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Primer: Standard Machine Learning

I Usually, we are given a set D = {X , y}

X =


x11 x12 . . . x1m
x21 x22 . . . x2m
...

...
. . .

...
xn1 xn2 . . . xnm

 y =


y1
y2
...
yn


where X is our data matrix, and y are our labels.

I Attempt to fit a model f parameterized by θ with respect to an
objective function L

θ∗ = argmin
θ

L
(
f (X ; θ), y

)
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Reframed as a Probabilistic Model

I Consider our model is a probability distribution Q
I No longer have labels y
I But have probabilities and sampling

I Consider that our data is sampled from the real world P :

X ∼ P

θ∗ = argmin
θ

L
(
f (X ; θ)

)
I Examples:

I Classification: Fitting two multinomial distributions
I Regression: Fitting a Normal centered around the line of best fit
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How do we "fit" Distributions?

I Fitting two distributions implies minimizing their difference, i.e.
"distance"

I This "distance" is known as the divergence between the true
distribution P and the learned distribution Q.

I Divergences must satisfy 2 properties:
I D(P ‖ Q) ≥ 0 ∀P,Q ∈ S
I D(P ‖ Q) = 0 ⇐⇒ P = Q
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The Kullback-Leibler Divergence

I The KL Divergence for distributions P and Q is defined as:

DKL(P ‖ Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx

I Note: the KL Divergence is NOT symmetric:

DKL(P ‖ Q) 6= DKL(Q ‖ P)

I Hence, this direction is known as the Forward KL
I But we will come back to this later...
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Digression: Monte Carlo Integration

DKL(P ‖ Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx

= Ex∼P

[
log

(
p(x)

q(x)

)]
≈ 1
N

N∑
i=1

log

(
p(xi )

q(xi )

)
xi ∼ P
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Digression: Monte Carlo Integration

DKL(P ‖ Q) =

∫ ∞
−∞
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log
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≈ 1
N
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log
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)
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Algorithm 1 Ex∼P [f (x)]
Expectation of f (x) with respect to P

1: x1, . . . , xn ∼ P independently
2: return 1

N

∑
xi
f (xi )



Digression: KL to Cross-Entropy

I Note: Maximum Likelihood Estimation is equivalent to
minimizing the Forward KL

I The KL Divergence can be decomposed into familiar terms:

argmin
Q

DKL(P ‖ Q) = argmin
Q

∑
x∈X

p(x) log

(
p(x)

q(x)

)
=argmin

Q
−
∑
x∈X

p(x) log q(x)

+
∑
x∈X

p(x) log p(x)

= argmin
Q

H(P,Q)︸ ︷︷ ︸
Cross−Entropy

− H(P)︸ ︷︷ ︸
Entropy

=argmin
Q

H(P,Q)︸ ︷︷ ︸
Cross−Entropy
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Digression: KL to Cross-Entropy

H(P,Q) = −
∑
x∈X

p(x) log q(x)

I If we consider P(yi = 1|xi ) = pi and Q(yi = 1|xi ) = σ(fθ(xi )):
argmin

θ
DKL(P ‖ Q) =

argmin
θ
−
[
pi log σ

(
fθ(xi )

)
+ (1− pi ) log(1− σ

(
fθ(xi ))

)]
I This is the Binary Cross-Entropy Loss



Forward KL: Learning a Normal Distribution (Initial)

Figure: P ∼ N (−7.3, 3.2), Q ∼ N (0, 1)



Forward KL: Learning a Normal Distribution (Results)

Figure: P ∼ N (−7.3, 3.2), Q ∼ N (−7.28, 3.24)



Digression: Gaussian Mixture Models

I We can build a K multi-modal distribution, with weights π, as
follows:

z ∼ Categorical(π)
x | z = k ∼ Normal(µk , σk)

I We can calculate log probabilities by marginalizing out z :

log p(x) = log
K∑

k=1

p(z = k)︸ ︷︷ ︸
Categorical

· p(x | z = k)︸ ︷︷ ︸
Normal



Digression: Mixture Models (Visual)

Figure: 2 Mixture Components,
Even Weights

Figure: 3 Mixture Components,
Uneven Weights



Forward KL: Learning a Bimodal (Initial)

Figure: P ∼
{
N (−7.3, 1.4), N (7.3, 1.4)

}
Q ∼ N (0, 1)



Forward KL: Learning a Bimodal (Results)

Figure: Q ∼ N (0.08, 36.76)



Forward KL: Zero-Avoiding

DKL(P ‖ Q) =

∫ ∞
−∞

Constant︷︸︸︷
p(x) log


Constant︷︸︸︷
p(x)

q(x)︸︷︷︸
Variable

 dx

I p(x) is constant-valued, q(x) is variable
I If Q does not support P , then we will sample a point that has a

low probability with respect to Q

I As q(x)→ 0, our loss DKL →∞
I Hence, the optimal solution is for Q to cover P , i.e. averaging
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Forward KL: Loss Landscape

Figure: Loss Landscape for Forward KL Divergence



Directionality: Reverse KL

DKL(Q ‖ P) =
∫ ∞
−∞

q(x) log

(
q(x)

p(x)

)
dx

= Ex∼Q

[
log

(
q(x)

p(x)

)]
I The Reverse KL will sample from Q, and evaluate the log

probabilities from P and Q

I Recall: KL Divergence is not symmetric, and this has drastic
implications...



Digression: Differentiable Sampling via the
Reparameterization Trick

σµ

z ∼ N (µ, σ)

x∂L
∂x

7

Figure: Original Form



Digression: Differentiable Sampling via the
Reparameterization Trick

σµ

z z = µ+ σ � ε

ε ∼ N (0, 1)

x∂L
∂x

∂L
∂z

∂L
∂µ

Figure: Reparameterized Version



Digression: Common Reparameterization Tricks

Reparameterized

N (µ, σ) µ+ σ · N (0, 1)

Uniform(a, b) a+ (b − a) · Uniform(0, 1)

Exp(λ) Exp(1)/λ

Cauchy(µ, γ) µ+ γ · Cauchy(0, 1)
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Digression: Common Reparameterization Tricks

Reparameterized

N (µ, σ) µ+ σ · N (0, 1)

Uniform(a, b) a+ (b − a) · Uniform(0, 1)

Exp(λ) Exp(1)/λ

Cauchy(µ, γ) µ+ γ · Cauchy(0, 1)

Laplace(µ, b)
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[
1− |u|

]
Categorical(π)1 7

1Can be approximated with Gumbel Softmax



Reverse KL: Learning a Bimodal (Initial)

Figure: P ∼
{
N (−7.3, 1.4), N (7.3, 1.4)

}
Q ∼ N (0, 1)



Reverse KL: Learning a Bimodal (Results)

Figure: Q ∼ N (−7.02, 1.41)



Reverse KL: Learning a Bimodal Attempt 2 (Results)

Figure: Q ∼ N (7.01, 1.46)



Reverse KL: Zero-Forcing

DKL(Q ‖ P) =
∫ ∞
−∞

q(x) log

(
q(x)

p(x)

)
dx

I Unlike the Forward KL,
Reverse KL is Zero-forcing

I Why? Because we no
longer suffer a penalty from
q(x) = 0

I However, if p(x) = 0, then
the optimal value for q(x)
is 0

I Result =⇒ Mode Collapse
Figure: Loss Landscape for Reverse
KL Divergence



Jensen - Shannon Divergence: A Symmetric Divergence

JSD(P ‖ Q) =
1
2
DKL(P ‖ M) +

1
2
DKL(Q ‖ M)

M =
1
2
(P + Q)

I The JS Divergence is a symmetrized version of the KL
Divergence

I M is the average of distributions P and Q, and can be
represented as a Mixture Model



Jensen - Shannon Divergence: Bimodal (Initial)

Figure: P ∼
{
N (−7.3, 1.4), N (7.3, 1.4)

}
Q ∼ N (0, 1)



Jensen - Shannon Divergence: Bimodal (Result)

Figure: Q ∼ N (−0.04, 48.20)



Jensen - Shannon Divergence: Right Shift (Attempt 2)

Figure: P ∼
{
N (−7.3, 1.4), N (7.3, 1.4)

}
Q ∼ N (1, 1)



Jensen - Shannon Divergence: Right Shift (Result)

Figure: Q ∼ N (6.99, 1.43)



Jensen - Shannon Divergence: Left Shift (Attempt 3)

Figure: P ∼
{
N (−7.3, 1.4), N (7.3, 1.4)

}
Q ∼ N (−1, 1)



Jensen - Shannon Divergence: Left Shift (Result)

Figure: Q ∼ N (−6.98, 1.38)



Jensen - Shannon Divergence Loss

JSD(P ‖ Q) =
1
2
DKL(P ‖ M) +

1
2
DKL(Q ‖ M)

M =
1
2
(P + Q)

Figure: Loss Landscape for JS Divergence



A Family of Divergences: f -Divergence

I KL Divergence is a special case of the f -divergence
I The f -divergence is a family of divergences that can be written

as:

Df (P ‖ Q) =

∫ Weight︷︸︸︷
q(x) f

(
p(x)

q(x)

)
︸ ︷︷ ︸
Odds Ratio

dx



A Family of Divergences: f -Divergence

Df (P ‖ Q) =

∫ Weight︷︸︸︷
q(x) f

(
p(x)

q(x)

)
︸ ︷︷ ︸
Odds Ratio

dx

Divergence f (t)

Forward KL t log t
Reverse KL − log t

Hellinger Distance
(√

t − 1
)2, 2 (1−√t)

Total Variation 1
2 |t − 1|

Pearson χ2 (t − 1)2, t2 − 1, t2 − t
Neyman χ2 (Reverse Pearson) 1

t − 1, 1
t − t



Earth Mover’s Distance (Wasserstein Distance)

EMD (P,Q) = inf
γ∈

∏ ∑
p,q

`2 Norm︷ ︸︸ ︷
‖p − q‖ γ (p, q)︸ ︷︷ ︸

Joint Marginal

I γ (p, q) states how we distribute the amount of "earth" from
one place q over the domain of p, or vice versa

I EMD is the minimal total amount of work it takes to transform
one distribution into the other



Earth Mover’s Distance (Wasserstein Distance)

EMD (P,Q) = inf
γ∈

∏ ∑
p,q

‖p − q‖γ (p, q)



Summary of Methods

P Q

log p(x) x ∼ P log q(x) x ∼ Q

Cross-Entropy 3 3

Forward KL 3 3 3

Reverse KL 3 3 3

JS Divergence 3 3 3 3

f -Divergence 3 3 3

Wasserstein2 3 3

2Wasserstein GAN



Practical Uses of Divergences

I Forward Kullback-Leibler
I Maximum Likelihood Estimation

I `2: Mean Squared Error (Normally Distributed)
I `1: Mean Absolute Error (Laplace Distributed)
I Binary Cross Entropy (Bernoulli Distributed)
I Cross Entropy (Multinomially Distributed)

I Log-Likelihood Models
I PixelCNN
I Glow
I Variational Autoencoders



Practical Uses of Divergences

I Reverse Kullback-Leibler
I Evidence Lower Bound (ELBO)

I Jensen-Shannon Divergence
I Generative Adversarial Network (Original)

I Earth Mover’s Distance
I Wasserstein GAN (WGAN)

I Pearson χ2 Divergence
I Least Squares GAN (LSGAN)



Potpourri: Advanced Techniques

1. Invertible Transforms
I Normalizing Flow Models

2. Expectation–Maximization
3. Variational Inference

I ELBO

4. Adversarial Training (Forest of GANs)
5. Markov Chain Monte Carlo

I Metropolis-Hastings
I Gibbs Sampling
I Hamiltonian Monte Carlo
I NUTS



Source Code

I Repo for Differentiable Probabilistic Models
I Notebook to generate training examples
I Notebook for EMD
I LATEX source code for presentation

https://github.com/nextBillyonair/DPM
https://github.com/nextBillyonair/DPM/blob/master/Notebooks/Divergences/DivergencePresentationExamples.ipynb
https://github.com/nextBillyonair/DPM/blob/master/Notebooks/EMD/EMD.ipynb
https://github.com/nextBillyonair/DPM/blob/master/Presentations/divergences/presentation.tex


Further Reading

I Machine Learning: A Probabilistic Perspective by Kevin Murphy
I Friendly Introduction to Cross-Entropy Loss
I Categorical Reparameterization with Gumbel Softmax
I Wasserstein GAN and the Kantorovich-Rubinstein Duality
I Are all GAN’s created Equal?
I Tutorial on MCMC Methods

http://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
http://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
https://arxiv.org/pdf/1611.01144.pdf
https://vincentherrmann.github.io/blog/wasserstein/
https://arxiv.org/pdf/1711.10337.pdf
http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

