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Primer: Standard Machine Learning

» Usually, we are given a set D = {X, y}

X11 X12 ... Xim B4 1

X21 X22 ... Xom Y2
X = . . ) . y=1.

Xnl Xp2 ... Xnm Yn

where X is our data matrix, and y are our labels.

» Attempt to fit a model f parameterized by € with respect to an
objective function £

0* = argmin ﬁ(f(Xyg)a .y)
6
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» Consider our model is a probability distribution @

» No longer have labels y
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Reframed as a Probabilistic Model

» Consider our model is a probability distribution @

» No longer have labels y
» But have probabilities and sampling

» Consider that our data is sampled from the real world P:

X~ P
* = argmin L(f(X;0))
0

» Examples:

» Classification: Fitting two multinomial distributions
» Regression: Fitting a Normal centered around the line of best fit



How do we "fit" Distributions?

» Fitting two distributions implies minimizing their difference, i.e.
"distance"

» This "distance" is known as the divergence between the true
distribution P and the learned distribution Q.



How do we "fit" Distributions?

» Fitting two distributions implies minimizing their difference, i.e.
"distance"

» This "distance" is known as the divergence between the true
distribution P and the learned distribution Q.

» Divergences must satisfy 2 properties:

» D(P| Q) >0 VP,QeS
» D(P| Q) =0 < P=Q
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The Kullback-Leibler Divergence

v

The KL Divergence for distributions P and Q is defined as:

D(P Q)= [~ plx)io (58) dx

v

Note: the KL Divergence is NOT symmetric:

Dk (P || Q) # Dk (Q || P)

v

Hence, this direction is known as the Forward KL

But we will come back to this later...

v



Digression: Monte Carlo Integration

Drc(P | Q) =/_Z p(x) log <p(x)> dx

q(x)



Digression: Monte Carlo Integration

Drt(P || Q) = /_ Z p(x) log <(

=Ex-p [Iog Plx)



Digression: Monte Carlo Integration




Digression: Monte Carlo Integration

—00

Dru(P | @) = [ plx)log <(X)) dx
(

Algorithm 1 E,_p[f(x)]
Expectation of f(x) with respect to P

1: x1,...,X, ~ P independently
2: return & > F(xi)
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Digression: KL to Cross-Entropy

» Note: Maximum Likelihood Estimation is equivalent to
minimizing the Forward KL

» The KL Divergence can be decomposed into familiar terms:

ar, mln = ar mln (o] p(X)
gmin D (P | @) =argmin 3 p(x lg( )

= q(x)

= argmin — > p(x)log q(x)

xeX

+ Z x) log p(x

xeX
=argmin H(P,Q) — H(P)
Q ~—— ~—~—
Cross—Entropy  Entropy
=argmin H(P, Q)
Q S——

Cross—Entropy



Digression: KL to Cross-Entropy

H(P,Q) == p(x)log q(x)

XEX

» If we consider P(y; = 1|x;) = p; and Q(yi = 1|x;) = o(fy(x;)):
argmin Dk, (P || Q) =
6

argmin — [Pi log o (fy(xi)) + (1 — p;) log(1 — U(fe(xi)))]

» This is the Binary Cross-Entropy Loss



Forward KL: Learning a Normal Distribution (Initial)
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Figure: P ~ N(—7.3,3.2), Q ~ N(0,1)



Forward KL: Learning a Normal Distribution (Results)
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Figure: P ~ N(—7.3,3.2), Q ~ N(—7.28,3.24)
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Digression: Gaussian Mixture Models

» We can build a K multi-modal distribution, with weights 7, as

follows:
z ~ Categorical(n)

x|z =k ~ Normal(j, o)

» We can calculate log probabilities by marginalizing out z:

log p(x Iogsz—k p(x|z = k)
_,_/

k= 1 Categorical Normal



Digression: Mixture Models (Visual)
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Forward KL: Learning a Bimodal (Initial)

Distplot for Models
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Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(0,1)



Forward KL: Learning a Bimodal (Results)
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Forward KL: Zero-Avoiding

Constant
Constant P
PP @)= [~ B tog [ 2| @
KL = p{x) log X
—o00 q(x)
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Variable

» p(x) is constant-valued, g(x) is variable

» If Q does not support P, then we will sample a point that has a
low probability with respect to @
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Forward KL: Zero-Avoiding

Constant
Constant P
PP @)= [~ B tog [ 2| @
KL = p{x) log | ——~— X
—o00 q(x)
~—~—
Variable

» p(x) is constant-valued, g(x) is variable

v

If @ does not support P, then we will sample a point that has a
low probability with respect to @

v

As g(x) — 0, our loss Dk, — oo

v

Hence, the optimal solution is for @ to cover P, i.e. averaging



Forward KL: Loss Landscape
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Figure: Loss Landscape for Forward KL Divergence



Directionality: Reverse KL

Dia(Q || P) =/Z 9(x)log <p§3>
=50 s (53]

» The Reverse KL will sample from @, and evaluate the log
probabilities from P and @

» Recall: KL Divergence is not symmetric, and this has drastic
implications...



Digression: Differentiable Sampling via the
Reparameterization Trick

X ~ N(p,0)

Figure: Original Form



Digression: Differentiable Sampling via the
Reparameterization Trick
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Figure: Reparameterized Version



Digression: Common Reparameterization Tricks

Reparameterized

N(u, o) pu+o-N(0,1)
Uniform(a, b) a+ (b— a) - Uniform(0,1)
Exp(}) Exp(1)/A

Cauchy(u, ) f + v - Cauchy(0, 1)




Digression: Common Reparameterization Tricks
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N (o) o+ o N(0,1)
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Digression: Common Reparameterization Tricks

Reparameterized

N(u, o) p+o-N(0,1)
Uniform(a, b) a+ (b— a) - Uniform(0, 1)

Exp(\) Exp(1)/A
Cauchy(p, 7) 1+ - Cauchy(0,1)

u ~ Uniform(—1,1)

Laplace(u, b) pt—b-sgn(u)-In[1—|ul]

Categorical(7)? X

1Can be approximated with Gumbel Softmax



Reverse KL: Learning a Bimodal (Initial)
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Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(0,1)



Reverse KL: Learning a Bimodal (Results)
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Figure: @ ~ N(—7.02,1.41)



Reverse KL: Learning a Bimodal Attempt 2 (Results)
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Figure: Q@ ~ N(7.01,1.46)



Reverse KL: Zero-Forcing

oo

Dii(Q | P) =/

—00

q(x)log (%) dx

Log Loss
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Jensen - Shannon Divergence: A Symmetric Divergence

1 1
JSD(P || Q) = 5 De(P || M)+ 3Dk (Q | M)
M = %(P + Q)

» The JS Divergence is a symmetrized version of the KL
Divergence

» M is the average of distributions P and @, and can be
represented as a Mixture Model



Jensen - Shannon Divergence: Bimodal (Initial)
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Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(0,1)




Jensen - Shannon Divergence: Bimodal (Result)
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Figure: Q ~ N(—0.04,48.20)
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Distplot for Models
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Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(1,1)

Jensen - Shannon Divergence: Right Shift (Attempt 2)



Jensen - Shannon Divergence: Right Shift (Result)
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Figure: Q@ ~ N(6.99,1.43)



Jensen - Shannon Divergence: Left Shift (Attempt 3)
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Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(-1,1)




Jensen - Shannon Divergence: Left Shift (Result)
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Figure: Q@ ~ N(—6.98,1.38)



Jensen - Shannon Divergence Loss

1 1
JSD(P || Q) = EDKL(P | M)+ iDKL(Q | M)

M :%(P-q— Q)

Log Loss
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Figure: Loss Landscape for JS Divergence



A Family of Divergences: f-Divergence

» KL Divergence is a special case of the f-divergence

» The f-divergence is a family of divergences that can be written
as:

Weight
D¢ (P || Q):/sz\)f@dx

Odds Ratio



A Family of Divergences: f-Divergence

Weight
= . (p(x)
De(P | Q :/ q(x) f < ) dx
(Pl=[ 769 (2
Odds Ratio
Divergence | f(t)
Forward KL tlogt
Reverse KL —logt
Hellinger Distance (\/f — 1)2, 2 (1 — \/f)
Total Variation Ft—1]
Pearson 2 (t — 1)2, 2 -1, t2—t
Neyman x? (Reverse Pearson) 11,1




Earth Mover's Distance (Wasserstein Distance)

| 2 Norm
EMD(P,Q) = inf > lp—dll 7(p,q)
vell g S~——

Joint Marginal

» v (p, q) states how we distribute the amount of "earth" from
one place g over the domain of p, or vice versa

» EMD is the minimal total amount of work it takes to transform
one distribution into the other

Ill_ - _III -
Q P



Earth Mover's Distance (Wasserstein Distance)

EMD (P, Q) = inf p—qlv(p, g
(P.Q) = inf 3 lIp = allv(p. 9




Summary of Methods

log p(x) x~ P ‘ log g(x) x~Q
Cross-Entropy v v
Forward KL v v v
Reverse KL v v v
JS Divergence v v v v
f-Divergence v v v
Wasserstein? 4 4

2\Wasserstein GAN



Practical Uses of Divergences

» Forward Kullback-Leibler

» Maximum Likelihood Estimation
£2: Mean Squared Error (Normally Distributed)
£1: Mean Absolute Error (Laplace Distributed)
Binary Cross Entropy (Bernoulli Distributed)

» Cross Entropy (Multinomially Distributed)
» Log-Likelihood Models

> PixelCNN

> Glow

> Variational Autoencoders

vYyy



Practical Uses of Divergences

Reverse Kullback-Leibler

» Evidence Lower Bound (ELBO)
Jensen-Shannon Divergence

» Generative Adversarial Network (Original)

v

v

Earth Mover's Distance

» Wasserstein GAN (WGAN)
Pearson x? Divergence

» Least Squares GAN (LSGAN)

v

v



Potpourri: Advanced Techniques

1. Invertible Transforms
» Normalizing Flow Models
2. Expectation—Maximization
3. Variational Inference
» ELBO
4. Adversarial Training (Forest of GANs)
5. Markov Chain Monte Carlo
» Metropolis-Hastings
Gibbs Sampling

Hamiltonian Monte Carlo
NUTS

vV vy



Source Code

v

Repo for Differentiable Probabilistic Models
Notebook to generate training examples
Notebook for EMD

IATEX source code for presentation

v

v

v


https://github.com/nextBillyonair/DPM
https://github.com/nextBillyonair/DPM/blob/master/Notebooks/Divergences/DivergencePresentationExamples.ipynb
https://github.com/nextBillyonair/DPM/blob/master/Notebooks/EMD/EMD.ipynb
https://github.com/nextBillyonair/DPM/blob/master/Presentations/divergences/presentation.tex

Further Reading

v

Machine Learning: A Probabilistic Perspective by Kevin Murphy

v

Friendly Introduction to Cross-Entropy Loss

v

Categorical Reparameterization with Gumbel Softmax
Wasserstein GAN and the Kantorovich-Rubinstein Duality
Are all GAN's created Equal?

Tutorial on MCMC Methods

v

v

v


http://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
http://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
https://arxiv.org/pdf/1611.01144.pdf
https://vincentherrmann.github.io/blog/wasserstein/
https://arxiv.org/pdf/1711.10337.pdf
http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

