

Group Assignment 1
 CS 850 4 Big Data

Summer 2015

Coded By

 naironics

Q1. ​On the cloudera image you find a folder called datasets that has a zip file in
it called: ​median_income_CA.​csv. It contains a couple of comma separated
columns:

Data Location:
https://www.dropbox.com/s/ptuhcti6hn4dezo/median_income_CA.csv?dl=0
GEO.id,Zip,GEO-label,​Median ​Total,Median Owner occupied,Median Renter
occupied

We want to use Hadoop and MapReduce to analyze this file. You can do this in
Java or python streaming API. Please hand in your results and your code (.java
file, or the mapper and reducer .py file)

For each interval of 10 zip codes we want to know the minimum and maximum
salary in the table for all those zip code ranges. Observe that there are zip codes
like 999HH, please ignore all zip codes that are not integer numbers.

As submission please explain step by step how you accomplished this exercise
and along with screenshots, queries and other aspects of analysis steps and code.
Be as detail oriented as possible.

Solution :

What this MapReduce program does :

The main java file ZipIncomeMinMax.java, contains all the hadoop job specific
logic, which includes the mapper, reducer, checking if a zip code is valid and
driver etc.

A Custom Data Type MinMaxIncome.java is created to hold the minimum and
maximum values of a zip code range, which is identified by the ten consecutive
valid zip codes.

In the Map Stage, records are emitted one by one to the map() tasks, which are
then split into fields and required field (zip code in our case) is taken as key,
after checking that is a valid zip code, and its min and max values combo are
saved as value in the custom data type MinMaxIncome.

In the Reduce Stage, all the values of the zip codes corresponding to the same
range are aggregated to find the local minimum and maximum for that range
and is written to the output file, which yields our final output part-r-0000 . This
output can be later used for human inspection or execution of next job or
altogether a new program.

Project Folder Structure :

Project Source Folder Structure and Contents Explanation :

The source folder contains following directories and files :

bin This folder contains all the binaries

src This folder contains the java files
ZipIncomeMinMax.java and
MinMaxIncome.java

minmaxincomemr_classes All the compiled Java Classes are in this
folder

median_income_CA.csv Input data for the MapReduce job

MinMaxIncomeMR.jar The Executable JAR generated for the
MapReduce job

run_minmaxinc_mr.sh The shell script that automates compilation
of classes, generation of JAR, creating input
directory in HDFS , copying input data to
the input folder in HDFS , running the map
reduce job and saving the output in an
output directory in HDFS , printing out
necessary output from the output file.

README.txt This file has step by step procedure of how a
JAR is created given a Java Project with just
src and bin folders.and how to execute it .

Shell Script :

Explanation of Shell Script :

The shell script contains all the steps required to automate running a
MapReduce job from within the project folder structure with just src and bin
folder along with input data in it.

rm -rf minmaxincomemr_classes

removing the directory which holds all previously compiled java classes

rm MinMaxIncomeMR.jar

removing previously generated JAR files, just in case any change is made to the
source files

mkdir minmaxincomemr_classes

recreating directory that will hold the compiled java classes

cd src

change directory to source directory

javac -classpath `yarn classpath` -d ../minmaxincomemr_classes
ZipIncomeMinMax.java MinMaxIncome.java

compiling java source files in src directory and saving it in the compiled java
classes directory

cd ..

coming out of src directory to the project root

jar -cvf MinMaxIncome.jar -C minmaxincomemr_classes/ .

generating a JAR file in the project root using the compiled classes in the
minmaxincomemr_classes directory

hadoop fs -rm -r /MinMaxIncomeMR

removing any previously created HDFS main directory for this job, which may
contain output folder, as hadoop expects output directory to not exist
beforehand

hadoop fs -mkdir /MinMaxIncomeMR

recreating the job specific main directory in HDFS

hadoop fs -mkdir /MinMaxIncomeMR/input

creating an subdirectory in the HDFS main directory created in the previous step
for copying input data

hadoop fs -copyFromLocal median_income_CA.csv
/MinMaxIncomeMR/input

copying input data from local (available in the current project directory root) to
the HDFS input data directory created in last step

yarn jar MinMaxIncomeMR.jar ZipIncomeMinMax
/MinMaxIncomeMR/input /MinMaxIncomeMR/output

running MapReduce job using the "yarn jar" command which takes as other
parameters the JAR file name, Java Class Name with main() method , HDFS
input and output directories

hadoop fs -cat /MinMaxIncomeMR/output/part-r-00000 | sort -nrk 1
| head -20

displaying the output generated in the output file part-r-00000 and piping it to
sort in descending order by the first column and again piping it to restrict to 20
records from the top

hadoop fs -cat /MinMaxIncomeMR/output/part-r-00000 | wc -l

displaying the total number of lines in the output file part-r-00000

Note : This shell script should be run from the root of the project
directory, where it is residing.

Execution of Script :

Final Output :

Output Explanation :

The output produced by this program is saved in the output directory
/MinMaxIncomeMR/output of HDFS. The file part-r-00000 in this output
contains all 168 valid 10 zip code ranges with minimum and maximum salary.
The two columns in output files are the zip code range, and the minimum salary
and maximum salary combo in that order. There were a total of 1671 zip codes
that were valid from a total of 1748 zip codes provided in the data set. Our
program omitted the zip codes that were not in proper format in the map stage
of the job. Hence the remaining 1671 zip codes were split into Zip Code ranges of
10 zip codes each to find minimum and maximum salary in that range. We used
10 valid zip codes in consecutive order as it appears in the input file to group the
zip code ranges.

Q2. ​This part involves some fun MapReduce processing using the White House
Visitor Log. You can find the dataset at:

http://www.whitehouse.gov/files/disclosures/visitors/WhiteHouse-WAVESRele
ased-0827.csv

First download this dataset and copy it to HDFS (e.g., in the
/usr/research/home/USERNAME directory, where USERNAME is replaced
with your user name). Use the copyFromLocal command described at:

http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html

The attributes in this dataset are described at:

http://www.whitehouse.gov/files/disclosures/visitors/WhiteHouse-WAVES-Ke
y- 1209.txt

Also, you can see a spreadsheet of the data at:

http://www.whitehouse.gov/briefing-room/disclosures/visitor-records

You are required to write efficient MapReduce programs to find the following
information:
(i) The 10 most frequent visitors (NAMELAST, NAMEFIRST, NAMEMID) to the
White House.
(ii) The 10 most frequently visited people (visitee_namelast, visitee_namefirst)
in the White House.
(iii) The 10 most frequent visitor-visitee combinations.
(iv) Some other interesting statistic that you can think of.

Solution :

(i)

What this MapReduce program does :

The java file WhiteHouseMR1.java, contains all the hadoop job specific logic,
which includes the mapper, reducer, Top Ten Mapper, Top Ten Reducer and
driver etc.

This MapReduce program has 2 jobs which are chained to produce the final
output.

For Job 1 :

In the Map Stage, records are emitted one by one to the map() tasks, which are
then split into fields and the required fields (NAMELAST, NAMEFIRST,
NAMEMID clubbed together) is taken as key and value as 1

In the Reduce Stage, all the values of the same key (NAMELAST, NAMEFIRST,
NAMEMID combo) are aggregated to get the overall count for each single visitor
in the data set.

Output of job1 is saved into intermediate folder in HDFS to be read by the job 2.

For Job 2 :

The Top Ten Mapper and Top Ten Reducer are used to filter out the top 10
visitors and the output of this job is written to final output directory

Project Folder Structure :

Project Source Folder Structure and Contents explanation :

The source folder contains following directories and files :

bin This folder contains all the binaries

src This folder contains the java file
WhiteHouseMR1.java

whitehousemr1_classes All the compiled Java Classes are in this
folder

WhiteHouse-WAVESReleas
ed-0827.csv

Input data for the MapReduce job

WhiteHouseMR1.jar The Executable JAR generated for the
MapReduce job

run_wh_mr1.sh The shell script that automates compilation
of classes, generation of JAR, creating input
directory in HDFS , copying input data to
the input folder in HDFS , running the map
reduce job and saving the output in an
output directory in HDFS , printing out
necessary output from the output file.

README.txt This file has step by step procedure of how a
JAR is created given a Java Project with just
src and bin folders.and how to execute it .

Shell Script :

Explanation of Shell Script :

The shell script contains all the steps required to automate running a
MapReduce job from within the project folder structure with just src and bin
folder along with input data in it.

rm -rf whitehousemr1_classes

removing the directory which holds all previously compiled java classes

rm WhiteHouseMR1.jar

removing previously generated JAR files, just in case any change is made to the
source files

mkdir whitehousemr1_classes

recreating directory that will hold the compiled java classes

cd src

change directory to source directory

javac -classpath `yarn classpath` -d ../whitehousemr1_classes
WhiteHouseMR1.java

compiling java source file in src directory and saving it in the compiled java
classes directory

cd ..

coming out of src directory to the project root

jar -cvf WhiteHouseMR1.jar -C whitehousemr1_classes/ .

generating a JAR file in the project root using the compiled classes in the
whitehousemr1_classes directory

hadoop fs -rm -r /WhiteHouseMR1

removing any previously created HDFS main directory for this job, which may
contain output folder, as hadoop expects output directory to not exist
beforehand

hadoop fs -mkdir /WhiteHouseMR1

recreating the job specific main directory in HDFS

hadoop fs -mkdir /WhiteHouseMR1/input

creating an subdirectory in the HDFS main directory created in the previous step
for copying input data

hadoop fs -copyFromLocal WhiteHouse-WAVESReleased-0827.csv
/WhiteHouseMR1/input

copying input data from local (available in the current project directory root) to
the HDFS input data directory created in last step

yarn jar WhiteHouseMR1.jar WhiteHouseMR1
/WhiteHouseMR1/input /WhiteHouseMR1/intermediate
/WhiteHouseMR1/output

running MapReduce job using the "yarn jar" command which takes as other
parameters the JAR file name, Java Class Name with main() method , HDFS
input , intermediate and output directories

hadoop fs -cat /WhiteHouseMR1/output/part-r-00000 | sort -nrk 1

displaying the output generated in the output file part-r-00000 and piping it to
sort in descending order by the first column

Note : This shell script should be run from the root of the project
directory, where it is residing.

Execution Process​ :

Execution Process Continues..

Final Output :

Output Explanation :

The final output produced by this program is saved in the output directory
/WhiteHouseMR1/output of HDFS. The file part-r-00000 in this output
contains the top 10 visitors to the White House in descending order. The two
columns in output files are the Visit Count, (NAMELAST, NAMEFIRST,
NAMEMID clubbed together) in that order. This MapReduce main job included
2 sub jobs, first job dealt with identifying the visitors count for all the records in
the data set. Later this job was chained with another job to only get the top 10
visitor count . Because of this, apart from the input and output folders in HDFS
corresponding to this job, there was also an additional intermediate directory to
write the output of the first job (/WhiteHouseMR1/intermediate), from where
job 2 read the data to produce the final output .

(ii)

What this MapReduce program does :

The java file WhiteHouseMR2.java, contains all the hadoop job specific logic,
which includes the mapper, reducer, Top Ten Mapper, Top Ten Reducer and
driver etc.

This MapReduce program has 2 jobs which are chained to produce the final
output.

For Job 1 :

In the Map Stage, records are emitted one by one to the map() tasks, which are
then split into fields and the required fields (visitee_namelast, visitee_namefirst
clubbed together) is taken as key and value as 1

In the Reduce Stage, all the values of the same key (visitee_namelast,
visitee_namefirst combo) are aggregated to get the overall count for each single
visitee in the data set.

Output of job1 is saved into intermediate folder in HDFS to be read by the job 2.

For Job 2 :

The Top Ten Mapper and Top Ten Reducer are used to filter out the top 10
visitees and the output of this job is written to final output directory

Project Folder Structure :

Project Source Folder Structure and Contents explanation :

The source folder contains following directories and files :

bin This folder contains all the binaries

src This folder contains the java file
WhiteHouseMR2.java

whitehousemr2_classes All the compiled Java Classes are in this
folder

WhiteHouse-WAVESReleas
ed-0827.csv

Input data for the MapReduce job

WhiteHouseMR2.jar The Executable JAR generated for the
MapReduce job

run_wh_mr2.sh The shell script that automates compilation
of classes, generation of JAR, creating input
directory in HDFS , copying input data to
the input folder in HDFS , running the map
reduce job and saving the output in an
output directory in HDFS , printing out
necessary output from the output file.

README.txt This file has step by step procedure of how a
JAR is created given a Java Project with just
src and bin folders.and how to execute it .

Shell Script :

Explanation of Shell Script :

The shell script contains all the steps required to automate running a
MapReduce job from within the project folder structure with just src and bin
folder along with input data in it.

rm -rf whitehousemr2_classes

removing the directory which holds all previously compiled java classes

rm WhiteHouseMR2.jar

removing previously generated JAR files, just in case any change is made to the
source files

mkdir whitehousemr2_classes

recreating directory that will hold the compiled java classes

cd src

change directory to source directory

javac -classpath `yarn classpath` -d ../whitehousemr2_classes
WhiteHouseMR2.java

compiling java source file in src directory and saving it in the compiled java
classes directory

cd ..

coming out of src directory to the project root

jar -cvf WhiteHouseMR2.jar -C whitehousemr2_classes/ .

generating a JAR file in the project root using the compiled classes in the
whitehousemr2_classes directory

hadoop fs -rm -r /WhiteHouseMR2

removing any previously created HDFS main directory for this job, which may
contain output folder, as hadoop expects output directory to not exist
beforehand

hadoop fs -mkdir /WhiteHouseMR2

recreating the job specific main directory in HDFS

hadoop fs -mkdir /WhiteHouseMR2/input

creating an sub directory in the HDFS main directory created in the previous
step for copying input data

hadoop fs -copyFromLocal WhiteHouse-WAVESReleased-0827.csv
/WhiteHouseMR2/input

copying input data from local (available in the current project directory root) to
the HDFS input data directory created in last step

yarn jar WhiteHouseMR2.jar WhiteHouseMR2
/WhiteHouseMR2/input /WhiteHouseMR2/intermediate
/WhiteHouseMR2/output

running MapReduce job using the "yarn jar" command which takes as other
parameters the JAR file name, Java Class Name with main() method , HDFS
input , intermediate and output directories

hadoop fs -cat /WhiteHouseMR2/output/part-r-00000 | sort -nrk 1

displaying the output generated in the output file part-r-00000 and piping it to
sort in descending order by the first column

Note : This shell script should be run from the root of the project
directory, where it is residing.

Execution Process :

Execution Process Continues..

Final Output :

Output Explanation :

The final output produced by this program is saved in the output directory
/WhiteHouseMR2/output of HDFS. The file part-r-00000 in this output
contains the top 10 visitees in White House in descending order. The two
columns in output files are the Visit Count, (visitee_namelast, visitee_namefirst
combo) in that order. This MapReduce main job included 2 sub jobs, first job

dealt with identifying the visitees count for all the records in the data set. Later
this job was chained with another job to only get the top 10 visitee count .
Because of this, apart from the input and output folders in HDFS corresponding
to this job, there was also an additional intermediate directory to write the
output of the first job (/WhiteHouseMR2/intermediate), from where job 2 read
the data to produce the final output .

(iii)

What this MapReduce program does :

The java file WhiteHouseMR3.java, contains all the hadoop job specific logic,
which includes the mapper, reducer, Top Ten Mapper, Top Ten Reducer and
driver etc.

This MapReduce program has 2 jobs which are chained to produce the final
output.

For Job 1 :

In the Map Stage, records are emitted one by one to the map() tasks, which are
then split into fields and the required fields (Visitor Name Fields and Visitee
Name Fields clubbed together) is taken as key and value as 1

In the Reduce Stage, all the values of the same key (Visitor Name Fields and
Visitee Name Fields combo) are aggregated to get the overall count for each
single Visitor-Visitee combination in the data set.

Output of job1 is saved into intermediate folder in HDFS to be read by the job 2.

For Job 2 :

The Top Ten Mapper and Top Ten Reducer are used to filter out the top 10
Visitor-Visitee combination and the output of this job is written to final output
directory

Project Folder Structure :

Project Source Folder Structure and Contents explanation:

The source folder contains following directories and files :

bin This folder contains all the binaries

src This folder contains the java file
WhiteHouseMR3.java

whitehousemr3_classes All the compiled Java Classes are in this
folder

WhiteHouse-WAVESReleas
ed-0827.csv

Input data for the MapReduce job

WhiteHouseMR3.jar The Executable JAR generated for the
MapReduce job

run_wh_mr3.sh The shell script that automates compilation
of classes, generation of JAR, creating input
directory in HDFS , copying input data to
the input folder in HDFS , running the map
reduce job and saving the output in an
output directory in HDFS , printing out
necessary output from the output file.

README.txt This file has step by step procedure of how a
JAR is created given a Java Project with just
src and bin folders.and how to execute it .

Shell Script :

Explanation of Shell Script :

The shell script contains all the steps required to automate running a
MapReduce job from within the project folder structure with just src and bin
folder along with input data in it.

rm -rf whitehousemr3_classes

removing the directory which holds all previously compiled java classes

rm WhiteHouseMR3.jar

removing previously generated JAR files, just in case any change is made to the
source files

mkdir whitehousemr3_classes

recreating directory that will hold the compiled java classes

cd src

change directory to source directory

javac -classpath `yarn classpath` -d ../whitehousemr3_classes
WhiteHouseMR3.java

compiling java source file in src directory and saving it in the compiled java
classes directory

cd ..

coming out of src directory to the project root

jar -cvf WhiteHouseMR3.jar -C whitehousemr3_classes/ .

generating a JAR file in the project root using the compiled classes in the
whitehousemr3_classes directory

hadoop fs -rm -r /WhiteHouseMR3

removing any previously created HDFS main directory for this job, which may
contain output folder, as hadoop expects output directory to not exist
beforehand

hadoop fs -mkdir /WhiteHouseMR3

recreating the job specific main directory in HDFS

hadoop fs -mkdir /WhiteHouseMR3/input

creating an sub directory in the HDFS main directory created in the previous
step for copying input data

hadoop fs -copyFromLocal WhiteHouse-WAVESReleased-0827.csv
/WhiteHouseMR3/input

copying input data from local (available in the current project directory root) to
the HDFS input data directory created in last step

yarn jar WhiteHouseMR3.jar WhiteHouseMR3
/WhiteHouseMR3/input /WhiteHouseMR3/intermediate
/WhiteHouseMR3/output

running MapReduce job using the "yarn jar" command which takes as other
parameters the JAR file name, Java Class Name with main() method , HDFS
input , intermediate and output directories

hadoop fs -cat /WhiteHouseMR3/output/part-r-00000 | sort -nrk 1

displaying the output generated in the output file part-r-00000 and piping it to
sort in descending order by the first column

Note : This shell script should be run from the root of the project
directory, where it is residing.

Execution Process :

Execution Process Continues..

Final Output :

Output Explanation :

The final output produced by this program is saved in the output directory
/WhiteHouseMR3/output of HDFS. The file part-r-00000 in this output
contains the top 10 Visitor-Visitee combo of White House in descending order.
The two columns in output files are the Visit Count, ​(Visitor Name Fields and
Visitee Name Fields combo) ​in that order. This MapReduce main job included 2

sub jobs, first job dealt with identifying the Visitor-Visitee count for all the
records in the data set. Later this job was chained with another job to only get
the top 10 Visitor-Visitee count . Because of this, apart from the input and output
folders in HDFS corresponding to this job, there was also an additional
intermediate directory to write the output of the first job
(/WhiteHouseMR3/intermediate), from where job 2 read the data to produce
the final output .

(iv)

What this MapReduce program does :

The java file WhiteHouseMR4.java, contains all the hadoop job specific logic,
which includes the mapper, reducer and driver etc.

In the Map Stage, records are emitted one by one to the map() tasks, which are
then split into fields and the required field (APPT_MADE_DATE) is used to
identify the key and value. Here the month part of this entire date was taken as
key and corresponding year in this date was taken as value.

In the Reduce Stage, all the values of the same key (month) are aggregated to get
the overall count for each single month in the data set and finally the average
appointments made per month across all years are written to the output file,
which yields our final output part-r-0000 . This output can be later used for
human inspection or execution of next job or altogether a new program.

Project Folder Structure :

Project Source Folder Structure and Contents :

The source folder contains following directories and files :

bin This folder contains all the binaries

src This folder contains the java file
WhiteHouseMR4.java

whitehousemr4_classes All the compiled Java Classes are in this
folder

WhiteHouse-WAVESReleas
ed-0827.csv

Input data for the MapReduce job

WhiteHouseMR4.jar The Executable JAR generated for the
MapReduce job

run_wh_mr4.sh The shell script that automates compilation
of classes, generation of JAR, creating input
directory in HDFS , copying input data to
the input folder in HDFS , running the map
reduce job and saving the output in an
output directory in HDFS , printing out
necessary output from the output file.

README.txt This file has step by step procedure of how a
JAR is created given a Java Project with just
src and bin folders.and how to execute it .

Shell Script :

Explanation of Shell Script :

The shell script contains all the steps required to automate running a
MapReduce job from within the project folder structure with just src and bin
folder along with input data in it.

rm -rf whitehousemr4_classes

removing the directory which holds all previously compiled java classes
rm WhiteHouseMR4.jar

removing previously generated JAR files, just in case any change is made to the
source files

mkdir whitehousemr4_classes

recreating directory that will hold the compiled java classes

cd src

change directory to source directory

javac -classpath `yarn classpath` -d ../whitehousemr4_classes
WhiteHouseMR4.java

compiling java source file in src directory and saving it in the compiled java
classes directory

cd ..

coming out of src directory to the project root

jar -cvf WhiteHouseMR4.jar -C whitehousemr4_classes/ .

generating a JAR file in the project root using the compiled classes in the
whitehousemr4_classes directory

hadoop fs -rm -r /WhiteHouseMR4

removing any previously created HDFS main directory for this job, which may
contain output folder, as hadoop expects output directory to not exist
beforehand
hadoop fs -mkdir /WhiteHouseMR4

recreating the job specific main directory in HDFS

hadoop fs -mkdir /WhiteHouseMR4/input

creating an sub directory in the HDFS main directory created in the previous
step for copying input data

hadoop fs -copyFromLocal WhiteHouse-WAVESReleased-0827.csv
/WhiteHouseMR4/input

copying input data from local (available in the current project directory root) to
the HDFS input data directory created in last step

yarn jar WhiteHouseMR4.jar WhiteHouseMR4
/WhiteHouseMR4/input /WhiteHouseMR4/output

running MapReduce job using the "yarn jar" command which takes as other
parameters the JAR file name, Java Class Name with main() method , HDFS
input and output directories

hadoop fs -cat /WhiteHouseMR4/output/part-r-00000 | sort -nrk 1

displaying the output generated in the output file part-r-00000 and piping it to
sort in descending order by the first column

Note : This shell script should be run from the root of the project
directory, where it is residing.

Execution Process :

Final Output :

Output Explanation :

The final output produced by this program is saved in the output directory
/WhiteHouseMR4/output of HDFS. The file part-r-00000 in this output
contains the Average Appointments made per month to the White House in
descending order. The two columns in output files are the Month Number,
Average appointments made in that month ​in that order. There were a total of 8
months in which appointments were made , and 4 months had no appointments
at all. The month of May had the maximum average appointments made across
all the years available in the data set.

