P2P network concept presentation
High level languages: Rust

A. Ellwanger T. Erdelt A. Griesbeck
January 8, 2019

Ludwig Maximilian University of Munich



Chord Algorithm

Introduced in 2001 by MIT?

[

m Algorithm for a peer-to-peer distributed hash table (DHT):
Key/value pairs get stored distributed in the network by different
nodes

m /dentifier: A consistent hash function assigns each node and each key
an m-bit identifier using SHA 1 (m = number big enough to make
collisions improbable)

m Both are uniformly distributed

m Both exist the same ID space

m A key k is assigned to the node whose identifier is equal to or greater

than the key's

m Nodes arranged in circle structure by ascending identifiers(nodes)

!Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001).
Chord: A scalable peer-to-peer lookup service for internet applications

http://doi.org/10.1145/964723.383071 (\
1

Group E, LMU Munich


http://doi.org/10.1145/964723.383071

Chord Algorithm - Assignment of keys to nodes

o identifier
@ node

X] key

successor(l) =1

identifier

circle successor(2) = 3

successor(6) = 0 E

Figure: https://web.archive.org/web/20190108111028/https:
//people.eecs.berkeley.edu/~kubitron/courses/cs294-4-F03/slides/
lecO3-chord.ppt

Group E, LMU Munich ‘ 2
y


https://web.archive.org/web/20190108111028/https://people.eecs.berkeley.edu/~kubitron/courses/cs294-4-F03/slides/lec03-chord.ppt
https://web.archive.org/web/20190108111028/https://people.eecs.berkeley.edu/~kubitron/courses/cs294-4-F03/slides/lec03-chord.ppt
https://web.archive.org/web/20190108111028/https://people.eecs.berkeley.edu/~kubitron/courses/cs294-4-F03/slides/lec03-chord.ppt

Chord Algorithm - Node n

m Successor(n): Next node s in the circle structure
(identifier(s) > identifier(n))

m Predecessor(n): Previous node p in the circle
(identifier(p) < identifier(n))

m Finger table: stores x closest nodes

m Storage: Stores y key/value pairs

Group E, LMU Munich ‘ 3
y



Chord Algorithm - how it works (1)

m Value look-up by key k
m Query local storage for k
m If key can’t be found on current node, contact node which is closest to
successor (k)
m Joining of new nodes:
m Initialise new node n
m Find s = successor(n) based on identifier
m Set predecessor(n) = predecessor(s) and predecessor(s) = n

Group E, LMU Munich ‘ 4
y



Chord Algorithm - how it works (2)

m Stabilisation

m Finger tables, predecessors & successors of each node get updated
periodically to react on node dropouts

m Redundancy

m Has to be implemented manually e.g. by storing key/value pairs on
multiple nodes

Group E, LMU Munich



Lookup example

| Finger table Iookup(54)
e N&+1 [N14
-
N8 +2 [N14 NSB
NE =4 [N14
N8 +8 [N21
N51 N51
2 N8 +16|N32 N14
N& +32 [N42
N48 N48
N21
N4 2’
Finger table
NG+ 1 [N14
= B+ 2 [Ni4
N3z Na2 A a [wta
N8 + 8 |N21
NG 116 [N3Z
N6 +52|Naz

Figure:

https://web.archive.org/web/20190108111201/http://resources.
mpi-inf.mpg.de/d5/teaching/ws03_04/p2p-data/11-18-paperl.ppt

Group E, LMU Munich ‘ 6
y


https://web.archive.org/web/20190108111201/http://resources.mpi-inf.mpg.de/d5/teaching/ws03_04/p2p-data/11-18-paper1.ppt
https://web.archive.org/web/20190108111201/http://resources.mpi-inf.mpg.de/d5/teaching/ws03_04/p2p-data/11-18-paper1.ppt

Key libraries and crates

m std::net
Networking primitives for TCP/UDP communication

m std::collections::HashMap

m shal - https://crates.io/crates/shal
Minimal implementation of SHA1

m tokio - https://crates.io/crates/tokio
Event-driven, non-blocking 1/O platform for writing asynchronous
apps

Group E, LMU Munich ‘ 7
y


https://crates.io/crates/sha1
https://crates.io/crates/tokio

Custom data structure

struct Node {

Group E, LMU Munich

predecessor: (i32, IpAddr),
fingerTable: HashMap<i32, IpAddr>,
storage: HashMap<str , str >,



Proof of concept application

m Not finally decided yet:
Chat: Use Chord to find IP for username then establish connection
directly
Chat: Use modified Chord to route messages
Collaborative mirroring of files
Distributed file storage

m Feedback welcomel!

Group E, LMU Munich ‘ 9
y



