
P2P network concept presentation
High level languages: Rust

A. Ellwanger T. Erdelt A. Griesbeck
January 8, 2019

Ludwig Maximilian University of Munich

Chord Algorithm

Introduced in 2001 by MIT1

Algorithm for a peer-to-peer distributed hash table (DHT):
Key/value pairs get stored distributed in the network by different
nodes
Identifier : A consistent hash function assigns each node and each key
an m-bit identifier using SHA 1 (m = number big enough to make
collisions improbable)
Both are uniformly distributed
Both exist the same ID space
A key k is assigned to the node whose identifier is equal to or greater
than the key‘s
Nodes arranged in circle structure by ascending identifiers(nodes)

1Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001).
Chord: A scalable peer-to-peer lookup service for internet applications
http://doi.org/10.1145/964723.383071
Group E, LMU Munich 1

http://doi.org/10.1145/964723.383071

Chord Algorithm - Assignment of keys to nodes

Figure: https://web.archive.org/web/20190108111028/https:
//people.eecs.berkeley.edu/~kubitron/courses/cs294-4-F03/slides/
lec03-chord.ppt

Group E, LMU Munich 2

https://web.archive.org/web/20190108111028/https://people.eecs.berkeley.edu/~kubitron/courses/cs294-4-F03/slides/lec03-chord.ppt
https://web.archive.org/web/20190108111028/https://people.eecs.berkeley.edu/~kubitron/courses/cs294-4-F03/slides/lec03-chord.ppt
https://web.archive.org/web/20190108111028/https://people.eecs.berkeley.edu/~kubitron/courses/cs294-4-F03/slides/lec03-chord.ppt

Chord Algorithm - Node n

Successor(n): Next node s in the circle structure
(identifier(s) > identifier(n))
Predecessor(n): Previous node p in the circle
(identifier(p) < identifier(n))
Finger table: stores x closest nodes
Storage: Stores y key/value pairs

Group E, LMU Munich 3

Chord Algorithm - how it works (1)

Value look-up by key k
Query local storage for k
If key can’t be found on current node, contact node which is closest to
successor(k)

Joining of new nodes:
Initialise new node n
Find s = successor(n) based on identifier
Set predecessor(n) = predecessor(s) and predecessor(s) = n

Group E, LMU Munich 4

Chord Algorithm - how it works (2)

Stabilisation
Finger tables, predecessors & successors of each node get updated
periodically to react on node dropouts

Redundancy
Has to be implemented manually e.g. by storing key/value pairs on
multiple nodes

Group E, LMU Munich 5

Lookup example

Figure:
https://web.archive.org/web/20190108111201/http://resources.
mpi-inf.mpg.de/d5/teaching/ws03_04/p2p-data/11-18-paper1.ppt

Group E, LMU Munich 6

https://web.archive.org/web/20190108111201/http://resources.mpi-inf.mpg.de/d5/teaching/ws03_04/p2p-data/11-18-paper1.ppt
https://web.archive.org/web/20190108111201/http://resources.mpi-inf.mpg.de/d5/teaching/ws03_04/p2p-data/11-18-paper1.ppt

Key libraries and crates

std::net
Networking primitives for TCP/UDP communication
std::collections::HashMap
sha1 - https://crates.io/crates/sha1
Minimal implementation of SHA1
tokio - https://crates.io/crates/tokio
Event-driven, non-blocking I/O platform for writing asynchronous
apps
...

Group E, LMU Munich 7

https://crates.io/crates/sha1
https://crates.io/crates/tokio

Custom data structure

s t r u c t Node {
p r e d e c e s s o r : (i32 , IpAddr) ,
f i n g e r T a b l e : HashMap<i32 , IpAddr >,
s t o r a g e : HashMap<s t r , s t r >,

}

Group E, LMU Munich 8

Proof of concept application

Not finally decided yet:
1 Chat: Use Chord to find IP for username then establish connection

directly
2 Chat: Use modified Chord to route messages
3 Collaborative mirroring of files
4 Distributed file storage

Feedback welcome!

Group E, LMU Munich 9

