in multicellular systems. For example, dye and

reportergene–basedcellmarkingareuninformative
with respect to the lineage relationships between
descendant cells. Furthermore, when two ormore
cells are independently but equivalently marked,
the resultingmultitude of clades cannot be readily
distinguished from one another. Although these
limitations can be overcome in part with combi-
natorial labeling systems (16, 17) or through the
introduction of diverse DNA barcodes (10–12),
these strategies fall short of a system for inferring
lineage relationships throughout an organism and
across developmental time. In contrast,methods
based on somatic mutations have this potential, as
they can identify lineages and sublineages within
single organisms (13, 18). However, somaticmuta-
tions are distributed throughout the genome,
necessitating whole-genome sequencing (14, 15),
which is expensive to scale beyond small numbers
of cells and not readily compatible with in situ
readouts (19, 20).
What are the requirements for a system for

comprehensively tracing cell lineages in a complex
multicellular system? First, it must uniquely and
incrementally mark cells and their descendants
over many divisions and in a way that does not
interferewithnormal development. Second, these
uniquemarksmust accumulate irreversibly over
time, allowing the reconstruction of lineage trees.
Finally, the full set ofmarksmust be easily read out
in each of many single cells.
We hypothesized that genome editing, which

introduces diverse, irreversible edits in a highly
programmable fashion (21), could be repurposed
for cell lineage tracing in a way that realizes these
requirements. To this end, we developed genome
editing of synthetic target arrays for lineage

tracing (GESTALT), amethod that uses clustered
regularly interspaced short palindromic repeats
(CRISPR)/Cas9 genome editing to accumulate
combinatorial sequence diversity to a compact,
multitarget, densely informative barcode. Edited
barcodes can be efficiently queried by a single
sequencing read from each of many single cells
(Fig. 1A). In both cell culture and in the zebrafish
Danio rerio, we demonstrate the generation of
thousands of uniquely edited barcodes that can
be related to oneanother to reconstruct cell lineage
relationships. In adult zebrafish, we observe that
themajority of cells of each organ are derived from
a small number of progenitor cells. Furthermore,
ancestral progenitors, inferred on the basis of
shared edits among subsets of derived alleles,
make highly nonuniform contributions to germ
layers and organ systems.

Results
Combinatorial and cumulative editing of
a compact genomic barcode in
cultured cells

To investigatewhether genome editing can be used
to generate a combinatorial diversity of mutations
within a compact region, we synthesized a con-
tiguous array of 10 CRISPR/Cas9 targets separated
by threebase-pair (bp) linkers (total lengthof 257bp).
The first target perfectly matched one single-
guide RNA (sgRNA), whereas the remainder were
off-target sites for the same sgRNA, ordered from
highest to lowest activity (22). This array of targets
(v1barcode)was cloneddownstreamofanenhanced
green fluorescent protein (EGFP) reporter in a
lentiviral construct (23). We then transduced
human embryonic kidney (HEK) 293T cells with
lentivirus and used fluorescence-activated cell
sorting (FACS) to purify an EGFP-v1–positive
population. To edit the barcode, we cotransfected
these cells with a plasmid expressing Cas9 and the
sgRNA and a vector expressing Discosoma red
fluorescent protein (DsRed). Cells were sorted
3days after transfection for highDsRedexpression,
and genomicDNA (gDNA)was harvested on day 7.
The v1 barcode was polymerase chain reaction
(PCR) amplified, and the resulting amplicons
were subjected to deep sequencing.
To minimize confounding sequencing errors,

which are primarily substitutions, we analyzed
edited barcodes for only insertion-deletion changes
relative to the wild-type v1 barcode. In this first
experiment, we observed 1650 uniquely edited
barcodes (eachobserved in≥25 reads),withdiverse
edits concentrated at the expected Cas9 cleavage
sites, predominantly intertarget deletions in-
volving sites 1, 3, and 5 or focal edits of sites
1 and 3 (Fig. 1, B and C, and table S1). These
results show that combinatorial editing of the
barcode can give rise to a large number of unique
sequences, i.e., alleles.
To evaluate reproducibility, we transfected the

same editing reagents to cultures expanded from
three independent EGFP-v1–positive clones. Tar-
geted reverse transcription PCR (RT-PCR) and
sequencing of EGFP-v1 RNA showed similar dis-
tributions of edits to the v1 barcode in the transcript
pool, between replicates aswell as in comparison to
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Deriving lineage relationships between cells in a devel-
oping organism, and between an early dividing cell of 
unknown potential and its descendants, have been 
long-standing interests in developmental biology. 
Understanding these lineage relationships illuminates 
the fundamental mechanisms underlying normal 
development, and can provide insight into pathologies 
of development and cancer. Lineage relationships are 
experimentally revealed through fate-mapping  methods, 
and when fate mapping is carried out at single-cell reso-
lution it is known as lineage tracing (also known as 
 lineage tracking).

Fundamental questions of lineage have been 
addressed since the earliest days of embryology, with 
technical sophistication increasing over time. Initially, 
embryologists were limited to visual observation of 
development in organisms that are small enough to be 
transparent, such as Caenorhabditis elegans, which ena-
bled the discovery of genes that control cell proliferation, 
cell fate and cell death1,2. In species with larger numbers 
of cells, genetic mosaicism was leveraged to investigate cell 
fate, by creating chimeric embryos from mouse strains 
with differing coat colour genes3,4 or by grafting quail 
cells into chicken embryos5. With the development of 
radioactive, enzymatic and fluorescent cellular labels, 
it became possible to selectively label one or more cells 
by direct injection and trace developmental potential 
directly6–9, although most available labels were subject 
to dilution with successive cell division10.

In recent years, many new methods have emerged 
to enable cell lineage tracking with increasing resolu-
tion, leading to substantial biological insights. In model 
organisms, novel cellular labels, such as barcoded retro-
viral libraries11 and a rainbow of available fluorescent 
proteins12, have increased the number of founder cells 
that can be uniquely labelled and tracked. Labels can 
be delivered at different stages of development using 
various methods, including viral infection and in utero 
electroporation. Unlike most early cellular tracers, labels 
that are inserted into the genome can permanently mark 
lineages in a variety of experimental organisms without 
being diluted by cell division, and these modifications 
are facilitated by genome-editing technologies, such 
as the CRISPR–Cas9 system13. Furthermore, recent 
advances in sequencing enable naturally occurring 
somatic mosaic mutations to be used as lineage marks in 
cancerous tissue14,15 and normal tissue16,17, illuminating a 
future in which lineage tracing moves from experimental 
organisms into humans.

In this Review, we present both historical and 
recently developed methods for lineage tracing. 
Following the common division of genetic approaches 
into ‘forward’ and ‘reverse’ genetics, we discuss  methods 
according to whether they prospectively introduce lin-
eage tracers and follow traced cells forwards in devel-
opment ( prospective lineage analysis), or whether they 
retrospectively identify lineage-specific tracers and 
use them to infer past developmental relationships 
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Fate-mapping methods
Approaches that apply a 
heritable mark to a given 
progenitor or class of 
progenitors, then use the 
inheritance of the mark to 
define the progeny of that cell 
or class.

Building a lineage from single cells: 
genetic techniques for cell lineage 
tracking
Mollie B. Woodworth1–3, Kelly M. Girskis1–3 and Christopher A. Walsh1–3

Abstract | Resolving lineage relationships between cells in an organism is a fundamental interest 
of developmental biology. Furthermore, investigating lineage can drive understanding of 
pathological states, including cancer, as well as understanding of developmental pathways that 
are amenable to manipulation by directed differentiation. Although lineage tracking through 
VJG|KPLGEVKQP�QH�TGVTQXKTCN�NKDTCTKGU�JCU�NQPI�DGGP�VJG�UVCVG�QH�VJG�CTV��C�TGEGPV�GZRNQUKQP�QH�
OGVJQFQNQIKECN�CFXCPEGU�KP�GZQIGPQWU�NCDGNNKPI�CPF�UKPING�EGNN�UGSWGPEKPI�JCXG�GPCDNGF�
lineage tracking at larger scales, in more detail, and in a wider range of species than was 
RTGXKQWUN[�EQPUKFGTGF�RQUUKDNG��+P�VJKU�4GXKGY��YG�FKUEWUU�VJGUG�VGEJPKSWGU�HQT�EGNN�NKPGCIG�
VTCEMKPI��YKVJ�CVVGPVKQP�DQVJ�VQ�VJQUG�VJCV�VTCEG�NKPGCIG�HQTYCTFU�HTQO�GZRGTKOGPVCN�NCDGNNKPI��
and those that trace backwards across the life history of an organism.
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Review

Next-Generation Lineage Tracing and Fate Mapping
to Interrogate Development
Sadie VanHorn1,2,3 and Samantha A. Morris1,2,3,*
1Department of Developmental BiologyWashington, University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St.
Louis, MO 63110, USA
2Department of Genetics Washington, University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO
63110, USA
3Center of RegenerativeMedicine,Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, CampusBox 8103, St. Louis,
MO 63110, USA
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SUMMARY

Lineage tracing and fate mapping, overlapping yet distinct disciplines to follow cells and their progeny, have
evolved rapidly over the last century. Lineage tracing aims to identify all progeny arising from an individual
cell, placing them within a lineage hierarchy. The recent emergence of genomic technologies, such as sin-
gle-cell and spatial transcriptomics, has fostered sophisticated newmethods to reconstruct lineage relation-
ships at high resolution. In contrast, fate maps, schematics showing which parts of the embryo will develop
into which tissue, have remained relatively static since the 1970s. However, fate maps provide spatial infor-
mation, often lost in lineage reconstruction, that can offer fundamental mechanistic insight into development.
Here, we broadly review the origins of fate mapping and lineage tracing approaches. We focus on the most
recent developments in lineage tracing, permitted by advances in single-cell genomics. Finally, we explore
the current potential to leverage these new technologies to synthesize high-resolution fatemaps and discuss
their potential for interrogating development at new depths.

Fate mapping and lineage tracing are closely related, yet distinct
tools that form a central pillar of developmental biology. Fate
maps are schematics where eventual cell fate is projected onto
an embryo at a specific stage of development, depicting which
cell or region gives rise to a particular tissue. Lineage tracing,
stemming from century-old fate mapping experiments, aims to
construct a hierarchy of all progeny arising from an individual
cell but does not necessarily capture positional information.
Early fate mapping efforts visually tracked individual cells or re-
gions within an embryo, linking initial position to future fate (Con-
klin, 1905; Vogt, 1929). Such approaches quickly proved to be
powerful tools in developmental biology, providing a picture of
how initial position within an embryo can influence final fate.
This rich spatial information offered fundamental mechanistic
insight, such as whether the development of a specific
organism is mosaic, i.e., highly dependent on lineage, or regula-
tive, i.e., flexible and able to adapt to developmental perturbation
(Lawrence and Levine, 2006). Although, in some instances, indi-
vidual cells could be tracked, fate mapping was commonly de-
ployed at the tissue level, offering broad, sometimes sweeping
overviews of developmental patterning. While stemming from
fate mapping, lineage tracing is distinct in its aim to reconstruct
lineage hierarchy back to an individual cell (Figure 1). Indeed, in
this respect, lineage provides valuable information on cell poten-
tial, where branching hierarchies can pinpoint the timing of crit-
ical cell fate decisions during development.
Lineage tracing strategies are rapidly advancing due to prog-

ress in genomics, enabling the construction of increasingly com-

plex lineage hierarchies across diverse developmental systems.
However, these emerging technologies typically do not capture
spatial information, a crucial component of the fate map. Indeed,
fate maps have generally remained static over the past few de-
cades, yet they offer tremendous insight into the relationships
between cells across time and position within the embryo.
Without this spatial understanding, we lose knowledge of tissue
borders, identities of adjacent cells, and intercellular communi-
cation—all essential facets in our understanding of cell fate
specification. However, at present, fate maps typically only cap-
ture cell position and identity as determined from low-dimen-
sional measurements, limiting the resolution of these ap-
proaches. Here, we broadly review the origins of fate mapping
and lineage tracing approaches. We focus on recent advances
in single-cell genomics to overcome several fundamental limita-
tions in the construction of lineage hierarchies. We also discuss
nascent technologies to integrate spatial information, high-
lighting the discoveries enabled by these methods. Finally, we
explore the concept of next-generation, dynamic fate maps
and the technical advances required for their construction.

FOUNDATIONS OF FATE MAPPING AND LINEAGE
TRACING: DIRECT OBSERVATION AND CELL LABELING

Fate mapping relies on tracking cells within a developing organ-
ism, in a non-destructive manner. In the late 1800s, advances in
light microscopy and dye injection techniques enabled such cell
tracking via direct observation (Figure 2A) (Kretzschmar and

ll
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During differentiation, stem and progenitor cells progress 
through a hierarchy of fate decisions, refining their identity 
until reaching a functional end state. The gold standard for 
inferring the relationship between progenitors and their off-
spring is lineage tracing, where a subset of progenitors is la-
beled, typically using genetic approaches that mark cells 
expressing defined marker genes, and their fate is profiled at 
a later time point (1). Lineage maps are key to understanding 
and controlling differentiation (2). 

Recently, whole-genome approaches for profiling cells by 
single cell RNA sequencing (scSeq) opened up a complemen-
tary approach to understand developmental relationships. 
scSeq captures mature cell types alongside all stages of cell 
differentiation, revealing a ‘state map’ in gene expression 
space. These state maps offer hypotheses for the hierarchy of 
cell states (3) and their gene expression dynamics over time 
(4–7). Unlike lineage tracing, scSeq can be carried out with-
out prior genetic manipulation, and without being limited by 
the specificity of transgene expression within the progenitor 
cell pool (2). 

Neither state or lineage mapping alone, however, provide 
a complete view of differentiation processes. Whereas scSeq 
offers a very high resolution of cell states, it cannot link the 
detailed states of progenitors to their ultimate fate, because 
cells are destroyed in the process of measurement. scSeq data 
does not directly report the stages at which progenitor cells 
become committed to one or more fates or how many distinct 
paths might lead cells to the same end states. In addition, the 
high-dimensional nature of scSeq allows more than one 

approach to constructing cell state trajectories from the same 
data (4). There is a need for approaches that link the detailed 
whole-genome state of cells to their long-term dynamic be-
havior. 

In this paper we integrate measurements of cell lineage 
with scSeq, using the mouse hematopoietic system as a model 
of fate choice. In adults, hematopoietic stem and progenitor 
cells (HSPCs) reside in the bone marrow and maintain 
steady-state blood production. Cell culture and transplanta-
tion studies over several decades have led to the prevailing 
model of hematopoiesis as a branching hierarchy with de-
fined fate-restricted intermediates (8). But recent state maps 
from scSeq (9), as well as clonal studies using barcodes (10) 
and single cell culture (11), suggest that the traditional inter-
mediate cell types are internally heterogeneous in state and 
fate potential, with HSPCs lying along a continuum of states 
rather than a stepwise hierarchy. Reconciling these views re-
quires tracking the dynamics of individual lineages on the 
continuous landscape of HSPC states defined by scSeq (12). 
We explore an experimental design for capturing the state of 
a cell at the whole-transcriptome level, and its clonal fate at 
a later time point, simultaneously across thousands of cells 
in different states. 
 
RESULTS 
A simultaneous assay of clonal states and fates 
Our strategy for simultaneously capturing transcriptional cell 
state and fate is to genetically barcode a heterogeneous pro-
genitor population, allow cell division, sample some cells 

Lineage tracing on transcriptional landscapes links state  
to fate during differentiation 
Caleb Weinreb1*, Alejo Rodriguez-Fraticelli2,3*, Fernando D. Camargo2,3†, Allon M. Klein1†‡ 
1Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. 2Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA. 3Department of 
Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. 
*These authors contributed equally to this work. 

†These authors contributed equally to this work. 

‡Corresponding author. Email: Allon_Klein@hms.harvard.edu 

A challenge in biology is to associate molecular differences among progenitor cells with their capacity to 
generate mature cell types. Here, we use expressed DNA barcodes to clonally trace transcriptomes over 
time and applied this to study fate determination in hematopoiesis. We identify states of primed fate 
potential and locate them on a continuous transcriptional landscape. We identify two routes of monocyte 
differentiation that leave an imprint on mature cells. Yet analysis of sister cells also reveals cells to have 
intrinsic fate biases not detectable by single-cell RNA sequencing. Finally, we benchmark computational 
methods of dynamic inference from single-cell snapshots, showing that fate choice occurs earlier than is 
detected by state-of the-art algorithms, and that cells progress steadily through pseudotime with precise 
and consistent dynamics. 
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Lineage reconstruction from clonal correlations
Caleb Weinreba and Allon M. Kleina,1

aDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115

Edited by Brigid L. M. Hogan, Duke University Medical Center, Durham, NC, and approved June 5, 2020 (received for review January 9, 2020)

A central task in developmental biology is to learn the sequence of
fate decisions that leads to each mature cell type in a tissue or
organism. Recently, clonal labeling of cells using DNA barcodes has
emerged as a powerful approach for identifying cells that share a
common ancestry of fate decisions. Here we explore the idea that
stochasticity of cell fate choice during tissue development could be
harnessed to read out lineage relationships after a single step of
clonal barcoding. By considering a generalized multitype branch-
ing process, we determine the conditions under which the final
distribution of barcodes over observed cell types encodes their
bona fide lineage relationships. We then propose a method for
inferring the order of fate decisions. Our theory predicts a set of
symmetries of barcode covariance that serves as a consistency
check for the validity of the method. We show that broken
symmetries may be used to detect multiple paths of differentia-
tion to the same cell types. We provide computational tools for
general use. When applied to barcoding data in hematopoiesis,
these tools reconstruct the classical hematopoietic hierarchy and
detect couplings between monocytes and dendritic cells and
between erythrocytes and basophils that suggest multiple path-
ways of differentiation for these lineages.

clonal barcodes | branching processes | lineage tracing

During development and adult tissue turnover, cells differ-
entiate into diverse cell types through a hierarchical se-

quence of fate choices. The hierarchy can be mapped using
lineage tracing, where a tracer molecule or DNA modification is
introduced in a group of early cells and then followed over time,
allowing identification of the cells’ progeny (1). Recently, ad-
vances in DNA sequencing have made it possible to parallelize
thousands of lineage tracing assays in a single experiment by
labeling cells with unique DNA barcodes (2–4).

Lineage tracing is carried out through two experimental strategies.
“Prospective” lineage tracing seeks to establish the fate of a set of
cells that are labeled at an early time point by tracking them to a
later time point. “Retrospective” lineage tracing seeks to reconstruct
the lineage relationships between cells at a single time point as a way
of inferring the history of differentiation branching events that they
underwent (5). The usual premise for retrospective lineage re-
construction from barcodes is that two given cell types, “A” and “B,”
are more closely related than a third cell type, “C,” when they share
barcodes with each other that are not shared with “C” (Fig. 1A) (6).
This approach has roots in the tradition of inferring phylogenetic
relationships between species based on their common and unique
characteristics, such as shared anatomical features or gene sequence
alleles that are absent in an outgroup (7).

This phylogenetic approach, however, is limited by the need to
accumulate differences in barcodes over a broad developmental
window. It is blind to fate choices that occur after barcode di-
versification has ended. Several experimental methods have now
been proposed to continuously barcode cells (8, 9); however, these
methods still require optimization to allow uniform rates of long-
term barcoding and to analyze tissues with variable rates of division
(10). Since most existing methods only label cells within a narrow
time window (2, 11–14), it would be useful to develop frameworks
for lineage reconstruction beyond the point when barcoding has
ended. In a limiting case, one might ask if it is possible to establish
retrospective lineage relationships when clonal barcoding occurs just
once in a uniform cell population.

Here we explore the idea that stochasticity of cell fate choice in
development could be harnessed to infer lineage relationships after
barcoding at a single moment in time (Fig. 1B). The intuition is that
natural fluctuations between clones in cells entering different line-
ages would generate statistical signals in the distribution of barcodes
over mature cell types and that these statistics alone could report on
the lineage hierarchy. Although this phenomenon has not, to our
knowledge, been formally described, it may be furnishing some of
the signal in existing studies of lineage relationships. Statistical
coupling of barcode counts between lineages has been reported us-
ing correlation (4, 11, 15), observed/expected ratio (14), Z-score
enrichment (16), correlation of Z-score enrichment (13), and other
measures. The existence of these couplings is usually attributed to
cells being labeled across multiple stages of fate commitment—the
phylogenetic approach—but may also arise from stochasticity in cell
fate choice.

To explore whether a single step of clonal barcoding could be used
to infer lineage hierarchy, it is necessary to model how barcodes
partition over time (forward problem) and whether their final sta-
tistics encode the tree structure (reverse problem). In the following
sections, we define a tree-structured branching process to model the
dynamics of clonal expansion and differentiation along a de-
velopmental hierarchy. We calculate closed-form expressions for the
first- and second-order moments of the clone distributions and re-
port a simple neighbor-joining algorithm that provably reconstructs
the hierarchy from a combination of these moments called the
normalized covariance. The proof holds under plausible assumptions
about the differentiation process. Since the normalized covariance
can be easily estimated from barcoding data, this constitutes a
practical inference approach.

We also search for self-consistency tests that would fail if our
conditions are violated. One of the predictions of our model is that
the normalized covariance should obey a set of equalities known as

Significance

Animals begin life as a single cell that divides and differenti-
ates to form a complex body. In doing so, cells make a se-
quence of fate decisions, often depicted as a tree. A goal in
developmental biology is to chart the structure of this tree
across tissues, typically by tagging cells and tracking their
offspring. Recent advances in DNA sequencing enable tracking
thousands of cells simultaneously using unique DNA barcodes,
but one can construct false differentiation hierarchies from
barcode data. Here, we apply the theory of branching pro-
cesses to derive conditions under which barcode statistics
correctly encode developmental hierarchy. We use this formal
basis to develop a practical pipeline for analyzing lineage
barcoding experiments. The pipeline is demonstrated in
studying hematopoiesis.
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SUMMARY

Lineage tracing provides key insights into the fate of
individual cells in complex organisms. Although effec-
tivegenetic labelingapproachesareavailable inmodel
systems, in humans, most approaches require detec-
tion of nuclear somatic mutations, which have high
error rates, limited scale, and do not capture cell
state information. Here, we show that somatic muta-
tions in mtDNA can be tracked by single-cell RNA or
assay for transposase accessible chromatin (ATAC)
sequencing. We leverage somatic mtDNA mutations
as natural genetic barcodes and demonstrate their
utility ashighly accurate clonalmarkers to infer cellular
relationships.We tracknativehumancells both in vitro
and in vivo and relate clonal dynamics to gene expres-
sionandchromatinaccessibility.Ourapproachshould
allow clonal tracking at a 1,000-fold greater scale than
with nuclear genome sequencing, with simultaneous
information on cell state, opening the way to chart
cellular dynamics in human health and disease.

INTRODUCTION

Recent innovations in single-cell genomics have enabled in-
sights into the heterogeneity of human cell populations and

have redefined concepts about lineage commitment and devel-
opment (Giladi and Amit, 2018). Although all cells in the human
body are derived from the zygote, we lack a detailed map inte-
grating cell division (lineage) and differentiation (fate). As a result,
we have a limited understanding of how cellular dynamics play a
role in physiologic and pathologic conditions for any given tissue.
Two classes of methods have been developed to study

cellular relationships and clonal dynamics in complex tissues
of vertebrates. In model organisms, most approaches to date
rely on an engineered genetic label to tag individual cells with
heritable marks (Kester and van Oudenaarden, 2018; Wood-
worth et al., 2017), such as fluorescent reporter genes, high-
diversity DNA barcode libraries, mobile transposable elements,
Cre-mediated recombination, or CRISPR-based genetic scars
(McKenna et al., 2016; Pei et al., 2017; Sun et al., 2014; Yu
et al., 2016). Recent studies have combined several of these
tracing methods with single-cell RNA sequencing (RNA-seq)
(scRNA-seq) to interrogate both lineage relationships and cell
states (Alemany et al., 2018; Montoro et al., 2018; Raj et al.,
2018; Spanjaard et al., 2018).
However, the genetic manipulations required for such ap-

proaches cannot be applied in intact humans (Biasco et al.,
2016). Limited lineage-tracing studies in humans have relied on
the detection of naturally occurring somatic mutations, including
single-nucleotide variants (SNVs), copy number variants (CNVs),
and variation in short tandem repeat sequences (microsatellites
or STRs), which are stably propagated to daughter cells but are
absent in distantly related cells (Ju et al., 2017; Lodato et al.,
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Single-cell mapping of lineage and 
identity in direct reprogramming
Brent A. Biddy1,2,3, Wenjun Kong1,2,3, Kenji Kamimoto1,2,3, Chuner Guo1,2,3, Sarah E. Waye1,2,3, Tao Sun1,2,3,4  
& Samantha A. Morris1,2,3*

Direct lineage reprogramming involves the conversion of cellular identity. Single-cell technologies are useful for 
deconstructing the considerable heterogeneity that emerges during lineage conversion. However, lineage relationships are 
typically lost during cell processing, complicating trajectory reconstruction. Here we present ‘CellTagging’, a combinatorial 
cell-indexing methodology that enables parallel capture of clonal history and cell identity, in which sequential rounds of 
cell labelling enable the construction of multi-level lineage trees. CellTagging and longitudinal tracking of fibroblast to 
induced endoderm progenitor reprogramming reveals two distinct trajectories: one leading to successfully reprogrammed 
cells, and one leading to a ‘dead-end’ state, paths determined in the earliest stages of lineage conversion. We find that 
expression of a putative methyltransferase, Mettl7a1, is associated with the successful reprogramming trajectory; adding 
Mettl7a1 to the reprogramming cocktail increases the yield of induced endoderm progenitors. Together, these results 
demonstrate the utility of our lineage-tracing method for revealing the dynamics of direct reprogramming.

Direct lineage reprogramming bypasses pluripotency to convert cell 
identity between somatic states, yielding clinically valuable cell types1. 
However, these conversion strategies are generally inefficient, produc-
ing incompletely converted and developmentally immature cells that 
fail to fully recapitulate target cell identity2,3. The considerable heter-
ogeneity that arises during reprogramming has hindered the study of 
the molecular mechanisms underlying lineage conversion. Single-cell 
RNA-sequencing analysis (scRNA-seq) has enabled fully converted 
cells to be distinguished from partially reprogrammed intermedi-
ates4,5, although these analytical approaches typically result in the loss 
of spatial, temporal and lineage information. Elegant computational 
approaches can infer missing observations6,7, but reconstruction of 
true reprogramming trajectories using these tools remains challenging. 
Although sophisticated lineage tracing solutions to connect cell history 
with fate are emerging, these protocols are either not compatible with 
high-throughput scRNA-seq8–11, or require genome editing strategies 
that are not readily deployed in some systems12–15.

To enable simultaneous single-cell profiling of cell identity and 
clonal history, we have developed ‘CellTagging’, a straightforward, 
high-throughput cell tracking method. Sequential lentiviral delivery 
of CellTags (heritable random barcodes) enables the construction of 
multi-level lineage trees. Here, we apply CellTagging to transcription 
factor-induced direct lineage reprogramming of mouse embryonic 
fibroblasts (MEFs) to induced endoderm progenitors (iEPs), a self- 
renewing cell type that has both hepatic and intestinal potential3,16. 
Generation of iEPs represents a prototypical cell fate engineering 
methodology, reflecting the inefficiency and infidelity of many repro-
gramming protocols2,3. CellTagging and tracking more than 100,000 
cells during conversion to iEPs reveals two distinct trajectories: a route 
towards successfully reprogrammed cells, and an alternate path to a 
putative ‘dead-end’ state, marked by re-expression of fibroblast genes. 
Although few cells are successfully reprogrammed, clonally related cells 
tend to follow the same trajectories, suggesting that their reprogram-
ming outcome may be determined from the earliest stages of lineage 
conversion. These clonal dynamics and lineages can be explored on 

our companion website, CellTag Viz (http://www.celltag.org/). In later 
stages of conversion, our analyses reveal expression of a putative meth-
yltransferase, Mettl7a1, along the successful reprogramming trajectory. 
Adding this factor to the reprogramming cocktail increases the yield of 
successfully converted iEPs. Together, these findings demonstrate the 
utility of CellTagging for lineage reconstruction, providing molecular 
insights into reprogramming that serve to improve the outcome of this 
generally inefficient process.

Combinatorial indexing of cells to track clonal history
CellTagging is a lentivirus-based approach to uniquely label individual  
cells with heritable barcode combinations. CellTags are highly 
expressed and readily captured within each single-cell transcriptome, 
enabling recording of clonal history over time, in parallel with cell 
identity (Fig. 1a). Recovery of CellTag expression, followed by filter-
ing and error correction, ensures sensitive and specific identification 
of clonally related cells (Extended Data Fig. 1a–g). The efficacy of this 
barcoding approach is demonstrated by CellTagging a ‘species mix’ 
of genetically distinct human 293T cells and MEFs (Extended Data 
Fig. 1h–j). This is further supported by labelling two independent  
biological replicates with the same CellTag library: whereas individual  
CellTags appear in both pools of cells, no combinatorial signatures 
of 2 or more CellTags are shared between replicates, confirming that 
clones are derived from distinctly labelled cells (n = 4,141 cells express-
ing 3.0000 ± 0.0004 (mean ± s.e.m.) unique CellTags per cell, Fig. 1b, c).  
Finally, CellTagging does not perturb cell physiology or reprogram-
ming efficiency (Extended Data Fig. 2). Together, these data validate 
the utility of CellTagging to deliver unique, heritable labels into cells, 
permitting clonal relationships to be tracked longitudinally, with a high 
degree of confidence.

We next applied CellTagging to the direct reprogramming of fibro-
blasts to iEPs, driven by retroviral overexpression of the transcription 
factors FOXA1 and HNF4α (encoded by Foxa1 and Hnf4a, respec-
tively) in four independent biological replicates. To enable lineage 
reconstruction, we devised a sequential CellTagging scheme in which 
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Brief history of fate mapping and lineage tracing

Watt, 2012; Stent, 1998; Stern and Fraser, 2001). Notably, Whit-
man used direct observation to trace early cleavage and fate in
leech development, demonstrating that stereotypical, invariant
cell divisions determine eventual cell fate at early cleavage-
stages (Whitman, 1878, 1887). Subsequently, in 1905, Conklin
generated the first comprehensive fate map by tracking progen-
itor cells of the tunicate, Styela partita. The cell tracing in these
experiments was powered by simple observation of cell color
changes during differentiation, enabling fate map assembly
(Conklin, 1905). With further developments in time-lapse cine-
matography, cells and their progeny within developing embryos
could be traced (Wetzel, 1929). Perhaps the most famous
example of this approach is represented by the microscopy-
based direct observation of live animals to construct a complete
lineage of C. elegans development (Sulston et al., 1983). Indeed,
this example serves to demonstrate how lineage tracing and fate
mapping overlap with the incorporation of spatial information
into cell tracking (Figure 1).

The embryos used in these early studies were typically trans-
parent, contained limited cell numbers, and had invariant cell lin-
eages in most cases, supporting the straightforward observation
of individual cells and their progeny. Fate mapping and lineage
tracing in developmental systems with opaque embryos
required cell labeling strategies, such as dyeing or radiolabeling
(Kretzschmar andWatt, 2012; Stern and Fraser, 2001). Vogt was
the first to develop and apply these techniques in the 1920s, fate
mapping a variety of embryos, concluding that a stereotypic line-
age does not define the development of some species (Vogt,
1929). Altogether, these techniques were invaluable in the con-
struction of fate maps of many developing organisms, from the
stereotyped development of leeches to the variable develop-
ment of mice (Lawrence and Levine, 2006). For example, the
intracellular injection of tracer dye allowed zebrafish fate map
construction, which was instructive for understanding that clonal
restrictions occur at the onset of gastrulation (Kimmel et al.,
1990). However, these approaches still faced several funda-
mental limitations, such as the extended periods required to
observe development in vitro, or the limited scalability of dye in-
jection. The optics of light microscopy also restricted the types of
embryos that were amenable to observation as they could not
become too dense or pigmented during their development.

Lineage Tree

Fate Map

��FHOO

���FHOOV %ODVWXOD

Figure 1. The Distinction between Fate
Mapping and Lineage Tracing
Fate maps are schematics representing the devel-
opmental potential of specific cells or regions of
cells within an embryo at a defined stage. Upper
panels: early Xenopus development fate map, re-
taining cell-cell relationships and position. Lower
panels: lineage tracing, the identification of all
progeny arising from an individual cell. Each color in
the branching tree relates to a region of the corre-
sponding fate map. Dashed lines depict lineages not
shown for simplicity.

As described so far, the cell labeling
used to build these early fate maps repre-
sents the first rudimentary lineage tracing.
Indeed, although fatemapping significantly
overlaps with lineage tracing, they cannot

be considered equivalent since lineage refers to the hierarchy
of cellular relationships and not spatial position. The systems in
which a complete lineage tree can be captured simultaneously
with a fate map, such as the C. elegans lineage, are outliers in
this respect. The reality is that although lineage tracing has
evolved significantly since the first fate maps emerged, our
spatial understanding of lineage, the fate map, has been playing
catch-up. Indeed, the black-and-white Xenopus laevis fate map
remains unchanged from the original dye injection experiments
in the 1970s (Nakamura and Kishiyama, 1971). Later in this re-
view, we return to the current potential to construct a new gen-
eration of fate maps, based on emerging lineage tracing tech-
niques and spatial transcriptomic technologies. Next, we
review the evolution of cell and lineage tracing methods with
no loss of signal or dye diffusion in progeny, and the ability to
discriminate lineage on a single-cell basis, enabling the assem-
bly of lineage hierarchies for increasingly complex tissues and
organisms (Figure 2).

LEVERAGING NATURAL PHENOTYPIC VARIATION AS
HERITABLE MARKS

At the turn of the 20th century, as embryology became more so-
phisticated, surgical and genetic manipulations shed light on cell
lineage, though typically only to tissue-level resolution. For
example, interspecies grafts exploited differences in graft color-
ation to support the direct observation of organizer potential
before transgenic markers such as green fluorescent protein
(GFP) were available (Figure 2B) (Spemann and Mangold,
1924; Wetzel, 1929). Genetic mosaicism studies also emerged
around this time. Drosophila simulans gynandromorphs, genetic
mosaics of male and female cells, yielded preliminary fate maps
showing that different landmarks in the fly derive from separate
cleavage nuclei (Sturtevant, 1929). Forty years later, these data-
sets were re-analyzed to generate comprehensive fate maps
(Garcia-Bellido and Merriam, 1969). As an alternative to gynan-
dromorphs, Drosophila mosaics could be generated by mitotic
recombination (Stern, 1936). Analysis of the wing disc in these
mosaics led to the discovery of compartments—the lineage
segregation of proliferating cells into non-intermingling groups
of cells, leading to functional subdivisions that shape the

ll
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organism—a core concept in developmental biology (Garcia-
Bellido et al., 1973).
In the 1960s, Tarkowski andMintz leveraged the regulative na-

ture of mouse development to generate the first experimental
mosaic mammals (Figure 2C) (Mintz, 1965; Tarkowski, 1961).
These chimeric embryos were created by aggregating cleav-
age-stage mouse embryos, enabling evaluation of the contribu-

tions of each original embryo to the adult mouse. These classic
experiments used embryos with different genetically heritable
characteristics for chimera generation, revealing the clonal
origins of melanocytes (Tarkowski, 1964a), effects of mosaic ge-
netic hermaphroditism (Tarkowski, 1964b), and developmental
repercussions of known lethal mutations (Mintz, 1964). Beyond
intraspecies embryo aggregations, Le Douarin pioneered
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Figure 2. Evolution of Lineage Tracing Techniques
(A–I) Graphical depictions of (A) fate mapping via dye injection in the 1890s, (B) axis development and grafting, (C) generation of chimeric mouse embryos, (D)
retroviral labeling of cells, (E) specialized Cre-loxP cassettes for clonal analysis, (F) Cas9 scar accrual in organisms, (G) viral barcoding approaches for clonal and
lineage analysis, (H) Cas9 scar accrual compatible with scRNA-seq, and (I) transposon-mediated barcode accrual.
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• Fate mapping and lineage tracing are 
related but distinct

Fate maps = schematics of developmental potential

• Lineage tracing identifies progeny from a 
given ancestor cell

Figures adapted from Figures 1, 2 of VanHorn et al., Dev Cell (2020)
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organism—a core concept in developmental biology (Garcia-
Bellido et al., 1973).
In the 1960s, Tarkowski andMintz leveraged the regulative na-

ture of mouse development to generate the first experimental
mosaic mammals (Figure 2C) (Mintz, 1965; Tarkowski, 1961).
These chimeric embryos were created by aggregating cleav-
age-stage mouse embryos, enabling evaluation of the contribu-

tions of each original embryo to the adult mouse. These classic
experiments used embryos with different genetically heritable
characteristics for chimera generation, revealing the clonal
origins of melanocytes (Tarkowski, 1964a), effects of mosaic ge-
netic hermaphroditism (Tarkowski, 1964b), and developmental
repercussions of known lethal mutations (Mintz, 1964). Beyond
intraspecies embryo aggregations, Le Douarin pioneered
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Figure 2. Evolution of Lineage Tracing Techniques
(A–I) Graphical depictions of (A) fate mapping via dye injection in the 1890s, (B) axis development and grafting, (C) generation of chimeric mouse embryos, (D)
retroviral labeling of cells, (E) specialized Cre-loxP cassettes for clonal analysis, (F) Cas9 scar accrual in organisms, (G) viral barcoding approaches for clonal and
lineage analysis, (H) Cas9 scar accrual compatible with scRNA-seq, and (I) transposon-mediated barcode accrual.
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organism—a core concept in developmental biology (Garcia-
Bellido et al., 1973).
In the 1960s, Tarkowski andMintz leveraged the regulative na-

ture of mouse development to generate the first experimental
mosaic mammals (Figure 2C) (Mintz, 1965; Tarkowski, 1961).
These chimeric embryos were created by aggregating cleav-
age-stage mouse embryos, enabling evaluation of the contribu-

tions of each original embryo to the adult mouse. These classic
experiments used embryos with different genetically heritable
characteristics for chimera generation, revealing the clonal
origins of melanocytes (Tarkowski, 1964a), effects of mosaic ge-
netic hermaphroditism (Tarkowski, 1964b), and developmental
repercussions of known lethal mutations (Mintz, 1964). Beyond
intraspecies embryo aggregations, Le Douarin pioneered
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Figure 2. Evolution of Lineage Tracing Techniques
(A–I) Graphical depictions of (A) fate mapping via dye injection in the 1890s, (B) axis development and grafting, (C) generation of chimeric mouse embryos, (D)
retroviral labeling of cells, (E) specialized Cre-loxP cassettes for clonal analysis, (F) Cas9 scar accrual in organisms, (G) viral barcoding approaches for clonal and
lineage analysis, (H) Cas9 scar accrual compatible with scRNA-seq, and (I) transposon-mediated barcode accrual.
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organism—a core concept in developmental biology (Garcia-
Bellido et al., 1973).
In the 1960s, Tarkowski andMintz leveraged the regulative na-

ture of mouse development to generate the first experimental
mosaic mammals (Figure 2C) (Mintz, 1965; Tarkowski, 1961).
These chimeric embryos were created by aggregating cleav-
age-stage mouse embryos, enabling evaluation of the contribu-

tions of each original embryo to the adult mouse. These classic
experiments used embryos with different genetically heritable
characteristics for chimera generation, revealing the clonal
origins of melanocytes (Tarkowski, 1964a), effects of mosaic ge-
netic hermaphroditism (Tarkowski, 1964b), and developmental
repercussions of known lethal mutations (Mintz, 1964). Beyond
intraspecies embryo aggregations, Le Douarin pioneered
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Figure 2. Evolution of Lineage Tracing Techniques
(A–I) Graphical depictions of (A) fate mapping via dye injection in the 1890s, (B) axis development and grafting, (C) generation of chimeric mouse embryos, (D)
retroviral labeling of cells, (E) specialized Cre-loxP cassettes for clonal analysis, (F) Cas9 scar accrual in organisms, (G) viral barcoding approaches for clonal and
lineage analysis, (H) Cas9 scar accrual compatible with scRNA-seq, and (I) transposon-mediated barcode accrual.
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Still pre-“single-cell revolution” takeover 



Fate mapping and lineage tracing

organism—a core concept in developmental biology (Garcia-
Bellido et al., 1973).
In the 1960s, Tarkowski andMintz leveraged the regulative na-

ture of mouse development to generate the first experimental
mosaic mammals (Figure 2C) (Mintz, 1965; Tarkowski, 1961).
These chimeric embryos were created by aggregating cleav-
age-stage mouse embryos, enabling evaluation of the contribu-

tions of each original embryo to the adult mouse. These classic
experiments used embryos with different genetically heritable
characteristics for chimera generation, revealing the clonal
origins of melanocytes (Tarkowski, 1964a), effects of mosaic ge-
netic hermaphroditism (Tarkowski, 1964b), and developmental
repercussions of known lethal mutations (Mintz, 1964). Beyond
intraspecies embryo aggregations, Le Douarin pioneered
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(A–I) Graphical depictions of (A) fate mapping via dye injection in the 1890s, (B) axis development and grafting, (C) generation of chimeric mouse embryos, (D)
retroviral labeling of cells, (E) specialized Cre-loxP cassettes for clonal analysis, (F) Cas9 scar accrual in organisms, (G) viral barcoding approaches for clonal and
lineage analysis, (H) Cas9 scar accrual compatible with scRNA-seq, and (I) transposon-mediated barcode accrual.
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organism—a core concept in developmental biology (Garcia-
Bellido et al., 1973).
In the 1960s, Tarkowski andMintz leveraged the regulative na-

ture of mouse development to generate the first experimental
mosaic mammals (Figure 2C) (Mintz, 1965; Tarkowski, 1961).
These chimeric embryos were created by aggregating cleav-
age-stage mouse embryos, enabling evaluation of the contribu-

tions of each original embryo to the adult mouse. These classic
experiments used embryos with different genetically heritable
characteristics for chimera generation, revealing the clonal
origins of melanocytes (Tarkowski, 1964a), effects of mosaic ge-
netic hermaphroditism (Tarkowski, 1964b), and developmental
repercussions of known lethal mutations (Mintz, 1964). Beyond
intraspecies embryo aggregations, Le Douarin pioneered

/LQHDJH�7UDFLQJ�7HFKQLTXH

2
EV
HU
YD
WLR

QD
O�%

LR
OR
J\

0
RO
HF
XO
DU
�%
LR
OR
J\

6L
QJ

OH
�F
HO
O�%

LR
OR
J\

<HDU(UD 5HVROXWLRQ 6FDODELOLW\

'\H�,QMHFWLRQ 2EVHUYDWLRQ 2EVHUYDWLRQ

��FHOO�6WDJH ��FHOO�6WDJH ���FHOO�6WDJH )DWH�0DS

'RQRU�(PEU\R 5HFLSLHQW�(PEU\R

��FHOO�(PEU\RV
&KLPHULF�0RXVH

5HWURYLUDO�7UDQVGXFWLRQ 0DUNHU�5HFRYHU\��L�H��ȕ�JDO�

��
��
V

��
��
��
�V

��
��
V

��
��
V

��
��
V

��
��
V

��
��
V�

��
��
V�

��
��
V�

2UJDQL]HU�
(QJUDIWPHQW

*HQHUDWLRQ�RI
6HFRQGDU\�$[LV

&KLPHULF����FHOO
(PEU\R

&HOOXODU�3UROLIHUDWLRQ
in vivo�RU�in vitro

5HWURYLUDO�7UDQVGXFWLRQ�RI
6SHFLDOL]HG�&UH�OR[�&DVVHWWH

&UH�$FWLYDWLRQ�&UHDWHV
$OWHUQDWLYH�;)3�5HDGRXW /LQHDJH�'HWHUPLQDWLRQ

&DV��WDUJHWHG�HGLWLQJ�RI
������JHQRPLF�'1$�

WUDQVJHQH�RU�HQGRJHQRXV

$FFUXDO�RI�&DV��
PHGLDWHG�VFDUV�RQ�WDUJHW

VHTXHQFHV
&ORQDO�WUDFNLQJ�RI�

UHJHQHUDWLRQ�LQ�FDXGDO�ILQ
TGACGTTTGGAGTTGTAAATATCTAATATTCCAATCGGCTT
ACGTGCACCACCGCGGGCGGCTGACGAGGGACTCACACCGA
GAAACTAGACAGTTGCGCGCTGGAAGTAGCGCCGGCTAAGA
AAGACGCCTGGTACAGCAGGACTATGAAACCCGTACAAAGG
CAACATCCTCACTGACAACATTACGTACTCTGGGATCATGA
TGACGTTTGGAGTTGTAAATATCTAATATTCCAATCGGCTT
ACGTGCACCACCGCGGGCGGCTGACGAGGGACTCACACCGA
GAAACTAGACAGTTGCGCGCTGGAAGTAGCGCCGGCTAAGA
AAGACGCCTGGTACAGCAGGACTATGAAACCCGTACAAAGG
CAACATCCTCACTGACAACATTACGTACTCTGGGATCATGA

TGACGTTTGGAGTTGTAAATATCTAATATTCCAATCGGCTT
ACGTGCACCACCGCGGGCGGCTGACGAGGGACTCACACCGA
GAAACTAGACAGTTGCGCGCTGGAAGTAGCGCCGGCTAAGA
AAGACGCCTGGTACAGCAGGACTATGAAACCCGACGACGAC
CAGCAGGGAAATTCACTAGCTTCAAGAATATTAACGGCATC
TGACGTTTGGAGTTGTAAATATCTAATATTCCAATCGGCTT
ACGTGCACCACCGCGGGCGGCTGACGAGGGACTCACACCGA
GAAACTAGACAGTTGCGCGCTGACCCGTACAAAGGCAACAT
CTCACTGACAACATTACGTACTCTGGGATCATGACGACGAC
AGCAGGGAAATTCACTAGCTTCAAGAATATTAACGGCATCG

5HWURYLUDO�7UDQVGXFWLRQ
ZLWK�&HOO7DJV

5RXQGV�RI�&HOO7DJJLQJ
JHQHUDWH�EDUFRGH
FRPELQDWLRQV

VF51$�VHT�UHDGV�LQFOXGH
WUDQVFULSWRPLF�DQG�

OLQHDJH�EDUFRGH�GDWD

&DV��WDUJHWHG
HGLWLQJ�RI�JHQRPLF�
'1$�VHTXHQFH

$FFUXDO�RI�&DV��
PHGLDWHG�VFDUV�RQ
WDUJHW�VHTXHQFHV

*HQHUDWLRQ�RI�OLQHDJH
WUHHV�EDVHG�RQ�P51$

EDUFRGH�UHDGRXW

7RO��WUDQVSRVDVH
ZLWK�EDUFRGHG�*)3

$FFUXDO�RI�7RO��PHGLDWHG
*)3�EDUFRGH�,QVHUWLRQV

/LQHDJH�7UHH
5HFRQVWUXFWLRQ

6LQJOH�FHOO
OLPLWHG�E\�
LQMHFWLRQ

��V�RI�FHOOV
OLPLWHG�E\
REVHUYDWLRQ

1�$ 7LVVXHV

7KHRUHWLFDOO\
VLQJOH�FORQHV

��V�RI�FHOOV
OLPLWHG�E\�
REVHUYDWLRQ

7KHRUHWLFDOO\
VLQJOH�FORQHV

���V�RI�FHOOV
OLPLWHG�E\
REVHUYDWLRQ

���V�RI�FHOOV
OLPLWHG�E\
REVHUYDWLRQ

6LQJOH�FHOO
����V��

������V�RI
FHOOV

1�$ 7LVVXHV

����V��
������V�RI

FHOOV

����V��
������V�RI

FHOOV

7HFKQLTXH�	�
&LWDWLRQ

'\H�,QMHFWLRQ
DQG�7LPH�/DSVH
&RQNOLQ������
9RJW������

2UJDQL]HU�*UDIWV
6SHPDQQ�DQG�
0DQJROG������
:HW]HO������

&KLPHUD
*HQHUDWLRQ

7DUNRZVNL������
0LQW]������

5HWURYLUDO
/DEHOOLQJ

&HSNR�et al������

5DQGRPL]HG�
5HFRPELQDWLRQ

&DVVHWWHV
/LYHW�et al������

6QLSSHUW�et al,�����

&DV��7DUJHWHG
6FDU�$FFUXDO
0F.HQQD�et al,

����
-XQNHU�et al������

5HWURYLUDO�P51$
%DUFRGH�$FFUXDO
<DR�et al������
%LGG\�et al������

:HLQUHE�et al,�����

&DV��P51$�6FDUV
6SDQMDDUG�et al,

����
5DM�et al������
&KDQ�et al������
%RZOLQJ et al������

7UDQVSRVRQ�
P51$�%DUFRGH�

$FFUXDO
:DJQHU�et al������

/LPLWDWLRQ

2QO\�VSHFLILF
WR�HPEU\R
RI�RULJLQ

2EVHUYDWLRQDO
GDWD

'DWDVHW�OLPLWDWLRQ
EDVHG�RQ�

FROOHFWLRQ�PHWKRG

5HVROYHG�WR�FORQDO
DQG�VXE�FORQDO
SRSXODWLRQV

,QIRUPDWLRQ�GURSRXW
GXH�WR�&DV�

LQGXFHG�GHOHWLRQ
RI�SUHYLRXV�VFDUV

1RQH�EH\RQG
XVXDO�VF51$�VHT
WUDQVJHQH�GURSRXW

2EVHUYDWLRQDO
GDWD

2EVHUYDWLRQDO
GDWD

2EVHUYDWLRQDO
GDWD

7KHRUHWLFDOO\
VLQJOH�FORQHV

6LQJOH�FHOO

6LQJOH�FHOO

! !

G

F

E

D

C

B

A

H

I

Figure 2. Evolution of Lineage Tracing Techniques
(A–I) Graphical depictions of (A) fate mapping via dye injection in the 1890s, (B) axis development and grafting, (C) generation of chimeric mouse embryos, (D)
retroviral labeling of cells, (E) specialized Cre-loxP cassettes for clonal analysis, (F) Cas9 scar accrual in organisms, (G) viral barcoding approaches for clonal and
lineage analysis, (H) Cas9 scar accrual compatible with scRNA-seq, and (I) transposon-mediated barcode accrual.
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Using somatic mutations

Digital droplet PCR
A polymerase chain reaction in 
which the reaction is divided 
into thousands of small 
droplets, allowing absolute 
quantification of PCR products.

Organoid
A three-dimensional culture 
model of a whole or partial 
organ or tissue.

be conducted at different levels of granularity according 
to the types of variants, tissue and disease state selected 
(TABLE 2), although precise frequency estimates for each 
type of variant have not been measured in a consistent 
way, and are therefore not provided here. Single-cell 
genome sequencing promises to revolutionize lineage 
tracking in humans; however, whole-genome sequen-
cing currently requires considerably more DNA than 
the 6 picograms that are present in a single cell, neces-
sitating pre-sequencing genome amplification, which 
can introduce technical artefacts and complications to 
a lineage-tracing experiment71,72.

Somatic mutations for lineage tracing in normal tissue. 
Endogenous retroelements, which principally include 
long interspersed nuclear element 1 (L1; also known 
as LINE-1) elements, constitute much of the human 
genome; L1 elements alone constitute nearly one-fifth 
of the genome73. A very small number of these L1 ele-
ments retain the ability to mobilize in humans and can 
insert into a new genomic location during somatic cell 
division74, which has raised substantial interest in their 
potential contribution to somatic diversity, especially 
within complex tissues, such as the brain75. Large num-
bers of apparent somatic L1 mobilization events were 
suggested by initial experiments using quantitative PCR 
(qPCR)76 or DNA sequencing77 from bulk human brain, 

but more precise estimates of L1 mobilization frequency 
that have been derived by sorting single neurons, ampli-
fying the whole genome and analysing L1 retrotrans-
position at a single-cell level78, suggest fewer than one 
somatic insertion per neuronal genome on average78. 
A second study suggests higher rates (10–15 somatic 
insertions per genome)79, but this study is subject to crit-
icism for the inclusion of sequencing and other technical 
artefacts, the removal of which reduces the estimated 
rate to <1 somatic insertion per neuron80. A single- 
neuron whole-genome sequencing study81 confirms the 
low rate of L1 retrotransposition events but also illus-
trates the striking spatial distribution patterns of clonal 
retrotransposition events, providing strong proof of 
principle for the use of spontaneous somatic L1 events 
for lineage tracing. Using a digital droplet PCR assay, one 
somatic L1 insertion was found across the cortex, and 
the other somatic L1 insertion was restricted to a small 
region of prefrontal cortex, indicating that the first L1 
insertion occurred early in brain development, with the 
second occurring later81 (FIG. 3).

Subchromosomal somatic copy-number variation 
is common in human tissues, and somatic CNVs are 
potentially useful lineage-tracing tools owing to the rela-
tive ease with which they can be detected from single-cell 
sequencing data. Large subchromosomal somatic CNVs 
can be detected in normal skin82,83 and brain83–85, and 
these studies report large proportions of skin cells and 
neurons, approximately 30–70%, that contain at least one 
somatic CNV, including a small number of shared CNVs 
that arose during development85. Furthermore, the analy-
sis of clonal CNVs can also illuminate genes and lineages 
that are responsible for disease; for example, brain tissue 
from patients with hemimegalencephaly contains neu-
rons with somatic copy-number gains of chromosome 
1q (containing the growth-promoting gene AKT3)85. 
CNVs are particularly promising as lineage-marking 
somatic variants; unlike other types of somatic mutations, 
they can be identified from low-coverage (<1×) sequen-
cing, given sufficiently even genome amplification (see 
‘Methodological considerations for retrospective lineage 
tracing’, below), making the sequencing of many single 
cells for variant discovery a cost-effective strategy86.

SNVs are a major source of evolutionary and disease- 
causing mutations, although they can also occur very 
frequently in non-coding portions of the genome with-
out functional effects on somatic cells87. Thus, somatic 
SNVs represent a rich source of lineage-marking muta-
tions, as they are both abundant and can be expected to 
be frequently functionally neutral. Indeed, pioneering 
work in mouse stomach, intestine and prostate16, and 
mouse brain88 and human brain17, suggests that somatic 
SNVs can be identified from single cells or clones and 
used to reconstruct developmental lineages. These works 
disagree as to the precise rates of mutation, which is 
potentially attributable to differences in species and 
methodology, as two studies amplified mouse single-cell 
genomes in vivo by organoid cell culture16 or somatic cell 
nuclear transfer88, estimating approximately 100–600 
somatic SNVs per cell, and one study amplified human 
single-cell genomes from post-mortem tissue in vitro by 

Nature Reviews | Genetics

G

Polymerase slippage

Misrepair

Retrotransposition event
Sometimes shared between cellsCopy-number

variant
Sometimes shared 
between cells

Single-nucleotide
variant
Frequently shared
between cells

L1 element

Gene 
duplication

TATA
ATAT

AT T

Microsatellite
Frequently shared
between cells

Single-strand
lesion
Not shared 
between cells

O
Cytosine

C C

N C
N

N H

H

CH

H

O
Uracil

Cytosine deamination

C C

N C
NCH

H

O
Thymine

C C

N C
NCH HH

H3CO O

Figure 4 | Somatic mutation in the genome. 5QOCVKE�OWVCVKQPU�KP�VJG�IGPQOG�
KPENWFG|
KP�QTFGT�QH�KPETGCUKPI�HTGSWGPE[���NQPI�KPVGTURGTUGF�PWENGCT�GNGOGPV|��
.���
TGVTQVTCPURQUKVKQP�GXGPVU��EQR[�PWODGT�XCTKCVKQP��UKPING�PWENGQVKFG�XCTKCPVU��
OKETQUCVGNNKVG�
UJQTV�VCPFGO�TGRGCV��XCTKCPVU�CPF�UKPING�UVTCPF�NGUKQPU��'CEJ�ENCUU�QH�
OWVCVKQPU�KU�ECWUGF�D[�FKHHGTGPV�GPXKTQPOGPVCN�UVTGUUQTU��UWEJ�CU�&0#�RQN[OGTCUG�
UNKRRCIG�HQT�OKETQUCVGNNKVGU�CPF�E[VQUKPG�FGCOKPCVKQP�HQT�UKPING�PWENGQVKFG�NGUKQPU��
(WTVJGTOQTG��GCEJ�ENCUU�QH�OWVCVKQP�JCU�FKHHGTGPV�HWPEVKQPCN�EQPUGSWGPEGU�HQT�VJG�
IGPQOG�QH�VJG�EGNN�KP�YJKEJ�KV�QEEWTU��UWEJ�CU�IGPG�QT�GPJCPEGT�FKUTWRVKQP�
.��
TGVTQVTCPURQUKVKQP��CPF�KPETGCUGF�RTQVGKP�RTQFWEVKQP�
EQR[�PWODGT�XCTKCVKQP��

REV IEWS

NATURE REVIEWS | GENETICS   VOLUME 18  | APRIL 2017  | 237

Ј
‏
ɐəɔŋ

‏
* <>I EHH<J

‏
. Q=HEOD@NO

‏
)EI EP@?Н

‏
L<NP

‏
KA
‏
2LNEJB@N

‏
, <PQN@М

‏
� HH
‏
NEBDPO

‏
N@O@NR@?М

From Figure 4 of Woodworth et al., Nat Rev Gen (2017)

Advantage: already “in the data” or “free"


Two main limitations of using somatic 
variation in lineage tracing:


1.WGS required ($$$, unscalable)

2. Inherent read sparsity of scRNA-seq



Using mtDNA mutations

From Graphical Abstract of Ludwig et al., Cell (2021)

Advantages: 

1. Again, “free” 

2. mtDNA mutation rates > gDNA 

mutation rates

3. Readily paired GEX / CA with clonal 

lineage information

4. No WGS or fancy barcoding required
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SUMMARY

Lineage tracing provides key insights into the fate of
individual cells in complex organisms. Although effec-
tivegenetic labelingapproachesareavailable inmodel
systems, in humans, most approaches require detec-
tion of nuclear somatic mutations, which have high
error rates, limited scale, and do not capture cell
state information. Here, we show that somatic muta-
tions in mtDNA can be tracked by single-cell RNA or
assay for transposase accessible chromatin (ATAC)
sequencing. We leverage somatic mtDNA mutations
as natural genetic barcodes and demonstrate their
utility ashighly accurate clonalmarkers to infer cellular
relationships.We tracknativehumancells both in vitro
and in vivo and relate clonal dynamics to gene expres-
sionandchromatinaccessibility.Ourapproachshould
allow clonal tracking at a 1,000-fold greater scale than
with nuclear genome sequencing, with simultaneous
information on cell state, opening the way to chart
cellular dynamics in human health and disease.

INTRODUCTION

Recent innovations in single-cell genomics have enabled in-
sights into the heterogeneity of human cell populations and

have redefined concepts about lineage commitment and devel-
opment (Giladi and Amit, 2018). Although all cells in the human
body are derived from the zygote, we lack a detailed map inte-
grating cell division (lineage) and differentiation (fate). As a result,
we have a limited understanding of how cellular dynamics play a
role in physiologic and pathologic conditions for any given tissue.
Two classes of methods have been developed to study

cellular relationships and clonal dynamics in complex tissues
of vertebrates. In model organisms, most approaches to date
rely on an engineered genetic label to tag individual cells with
heritable marks (Kester and van Oudenaarden, 2018; Wood-
worth et al., 2017), such as fluorescent reporter genes, high-
diversity DNA barcode libraries, mobile transposable elements,
Cre-mediated recombination, or CRISPR-based genetic scars
(McKenna et al., 2016; Pei et al., 2017; Sun et al., 2014; Yu
et al., 2016). Recent studies have combined several of these
tracing methods with single-cell RNA sequencing (RNA-seq)
(scRNA-seq) to interrogate both lineage relationships and cell
states (Alemany et al., 2018; Montoro et al., 2018; Raj et al.,
2018; Spanjaard et al., 2018).
However, the genetic manipulations required for such ap-

proaches cannot be applied in intact humans (Biasco et al.,
2016). Limited lineage-tracing studies in humans have relied on
the detection of naturally occurring somatic mutations, including
single-nucleotide variants (SNVs), copy number variants (CNVs),
and variation in short tandem repeat sequences (microsatellites
or STRs), which are stably propagated to daughter cells but are
absent in distantly related cells (Ju et al., 2017; Lodato et al.,
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Limitations: 

1. Current approaches offer limited coverage of mito genome

2. Potential for horizontal gene transfer in mito genome (unclear to what extent)
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CELL LINEAGE TRACING

Whole-organism lineage tracing by
combinatorial and cumulative
genome editing
Aaron McKenna,* Gregory M. Findlay,* James A. Gagnon,* Marshall S. Horwitz,
Alexander F. Schier,† Jay Shendure†

INTRODUCTION: The developmental path by
which a fertilized egg gives rise to the cells of a
multicellular organism is termed the cell lineage.
In 1983, John Sulston and colleagues docu-
mented the invariant cell lineage of the round-
worm Caenorhabditis elegans as determined
by visual observation. However, tracing cell
lineage in nearly all other multicellular orga-
nisms is vastlymore challenging. Contemporary
methods rely on genetic markers or somatic
mutations, but these approaches have limita-
tions that preclude their application at the level
of a whole, complex organism.

RATIONALE: Foratechnologytocomprehensively
trace cell lineages in a complex multicellular sys-
tem, it must uniquely and incrementallymark
cells and their descendants over many divi-
sions and in a way that does not interfere
with normal development. These uniquemarks
must also accumulate irreversibly over time,
allowing the reconstruction of lineage trees.
Finally, the full set of marks must be read out
from each of many single cells. We hypothe-
sized that genome editing, which introduces
diverse, irreversible edits in a highly program-
mable fashion, could be repurposed for cell

lineage tracing in a way that realizes these
characteristics.
To this end, we developed amethod termed

genome editing of synthetic target arrays for
lineage tracing (GESTALT). Thismethod uses
genome editing to generate a combinatorial
diversity of mutations that accumulate over
many cell divisions within a compact DNA
barcode consisting of multiple clustered regu-
larly interspaced short palindromic repeats
(CRISPR)/Cas9 target sites. Lineage relation-
ships can be readily queried by sequencing the
edited barcodes and relating the patterns of
edits observed.

RESULTS:We first developed this approach in
cell culture, editing synthetic arrays of 9 to 12
CRISPR/Cas9 target sites to generate thou-
sands of unique derivative barcodes. We show
that edited barcodes can be read by targeted
sequencing of either DNA or RNA. In addition,
the rates and patterns of barcode editing are
tunable and the diverse edits accumulate over
successive divisions in away that is informative
of cell lineage.
We then applied GESTALT to the zebra-

fish Danio rerio by injecting fertilized eggs

with editing reagents that target a genomic
barcode bearing 10 target sites. Across dozens
of embryos, we demonstrate the accumulation
of hundreds to thousands of uniquely edited
barcodes per animal, from which lineage rela-
tionships can be inferred on the basis of shared
mutations. In adult zebrafish, we evaluated
the edited barcodes from ~200,000 cells and
observed that the majority of cells in each
organ are derived from a small number of
progenitor cells. Furthermore, ancestral pro-
genitors, inferred on the basis of shared mu-
tations among subsets of cells, can contribute
to different germ layers and organ systems.

CONCLUSION: Our proof-of-principle experi-
ments show that combinatorial, cumulative
genome editing of a compact barcode can be

used to record lineage in-
formation in multicellular
systems. Further optimi-
zation of GESTALT will
enable mapping of the
complete cell lineage in
diverse organisms. This

method could also be adapted to link cell
lineage information to molecular profiles of
the same cells. In the long term, we envision
that rich, systematically generated maps of
organismal development—wherein lineage,
epigenetic, transcriptional, and positional
information are concurrently captured at
single-cell resolution—will advance our under-
standing of development in both healthy and
disease states. More broadly, cumulative and
combinatorial genome editing could stably
record other types of biological information
and history in living cells.▪
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GESTALT. (Left) A barcode of CRISPR/Cas9 target sites is progressively edited over many cell divisions. (Right) Edited barcode sequences are
related to one another on the basis of shared mutations in order to reconstruct lineage trees.
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GESTALT (genome editing of synthetic target arrays for lineage tracing)

• This paper sets a precedent for large-scale lineage 
tracing - how? Tracing must…


1. Impart unique marks over division

2. Marks must accumulate over time

3. Easy single-cell readout
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CELL LINEAGE TRACING

Whole-organism lineage tracing by
combinatorial and cumulative
genome editing
Aaron McKenna,1* Gregory M. Findlay,1* James A. Gagnon,2* Marshall S. Horwitz,1,3

Alexander F. Schier,2,4,5,6† Jay Shendure1,7†

Multicellular systems develop from single cells through distinct lineages. However, current
lineage-tracing approaches scale poorly to whole, complex organisms. Here, we use genome
editing to progressively introduce and accumulate diverse mutations in a DNA barcode over
multiple rounds of cell division. The barcode, an array of clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 target sites, marks cells and enables the
elucidation of lineage relationships via the patterns of mutations shared between cells. In
cell culture and zebrafish, we show that rates and patterns of editing are tunable and that
thousands of lineage-informative barcode alleles can be generated. By sampling hundreds of
thousands of cells from individual zebrafish, we find that most cells in adult organs derive
from relatively few embryonic progenitors. In future analyses, genome editing of synthetic
target arrays for lineage tracing (GESTALT) can be used to generate large-scale maps of cell
lineage in multicellular systems for normal development and disease.

T
he tracing of cell lineages was pioneered in
nematodes by Whitman in the 1870s, at a
time of controversy surroundingHaeckel’s
theory of recapitulation, which argued that
embryological development paralleled evo-

lutionary history (1). This line of work culminated
a century later in the complete description of
mitotic divisions in the roundwormCaenorhabditis
elegans—a tour de force facilitated by its visual
transparency as well as the modest size and in-
variant nature of this nematode’s cell lineage (2).
Over the past century, a variety of creative

methods have been developed for tracing cell
lineage in developmentally complex organisms (3).
In general, subsets of cells are marked and their
descendants followed as development progresses.
Theways inwhich cellmarking has been achieved
includedyesandenzymes (4–6), cross-species trans-
plantation (7), recombinase-mediated activation
of reporter gene expression (8,9), insertionof foreign
DNA (10–12), and naturally occurring somatic
mutations (13–15). However, despite many power-
ful applications, these methods have limitations
for the large-scale reconstruction of cell lineages
in multicellular systems. For example, dye and

reportergene–basedcellmarkingareuninformative
with respect to the lineage relationships between
descendant cells. Furthermore, when two ormore
cells are independently but equivalently marked,
the resultingmultitude of clades cannot be readily
distinguished from one another. Although these
limitations can be overcome in part with combi-
natorial labeling systems (16, 17) or through the
introduction of diverse DNA barcodes (10–12),
these strategies fall short of a system for inferring
lineage relationships throughout an organism and
across developmental time. In contrast,methods
based on somatic mutations have this potential, as
they can identify lineages and sublineages within
single organisms (13, 18). However, somaticmuta-
tions are distributed throughout the genome,
necessitating whole-genome sequencing (14, 15),
which is expensive to scale beyond small numbers
of cells and not readily compatible with in situ
readouts (19, 20).
What are the requirements for a system for

comprehensively tracing cell lineages in a complex
multicellular system? First, it must uniquely and
incrementally mark cells and their descendants
over many divisions and in a way that does not
interferewithnormal development. Second, these
uniquemarksmust accumulate irreversibly over
time, allowing the reconstruction of lineage trees.
Finally, the full set ofmarksmust be easily read out
in each of many single cells.
We hypothesized that genome editing, which

introduces diverse, irreversible edits in a highly
programmable fashion (21), could be repurposed
for cell lineage tracing in a way that realizes these
requirements. To this end, we developed genome
editing of synthetic target arrays for lineage

tracing (GESTALT), amethod that uses clustered
regularly interspaced short palindromic repeats
(CRISPR)/Cas9 genome editing to accumulate
combinatorial sequence diversity to a compact,
multitarget, densely informative barcode. Edited
barcodes can be efficiently queried by a single
sequencing read from each of many single cells
(Fig. 1A). In both cell culture and in the zebrafish
Danio rerio, we demonstrate the generation of
thousands of uniquely edited barcodes that can
be related to oneanother to reconstruct cell lineage
relationships. In adult zebrafish, we observe that
themajority of cells of each organ are derived from
a small number of progenitor cells. Furthermore,
ancestral progenitors, inferred on the basis of
shared edits among subsets of derived alleles,
make highly nonuniform contributions to germ
layers and organ systems.

Results
Combinatorial and cumulative editing of
a compact genomic barcode in
cultured cells

To investigatewhether genome editing can be used
to generate a combinatorial diversity of mutations
within a compact region, we synthesized a con-
tiguous array of 10 CRISPR/Cas9 targets separated
by threebase-pair (bp) linkers (total lengthof 257bp).
The first target perfectly matched one single-
guide RNA (sgRNA), whereas the remainder were
off-target sites for the same sgRNA, ordered from
highest to lowest activity (22). This array of targets
(v1barcode)was cloneddownstreamofanenhanced
green fluorescent protein (EGFP) reporter in a
lentiviral construct (23). We then transduced
human embryonic kidney (HEK) 293T cells with
lentivirus and used fluorescence-activated cell
sorting (FACS) to purify an EGFP-v1–positive
population. To edit the barcode, we cotransfected
these cells with a plasmid expressing Cas9 and the
sgRNA and a vector expressing Discosoma red
fluorescent protein (DsRed). Cells were sorted
3days after transfection for highDsRedexpression,
and genomicDNA (gDNA)was harvested on day 7.
The v1 barcode was polymerase chain reaction
(PCR) amplified, and the resulting amplicons
were subjected to deep sequencing.
To minimize confounding sequencing errors,

which are primarily substitutions, we analyzed
edited barcodes for only insertion-deletion changes
relative to the wild-type v1 barcode. In this first
experiment, we observed 1650 uniquely edited
barcodes (eachobserved in≥25 reads),withdiverse
edits concentrated at the expected Cas9 cleavage
sites, predominantly intertarget deletions in-
volving sites 1, 3, and 5 or focal edits of sites
1 and 3 (Fig. 1, B and C, and table S1). These
results show that combinatorial editing of the
barcode can give rise to a large number of unique
sequences, i.e., alleles.
To evaluate reproducibility, we transfected the

same editing reagents to cultures expanded from
three independent EGFP-v1–positive clones. Tar-
geted reverse transcription PCR (RT-PCR) and
sequencing of EGFP-v1 RNA showed similar dis-
tributions of edits to the v1 barcode in the transcript
pool, between replicates aswell as in comparison to
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From Summary Figure of McKenna et al., Science (2016)

• Applied to cell culture and zebrafish

• Found that most cells in adult organs derive from relatively few embryonic 

ancestor cells



macsGESTALT for high-res lineage tracing

From Figure 1 of Simeonov et al., Cancer Cell (2021)

Static barcodes track clonal information

Evolving barcodes (via indel mutagenesis) track sub-clonal phylogenetic information



macsGESTALT for high-res lineage tracing

From Figure 1 of Simeonov et al., Cancer Cell (2021)

Evolving barcodes edits 
are inherited with each 
cell division

Random number of static 
barcodes are integrated 
into each clonal lineage



macsGESTALT for high-res lineage tracing

From Figure 1 of Simeonov et al., Cancer Cell (2021)

Editing rate is a function of MOI - can be adjusted to fit model system

(1) dox-inducible Cas9 cell lines are stably generated

(2) sgRNA plasmid is introduced second at high (>0.8 MOI)

(3) If tumor cells were transplanted to a mouse, the graft was allowed to take hold 
for 1 week and then dox was administered to begin the experiment. Primary tumor 
cells and metastatic sites (and circulating tumor cells when possible) were collected

(scRNA-seq) to explicitly relate cell lineage histories to transcrip-
tional states (Raj et al., 2018; Spanjaard et al., 2018; Chan et al.,
2019). Until recently, GESTALT and related methods have pri-
marily been applied to early development, e.g., by injection of
components into zygotes and subsequent profiling of edited
barcodes and single-cell transcriptomes from the resulting or-
ganism (Bowling et al., 2020; Quinn et al., 2021). This strategy
is fundamentally difficult to translate across biological systems
as it requires specialized injection and titration. Furthermore,
as components are neither integrated nor inducible, such sys-
tems are not amenable to longer-term or time-delayed studies
in adult animals. However, with refinement, CRISPR-Cas9-
based lineage tracers hold potential to be useful in contexts
outside of early development, such as the study of somatic
stem cell dynamics or cancer metastasis.

RESULTS

An inducible lineage recorder with scRNA-seq readout
To this end, we developed macsGESTALT (multiplexed, activat-
able, clonal and subclonal GESTALT), an integrated, inducible,

and scalable method that can be easily adapted to any engineer-
able mammalian system to enable lineage tracing (Figure 1). Our
approach consists of three components (Figure 1A):

(1) Each cell contains multiple unique barcode integrations.
Barcodes are constitutively expressed within the 30 un-
translated region of a polyadenylated pac (puromycin
N-acetyl-transferase) transcript, enabling sequencing
via standard mRNA-based capture. Each barcode is a
combination of a static 10 bp sequence of random bases,
used for clonal reconstruction, and a 250 bp editable,
evolving region composed of five CRISPR target sites,
used for phylogenetic reconstruction (Figures 1B–1E).

(2) The evolving region is targeted by an array of five guide
RNAs (gRNAs), separated by transfer RNA (tRNA)
spacers, under a single constitutive mammalian U6 pro-
moter. Upon transcription, tRNAs are excised from the
array by endogenous RNases P and Z, releasing the
individual gRNAs (Port and Bullock 2016). We selected
this configuration from a screen of five different arrays,
ranging from least compact to most compact (Figures
S1A–S1G). The gRNA-tRNA array (Figure S1E)

A B C

D E

Figure 1. macsGESTALT for high-resolution lineage tracing
(A) Genetic components of macsGESTALT.

(B) Clone-level information is stored in static barcodes, while subclonal phylogenetic information is dynamically encoded into evolving barcodes via insertions and

deletions (indels, blue and red bars) induced by doxycycline.

(C) Two example clones from a population with n clones, each with a random number of integrated barcodes. Evolving barcode edits are encoded and inherited

as cells divide.

(D) Generation of a macsGESTALT barcoded population of cells and experimental workflow.

(E) macsGESTALT analysis workflow. Dox, doxycycline; rtTA, reverse tetracycline transactivator; TRE, tetracycline-responsive element.

See also Figures S1 and S2.
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Barcodes are constitutively expressed within the 30 un-
translated region of a polyadenylated pac (puromycin
N-acetyl-transferase) transcript, enabling sequencing
via standard mRNA-based capture. Each barcode is a
combination of a static 10 bp sequence of random bases,
used for clonal reconstruction, and a 250 bp editable,
evolving region composed of five CRISPR target sites,
used for phylogenetic reconstruction (Figures 1B–1E).

(2) The evolving region is targeted by an array of five guide
RNAs (gRNAs), separated by transfer RNA (tRNA)
spacers, under a single constitutive mammalian U6 pro-
moter. Upon transcription, tRNAs are excised from the
array by endogenous RNases P and Z, releasing the
individual gRNAs (Port and Bullock 2016). We selected
this configuration from a screen of five different arrays,
ranging from least compact to most compact (Figures
S1A–S1G). The gRNA-tRNA array (Figure S1E)
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deletions (indels, blue and red bars) induced by doxycycline.
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What is metastasis and EMT?

Source: National Cancer Institute

• Metastasis = most cancer deaths


• EMT ~ metastasis


• EMT thought to play a role across 
many cancer types



Most metastases arise from rare clones

From Figure 2 of Simeonov et al., Cancer Cell (2021)

Experiment: combine macsGESTALT with scRNA-seq

KPCY mouse tumor model cell line transplanted into non-tumor-bearing mice

PDAC is very deadly (5-year survival rate of 9%)

Good model for two reasons:

(1) This model exhibits consistent metastasis kinetics

(2) Good model of human disease (Kras GoF and p53 LoF are the most common drivers of 
human PDAC) 
(3) minimal in vitro cell line culture time

(4) pancreatic focal lesion disseminates to the same sites as in human PDAC (incl. liver and lung)



Most metastases arise from rare clones
Clonal reconstruction via static (purple) barcodes:

Circle size   =  % contribution to harvest site

Circle color =  enrichment compared to primary tumor

Clones numbered by size in the primary tumor

Highly enriched in disseminated harvest site (dark red)
Large portion 
of the harvest 
site is clonal Highly depleted from 

the harvest site

“51% of clones (48/95) failed to metastasize at all, suggesting that mutations 
in Kras and p53 alone do not ensure metastatic success.”

From Figure 2 of Simeonov et al., Cancer Cell (2021)



Most metastases arise from rare clones

We next asked whether clones were transcriptionally distinct.
Indeed, cells from the same clone clustered together in uniform
manifold approximation and projection (UMAP) space (Fig-
ure 2D). This was true of both large and small clones (Figures
2D–2G). Importantly, this finding extended to cells harvested
from different sites, suggesting that cells retain their clonal tran-
scriptional identity even after dissemination (Figure S3A). These
stable transcriptional differences may result from either epige-
netic drift or large-scale copy number changes, the latter
observed in our data (Figure S3B) and a hallmark of PDAC chro-
mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-
sponded to transcriptional differences. While clones had distinct
transcriptional identities, we found that many overlapped in
UMAP space (Figures 2D–2G). Furthermore, 81% of clones
(77/95 across both mice) primarily resided in a single transcrip-
tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-

tional state to tumor aggression, we derived a clonal aggression
scoring system based on clone size and dissemination (Fig-
ure 2B; STAR Methods). We found that 85% (81/95) of clones
were non-aggressive and were transcriptionally similar, occu-
pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
recovered over twice as many barcodes per cell, which permits
more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
aggressive clones again appeared transcriptionally similar to
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Figure 2. Most metastases arise from rare, transcriptionally distinct clones
(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression

assignments as in (H) and (I), respectively.

(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as

mouse.clone).

(E and F) Two representative non-aggressive clones. (E) M1.13, (F) M2.10.

(G) A representative clone of medium aggression.

(H) Leiden transcriptional clustering of (D).

(I) Cells colored by clonal aggression.

(J) Number of non-, mid-, or high-aggression clones of 95 total.

See also Figures S3 and S4.
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We next asked whether clones were transcriptionally distinct.
Indeed, cells from the same clone clustered together in uniform
manifold approximation and projection (UMAP) space (Fig-
ure 2D). This was true of both large and small clones (Figures
2D–2G). Importantly, this finding extended to cells harvested
from different sites, suggesting that cells retain their clonal tran-
scriptional identity even after dissemination (Figure S3A). These
stable transcriptional differences may result from either epige-
netic drift or large-scale copy number changes, the latter
observed in our data (Figure S3B) and a hallmark of PDAC chro-
mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-
sponded to transcriptional differences. While clones had distinct
transcriptional identities, we found that many overlapped in
UMAP space (Figures 2D–2G). Furthermore, 81% of clones
(77/95 across both mice) primarily resided in a single transcrip-
tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-

tional state to tumor aggression, we derived a clonal aggression
scoring system based on clone size and dissemination (Fig-
ure 2B; STAR Methods). We found that 85% (81/95) of clones
were non-aggressive and were transcriptionally similar, occu-
pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
recovered over twice as many barcodes per cell, which permits
more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
aggressive clones again appeared transcriptionally similar to
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Figure 2. Most metastases arise from rare, transcriptionally distinct clones
(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression

assignments as in (H) and (I), respectively.

(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as

mouse.clone).

(E and F) Two representative non-aggressive clones. (E) M1.13, (F) M2.10.

(G) A representative clone of medium aggression.

(H) Leiden transcriptional clustering of (D).

(I) Cells colored by clonal aggression.

(J) Number of non-, mid-, or high-aggression clones of 95 total.
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ure 2B; STAR Methods). We found that 85% (81/95) of clones
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pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).
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We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
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more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
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(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression
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(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone
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(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as
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(J) Number of non-, mid-, or high-aggression clones of 95 total.
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2D–2G). Importantly, this finding extended to cells harvested
from different sites, suggesting that cells retain their clonal tran-
scriptional identity even after dissemination (Figure S3A). These
stable transcriptional differences may result from either epige-
netic drift or large-scale copy number changes, the latter
observed in our data (Figure S3B) and a hallmark of PDAC chro-
mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-
sponded to transcriptional differences. While clones had distinct
transcriptional identities, we found that many overlapped in
UMAP space (Figures 2D–2G). Furthermore, 81% of clones
(77/95 across both mice) primarily resided in a single transcrip-
tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-

tional state to tumor aggression, we derived a clonal aggression
scoring system based on clone size and dissemination (Fig-
ure 2B; STAR Methods). We found that 85% (81/95) of clones
were non-aggressive and were transcriptionally similar, occu-
pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
recovered over twice as many barcodes per cell, which permits
more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
aggressive clones again appeared transcriptionally similar to

A

B

C D E

F

G I J

H

Figure 2. Most metastases arise from rare, transcriptionally distinct clones
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(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)
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(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as
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(G) A representative clone of medium aggression.
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Indeed, cells from the same clone clustered together in uniform
manifold approximation and projection (UMAP) space (Fig-
ure 2D). This was true of both large and small clones (Figures
2D–2G). Importantly, this finding extended to cells harvested
from different sites, suggesting that cells retain their clonal tran-
scriptional identity even after dissemination (Figure S3A). These
stable transcriptional differences may result from either epige-
netic drift or large-scale copy number changes, the latter
observed in our data (Figure S3B) and a hallmark of PDAC chro-
mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-
sponded to transcriptional differences. While clones had distinct
transcriptional identities, we found that many overlapped in
UMAP space (Figures 2D–2G). Furthermore, 81% of clones
(77/95 across both mice) primarily resided in a single transcrip-
tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-

tional state to tumor aggression, we derived a clonal aggression
scoring system based on clone size and dissemination (Fig-
ure 2B; STAR Methods). We found that 85% (81/95) of clones
were non-aggressive and were transcriptionally similar, occu-
pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
recovered over twice as many barcodes per cell, which permits
more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
aggressive clones again appeared transcriptionally similar to
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Figure 2. Most metastases arise from rare, transcriptionally distinct clones
(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression

assignments as in (H) and (I), respectively.

(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as

mouse.clone).

(E and F) Two representative non-aggressive clones. (E) M1.13, (F) M2.10.

(G) A representative clone of medium aggression.

(H) Leiden transcriptional clustering of (D).

(I) Cells colored by clonal aggression.

(J) Number of non-, mid-, or high-aggression clones of 95 total.
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We next asked whether clones were transcriptionally distinct.
Indeed, cells from the same clone clustered together in uniform
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ure 2D). This was true of both large and small clones (Figures
2D–2G). Importantly, this finding extended to cells harvested
from different sites, suggesting that cells retain their clonal tran-
scriptional identity even after dissemination (Figure S3A). These
stable transcriptional differences may result from either epige-
netic drift or large-scale copy number changes, the latter
observed in our data (Figure S3B) and a hallmark of PDAC chro-
mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-
sponded to transcriptional differences. While clones had distinct
transcriptional identities, we found that many overlapped in
UMAP space (Figures 2D–2G). Furthermore, 81% of clones
(77/95 across both mice) primarily resided in a single transcrip-
tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-

tional state to tumor aggression, we derived a clonal aggression
scoring system based on clone size and dissemination (Fig-
ure 2B; STAR Methods). We found that 85% (81/95) of clones
were non-aggressive and were transcriptionally similar, occu-
pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
recovered over twice as many barcodes per cell, which permits
more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
aggressive clones again appeared transcriptionally similar to
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(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression

assignments as in (H) and (I), respectively.

(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as

mouse.clone).

(E and F) Two representative non-aggressive clones. (E) M1.13, (F) M2.10.

(G) A representative clone of medium aggression.

(H) Leiden transcriptional clustering of (D).

(I) Cells colored by clonal aggression.

(J) Number of non-, mid-, or high-aggression clones of 95 total.
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We next asked whether clones were transcriptionally distinct.
Indeed, cells from the same clone clustered together in uniform
manifold approximation and projection (UMAP) space (Fig-
ure 2D). This was true of both large and small clones (Figures
2D–2G). Importantly, this finding extended to cells harvested
from different sites, suggesting that cells retain their clonal tran-
scriptional identity even after dissemination (Figure S3A). These
stable transcriptional differences may result from either epige-
netic drift or large-scale copy number changes, the latter
observed in our data (Figure S3B) and a hallmark of PDAC chro-
mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-
sponded to transcriptional differences. While clones had distinct
transcriptional identities, we found that many overlapped in
UMAP space (Figures 2D–2G). Furthermore, 81% of clones
(77/95 across both mice) primarily resided in a single transcrip-
tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-

tional state to tumor aggression, we derived a clonal aggression
scoring system based on clone size and dissemination (Fig-
ure 2B; STAR Methods). We found that 85% (81/95) of clones
were non-aggressive and were transcriptionally similar, occu-
pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
recovered over twice as many barcodes per cell, which permits
more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
aggressive clones again appeared transcriptionally similar to
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(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression

assignments as in (H) and (I), respectively.

(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as

mouse.clone).

(E and F) Two representative non-aggressive clones. (E) M1.13, (F) M2.10.

(G) A representative clone of medium aggression.

(H) Leiden transcriptional clustering of (D).

(I) Cells colored by clonal aggression.

(J) Number of non-, mid-, or high-aggression clones of 95 total.
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Just two clones dominate most of the cell population!

Theoretical perfect 
clone size equality

From Figures 2 of Simeonov et al., Cancer Cell (2021)

85% of clones were 
non-aggressive



Cells retain transcriptional identity after metastasis

 

Figure S3. Clones retain transcriptional identity after metastasizing and CNV among clones, Related to 
Figure 2  
(A) Cells were analyzed as clone-site pseudobulk samples (i.e. cells from each clone and harvest site 
combination were aggregated and treated as a bulk sample, see Methods) and each sample was colored by 
clone. Only pseudobulk samples with >20 cells were used. Clone-site pseudobulk samples were 
hierarchically clustered based on whole transcriptome expression. Pseudobulk samples displayed preferential 
clustering by clone rather than harvest site. (B) Genomic copy-number changes among clones. Copy number 
variation analysis was performed on all 95 clones. Clones with >200 cells were downsampled to 200 cells to 
perform CNV analysis with InferCNV. Vertical black lines divide clones (many small clones are not visible), and 
horizontal lines divide chromosomes. Large scale copy number changes are visible between and within 
clones. 
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From Figures 2, S3 of Simeonov et al., Cancer Cell (2021)

• Clone-site pseudobulk analysis - samples colored by 
clone


• Samples hierarchically clustered (based on scRNA-
seq) - cluster preferentially by clone rather than 
harvest site

We next asked whether clones were transcriptionally distinct.
Indeed, cells from the same clone clustered together in uniform
manifold approximation and projection (UMAP) space (Fig-
ure 2D). This was true of both large and small clones (Figures
2D–2G). Importantly, this finding extended to cells harvested
from different sites, suggesting that cells retain their clonal tran-
scriptional identity even after dissemination (Figure S3A). These
stable transcriptional differences may result from either epige-
netic drift or large-scale copy number changes, the latter
observed in our data (Figure S3B) and a hallmark of PDAC chro-
mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-
sponded to transcriptional differences. While clones had distinct
transcriptional identities, we found that many overlapped in
UMAP space (Figures 2D–2G). Furthermore, 81% of clones
(77/95 across both mice) primarily resided in a single transcrip-
tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-

tional state to tumor aggression, we derived a clonal aggression
scoring system based on clone size and dissemination (Fig-
ure 2B; STAR Methods). We found that 85% (81/95) of clones
were non-aggressive and were transcriptionally similar, occu-
pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
recovered over twice as many barcodes per cell, which permits
more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
aggressive clones again appeared transcriptionally similar to
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Figure 2. Most metastases arise from rare, transcriptionally distinct clones
(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression

assignments as in (H) and (I), respectively.

(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as

mouse.clone).

(E and F) Two representative non-aggressive clones. (E) M1.13, (F) M2.10.

(G) A representative clone of medium aggression.

(H) Leiden transcriptional clustering of (D).

(I) Cells colored by clonal aggression.

(J) Number of non-, mid-, or high-aggression clones of 95 total.

See also Figures S3 and S4.
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Cells retain transcriptional identity after metastasis

From Figures S3 of Simeonov et al., Cancer Cell (2021)

• Performed InferCNV analysis

 

Figure S3. Clones retain transcriptional identity after metastasizing and CNV among clones, Related to 
Figure 2  
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variation analysis was performed on all 95 clones. Clones with >200 cells were downsampled to 200 cells to 
perform CNV analysis with InferCNV. Vertical black lines divide clones (many small clones are not visible), and 
horizontal lines divide chromosomes. Large scale copy number changes are visible between and within 
clones. 
 
  

Cells grouped by clone (<= 200 cells/clone)

C
hrom

osom
es

0x: complete loss
0.5x: loss of one copy
1x: neutral
1.5x: addition of one copy
2x: addition of two copies
3x: placeholder for >2x copies

-1 0 1 2 3

BA

Fig S3

 

Figure S3. Clones retain transcriptional identity after metastasizing and CNV among clones, Related to 
Figure 2  
(A) Cells were analyzed as clone-site pseudobulk samples (i.e. cells from each clone and harvest site 
combination were aggregated and treated as a bulk sample, see Methods) and each sample was colored by 
clone. Only pseudobulk samples with >20 cells were used. Clone-site pseudobulk samples were 
hierarchically clustered based on whole transcriptome expression. Pseudobulk samples displayed preferential 
clustering by clone rather than harvest site. (B) Genomic copy-number changes among clones. Copy number 
variation analysis was performed on all 95 clones. Clones with >200 cells were downsampled to 200 cells to 
perform CNV analysis with InferCNV. Vertical black lines divide clones (many small clones are not visible), and 
horizontal lines divide chromosomes. Large scale copy number changes are visible between and within 
clones. 
 
  

Cells grouped by clone (<= 200 cells/clone)

C
hrom

osom
es

0x: complete loss
0.5x: loss of one copy
1x: neutral
1.5x: addition of one copy
2x: addition of two copies
3x: placeholder for >2x copies

-1 0 1 2 3

BA

Fig S3



From Figure 3 of Simeonov et al., Cancer Cell (2021)

Transcriptional EMT continuum in vivo

one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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Colored by clone (five largest annotated)

Many small, non-aggressive clones 
cluster together transcriptionally

Mouse 1 reanalyzed alone

one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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Trajectory Inference using Monocle3

one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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From Figure S5 of Simeonov et al., Cancer Cell (2021)

Transcriptional EMT continuum in vivo
• 27/29 clones are epithelial - is this the default transcriptional state?

• scRNA-seq of in vitro cultured cells -> 40 distinct clones

 

Figure S5. Comparison of PDAC cells in vivo and in vitro, Related to Figure 3  
(A) UMAP of 12,657 in vivo M1 single cells and 5,932 in vitro cultured single cells, colored by M1 clone or in 
vitro origin. (B) Leiden transcriptional clustering of (A). (C-F) Expression of (C) an in vitro cluster top marker 
gene, (D-E) epithelial markers, and (F) an EMT-TF master regulator. (G-I) Violin plots of (G) in vitro cluster top 
markers, (H) epithelial markers, and (I) mesenchymal markers. (J) Leiden clustering of M1 cells only. (K) 
Leiden clustering of M2 cells only.  
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• Compared to PDAC / EMT, in vitro cultured cells strikingly epithelial

 

Figure S5. Comparison of PDAC cells in vivo and in vitro, Related to Figure 3  
(A) UMAP of 12,657 in vivo M1 single cells and 5,932 in vitro cultured single cells, colored by M1 clone or in 
vitro origin. (B) Leiden transcriptional clustering of (A). (C-F) Expression of (C) an in vitro cluster top marker 
gene, (D-E) epithelial markers, and (F) an EMT-TF master regulator. (G-I) Violin plots of (G) in vitro cluster top 
markers, (H) epithelial markers, and (I) mesenchymal markers. (J) Leiden clustering of M1 cells only. (K) 
Leiden clustering of M2 cells only.  
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Figure S5. Comparison of PDAC cells in vivo and in vitro, Related to Figure 3  
(A) UMAP of 12,657 in vivo M1 single cells and 5,932 in vitro cultured single cells, colored by M1 clone or in 
vitro origin. (B) Leiden transcriptional clustering of (A). (C-F) Expression of (C) an in vitro cluster top marker 
gene, (D-E) epithelial markers, and (F) an EMT-TF master regulator. (G-I) Violin plots of (G) in vitro cluster top 
markers, (H) epithelial markers, and (I) mesenchymal markers. (J) Leiden clustering of M1 cells only. (K) 
Leiden clustering of M2 cells only.  
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Figure S5. Comparison of PDAC cells in vivo and in vitro, Related to Figure 3  
(A) UMAP of 12,657 in vivo M1 single cells and 5,932 in vitro cultured single cells, colored by M1 clone or in 
vitro origin. (B) Leiden transcriptional clustering of (A). (C-F) Expression of (C) an in vitro cluster top marker 
gene, (D-E) epithelial markers, and (F) an EMT-TF master regulator. (G-I) Violin plots of (G) in vitro cluster top 
markers, (H) epithelial markers, and (I) mesenchymal markers. (J) Leiden clustering of M1 cells only. (K) 
Leiden clustering of M2 cells only.  
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Figure S5. Comparison of PDAC cells in vivo and in vitro, Related to Figure 3  
(A) UMAP of 12,657 in vivo M1 single cells and 5,932 in vitro cultured single cells, colored by M1 clone or in 
vitro origin. (B) Leiden transcriptional clustering of (A). (C-F) Expression of (C) an in vitro cluster top marker 
gene, (D-E) epithelial markers, and (F) an EMT-TF master regulator. (G-I) Violin plots of (G) in vitro cluster top 
markers, (H) epithelial markers, and (I) mesenchymal markers. (J) Leiden clustering of M1 cells only. (K) 
Leiden clustering of M2 cells only.  
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From Figure 3, S5 of Simeonov et al., Cancer Cell (2021)

Transcriptional EMT continuum in vivo

one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.

ll
Article

Cancer Cell 39, 1–13, August 9, 2021 5

Please cite this article in press as: Simeonov et al., Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states, Cancer Cell
(2021), https://doi.org/10.1016/j.ccell.2021.05.005

one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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• Remember: not an EMT 
model but a PDAC model


• Cancer proliferation ~ EMT

• Possible ties between 

common cancer targets like 
Myc / mTOR / Wnt / 
Notch / etc and EMT

• EMT-TFs are transcriptional 
repressors of epithelial 
genes

 

Figure S5. Comparison of PDAC cells in vivo and in vitro, Related to Figure 3  
(A) UMAP of 12,657 in vivo M1 single cells and 5,932 in vitro cultured single cells, colored by M1 clone or in 
vitro origin. (B) Leiden transcriptional clustering of (A). (C-F) Expression of (C) an in vitro cluster top marker 
gene, (D-E) epithelial markers, and (F) an EMT-TF master regulator. (G-I) Violin plots of (G) in vitro cluster top 
markers, (H) epithelial markers, and (I) mesenchymal markers. (J) Leiden clustering of M1 cells only. (K) 
Leiden clustering of M2 cells only.  
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From Figure S4 of Simeonov et al., Cancer Cell (2021)

Transcriptional EMT continuum in vivo

 

Figure S4. Gene expression across UMAP space and along pseudoEMT, Related to Figure 3  
(A) Epithelial markers, (B) mesenchymal markers, including extracellular matrix genes, (C) canonical EMT-TFs, 
and (D) previously used EMT surface markers, expressed in M1 cells. (E) Epithelial markers, (F) extracellular 
matrix mesenchymal genes, (G) canonical EMT-TFs, (H) selected genes with unusual kinetics, and (I) 
previously used EMT surface markers, across pseudoEMT. (J) Fraction of cells cycling, i.e. cells in S/G2M cell 
cycle phase, across pseudoEMT. 
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Figure S4. Gene expression across UMAP space and along pseudoEMT, Related to Figure 3  
(A) Epithelial markers, (B) mesenchymal markers, including extracellular matrix genes, (C) canonical EMT-TFs, 
and (D) previously used EMT surface markers, expressed in M1 cells. (E) Epithelial markers, (F) extracellular 
matrix mesenchymal genes, (G) canonical EMT-TFs, (H) selected genes with unusual kinetics, and (I) 
previously used EMT surface markers, across pseudoEMT. (J) Fraction of cells cycling, i.e. cells in S/G2M cell 
cycle phase, across pseudoEMT. 
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Figure S4. Gene expression across UMAP space and along pseudoEMT, Related to Figure 3  
(A) Epithelial markers, (B) mesenchymal markers, including extracellular matrix genes, (C) canonical EMT-TFs, 
and (D) previously used EMT surface markers, expressed in M1 cells. (E) Epithelial markers, (F) extracellular 
matrix mesenchymal genes, (G) canonical EMT-TFs, (H) selected genes with unusual kinetics, and (I) 
previously used EMT surface markers, across pseudoEMT. (J) Fraction of cells cycling, i.e. cells in S/G2M cell 
cycle phase, across pseudoEMT. 
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High-res subclonal lineage reconstruction

From Figures 4, S6 of Simeonov et al., Cancer Cell (2021)

 

Figure S6. Summary of editing and lineage information in metastasis experiments, Related to Figure 4 
(A) Summary table of the number of barcodes/target sites recovered, and the rate at which they were 
observed to carry a mutation. Additionally, the number of distinct edits, evolving barcodes, and barcode-of-
barcodes are displayed. In the last three rows in the last column, the number of overlapping edits, evolving 
barcodes, and barcode-of-barcodes between the mice is indicated in parentheses. (B) The proportion at 
which a deletion impacts 1, 2, 3, 4, or 5 target sites. (C) Size distribution for insertions, single-target deletions, 
and multi-target deletions. (D) Visualization of the barcode editing diversity recovered at different cell recovery 
rates, illustrating a plateauing maximum possible diversity per barcode. For each barcode integrant, the 
number of cells in which it was recovered versus the number of unique edited outcomes (alleles) detected is 
plotted. The red dashed line represents the 1:1 maximum diversity scenario, where every cell recovered has a 
unique edited outcome. The blue dashed line marks 400 unique edited outcomes, i.e. the approximate 
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We recovered a large number of edited and informative target
sites per cell, conducive to phylogenetic analysis. Altogether, we
recovered 384,870 CRISPR target sites, of which 96%were edi-
ted (Figure S6A). Editing was distributed across the length of the
barcodes with peaks at the expected Cas9 cut sites, 3 bp up-
stream of the protospacer adjacent motif (PAM) of each target
site (Figure 4A). Deletions predominated over insertions, as ex-
pected (McKenna et al., 2016; Raj et al., 2018; Bowling et al.,
2020), with an approximately equal number of single- and
multi-target deletions (Figures 4B and S6B). The average edit
size varied by edit type, with 11 bp for insertions, 18 bp for sin-
gle-target deletions, and 80 bp for multi-target deletions (Fig-
ure S6C). Multi-target deletions were of a large size range and
involved 2, 3, 4, or 5 target sites at frequencies ranging from
10% to 19% (Figures S6B and S6C). Individual target-site editing
rates varied between 89% and 99% (Figure 4B). On average, we
recovered 18.5 target sites (3.7 barcodes) per cell for M1 and 8.5
(1.7) for M2 (Figure S2J).
Intraclonal tree reconstruction was performed in three main

steps (Figure 4C). First, different barcodes from the same cell
were concatenated based on their static barcodes into a "bar-
code-of-barcodes," which contains all of the phylogenetic infor-
mation recovered for that cell. Second, cells with identically
edited barcodes-of-barcodes were grouped into subclones,
since they are indistinguishably close relatives. Third, phyloge-
netic relationships between subclones were reconstructed
based on edit inheritance patterns (Figure 4C). Subclonal meta-
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Figure 4. High-resolution subclonal lineage
reconstruction of metastatic cancer
(A) Percentage at which each base is mutated in

76,974 evolving barcodes across both mice.

Target-site spacers (light gray) and PAMs (dark

gray).

(B) Edit types observed at each target site.

(C) Example phylogenetic reconstruction of a small

clade within clone M1.1. Clade M1.1.310 (root node

in red) contains six distinct subclones composed of

58 cells from five different harvest sites. Each cell in

this clade has six evolving barcodes, illustrated by

white bars with edits colored as in (B). Cells with the

same barcode editing pattern are grouped into a

subclone (terminal black nodes) and dissemination

(EH) is quantified. For each subclone, individual cells

are stacked and colored by their harvest site on the

far right.

(D) Circle packing plot of the full single-cell phy-

logeny of M1, with clade M1.1.310 from (C) circled

in red. Outermost circles define clones, with the

first six clones labeled. Within each clone, nested

circles group increasingly related cells. Innermost

circles contain cells from reconstructed subclones.

Each point represents a single cell, colored by

harvest site.

(E) Cumulative fraction of each subclone of clone

M1.1 in each harvest site. Dotted line represents

perfect subclone-size equality.

See also Figure S3.

static aggression was quantified via
Shannon’s equitability (EH), a statistical
measure of dissemination across harvest

sites (STAR Methods). For example, a subclone found at only
one harvest site is not metastatically aggressive and has an EH

of zero.
We sought to understand the maximum number of cells that

could be uniquely tagged using our approach. With this in
mind, we first investigated the editing diversity of individual bar-
code integrants (Figure S6D). Examining 208 barcodes across
both mice, we found that the maximum number of unique editing
outcomes for a barcode scaled with the number of cells recov-
ered, but gradually peaked to around 400 unique outcomes
even for barcodes recovered in nearly 10,000 cells. Hence, in
these experiments where we recovered an average of 2.6 barc-
odes per cell, we can estimate maximum labeling at nearly 109

cells (400 editing outcomes ^ 2.6 barcodes * 95 clones).
In practice, we sampled a fraction of this theoretical space and

recovered 6,055 unique barcodes-of-barcodes, which, for effi-
cient phylogenetic reconstruction, we filtered to a total of 1,692
subclones, each with at least two cells for larger clones (R50
cells) or with any number of cells for smaller clones (Figure S6A;
STAR Methods). Due to a higher average number of barcode in-
tegrations per cell, M1 displayed greater reconstructive power
than M2. This was particularly apparent in the dominant clone
of each mouse, where M1.1 with seven barcode integrants had
601 subclones compared with M2.2 with only two integrants
and 110 resulting subclones. Notably, pairwise phylogenetic dis-
tances in the reconstructed trees were strongly concordant with
the corresponding edit distances between barcode-of-barcodes
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We recovered a large number of edited and informative target
sites per cell, conducive to phylogenetic analysis. Altogether, we
recovered 384,870 CRISPR target sites, of which 96%were edi-
ted (Figure S6A). Editing was distributed across the length of the
barcodes with peaks at the expected Cas9 cut sites, 3 bp up-
stream of the protospacer adjacent motif (PAM) of each target
site (Figure 4A). Deletions predominated over insertions, as ex-
pected (McKenna et al., 2016; Raj et al., 2018; Bowling et al.,
2020), with an approximately equal number of single- and
multi-target deletions (Figures 4B and S6B). The average edit
size varied by edit type, with 11 bp for insertions, 18 bp for sin-
gle-target deletions, and 80 bp for multi-target deletions (Fig-
ure S6C). Multi-target deletions were of a large size range and
involved 2, 3, 4, or 5 target sites at frequencies ranging from
10% to 19% (Figures S6B and S6C). Individual target-site editing
rates varied between 89% and 99% (Figure 4B). On average, we
recovered 18.5 target sites (3.7 barcodes) per cell for M1 and 8.5
(1.7) for M2 (Figure S2J).
Intraclonal tree reconstruction was performed in three main

steps (Figure 4C). First, different barcodes from the same cell
were concatenated based on their static barcodes into a "bar-
code-of-barcodes," which contains all of the phylogenetic infor-
mation recovered for that cell. Second, cells with identically
edited barcodes-of-barcodes were grouped into subclones,
since they are indistinguishably close relatives. Third, phyloge-
netic relationships between subclones were reconstructed
based on edit inheritance patterns (Figure 4C). Subclonal meta-
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Figure 4. High-resolution subclonal lineage
reconstruction of metastatic cancer
(A) Percentage at which each base is mutated in

76,974 evolving barcodes across both mice.

Target-site spacers (light gray) and PAMs (dark

gray).

(B) Edit types observed at each target site.

(C) Example phylogenetic reconstruction of a small

clade within clone M1.1. Clade M1.1.310 (root node

in red) contains six distinct subclones composed of

58 cells from five different harvest sites. Each cell in

this clade has six evolving barcodes, illustrated by

white bars with edits colored as in (B). Cells with the

same barcode editing pattern are grouped into a

subclone (terminal black nodes) and dissemination

(EH) is quantified. For each subclone, individual cells

are stacked and colored by their harvest site on the

far right.

(D) Circle packing plot of the full single-cell phy-

logeny of M1, with clade M1.1.310 from (C) circled

in red. Outermost circles define clones, with the

first six clones labeled. Within each clone, nested

circles group increasingly related cells. Innermost

circles contain cells from reconstructed subclones.

Each point represents a single cell, colored by

harvest site.

(E) Cumulative fraction of each subclone of clone

M1.1 in each harvest site. Dotted line represents

perfect subclone-size equality.

See also Figure S3.

static aggression was quantified via
Shannon’s equitability (EH), a statistical
measure of dissemination across harvest

sites (STAR Methods). For example, a subclone found at only
one harvest site is not metastatically aggressive and has an EH

of zero.
We sought to understand the maximum number of cells that

could be uniquely tagged using our approach. With this in
mind, we first investigated the editing diversity of individual bar-
code integrants (Figure S6D). Examining 208 barcodes across
both mice, we found that the maximum number of unique editing
outcomes for a barcode scaled with the number of cells recov-
ered, but gradually peaked to around 400 unique outcomes
even for barcodes recovered in nearly 10,000 cells. Hence, in
these experiments where we recovered an average of 2.6 barc-
odes per cell, we can estimate maximum labeling at nearly 109

cells (400 editing outcomes ^ 2.6 barcodes * 95 clones).
In practice, we sampled a fraction of this theoretical space and

recovered 6,055 unique barcodes-of-barcodes, which, for effi-
cient phylogenetic reconstruction, we filtered to a total of 1,692
subclones, each with at least two cells for larger clones (R50
cells) or with any number of cells for smaller clones (Figure S6A;
STAR Methods). Due to a higher average number of barcode in-
tegrations per cell, M1 displayed greater reconstructive power
than M2. This was particularly apparent in the dominant clone
of each mouse, where M1.1 with seven barcode integrants had
601 subclones compared with M2.2 with only two integrants
and 110 resulting subclones. Notably, pairwise phylogenetic dis-
tances in the reconstructed trees were strongly concordant with
the corresponding edit distances between barcode-of-barcodes
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Recovered on average:

• Mouse 1: 18.5 target sites (3.7 barcodes) / cell

• Mouse 2: 8.5 target sites (1.7 barcodes) / cell



High-res subclonal lineage reconstruction

From Figure 4 of Simeonov et al., Cancer Cell (2021)

We recovered a large number of edited and informative target
sites per cell, conducive to phylogenetic analysis. Altogether, we
recovered 384,870 CRISPR target sites, of which 96%were edi-
ted (Figure S6A). Editing was distributed across the length of the
barcodes with peaks at the expected Cas9 cut sites, 3 bp up-
stream of the protospacer adjacent motif (PAM) of each target
site (Figure 4A). Deletions predominated over insertions, as ex-
pected (McKenna et al., 2016; Raj et al., 2018; Bowling et al.,
2020), with an approximately equal number of single- and
multi-target deletions (Figures 4B and S6B). The average edit
size varied by edit type, with 11 bp for insertions, 18 bp for sin-
gle-target deletions, and 80 bp for multi-target deletions (Fig-
ure S6C). Multi-target deletions were of a large size range and
involved 2, 3, 4, or 5 target sites at frequencies ranging from
10% to 19% (Figures S6B and S6C). Individual target-site editing
rates varied between 89% and 99% (Figure 4B). On average, we
recovered 18.5 target sites (3.7 barcodes) per cell for M1 and 8.5
(1.7) for M2 (Figure S2J).
Intraclonal tree reconstruction was performed in three main

steps (Figure 4C). First, different barcodes from the same cell
were concatenated based on their static barcodes into a "bar-
code-of-barcodes," which contains all of the phylogenetic infor-
mation recovered for that cell. Second, cells with identically
edited barcodes-of-barcodes were grouped into subclones,
since they are indistinguishably close relatives. Third, phyloge-
netic relationships between subclones were reconstructed
based on edit inheritance patterns (Figure 4C). Subclonal meta-
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Figure 4. High-resolution subclonal lineage
reconstruction of metastatic cancer
(A) Percentage at which each base is mutated in

76,974 evolving barcodes across both mice.

Target-site spacers (light gray) and PAMs (dark

gray).

(B) Edit types observed at each target site.

(C) Example phylogenetic reconstruction of a small

clade within clone M1.1. Clade M1.1.310 (root node

in red) contains six distinct subclones composed of

58 cells from five different harvest sites. Each cell in

this clade has six evolving barcodes, illustrated by

white bars with edits colored as in (B). Cells with the

same barcode editing pattern are grouped into a

subclone (terminal black nodes) and dissemination

(EH) is quantified. For each subclone, individual cells

are stacked and colored by their harvest site on the

far right.

(D) Circle packing plot of the full single-cell phy-

logeny of M1, with clade M1.1.310 from (C) circled

in red. Outermost circles define clones, with the

first six clones labeled. Within each clone, nested

circles group increasingly related cells. Innermost

circles contain cells from reconstructed subclones.

Each point represents a single cell, colored by

harvest site.

(E) Cumulative fraction of each subclone of clone

M1.1 in each harvest site. Dotted line represents

perfect subclone-size equality.

See also Figure S3.

static aggression was quantified via
Shannon’s equitability (EH), a statistical
measure of dissemination across harvest

sites (STAR Methods). For example, a subclone found at only
one harvest site is not metastatically aggressive and has an EH

of zero.
We sought to understand the maximum number of cells that

could be uniquely tagged using our approach. With this in
mind, we first investigated the editing diversity of individual bar-
code integrants (Figure S6D). Examining 208 barcodes across
both mice, we found that the maximum number of unique editing
outcomes for a barcode scaled with the number of cells recov-
ered, but gradually peaked to around 400 unique outcomes
even for barcodes recovered in nearly 10,000 cells. Hence, in
these experiments where we recovered an average of 2.6 barc-
odes per cell, we can estimate maximum labeling at nearly 109

cells (400 editing outcomes ^ 2.6 barcodes * 95 clones).
In practice, we sampled a fraction of this theoretical space and

recovered 6,055 unique barcodes-of-barcodes, which, for effi-
cient phylogenetic reconstruction, we filtered to a total of 1,692
subclones, each with at least two cells for larger clones (R50
cells) or with any number of cells for smaller clones (Figure S6A;
STAR Methods). Due to a higher average number of barcode in-
tegrations per cell, M1 displayed greater reconstructive power
than M2. This was particularly apparent in the dominant clone
of each mouse, where M1.1 with seven barcode integrants had
601 subclones compared with M2.2 with only two integrants
and 110 resulting subclones. Notably, pairwise phylogenetic dis-
tances in the reconstructed trees were strongly concordant with
the corresponding edit distances between barcode-of-barcodes
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We recovered a large number of edited and informative target
sites per cell, conducive to phylogenetic analysis. Altogether, we
recovered 384,870 CRISPR target sites, of which 96%were edi-
ted (Figure S6A). Editing was distributed across the length of the
barcodes with peaks at the expected Cas9 cut sites, 3 bp up-
stream of the protospacer adjacent motif (PAM) of each target
site (Figure 4A). Deletions predominated over insertions, as ex-
pected (McKenna et al., 2016; Raj et al., 2018; Bowling et al.,
2020), with an approximately equal number of single- and
multi-target deletions (Figures 4B and S6B). The average edit
size varied by edit type, with 11 bp for insertions, 18 bp for sin-
gle-target deletions, and 80 bp for multi-target deletions (Fig-
ure S6C). Multi-target deletions were of a large size range and
involved 2, 3, 4, or 5 target sites at frequencies ranging from
10% to 19% (Figures S6B and S6C). Individual target-site editing
rates varied between 89% and 99% (Figure 4B). On average, we
recovered 18.5 target sites (3.7 barcodes) per cell for M1 and 8.5
(1.7) for M2 (Figure S2J).
Intraclonal tree reconstruction was performed in three main

steps (Figure 4C). First, different barcodes from the same cell
were concatenated based on their static barcodes into a "bar-
code-of-barcodes," which contains all of the phylogenetic infor-
mation recovered for that cell. Second, cells with identically
edited barcodes-of-barcodes were grouped into subclones,
since they are indistinguishably close relatives. Third, phyloge-
netic relationships between subclones were reconstructed
based on edit inheritance patterns (Figure 4C). Subclonal meta-
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(A) Percentage at which each base is mutated in

76,974 evolving barcodes across both mice.

Target-site spacers (light gray) and PAMs (dark

gray).

(B) Edit types observed at each target site.

(C) Example phylogenetic reconstruction of a small

clade within clone M1.1. Clade M1.1.310 (root node

in red) contains six distinct subclones composed of

58 cells from five different harvest sites. Each cell in

this clade has six evolving barcodes, illustrated by

white bars with edits colored as in (B). Cells with the

same barcode editing pattern are grouped into a

subclone (terminal black nodes) and dissemination

(EH) is quantified. For each subclone, individual cells

are stacked and colored by their harvest site on the

far right.

(D) Circle packing plot of the full single-cell phy-

logeny of M1, with clade M1.1.310 from (C) circled

in red. Outermost circles define clones, with the

first six clones labeled. Within each clone, nested

circles group increasingly related cells. Innermost

circles contain cells from reconstructed subclones.

Each point represents a single cell, colored by

harvest site.

(E) Cumulative fraction of each subclone of clone

M1.1 in each harvest site. Dotted line represents

perfect subclone-size equality.

See also Figure S3.

static aggression was quantified via
Shannon’s equitability (EH), a statistical
measure of dissemination across harvest

sites (STAR Methods). For example, a subclone found at only
one harvest site is not metastatically aggressive and has an EH

of zero.
We sought to understand the maximum number of cells that

could be uniquely tagged using our approach. With this in
mind, we first investigated the editing diversity of individual bar-
code integrants (Figure S6D). Examining 208 barcodes across
both mice, we found that the maximum number of unique editing
outcomes for a barcode scaled with the number of cells recov-
ered, but gradually peaked to around 400 unique outcomes
even for barcodes recovered in nearly 10,000 cells. Hence, in
these experiments where we recovered an average of 2.6 barc-
odes per cell, we can estimate maximum labeling at nearly 109

cells (400 editing outcomes ^ 2.6 barcodes * 95 clones).
In practice, we sampled a fraction of this theoretical space and

recovered 6,055 unique barcodes-of-barcodes, which, for effi-
cient phylogenetic reconstruction, we filtered to a total of 1,692
subclones, each with at least two cells for larger clones (R50
cells) or with any number of cells for smaller clones (Figure S6A;
STAR Methods). Due to a higher average number of barcode in-
tegrations per cell, M1 displayed greater reconstructive power
than M2. This was particularly apparent in the dominant clone
of each mouse, where M1.1 with seven barcode integrants had
601 subclones compared with M2.2 with only two integrants
and 110 resulting subclones. Notably, pairwise phylogenetic dis-
tances in the reconstructed trees were strongly concordant with
the corresponding edit distances between barcode-of-barcodes
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Step 1

Step 1: assemble “barcode of barcodes”
Step 2: group cells into subclones

Step 2

Step 3: reconstruct phylogenetic relationships between subclones

Step 3



High-res subclonal lineage reconstruction

From Figures 4, S6 of Simeonov et al., Cancer Cell (2021)

Max observed edited outcomes (~400)

Theoretical max diversity scenario

Max labelling = (400 editing outcomes)2.6 bcs/cell * 95clones = 109 cells

For these experiments with an observed average of 2.6 bcs/cell…

 

Figure S6. Summary of editing and lineage information in metastasis experiments, Related to Figure 4 
(A) Summary table of the number of barcodes/target sites recovered, and the rate at which they were 
observed to carry a mutation. Additionally, the number of distinct edits, evolving barcodes, and barcode-of-
barcodes are displayed. In the last three rows in the last column, the number of overlapping edits, evolving 
barcodes, and barcode-of-barcodes between the mice is indicated in parentheses. (B) The proportion at 
which a deletion impacts 1, 2, 3, 4, or 5 target sites. (C) Size distribution for insertions, single-target deletions, 
and multi-target deletions. (D) Visualization of the barcode editing diversity recovered at different cell recovery 
rates, illustrating a plateauing maximum possible diversity per barcode. For each barcode integrant, the 
number of cells in which it was recovered versus the number of unique edited outcomes (alleles) detected is 
plotted. The red dashed line represents the 1:1 maximum diversity scenario, where every cell recovered has a 
unique edited outcome. The blue dashed line marks 400 unique edited outcomes, i.e. the approximate 
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We recovered a large number of edited and informative target
sites per cell, conducive to phylogenetic analysis. Altogether, we
recovered 384,870 CRISPR target sites, of which 96%were edi-
ted (Figure S6A). Editing was distributed across the length of the
barcodes with peaks at the expected Cas9 cut sites, 3 bp up-
stream of the protospacer adjacent motif (PAM) of each target
site (Figure 4A). Deletions predominated over insertions, as ex-
pected (McKenna et al., 2016; Raj et al., 2018; Bowling et al.,
2020), with an approximately equal number of single- and
multi-target deletions (Figures 4B and S6B). The average edit
size varied by edit type, with 11 bp for insertions, 18 bp for sin-
gle-target deletions, and 80 bp for multi-target deletions (Fig-
ure S6C). Multi-target deletions were of a large size range and
involved 2, 3, 4, or 5 target sites at frequencies ranging from
10% to 19% (Figures S6B and S6C). Individual target-site editing
rates varied between 89% and 99% (Figure 4B). On average, we
recovered 18.5 target sites (3.7 barcodes) per cell for M1 and 8.5
(1.7) for M2 (Figure S2J).
Intraclonal tree reconstruction was performed in three main

steps (Figure 4C). First, different barcodes from the same cell
were concatenated based on their static barcodes into a "bar-
code-of-barcodes," which contains all of the phylogenetic infor-
mation recovered for that cell. Second, cells with identically
edited barcodes-of-barcodes were grouped into subclones,
since they are indistinguishably close relatives. Third, phyloge-
netic relationships between subclones were reconstructed
based on edit inheritance patterns (Figure 4C). Subclonal meta-
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Figure 4. High-resolution subclonal lineage
reconstruction of metastatic cancer
(A) Percentage at which each base is mutated in

76,974 evolving barcodes across both mice.

Target-site spacers (light gray) and PAMs (dark

gray).

(B) Edit types observed at each target site.

(C) Example phylogenetic reconstruction of a small

clade within clone M1.1. Clade M1.1.310 (root node

in red) contains six distinct subclones composed of

58 cells from five different harvest sites. Each cell in

this clade has six evolving barcodes, illustrated by

white bars with edits colored as in (B). Cells with the

same barcode editing pattern are grouped into a

subclone (terminal black nodes) and dissemination

(EH) is quantified. For each subclone, individual cells

are stacked and colored by their harvest site on the

far right.

(D) Circle packing plot of the full single-cell phy-

logeny of M1, with clade M1.1.310 from (C) circled

in red. Outermost circles define clones, with the

first six clones labeled. Within each clone, nested

circles group increasingly related cells. Innermost

circles contain cells from reconstructed subclones.

Each point represents a single cell, colored by

harvest site.

(E) Cumulative fraction of each subclone of clone

M1.1 in each harvest site. Dotted line represents

perfect subclone-size equality.

See also Figure S3.

static aggression was quantified via
Shannon’s equitability (EH), a statistical
measure of dissemination across harvest

sites (STAR Methods). For example, a subclone found at only
one harvest site is not metastatically aggressive and has an EH

of zero.
We sought to understand the maximum number of cells that

could be uniquely tagged using our approach. With this in
mind, we first investigated the editing diversity of individual bar-
code integrants (Figure S6D). Examining 208 barcodes across
both mice, we found that the maximum number of unique editing
outcomes for a barcode scaled with the number of cells recov-
ered, but gradually peaked to around 400 unique outcomes
even for barcodes recovered in nearly 10,000 cells. Hence, in
these experiments where we recovered an average of 2.6 barc-
odes per cell, we can estimate maximum labeling at nearly 109

cells (400 editing outcomes ^ 2.6 barcodes * 95 clones).
In practice, we sampled a fraction of this theoretical space and

recovered 6,055 unique barcodes-of-barcodes, which, for effi-
cient phylogenetic reconstruction, we filtered to a total of 1,692
subclones, each with at least two cells for larger clones (R50
cells) or with any number of cells for smaller clones (Figure S6A;
STAR Methods). Due to a higher average number of barcode in-
tegrations per cell, M1 displayed greater reconstructive power
than M2. This was particularly apparent in the dominant clone
of each mouse, where M1.1 with seven barcode integrants had
601 subclones compared with M2.2 with only two integrants
and 110 resulting subclones. Notably, pairwise phylogenetic dis-
tances in the reconstructed trees were strongly concordant with
the corresponding edit distances between barcode-of-barcodes
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Peak metastatic aggression corresponds to late-hybrid EMT 
states

From Figures 3, 5 of Simeonov et al., Cancer Cell (2021)

one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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M1.1 actually captures most (~70%) EMT diversityHow does the range of intraclonal EMT states relate to subclonal behavior?

alleles (Figure S6E), and more active target sites determined
earlier tree nodes (Figure S6F), suggesting that lineage relation-
ships between cells are accurately captured in our trees.

The full clonal and subclonal phylogenetic visualization of M1
data highlights the overwhelming proliferative and metastatic
dominance of cloneM1.1 (Figures 4D and S6G). However, within
M1.1, we also observed vast heterogeneity with respect to sub-
clonal aggression and metastatic success. Most strikingly, the
same bottlenecking observed on the clonal level was also pre-
sent on the subclonal level within M1.1 (Figure 4E). Subclonal
bottlenecking further increased at metastatic sites, again mirror-
ing observations at the clonal level. Thus, cancer progression
appears to be defined by a state of constant selection, separate
from the effects of engraftment.

Late-hybrid EMT states are proliferatively and
metastatically advantageous
As the vast majority of EMT diversity was within M1.1 (Figure 3I),
we leveraged phylogenetic data to understand how this range of
intraclonal EMT states may relate to differences in subclonal
behavior. We calculated the mean pseudoEMT value for each
subclone and plotted this and subclonal dissemination (EH) for
clone M1.1 (Figures 5A and 5B). While M1.1 was highly mesen-

chymal compared with other M1 clones, many subclones within
M1.1 were actually quite epithelial. These epithelial subclones
were primarily small and non-metastatic (Figures 5A and 5B).
Interestingly, the same was true of highly mesenchymal sub-
clones. On the other hand, the largest and most disseminated
subclones appeared to express hybrid EMT states (Figures 5A
and 5B), providing direct evidence that EMT extremes are less
metastatic than hybrid states (Jolly et al., 2015; Nieto et al.,
2016; Lambert et al. 2017; Pastushenko and Blanpain 2019).
To precisely characterize where aggression peaked along the

EMT continuum, we mapped subclonal dissemination (EH) and
size along pseudoEMT (Figure 5C). We found that dissemination
gradually peaked around the H3 and H4 hybrid states (pseu-
doEMT score of 20–22) and then sharply declined at highly
mesenchymal states. Thus, late-hybrid EMT states aremetastat-
ically advantageous and are associated with specific prolifera-
tive, metabolic, and signaling processes (Figure 3J and Table
S2), as well as distinct regulatory binding factors (Figure 3K).
Notably, hybrid-EMT states appeared transcriptionally stable;

for example, a large, hybrid subclone often had close relatives
that were also large and hybrid (Figure 5A). To understand the
stability of EMT states, we plotted the distribution of cells,
subclones, and root clades along pseudoEMT (Figure 5D;
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Figure 5. Peak metastatic aggression corresponds to late-hybrid EMT states
(A and B) Circle packing plots of the phylogenetic structure of clone M1.1 with subclones colored by mean pseudoEMT (A) and by dissemination score (B).

(C) Relationship between metastatic dissemination and pseudoEMT for subclones from (A and B).

(D) Density along pseudoEMT of M1.1 cells and their increasingly ancestral (arrow) phylogenetic groupings, examples of which are highlighted in (A).

(E) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and patient enrichment scores for each pseudoEMT gene cluster using Cox regression

analysis, with the hazard ratio for each gene cluster displayed (*p < 0.05, dp < 0.1). Square sizes are inversely proportional to p value.

See also Table S4.

ll
Article

8 Cancer Cell 39, 1–13, August 9, 2021

Please cite this article in press as: Simeonov et al., Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states, Cancer Cell
(2021), https://doi.org/10.1016/j.ccell.2021.05.005

alleles (Figure S6E), and more active target sites determined
earlier tree nodes (Figure S6F), suggesting that lineage relation-
ships between cells are accurately captured in our trees.

The full clonal and subclonal phylogenetic visualization of M1
data highlights the overwhelming proliferative and metastatic
dominance of cloneM1.1 (Figures 4D and S6G). However, within
M1.1, we also observed vast heterogeneity with respect to sub-
clonal aggression and metastatic success. Most strikingly, the
same bottlenecking observed on the clonal level was also pre-
sent on the subclonal level within M1.1 (Figure 4E). Subclonal
bottlenecking further increased at metastatic sites, again mirror-
ing observations at the clonal level. Thus, cancer progression
appears to be defined by a state of constant selection, separate
from the effects of engraftment.

Late-hybrid EMT states are proliferatively and
metastatically advantageous
As the vast majority of EMT diversity was within M1.1 (Figure 3I),
we leveraged phylogenetic data to understand how this range of
intraclonal EMT states may relate to differences in subclonal
behavior. We calculated the mean pseudoEMT value for each
subclone and plotted this and subclonal dissemination (EH) for
clone M1.1 (Figures 5A and 5B). While M1.1 was highly mesen-

chymal compared with other M1 clones, many subclones within
M1.1 were actually quite epithelial. These epithelial subclones
were primarily small and non-metastatic (Figures 5A and 5B).
Interestingly, the same was true of highly mesenchymal sub-
clones. On the other hand, the largest and most disseminated
subclones appeared to express hybrid EMT states (Figures 5A
and 5B), providing direct evidence that EMT extremes are less
metastatic than hybrid states (Jolly et al., 2015; Nieto et al.,
2016; Lambert et al. 2017; Pastushenko and Blanpain 2019).
To precisely characterize where aggression peaked along the

EMT continuum, we mapped subclonal dissemination (EH) and
size along pseudoEMT (Figure 5C). We found that dissemination
gradually peaked around the H3 and H4 hybrid states (pseu-
doEMT score of 20–22) and then sharply declined at highly
mesenchymal states. Thus, late-hybrid EMT states aremetastat-
ically advantageous and are associated with specific prolifera-
tive, metabolic, and signaling processes (Figure 3J and Table
S2), as well as distinct regulatory binding factors (Figure 3K).
Notably, hybrid-EMT states appeared transcriptionally stable;

for example, a large, hybrid subclone often had close relatives
that were also large and hybrid (Figure 5A). To understand the
stability of EMT states, we plotted the distribution of cells,
subclones, and root clades along pseudoEMT (Figure 5D;
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(A and B) Circle packing plots of the phylogenetic structure of clone M1.1 with subclones colored by mean pseudoEMT (A) and by dissemination score (B).

(C) Relationship between metastatic dissemination and pseudoEMT for subclones from (A and B).

(D) Density along pseudoEMT of M1.1 cells and their increasingly ancestral (arrow) phylogenetic groupings, examples of which are highlighted in (A).

(E) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and patient enrichment scores for each pseudoEMT gene cluster using Cox regression

analysis, with the hazard ratio for each gene cluster displayed (*p < 0.05, dp < 0.1). Square sizes are inversely proportional to p value.

See also Table S4.
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Direct evidence that hybrid EMT states are more metastatic than EMT extremes



Peak metastatic aggression corresponds to late-hybrid EMT 
states

From Figure 3, 5 of Simeonov et al., Cancer Cell (2021)

one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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one another (Figure 3A). Interestingly, these clones were en-
riched for expression of canonical epithelial markers, such as
Epcam,Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,
mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were
enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G
and S4B). Loss of epithelial genes and gain of mesenchymal
genes are defining hallmarks of epithelial-to-mesenchymal tran-
sition (EMT) (Nieto 2013; Nieto et al., 2016).
EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-
ing the ability to be motile and migratory. In cancer, EMT is impli-
cated in invasion, metastasis, tumor stemness, plasticity, and
drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily
a transcriptional process mediated by a group of key master-
regulator transcription factors (EMT-TFs) (Stemmler et al.,
2019). We observed elevated expression in aggressive clones
of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures
3F and S4C). Expression of Prrx1, an important regulator of
EMT in PDAC (Takano et al., 2016), was also increased.

Traditionally, EMT is considered a binary process, where cells
switch from fully epithelial to fully mesenchymal. However,
recent studies have reported discrete intermediate EMT states
(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-
enko et al., 2018; Pastushenko and Blanpain 2019) or even a
continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,
2019). In our data, epithelial and mesenchymal UMAP regions
were not well segregated. Specifically, epithelial and
mesenchymal genes appeared to gradually lose and gain
expression as a function of distance from two extremes (Figures
3B–3G), supporting the view that a continuum of EMT states ex-
ists in vivo.
We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-
jectory inference using Monocle 3 (Cao et al., 2019) and found
that the main trajectory in our data corresponded to the
observed EMT gene expression axis (Figure 3H). We named
this trajectory "pseudoEMT" (akin to pseudotime for develop-
mental trajectories) and placed the root of the trajectory, or the
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Figure 3. A transcriptional EMT continuum in vivo
(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.

ll
Article

Cancer Cell 39, 1–13, August 9, 2021 5

Please cite this article in press as: Simeonov et al., Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states, Cancer Cell
(2021), https://doi.org/10.1016/j.ccell.2021.05.005

Remember from Figure 3….

H3, 4 features… 
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alleles (Figure S6E), and more active target sites determined
earlier tree nodes (Figure S6F), suggesting that lineage relation-
ships between cells are accurately captured in our trees.

The full clonal and subclonal phylogenetic visualization of M1
data highlights the overwhelming proliferative and metastatic
dominance of cloneM1.1 (Figures 4D and S6G). However, within
M1.1, we also observed vast heterogeneity with respect to sub-
clonal aggression and metastatic success. Most strikingly, the
same bottlenecking observed on the clonal level was also pre-
sent on the subclonal level within M1.1 (Figure 4E). Subclonal
bottlenecking further increased at metastatic sites, again mirror-
ing observations at the clonal level. Thus, cancer progression
appears to be defined by a state of constant selection, separate
from the effects of engraftment.

Late-hybrid EMT states are proliferatively and
metastatically advantageous
As the vast majority of EMT diversity was within M1.1 (Figure 3I),
we leveraged phylogenetic data to understand how this range of
intraclonal EMT states may relate to differences in subclonal
behavior. We calculated the mean pseudoEMT value for each
subclone and plotted this and subclonal dissemination (EH) for
clone M1.1 (Figures 5A and 5B). While M1.1 was highly mesen-

chymal compared with other M1 clones, many subclones within
M1.1 were actually quite epithelial. These epithelial subclones
were primarily small and non-metastatic (Figures 5A and 5B).
Interestingly, the same was true of highly mesenchymal sub-
clones. On the other hand, the largest and most disseminated
subclones appeared to express hybrid EMT states (Figures 5A
and 5B), providing direct evidence that EMT extremes are less
metastatic than hybrid states (Jolly et al., 2015; Nieto et al.,
2016; Lambert et al. 2017; Pastushenko and Blanpain 2019).
To precisely characterize where aggression peaked along the

EMT continuum, we mapped subclonal dissemination (EH) and
size along pseudoEMT (Figure 5C). We found that dissemination
gradually peaked around the H3 and H4 hybrid states (pseu-
doEMT score of 20–22) and then sharply declined at highly
mesenchymal states. Thus, late-hybrid EMT states aremetastat-
ically advantageous and are associated with specific prolifera-
tive, metabolic, and signaling processes (Figure 3J and Table
S2), as well as distinct regulatory binding factors (Figure 3K).
Notably, hybrid-EMT states appeared transcriptionally stable;

for example, a large, hybrid subclone often had close relatives
that were also large and hybrid (Figure 5A). To understand the
stability of EMT states, we plotted the distribution of cells,
subclones, and root clades along pseudoEMT (Figure 5D;
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Figure 5. Peak metastatic aggression corresponds to late-hybrid EMT states
(A and B) Circle packing plots of the phylogenetic structure of clone M1.1 with subclones colored by mean pseudoEMT (A) and by dissemination score (B).

(C) Relationship between metastatic dissemination and pseudoEMT for subclones from (A and B).

(D) Density along pseudoEMT of M1.1 cells and their increasingly ancestral (arrow) phylogenetic groupings, examples of which are highlighted in (A).

(E) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and patient enrichment scores for each pseudoEMT gene cluster using Cox regression

analysis, with the hazard ratio for each gene cluster displayed (*p < 0.05, dp < 0.1). Square sizes are inversely proportional to p value.

See also Table S4.
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alleles (Figure S6E), and more active target sites determined
earlier tree nodes (Figure S6F), suggesting that lineage relation-
ships between cells are accurately captured in our trees.

The full clonal and subclonal phylogenetic visualization of M1
data highlights the overwhelming proliferative and metastatic
dominance of cloneM1.1 (Figures 4D and S6G). However, within
M1.1, we also observed vast heterogeneity with respect to sub-
clonal aggression and metastatic success. Most strikingly, the
same bottlenecking observed on the clonal level was also pre-
sent on the subclonal level within M1.1 (Figure 4E). Subclonal
bottlenecking further increased at metastatic sites, again mirror-
ing observations at the clonal level. Thus, cancer progression
appears to be defined by a state of constant selection, separate
from the effects of engraftment.

Late-hybrid EMT states are proliferatively and
metastatically advantageous
As the vast majority of EMT diversity was within M1.1 (Figure 3I),
we leveraged phylogenetic data to understand how this range of
intraclonal EMT states may relate to differences in subclonal
behavior. We calculated the mean pseudoEMT value for each
subclone and plotted this and subclonal dissemination (EH) for
clone M1.1 (Figures 5A and 5B). While M1.1 was highly mesen-

chymal compared with other M1 clones, many subclones within
M1.1 were actually quite epithelial. These epithelial subclones
were primarily small and non-metastatic (Figures 5A and 5B).
Interestingly, the same was true of highly mesenchymal sub-
clones. On the other hand, the largest and most disseminated
subclones appeared to express hybrid EMT states (Figures 5A
and 5B), providing direct evidence that EMT extremes are less
metastatic than hybrid states (Jolly et al., 2015; Nieto et al.,
2016; Lambert et al. 2017; Pastushenko and Blanpain 2019).
To precisely characterize where aggression peaked along the

EMT continuum, we mapped subclonal dissemination (EH) and
size along pseudoEMT (Figure 5C). We found that dissemination
gradually peaked around the H3 and H4 hybrid states (pseu-
doEMT score of 20–22) and then sharply declined at highly
mesenchymal states. Thus, late-hybrid EMT states aremetastat-
ically advantageous and are associated with specific prolifera-
tive, metabolic, and signaling processes (Figure 3J and Table
S2), as well as distinct regulatory binding factors (Figure 3K).
Notably, hybrid-EMT states appeared transcriptionally stable;

for example, a large, hybrid subclone often had close relatives
that were also large and hybrid (Figure 5A). To understand the
stability of EMT states, we plotted the distribution of cells,
subclones, and root clades along pseudoEMT (Figure 5D;
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Figure 5. Peak metastatic aggression corresponds to late-hybrid EMT states
(A and B) Circle packing plots of the phylogenetic structure of clone M1.1 with subclones colored by mean pseudoEMT (A) and by dissemination score (B).

(C) Relationship between metastatic dissemination and pseudoEMT for subclones from (A and B).

(D) Density along pseudoEMT of M1.1 cells and their increasingly ancestral (arrow) phylogenetic groupings, examples of which are highlighted in (A).

(E) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and patient enrichment scores for each pseudoEMT gene cluster using Cox regression

analysis, with the hazard ratio for each gene cluster displayed (*p < 0.05, dp < 0.1). Square sizes are inversely proportional to p value.

See also Table S4.
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Peak metastatic aggression corresponds to late-hybrid EMT 
states

alleles (Figure S6E), and more active target sites determined
earlier tree nodes (Figure S6F), suggesting that lineage relation-
ships between cells are accurately captured in our trees.

The full clonal and subclonal phylogenetic visualization of M1
data highlights the overwhelming proliferative and metastatic
dominance of cloneM1.1 (Figures 4D and S6G). However, within
M1.1, we also observed vast heterogeneity with respect to sub-
clonal aggression and metastatic success. Most strikingly, the
same bottlenecking observed on the clonal level was also pre-
sent on the subclonal level within M1.1 (Figure 4E). Subclonal
bottlenecking further increased at metastatic sites, again mirror-
ing observations at the clonal level. Thus, cancer progression
appears to be defined by a state of constant selection, separate
from the effects of engraftment.

Late-hybrid EMT states are proliferatively and
metastatically advantageous
As the vast majority of EMT diversity was within M1.1 (Figure 3I),
we leveraged phylogenetic data to understand how this range of
intraclonal EMT states may relate to differences in subclonal
behavior. We calculated the mean pseudoEMT value for each
subclone and plotted this and subclonal dissemination (EH) for
clone M1.1 (Figures 5A and 5B). While M1.1 was highly mesen-

chymal compared with other M1 clones, many subclones within
M1.1 were actually quite epithelial. These epithelial subclones
were primarily small and non-metastatic (Figures 5A and 5B).
Interestingly, the same was true of highly mesenchymal sub-
clones. On the other hand, the largest and most disseminated
subclones appeared to express hybrid EMT states (Figures 5A
and 5B), providing direct evidence that EMT extremes are less
metastatic than hybrid states (Jolly et al., 2015; Nieto et al.,
2016; Lambert et al. 2017; Pastushenko and Blanpain 2019).
To precisely characterize where aggression peaked along the

EMT continuum, we mapped subclonal dissemination (EH) and
size along pseudoEMT (Figure 5C). We found that dissemination
gradually peaked around the H3 and H4 hybrid states (pseu-
doEMT score of 20–22) and then sharply declined at highly
mesenchymal states. Thus, late-hybrid EMT states aremetastat-
ically advantageous and are associated with specific prolifera-
tive, metabolic, and signaling processes (Figure 3J and Table
S2), as well as distinct regulatory binding factors (Figure 3K).
Notably, hybrid-EMT states appeared transcriptionally stable;

for example, a large, hybrid subclone often had close relatives
that were also large and hybrid (Figure 5A). To understand the
stability of EMT states, we plotted the distribution of cells,
subclones, and root clades along pseudoEMT (Figure 5D;
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Figure 5. Peak metastatic aggression corresponds to late-hybrid EMT states
(A and B) Circle packing plots of the phylogenetic structure of clone M1.1 with subclones colored by mean pseudoEMT (A) and by dissemination score (B).

(C) Relationship between metastatic dissemination and pseudoEMT for subclones from (A and B).

(D) Density along pseudoEMT of M1.1 cells and their increasingly ancestral (arrow) phylogenetic groupings, examples of which are highlighted in (A).

(E) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and patient enrichment scores for each pseudoEMT gene cluster using Cox regression

analysis, with the hazard ratio for each gene cluster displayed (*p < 0.05, dp < 0.1). Square sizes are inversely proportional to p value.
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alleles (Figure S6E), and more active target sites determined
earlier tree nodes (Figure S6F), suggesting that lineage relation-
ships between cells are accurately captured in our trees.

The full clonal and subclonal phylogenetic visualization of M1
data highlights the overwhelming proliferative and metastatic
dominance of cloneM1.1 (Figures 4D and S6G). However, within
M1.1, we also observed vast heterogeneity with respect to sub-
clonal aggression and metastatic success. Most strikingly, the
same bottlenecking observed on the clonal level was also pre-
sent on the subclonal level within M1.1 (Figure 4E). Subclonal
bottlenecking further increased at metastatic sites, again mirror-
ing observations at the clonal level. Thus, cancer progression
appears to be defined by a state of constant selection, separate
from the effects of engraftment.

Late-hybrid EMT states are proliferatively and
metastatically advantageous
As the vast majority of EMT diversity was within M1.1 (Figure 3I),
we leveraged phylogenetic data to understand how this range of
intraclonal EMT states may relate to differences in subclonal
behavior. We calculated the mean pseudoEMT value for each
subclone and plotted this and subclonal dissemination (EH) for
clone M1.1 (Figures 5A and 5B). While M1.1 was highly mesen-

chymal compared with other M1 clones, many subclones within
M1.1 were actually quite epithelial. These epithelial subclones
were primarily small and non-metastatic (Figures 5A and 5B).
Interestingly, the same was true of highly mesenchymal sub-
clones. On the other hand, the largest and most disseminated
subclones appeared to express hybrid EMT states (Figures 5A
and 5B), providing direct evidence that EMT extremes are less
metastatic than hybrid states (Jolly et al., 2015; Nieto et al.,
2016; Lambert et al. 2017; Pastushenko and Blanpain 2019).
To precisely characterize where aggression peaked along the

EMT continuum, we mapped subclonal dissemination (EH) and
size along pseudoEMT (Figure 5C). We found that dissemination
gradually peaked around the H3 and H4 hybrid states (pseu-
doEMT score of 20–22) and then sharply declined at highly
mesenchymal states. Thus, late-hybrid EMT states aremetastat-
ically advantageous and are associated with specific prolifera-
tive, metabolic, and signaling processes (Figure 3J and Table
S2), as well as distinct regulatory binding factors (Figure 3K).
Notably, hybrid-EMT states appeared transcriptionally stable;

for example, a large, hybrid subclone often had close relatives
that were also large and hybrid (Figure 5A). To understand the
stability of EMT states, we plotted the distribution of cells,
subclones, and root clades along pseudoEMT (Figure 5D;
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(A and B) Circle packing plots of the phylogenetic structure of clone M1.1 with subclones colored by mean pseudoEMT (A) and by dissemination score (B).
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alleles (Figure S6E), and more active target sites determined
earlier tree nodes (Figure S6F), suggesting that lineage relation-
ships between cells are accurately captured in our trees.

The full clonal and subclonal phylogenetic visualization of M1
data highlights the overwhelming proliferative and metastatic
dominance of cloneM1.1 (Figures 4D and S6G). However, within
M1.1, we also observed vast heterogeneity with respect to sub-
clonal aggression and metastatic success. Most strikingly, the
same bottlenecking observed on the clonal level was also pre-
sent on the subclonal level within M1.1 (Figure 4E). Subclonal
bottlenecking further increased at metastatic sites, again mirror-
ing observations at the clonal level. Thus, cancer progression
appears to be defined by a state of constant selection, separate
from the effects of engraftment.

Late-hybrid EMT states are proliferatively and
metastatically advantageous
As the vast majority of EMT diversity was within M1.1 (Figure 3I),
we leveraged phylogenetic data to understand how this range of
intraclonal EMT states may relate to differences in subclonal
behavior. We calculated the mean pseudoEMT value for each
subclone and plotted this and subclonal dissemination (EH) for
clone M1.1 (Figures 5A and 5B). While M1.1 was highly mesen-

chymal compared with other M1 clones, many subclones within
M1.1 were actually quite epithelial. These epithelial subclones
were primarily small and non-metastatic (Figures 5A and 5B).
Interestingly, the same was true of highly mesenchymal sub-
clones. On the other hand, the largest and most disseminated
subclones appeared to express hybrid EMT states (Figures 5A
and 5B), providing direct evidence that EMT extremes are less
metastatic than hybrid states (Jolly et al., 2015; Nieto et al.,
2016; Lambert et al. 2017; Pastushenko and Blanpain 2019).
To precisely characterize where aggression peaked along the

EMT continuum, we mapped subclonal dissemination (EH) and
size along pseudoEMT (Figure 5C). We found that dissemination
gradually peaked around the H3 and H4 hybrid states (pseu-
doEMT score of 20–22) and then sharply declined at highly
mesenchymal states. Thus, late-hybrid EMT states aremetastat-
ically advantageous and are associated with specific prolifera-
tive, metabolic, and signaling processes (Figure 3J and Table
S2), as well as distinct regulatory binding factors (Figure 3K).
Notably, hybrid-EMT states appeared transcriptionally stable;

for example, a large, hybrid subclone often had close relatives
that were also large and hybrid (Figure 5A). To understand the
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Complementary process to canonical EMT

From Figure 6 of Simeonov et al., Cancer Cell (2021)

to be the most abundant and overrepresented secreted factors
in PDAC compared with normal pancreas, in both human pa-
tients and mouse models (Tian et al., 2019). However, the spe-
cific functions of S100s in PDAC and other cancers are poorly
characterized. Some S100s, such as S100a4, are thought to pro-
mote metastasis via EMT and to directly mediate pseudopodia
and lamellipodia formation in order to drive cell migration and in-
vasion (Bresnick et al. 2015; Fei et al., 2017). Interestingly, S100s
are considered autocrine, paracrine, and even circulatory long-
distance signaling molecules that potentially propagate their

own expression and coordinate changes in the tumor and the
microenvironment both locally and systemically (Bresnick et al.
2015). However, studies have primarily focused on S100
signaling in the tumor microenvironment and have not assessed
how signaling spreads across different tumor subpopulations.
We leveraged our coupled lineage and transcriptional data

across 95 distinct cancer clones to investigate whether there
was evidence of S100 signal propagation in tumors in vivo. We
aggregated single-cell gene expression of the S100a family for
each clone grouped by mouse (Figure 6L). We found that M2
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Figure 6. A process complementary to canonical EMT
(A) Lineage tree for M2 subclones, where branches and nodes are colored by clone and scaled by the number of cells they relate.

(B) UMAP of M2 cells, colored as in (A), with five large, aggressive clones labeled, as well as M2.1 (green), which was the largest clone in the primary tumor but

poorly metastatic. Circled region indicates the transcriptional space where smaller, non-aggressive clones reside.

(C) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and enrichment scores for genes associated with subclonal dissemination using Cox

regression analysis (**p < 0.01), with the hazard ratio displayed. Square sizes are inversely proportional to p value.

(D–H) Canonical epithelial (D, Ocln; E, Epcam; F, Lgals4) and mesenchymal (G, Prrx1; H, Zeb2) markers.

(I and J) Markers with inconsistent expression patterns in the dominant clone, M2.2 (I, Sparc; J, Muc1).

(K) Highly expressed genes ranked by association (q < 0.05) with subclonal dissemination.

(L) Aggregated single-cell gene expression of the S100a family for each clone, colored by aggression (as defined in Figure 2B) and grouped bymouse. Intramouse

comparisons between dominant/aggressive clones versus all others are indicated above each violin. Comparisons between mice for all clones (black) and only

dominant/aggressive clones (red) are indicated above the line (Welch’s t test, ****p < 0.0001, ***p < 0.001, ns, not significant).

See also Figure S6 and Table S5.
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2015). However, studies have primarily focused on S100
signaling in the tumor microenvironment and have not assessed
how signaling spreads across different tumor subpopulations.
We leveraged our coupled lineage and transcriptional data

across 95 distinct cancer clones to investigate whether there
was evidence of S100 signal propagation in tumors in vivo. We
aggregated single-cell gene expression of the S100a family for
each clone grouped by mouse (Figure 6L). We found that M2
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Figure 6. A process complementary to canonical EMT
(A) Lineage tree for M2 subclones, where branches and nodes are colored by clone and scaled by the number of cells they relate.

(B) UMAP of M2 cells, colored as in (A), with five large, aggressive clones labeled, as well as M2.1 (green), which was the largest clone in the primary tumor but

poorly metastatic. Circled region indicates the transcriptional space where smaller, non-aggressive clones reside.

(C) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and enrichment scores for genes associated with subclonal dissemination using Cox

regression analysis (**p < 0.01), with the hazard ratio displayed. Square sizes are inversely proportional to p value.

(D–H) Canonical epithelial (D, Ocln; E, Epcam; F, Lgals4) and mesenchymal (G, Prrx1; H, Zeb2) markers.

(I and J) Markers with inconsistent expression patterns in the dominant clone, M2.2 (I, Sparc; J, Muc1).

(K) Highly expressed genes ranked by association (q < 0.05) with subclonal dissemination.

(L) Aggregated single-cell gene expression of the S100a family for each clone, colored by aggression (as defined in Figure 2B) and grouped bymouse. Intramouse

comparisons between dominant/aggressive clones versus all others are indicated above each violin. Comparisons between mice for all clones (black) and only

dominant/aggressive clones (red) are indicated above the line (Welch’s t test, ****p < 0.0001, ***p < 0.001, ns, not significant).

See also Figure S6 and Table S5.
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Complementary process to canonical EMT

From Figures 2,6 of Simeonov et al., Cancer Cell (2021)

We next asked whether clones were transcriptionally distinct.
Indeed, cells from the same clone clustered together in uniform
manifold approximation and projection (UMAP) space (Fig-
ure 2D). This was true of both large and small clones (Figures
2D–2G). Importantly, this finding extended to cells harvested
from different sites, suggesting that cells retain their clonal tran-
scriptional identity even after dissemination (Figure S3A). These
stable transcriptional differences may result from either epige-
netic drift or large-scale copy number changes, the latter
observed in our data (Figure S3B) and a hallmark of PDAC chro-
mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-
sponded to transcriptional differences. While clones had distinct
transcriptional identities, we found that many overlapped in
UMAP space (Figures 2D–2G). Furthermore, 81% of clones
(77/95 across both mice) primarily resided in a single transcrip-
tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-

tional state to tumor aggression, we derived a clonal aggression
scoring system based on clone size and dissemination (Fig-
ure 2B; STAR Methods). We found that 85% (81/95) of clones
were non-aggressive and were transcriptionally similar, occu-
pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
recovered over twice as many barcodes per cell, which permits
more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
aggressive clones again appeared transcriptionally similar to
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Figure 2. Most metastases arise from rare, transcriptionally distinct clones
(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression

assignments as in (H) and (I), respectively.

(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as

mouse.clone).

(E and F) Two representative non-aggressive clones. (E) M1.13, (F) M2.10.

(G) A representative clone of medium aggression.

(H) Leiden transcriptional clustering of (D).

(I) Cells colored by clonal aggression.

(J) Number of non-, mid-, or high-aggression clones of 95 total.

See also Figures S3 and S4.
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to be the most abundant and overrepresented secreted factors
in PDAC compared with normal pancreas, in both human pa-
tients and mouse models (Tian et al., 2019). However, the spe-
cific functions of S100s in PDAC and other cancers are poorly
characterized. Some S100s, such as S100a4, are thought to pro-
mote metastasis via EMT and to directly mediate pseudopodia
and lamellipodia formation in order to drive cell migration and in-
vasion (Bresnick et al. 2015; Fei et al., 2017). Interestingly, S100s
are considered autocrine, paracrine, and even circulatory long-
distance signaling molecules that potentially propagate their

own expression and coordinate changes in the tumor and the
microenvironment both locally and systemically (Bresnick et al.
2015). However, studies have primarily focused on S100
signaling in the tumor microenvironment and have not assessed
how signaling spreads across different tumor subpopulations.
We leveraged our coupled lineage and transcriptional data

across 95 distinct cancer clones to investigate whether there
was evidence of S100 signal propagation in tumors in vivo. We
aggregated single-cell gene expression of the S100a family for
each clone grouped by mouse (Figure 6L). We found that M2
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Figure 6. A process complementary to canonical EMT
(A) Lineage tree for M2 subclones, where branches and nodes are colored by clone and scaled by the number of cells they relate.

(B) UMAP of M2 cells, colored as in (A), with five large, aggressive clones labeled, as well as M2.1 (green), which was the largest clone in the primary tumor but

poorly metastatic. Circled region indicates the transcriptional space where smaller, non-aggressive clones reside.

(C) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and enrichment scores for genes associated with subclonal dissemination using Cox

regression analysis (**p < 0.01), with the hazard ratio displayed. Square sizes are inversely proportional to p value.

(D–H) Canonical epithelial (D, Ocln; E, Epcam; F, Lgals4) and mesenchymal (G, Prrx1; H, Zeb2) markers.

(I and J) Markers with inconsistent expression patterns in the dominant clone, M2.2 (I, Sparc; J, Muc1).

(K) Highly expressed genes ranked by association (q < 0.05) with subclonal dissemination.

(L) Aggregated single-cell gene expression of the S100a family for each clone, colored by aggression (as defined in Figure 2B) and grouped bymouse. Intramouse

comparisons between dominant/aggressive clones versus all others are indicated above each violin. Comparisons between mice for all clones (black) and only

dominant/aggressive clones (red) are indicated above the line (Welch’s t test, ****p < 0.0001, ***p < 0.001, ns, not significant).

See also Figure S6 and Table S5.
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characterized. Some S100s, such as S100a4, are thought to pro-
mote metastasis via EMT and to directly mediate pseudopodia
and lamellipodia formation in order to drive cell migration and in-
vasion (Bresnick et al. 2015; Fei et al., 2017). Interestingly, S100s
are considered autocrine, paracrine, and even circulatory long-
distance signaling molecules that potentially propagate their

own expression and coordinate changes in the tumor and the
microenvironment both locally and systemically (Bresnick et al.
2015). However, studies have primarily focused on S100
signaling in the tumor microenvironment and have not assessed
how signaling spreads across different tumor subpopulations.
We leveraged our coupled lineage and transcriptional data

across 95 distinct cancer clones to investigate whether there
was evidence of S100 signal propagation in tumors in vivo. We
aggregated single-cell gene expression of the S100a family for
each clone grouped by mouse (Figure 6L). We found that M2
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Figure 6. A process complementary to canonical EMT
(A) Lineage tree for M2 subclones, where branches and nodes are colored by clone and scaled by the number of cells they relate.

(B) UMAP of M2 cells, colored as in (A), with five large, aggressive clones labeled, as well as M2.1 (green), which was the largest clone in the primary tumor but

poorly metastatic. Circled region indicates the transcriptional space where smaller, non-aggressive clones reside.

(C) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and enrichment scores for genes associated with subclonal dissemination using Cox

regression analysis (**p < 0.01), with the hazard ratio displayed. Square sizes are inversely proportional to p value.

(D–H) Canonical epithelial (D, Ocln; E, Epcam; F, Lgals4) and mesenchymal (G, Prrx1; H, Zeb2) markers.

(I and J) Markers with inconsistent expression patterns in the dominant clone, M2.2 (I, Sparc; J, Muc1).

(K) Highly expressed genes ranked by association (q < 0.05) with subclonal dissemination.

(L) Aggregated single-cell gene expression of the S100a family for each clone, colored by aggression (as defined in Figure 2B) and grouped bymouse. Intramouse

comparisons between dominant/aggressive clones versus all others are indicated above each violin. Comparisons between mice for all clones (black) and only

dominant/aggressive clones (red) are indicated above the line (Welch’s t test, ****p < 0.0001, ***p < 0.001, ns, not significant).

See also Figure S6 and Table S5.
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to be the most abundant and overrepresented secreted factors
in PDAC compared with normal pancreas, in both human pa-
tients and mouse models (Tian et al., 2019). However, the spe-
cific functions of S100s in PDAC and other cancers are poorly
characterized. Some S100s, such as S100a4, are thought to pro-
mote metastasis via EMT and to directly mediate pseudopodia
and lamellipodia formation in order to drive cell migration and in-
vasion (Bresnick et al. 2015; Fei et al., 2017). Interestingly, S100s
are considered autocrine, paracrine, and even circulatory long-
distance signaling molecules that potentially propagate their

own expression and coordinate changes in the tumor and the
microenvironment both locally and systemically (Bresnick et al.
2015). However, studies have primarily focused on S100
signaling in the tumor microenvironment and have not assessed
how signaling spreads across different tumor subpopulations.
We leveraged our coupled lineage and transcriptional data

across 95 distinct cancer clones to investigate whether there
was evidence of S100 signal propagation in tumors in vivo. We
aggregated single-cell gene expression of the S100a family for
each clone grouped by mouse (Figure 6L). We found that M2
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Figure 6. A process complementary to canonical EMT
(A) Lineage tree for M2 subclones, where branches and nodes are colored by clone and scaled by the number of cells they relate.

(B) UMAP of M2 cells, colored as in (A), with five large, aggressive clones labeled, as well as M2.1 (green), which was the largest clone in the primary tumor but

poorly metastatic. Circled region indicates the transcriptional space where smaller, non-aggressive clones reside.

(C) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and enrichment scores for genes associated with subclonal dissemination using Cox

regression analysis (**p < 0.01), with the hazard ratio displayed. Square sizes are inversely proportional to p value.

(D–H) Canonical epithelial (D, Ocln; E, Epcam; F, Lgals4) and mesenchymal (G, Prrx1; H, Zeb2) markers.

(I and J) Markers with inconsistent expression patterns in the dominant clone, M2.2 (I, Sparc; J, Muc1).

(K) Highly expressed genes ranked by association (q < 0.05) with subclonal dissemination.

(L) Aggregated single-cell gene expression of the S100a family for each clone, colored by aggression (as defined in Figure 2B) and grouped bymouse. Intramouse

comparisons between dominant/aggressive clones versus all others are indicated above each violin. Comparisons between mice for all clones (black) and only

dominant/aggressive clones (red) are indicated above the line (Welch’s t test, ****p < 0.0001, ***p < 0.001, ns, not significant).

See also Figure S6 and Table S5.
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High mesenchymal (and low epithelial) gene expression in M2.23

We next asked whether clones were transcriptionally distinct.
Indeed, cells from the same clone clustered together in uniform
manifold approximation and projection (UMAP) space (Fig-
ure 2D). This was true of both large and small clones (Figures
2D–2G). Importantly, this finding extended to cells harvested
from different sites, suggesting that cells retain their clonal tran-
scriptional identity even after dissemination (Figure S3A). These
stable transcriptional differences may result from either epige-
netic drift or large-scale copy number changes, the latter
observed in our data (Figure S3B) and a hallmark of PDAC chro-
mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-
sponded to transcriptional differences. While clones had distinct
transcriptional identities, we found that many overlapped in
UMAP space (Figures 2D–2G). Furthermore, 81% of clones
(77/95 across both mice) primarily resided in a single transcrip-
tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-

tional state to tumor aggression, we derived a clonal aggression
scoring system based on clone size and dissemination (Fig-
ure 2B; STAR Methods). We found that 85% (81/95) of clones
were non-aggressive and were transcriptionally similar, occu-
pying a small region of cluster 3 (Figures 2I and 2J). Conversely,
highly aggressive clones were exceedingly rare but transcrip-
tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs
associated with clonal aggression. While both mice were strik-
ingly similar in terms of clonal composition (Figure 2B), we initially
focused on M1, since we harvested cells from more sites and
recovered over twice as many barcodes per cell, which permits
more effective downstream subclonal reconstruction (Figures
S2J and S2K). Reanalyzing the M1 data apart from M2, non-
aggressive clones again appeared transcriptionally similar to
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Figure 2. Most metastases arise from rare, transcriptionally distinct clones
(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression

assignments as in (H) and (I), respectively.

(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as

mouse.clone).

(E and F) Two representative non-aggressive clones. (E) M1.13, (F) M2.10.

(G) A representative clone of medium aggression.

(H) Leiden transcriptional clustering of (D).

(I) Cells colored by clonal aggression.

(J) Number of non-, mid-, or high-aggression clones of 95 total.

See also Figures S3 and S4.
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Complementary process to canonical EMT

From Figures 6 of Simeonov et al., Cancer Cell (2021)

to be the most abundant and overrepresented secreted factors
in PDAC compared with normal pancreas, in both human pa-
tients and mouse models (Tian et al., 2019). However, the spe-
cific functions of S100s in PDAC and other cancers are poorly
characterized. Some S100s, such as S100a4, are thought to pro-
mote metastasis via EMT and to directly mediate pseudopodia
and lamellipodia formation in order to drive cell migration and in-
vasion (Bresnick et al. 2015; Fei et al., 2017). Interestingly, S100s
are considered autocrine, paracrine, and even circulatory long-
distance signaling molecules that potentially propagate their

own expression and coordinate changes in the tumor and the
microenvironment both locally and systemically (Bresnick et al.
2015). However, studies have primarily focused on S100
signaling in the tumor microenvironment and have not assessed
how signaling spreads across different tumor subpopulations.
We leveraged our coupled lineage and transcriptional data

across 95 distinct cancer clones to investigate whether there
was evidence of S100 signal propagation in tumors in vivo. We
aggregated single-cell gene expression of the S100a family for
each clone grouped by mouse (Figure 6L). We found that M2
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Figure 6. A process complementary to canonical EMT
(A) Lineage tree for M2 subclones, where branches and nodes are colored by clone and scaled by the number of cells they relate.

(B) UMAP of M2 cells, colored as in (A), with five large, aggressive clones labeled, as well as M2.1 (green), which was the largest clone in the primary tumor but

poorly metastatic. Circled region indicates the transcriptional space where smaller, non-aggressive clones reside.

(C) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and enrichment scores for genes associated with subclonal dissemination using Cox

regression analysis (**p < 0.01), with the hazard ratio displayed. Square sizes are inversely proportional to p value.

(D–H) Canonical epithelial (D, Ocln; E, Epcam; F, Lgals4) and mesenchymal (G, Prrx1; H, Zeb2) markers.

(I and J) Markers with inconsistent expression patterns in the dominant clone, M2.2 (I, Sparc; J, Muc1).

(K) Highly expressed genes ranked by association (q < 0.05) with subclonal dissemination.

(L) Aggregated single-cell gene expression of the S100a family for each clone, colored by aggression (as defined in Figure 2B) and grouped bymouse. Intramouse

comparisons between dominant/aggressive clones versus all others are indicated above each violin. Comparisons between mice for all clones (black) and only

dominant/aggressive clones (red) are indicated above the line (Welch’s t test, ****p < 0.0001, ***p < 0.001, ns, not significant).

See also Figure S6 and Table S5.
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cific functions of S100s in PDAC and other cancers are poorly
characterized. Some S100s, such as S100a4, are thought to pro-
mote metastasis via EMT and to directly mediate pseudopodia
and lamellipodia formation in order to drive cell migration and in-
vasion (Bresnick et al. 2015; Fei et al., 2017). Interestingly, S100s
are considered autocrine, paracrine, and even circulatory long-
distance signaling molecules that potentially propagate their

own expression and coordinate changes in the tumor and the
microenvironment both locally and systemically (Bresnick et al.
2015). However, studies have primarily focused on S100
signaling in the tumor microenvironment and have not assessed
how signaling spreads across different tumor subpopulations.
We leveraged our coupled lineage and transcriptional data

across 95 distinct cancer clones to investigate whether there
was evidence of S100 signal propagation in tumors in vivo. We
aggregated single-cell gene expression of the S100a family for
each clone grouped by mouse (Figure 6L). We found that M2
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Figure 6. A process complementary to canonical EMT
(A) Lineage tree for M2 subclones, where branches and nodes are colored by clone and scaled by the number of cells they relate.

(B) UMAP of M2 cells, colored as in (A), with five large, aggressive clones labeled, as well as M2.1 (green), which was the largest clone in the primary tumor but

poorly metastatic. Circled region indicates the transcriptional space where smaller, non-aggressive clones reside.

(C) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and enrichment scores for genes associated with subclonal dissemination using Cox

regression analysis (**p < 0.01), with the hazard ratio displayed. Square sizes are inversely proportional to p value.

(D–H) Canonical epithelial (D, Ocln; E, Epcam; F, Lgals4) and mesenchymal (G, Prrx1; H, Zeb2) markers.

(I and J) Markers with inconsistent expression patterns in the dominant clone, M2.2 (I, Sparc; J, Muc1).

(K) Highly expressed genes ranked by association (q < 0.05) with subclonal dissemination.

(L) Aggregated single-cell gene expression of the S100a family for each clone, colored by aggression (as defined in Figure 2B) and grouped bymouse. Intramouse

comparisons between dominant/aggressive clones versus all others are indicated above each violin. Comparisons between mice for all clones (black) and only

dominant/aggressive clones (red) are indicated above the line (Welch’s t test, ****p < 0.0001, ***p < 0.001, ns, not significant).

See also Figure S6 and Table S5.
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Major contributions of macsGESTALT

• macsGESTALT is an inducible lineage-
recorder


• In vivo model of pancreatic cancer 
metastasis


• Finding recurrent drivers across cancers 
remains elusive


• Metastatically competent model wherein 
most clones do NOT metastasize


• In EMT, metastatic aggression rises and 
peaks during a late intermediate hybrid 
stage


• ID gene sets within EMT hybrid stages 
that are predictive of human survival 
outcome (in 2 cancers, not in 3)


• S100 genes were found across 
metastatic subpopulations
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