
Introduction to Random Numbers, Sampling,
and MCMC Methods

Bill Watson

S&P Global

August 22, 2019

What is Sampling and why is it useful?

I Sampling is the practice of generating observations from a
population

I Monte Carlo methods are algorithms that rely on repeated
random sampling to obtain approximations where it is difficult
or impossible to use deterministic approaches

I Optimization
I Numerical Integration
I Sampling distributions

Application: Approximating π

Algorithm 1 Approximating π
Input: Batch Size N
1: Sample u1 ∼ Uniform(0, 1) N times
2: Sample u2 ∼ Uniform(0, 1) N times

3: π̃ = 4
N ·
∣∣∣∣{(u1, u2)

∣∣∣ √u2
1 + u2

2 < 1
}∣∣∣∣

Output: π̃

Application: Approximating π

Figure: The ratio of points inside the unit circle approximates π
4

Application: Approximating π

What can we do with our samples?

I Integration:
∫
p(x) f (x) dx ≈ 1

n

∑
xi∼P f (xi)

I Expectation: µ ≈ 1
n

∑
xi∼P xi

I Variance: σ2 ≈ 1
n

∑
xi∼P (xi − µ)2

I Median: median ≈ median(x1, x2, . . . xn)

I Entropy: H(P) ≈ − 1
n

∑
xi∼P log p(xi)

I CDF: p(c) ≈ 1
n |{xi | xi ≤ c}|

I Conditional Distributions: {xi |Φ (xi)}

Pseudo-Random Number Generators

Pseudo-Random Number Generators

I If we need random numbers, then how do we generate them?
I One solution: Pseudo-Random Number Generators
I Pseudo since they cannot simulate "true" randomness
I But can be replicated via "seeds"

Pseudo-Random Number Generators: LCG

Algorithm 2 General Linear Congruential Generator
Input: Modulus m, Multiplier a, Increment c , State xi
1: xi+1 = (a · xi + c) mod m
2: ui+1 = xi+1 / m

Output: ui+1

I m should be a large prime
I 231 − 1 is the largest 32-bit integer and a Mersenne prime
I Care should be taken to choose a and c such that the generator

has full period

Pseudo-Random Number Generators

I LCGs are of low quality
I Not cryptographically secure
I Mersenne Twister (1998) improves upon many of the flaws of

LCGs, and is the default for many modern-day languages
I Other PRNGs:

I Multiple Recursive Generator
I Lagged Fibonacci Generator
I Inversive Congruential Generator

Inverse Transform Sampling

Generating a Normal from the CDF

I We can use the cumulative distribution function to sample any
distribution

I For instance, a normal’s CDF is:

F (x) =
1
2

[
1 + erf

(
x − µ
σ
√
2

)]
I With an Inverse CDF as:

F−1(p) = µ+ σ
√
2 · erf−1 (2p − 1)

I erf(x) is the error function, defined as:

erf(x) =
2√
π

∫ x

0
e−t

2
dt

Inverse Transform Sampling

I It’s easy to generalize this method to any distribution with a
closed-form inverse CDF

Algorithm 3 Inverse Transform Sampling
Input: Inverse CDF F−1

1: Sample u ∼ Uniform(0, 1)
2: X = F−1(u)

Output: X

Inverse Transform Sampling: Intuition

Table of Inverse CDFs for Common Distributions

Distribution F (x) F−1(p)

N (µ, σ) 1
2

[
1 + erf

(
x−µ
σ
√

2

)]
µ+ σ

√
2 · erf−1 (2p − 1)

U(a, b) x−a
b−a a + p · (b − a)

Exp(λ) 1− e−λx − ln(1−p)
λ

Logistic(µ, s) 1

1+e−
x−µ
s

µ+ s ln
(

p
1−p

)

Inverse Transform Sampling: Disadvantages

I Inverse Transform Sampling fails when we cannot analytically
integrate the PDF or invert the CDF!

I No closed form ICDF
I t-distribution (also has a complicated CDF)
I F -distribution
I χ2-distribution
I Gamma
I Beta
I Normal

I We can still approximate these functions using a Taylor Series
Expansion

Rejection Sampling

Rejection Sampling

I What if we do not have a closed from CDF or ICDF?
I We can instead use Rejection Sampling!

Rejection Sampling: Algorithm

Algorithm 4 Rejection Sampling
Input: Model F , Proposal G , M > 1
1: Sample x ∼ G
2: Sample u ∼ Uniform(0, 1)

3: if u < f (x)
M·g(x) then

4: Accept x
5: else
6: Reject x
7: end if

Output: Accepted Samples

Rejection Sampling: Intuition

Rejection Sampling: Example

Figure: Rejection Sampling with M = 1.3

Rejection Sampling: Example

Figure: M = 1.3, 6, 660 Accepted Samples

Rejection Sampling: Example

Figure: Rejection Sampling with M = 2.5

Rejection Sampling: Example

Figure: M = 2.5, 4, 034 Accepted Samples

Rejection Sampling: Example

Figure: Rejection Sampling with M = 100

Rejection Sampling: Example

Figure: M = 100, 79 Accepted Samples

Rejection Sampling: Pros & Cons

I Pros:
I Can be more efficient if the CDF is intractable

I Cons:
I Tuning M can be difficult. Too high and we reject too many,

too low and we under approximate our target
I Very inefficient in higher dimensions

Markov Chain Monte Carlo (MCMC)

What is MCMC?

I Idea: Construct a Markov chain whose stationary distribution is
the target density of interest, f (x).

I The more steps we take in the chain, the better the
approximation.

I This method works well with multi-dimensional continuous
variables.

Metropolis-Hastings

Algorithm 5 Metropolis-Hastings
Algorithm
Input: Model F , Proposal G

1: Initialize x0
2: for s = 0, 1, . . . do
3: Sample x ′ ∼ g(x ′|xs)
4: Compute acceptance probability

r = min

(
1,

f (x ′)

f (xs)

g(xs |x ′)
g(x ′|xs)

)
5: Sample u ∼ Uniform(0, 1)
6: if u < r then
7: Accept x ′

8: Set xs+1 = x ′

9: else
10: Reject x ′

11: Set xs+1 = xs
12: end if
13: end for
Output: Accepted Samples

I Construct a Markov Chain
where we propose a new state
x ′ from the current state xs
with probability g(x ′|xs).

I After drawing a proposal x ′

we calculate an acceptance
probability, and if accepted,
update the state to x ′, else
stay at state xs .

Metropolis-Hastings: Example

Figure: σ2 = 0.1

Metropolis-Hastings: Example

Figure: σ2 = 3

Metropolis-Hastings: Example

Figure: σ2 = 10

Metropolis-Hastings: Example

Figure: σ2 = 100

Metropolis-Hastings: Key Terms to Know

I Acceptance Rates
I Fraction of draws that are accepted
I High acceptance rate → bad mixing
I Low Acceptance rate → inefficient
I Theoretical rates: 44% for one dimension, 23.4% as the

dimension goes to infinity

I Chains
I Burn In

I Allows the chain to "forget" its starting values and converge on
areas of high probability

I Mixing
I Allowing the chains to fully explore the state space, instead of

collapsing in one peak

Variants of Metropolis-Hastings

(Random Walk) Metropolis Algorithm

I Uses a symmetric proposal distribution G , such that
g(xs |x ′) = g(x ′|xs)

I Our acceptance probability r is then

r = min

(
1,

f (x ′)

f (xs)

)

Metropolis Adjusted Langevin Algorithm (MALA)

I New states are proposed with Langevin dynamics

x ′ = xs + τ∇ log f (xs) +
√
2τξk

I Proposal probabilities are normally distributed as

g(x ′|xs) ∼ N (xs + τ∇ log f (xs), 2τ Id)

g(xs |x ′) ∼ N (x ′ + τ∇ log f (x ′), 2τ Id)

I Optimal acceptance rate is 57.4%

Metropolis Adjusted Langevin Algorithm: Example

Figure: MALA: τ = 0.4

Hamiltonian Monte Carlo

I Inspired by using a Hamiltonian dynamics evolution simulated
using a time-reversible and volume preserving leapfrog
integrator.

I Purpose was to reduce the correlation between successive
sample states by proposing moves to distant states with high
probability of acceptance.

I In simpler terms: flick a puck, wait, stop, then hit it again

Hamiltonian Dynamics
I For a system with state q, momentum p:

H(q, p) = U(q) + K (p)

U(q) = − log f (q) K (p) =
∑
i

p2
i

2

I The time evolution of the system is defined by:

dp

dt
= −∂H

∂q
= −∂U(q)

∂q

dq

dt
=
∂H

∂p
= p

I We can update the system coordinates as follows (leapfrog):

qi+1 = qi + εpi pi+1 = pi − ε
∂U(qi+1)

∂qi+1

I Our acceptance probability for the current state (qs , ps) and
candidate (q, p) is

r = exp (H(qs , ps)− H(q, p))

Hamiltonian Monte Carlo: Algorithm

Algorithm 6 HMC, Single Candidate Update
Input: Model F , Stepsize ε, Leapfrog Steps L, Current State xs

1: Set q = qs , p ∼ N (0, 1), ps = p

2: p = p − ε ∂U(q)
∂q

/2
3: for l = 0, 1, . . . L do
4: q = q + ε · p
5: p = p − ε ∂U(q)

∂q
except at end of trajectory

6: end for
7: p = p − ε ∂U(q)

∂q
/2

8: p = −p to make proposal symmetric
9: Compute acceptance probability

r = exp (U(qs)− U(q) + K(ps)− K(p))
10: Sample u ∼ Uniform(0, 1)
11: if u < r then
12: return q
13: else
14: return qs
15: end if

Hamiltonian Monte Carlo: The Leapfrog Path

Figure: Leapfrog Paths: ε = 0.3, L = 60

Hamiltonian Monte Carlo: Tampering to Overcome Energy
Barriers

Figure: Leapfrog Paths: ε = 0.2, L = 50, α = 1.05

Hamiltonian Monte Carlo: Example

Figure: HMC: ε = 0.6, L = 40, α = 1.05, 100 burn in iterations, 10,000
epochs

Hamiltonian Monte Carlo: Considerations

I Distances between points are large, thus requiring less iterations
I Mostly accepts new states, more efficient even with the leapfrog

"price"
I Tuning leapfrog steps can be difficult:

I Small L→ random walk behavior
I Large L→ wasted computation

I Has trouble sampling from distributions with isolated local
minimums (lack of energy to cross the energy barrier)

I Optimal acceptance rate is 65%

I HMC Interactive Demo

https://chi-feng.github.io/mcmc-demo/app.html

No-U-Turn Sampler (NUTS)

I Removes the need to set the leapfrog step L in HMC
I Uses a recursive algorithm to build a set of likely candidate

points
I As efficient as a well tuned HMC method

General Error Bounds

Analysis of Error

I How many samples S does it take to approximate the target
distribution "well"?

I Answer: Use the Hoeffding bound

Pr (p̂(x) 6∈ [p(x)− ε, p(x) + ε]) ≤ 2e−2Sε2

I For the number of samples S , an error bound ε with probability
1− δ, we can solve:

2e−2Sε2 ≤ δ

S ≥ log(2/δ)

2ε2

Analysis of Error

I We can also use the Chernoff Bound relative to the true value
p(x)

I However, this is dependent on p(x), which is not always known.

Pr (p̂(x) 6∈ [p(x)(1− ε), p(x)(1 + ε)]) ≤ 2e−Sp(x)ε
2/3

S ≥ 3
log (2/δ)

p(x)ε2

Tools, References, and Further Reading

Libraries and Tools

I PyMC3
I TensorFlow Probability
I Pyro
I Stan
I RStan
I R mcmc

https://pymc-devs.github.io/pymc3/
https://www.tensorflow.org/probability/
http://pyro.ai
http://mc-stan.org
https://mc-stan.org/users/interfaces/rstan
https://cran.r-project.org/web/packages/mcmc/index.html

Noteworthy Concepts Not Covered

I Alternatives to Inverse Transform Sampling for Normal
Distributions

I Box-Muller Transform
I Marsaglia-Bray Polar Method
I Ziggurat Algorithm

I Variance Reduction Techniques for Monte Carlo Methods
I Control Variates
I Antithetic Variates
I Stratified Sampling
I Importance Sampling

I Alternative MCMC Algorithms
I Gibbs Sampling
I Slice Sampling
I Reversible-Jump
I Adaptive Metropolis-Hastings

I Quasi-Monte Carlo Methods

https://en.wikipedia.org/wiki/Box\T1\textendash Muller_transform
https://en.wikipedia.org/wiki/Marsaglia_polar_method
https://en.wikipedia.org/wiki/Ziggurat_algorithm
https://en.wikipedia.org/wiki/Control_variates
https://en.wikipedia.org/wiki/Antithetic_variates
https://en.wikipedia.org/wiki/Stratified_sampling
https://en.wikipedia.org/wiki/Importance_sampling
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Gibbs_sampling
https://en.wikipedia.org/wiki/Slice_sampling
https://en.wikipedia.org/wiki/Reversible-jump
https://projecteuclid.org/euclid.bj/1080222083
https://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method

Refrences & Further Reading

I Machine Learning: A Probabilistic Perspective by Kevin Murphy
I Monte Carlo Methods in Financial Engineering by Paul

Glasserman
I Probabilistic Graphical Models: Principles and Techniques by

Daphne Koller and Nir Friedman
I Sampling Lecture from my PGM Professor Daniel Malinsky
I MCMC Using Hamiltonian Dynamics by Radford M. Neal
I Probabilistic Inference Using Markov Chain Monte Carlo

Methods by Radford M. Neal
I Hamiltonian Monte Carlo Explained by Alex Rogozhnikov
I The Markov-chain Monte Carlo Interactive Gallery by Chi Feng
I The No-U-Turn Sampler by Hoffman and Gelman
I CMU Notes on Probability Inequalities by Larry Wasserman

https://www.cs.ubc.ca/~murphyk/MLbook/
https://www.springer.com/gp/book/9780387004518
https://www.springer.com/gp/book/9780387004518
https://mitpress.mit.edu/books/probabilistic-graphical-models
https://mitpress.mit.edu/books/probabilistic-graphical-models
http://www.mcmchandbook.net/HandbookChapter5.pdf
http://www.cs.utoronto.ca/~radford/ftp/review.pdf
http://www.cs.utoronto.ca/~radford/ftp/review.pdf
http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html
https://chi-feng.github.io/mcmc-demo/app.html
http://www.stat.columbia.edu/~gelman/research/published/nuts.pdf
http://www.stat.cmu.edu/~larry/=stat705/Lecture2.pdf

	Pseudo-Random Number Generators
	Inverse Transform Sampling
	Rejection Sampling
	Markov Chain Monte Carlo (MCMC)
	Variants of Metropolis-Hastings
	General Error Bounds
	Tools, References, and Further Reading

