Introduction to Differentiable Probabilistic Models

Bill Watson

S&P Global

July 25, 2019

Primer: Standard Machine Learning

» Usually, we are given a set D = {X, y}

X11
X21

Xnl

where X is our data

X12 ... Xim
X220 ... Xom

y =
X2 .. Xnm

matrix, and y are our labels.

Y1
Y2

Yn

Primer: Standard Machine Learning

» Usually, we are given a set D = {X, y}

X11 X12 ... Xim B4 1

X21 X22 ... Xom Y2
X = . .) . y=1.

Xnl Xp2 ... Xnm Yn

where X is our data matrix, and y are our labels.

» Attempt to fit a model f parameterized by € with respect to an
objective function £

0* = argmin ﬁ(f(Xyg)a .y)
6

Reframed as a Probabilistic Model

» Consider our model is a probability distribution @

» No longer have labels y
» But have probabilities and sampling

Reframed as a Probabilistic Model

» Consider our model is a probability distribution @

» No longer have labels y
» But have probabilities and sampling

» Consider that our data is sampled from the real world P:

X~ P
* = argmin L(f(X;0))
0

Reframed as a Probabilistic Model

» Consider our model is a probability distribution @

» No longer have labels y
» But have probabilities and sampling

» Consider that our data is sampled from the real world P:

X~ P
* = argmin L(f(X;0))
0

» Examples:

» Classification: Fitting two multinomial distributions
» Regression: Fitting a Normal centered around the line of best fit

How do we "fit" Distributions?

» Fitting two distributions implies minimizing their difference, i.e.
"distance"

» This "distance" is known as the divergence between the true
distribution P and the learned distribution Q.

How do we "fit" Distributions?

» Fitting two distributions implies minimizing their difference, i.e.
"distance"

» This "distance" is known as the divergence between the true
distribution P and the learned distribution Q.

» Divergences must satisfy 2 properties:

» D(P| Q) >0 VP,QeS
» D(P| Q) =0 < P=Q

The Kullback-Leibler Divergence

» The KL Divergence for distributions P and Q is defined as:

D(P Q)= [~ plx)io (;’8) dx

The Kullback-Leibler Divergence

» The KL Divergence for distributions P and Q is defined as:

D(P Q)= [~ plx)io (58) dx

» Note: the KL Divergence is NOT symmetric:
Dki(P |l Q) # Dki(Q |l P)

» Hence, this direction is known as the Forward KL

The Kullback-Leibler Divergence

v

The KL Divergence for distributions P and Q is defined as:

D(P Q)= [~ plx)io (58) dx

v

Note: the KL Divergence is NOT symmetric:

Dk (P || Q) # Dk (Q || P)

v

Hence, this direction is known as the Forward KL

But we will come back to this later...

v

Digression: Monte Carlo Integration

Drc(P | Q) =/_Z p(x) log <p(x)> dx

q(x)

Digression: Monte Carlo Integration

Drt(P || Q) = /_ Z p(x) log <(

=Ex-p [Iog Plx)

Digression: Monte Carlo Integration

Digression: Monte Carlo Integration

—00

Dru(P | @) = [plx)log <(X)) dx
(

Algorithm 1 E,_p[f(x)]
Expectation of f(x) with respect to P

1: x1,...,X, ~ P independently
2: return & > F(xi)

Digression: KL to Cross-Entropy

» Note: Maximum Likelihood Estimation is equivalent to
minimizing the Forward KL

Digression: KL to Cross-Entropy

» Note: Maximum Likelihood Estimation is equivalent to
minimizing the Forward KL

» The KL Divergence can be decomposed into familiar terms:

ar, mln = ar mln (o] p()
gmin D (P | @) =argmin 3 p(x lg()

= q(x)

Digression: KL to Cross-Entropy

» Note: Maximum Likelihood Estimation is equivalent to
minimizing the Forward KL

» The KL Divergence can be decomposed into familiar terms:

ar, mln = ar mln (o] p(X)
gmin D (P | @) =argmin 3 p(x lg()

= q(x)
=argmin — Z p(x) log g(x)
Q xeX

+ Z x) log p(x

XEX

Digression: KL to Cross-Entropy

» Note: Maximum Likelihood Estimation is equivalent to
minimizing the Forward KL

» The KL Divergence can be decomposed into familiar terms:

ar, mln = ar mln (o] p(X)
gmin D (P | @) =argmin 3 p(x lg()

= q(x)

= argmin — > p(x)log q(x)

xeX

+ Z x) log p(x

xEX
=argmin H(P,Q) — H(P)
Q ——— ~——

Cross—Entropy Entropy

Digression: KL to Cross-Entropy

» Note: Maximum Likelihood Estimation is equivalent to
minimizing the Forward KL

» The KL Divergence can be decomposed into familiar terms:

ar, mln = ar mln (o] p(X)
gmin D (P | @) =argmin 3 p(x lg()

= q(x)

= argmin — > p(x)log q(x)

xeX

+ Z x) log p(x

xeX
=argmin H(P,Q) — H(P)
Q ~—— ~—~—
Cross—Entropy Entropy
=argmin H(P, Q)
Q S——

Cross—Entropy

Digression: KL to Cross-Entropy

H(P,Q) == p(x)log q(x)

XEX

» If we consider P(y; = 1|x;) = p; and Q(yi = 1|x;) = o(fy(x;)):
argmin Dk, (P || Q) =
6

argmin — [Pi log o (fy(xi)) + (1 — p;) log(1 — U(fe(xi)))]

» This is the Binary Cross-Entropy Loss

Forward KL: Learning a Normal Distribution (Initial)

Distplot for Models

0.40 "8 Learned Model
True Model

0.00 -156.0 -125 -100 -75 -50 -25 0.0 25 5.0

Sample

Figure: P ~ N(—7.3,3.2), Q ~ N(0,1)

Forward KL: Learning a Normal Distribution (Results)

losscuve locourve scale curve
0
8
-
7
-2
6
-3
5
2
£ g
-
4
-5
3
-6
2
-7
1
1000 2000 3000 4000 0 1000 2000 3000 4000 0 000 2000 3000 4000
Epoch Epoch Epoch
Distplot for Models
= Loamed Model
True Model
020

ssssss

Figure: P ~ N(—7.3,3.2), Q ~ N(—7.28,3.24)

[m] = =

Digression: Gaussian Mixture Models

» We can build a K multi-modal distribution, with weights 7, as

follows:
z ~ Categorical(n)

x|z =k ~ Normal(j, o)

» We can calculate log probabilities by marginalizing out z:

log p(x Iogsz—k p(x|z = k)
,/

k= 1 Categorical Normal

Digression: Mixture Models (Visual)

Distplot for Model

0.175

0.150

0.125

ity

0.100

Densi

0.075
0.050
0.025

0000 _g a o o
Sample

Figure: 2 Mixture Components,
Even Weights

Distplot for Model

0.14

0.12

0.10

Density
o
2
8

0.06

0.04

0.02

000 o o

Sample

Figure: 3 Mixture Components,
Uneven Weights

Forward KL: Learning a Bimodal (Initial)

Distplot for Models

8 Learned Model
True Model

Sample

Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(0,1)

Forward KL: Learning a Bimodal (Results)

0.14

0.12

0.10

sity

£ 0.08
[}
0.06

0.04

0.00

Loa s Te o s o s
§ 3 8 5§ ¥ 8B & 3 8

Distplot for Models

s | earned Model
True Model

Sample

Figure: Q@ ~ N(0.08,36.76)

=] F

Forward KL: Zero-Avoiding

Constant
Constant P
PP @)= [~ B tog [2| @
KL = p{x) log X
—o00 q(x)
~—~—~
Variable

» p(x) is constant-valued, g(x) is variable

» If Q does not support P, then we will sample a point that has a
low probability with respect to @

Forward KL: Zero-Avoiding

Constant
Constant P
PP @)= [~ B tog [2| @
KL = p{x) log X
—o00 q(x)
~—~—~
Variable

» p(x) is constant-valued, g(x) is variable

» If Q does not support P, then we will sample a point that has a
low probability with respect to @

» As g(x) — 0, our loss Dx; — 00

Forward KL: Zero-Avoiding

Constant
Constant P
PP @)= [~ B tog [2| @
KL = p{x) log | ——~— X
—o00 q(x)
~—~—
Variable

» p(x) is constant-valued, g(x) is variable

v

If @ does not support P, then we will sample a point that has a
low probability with respect to @

v

As g(x) — 0, our loss Dk, — oo

v

Hence, the optimal solution is for @ to cover P, i.e. averaging

Forward KL: Loss Landscape

Log Loss

50

6.57
5.84
511
4.38
3.65
292
219
1.46

0.73

0.00
-15 -10 -5 0 5 10 15

u

Figure: Loss Landscape for Forward KL Divergence

Directionality: Reverse KL

Dia(Q || P) =/Z 9(x)log <p§3>
=50 s (53]

» The Reverse KL will sample from @, and evaluate the log
probabilities from P and @

» Recall: KL Divergence is not symmetric, and this has drastic
implications...

Digression: Differentiable Sampling via the
Reparameterization Trick

X ~ N(p,0)

Figure: Original Form

Digression: Differentiable Sampling via the
Reparameterization Trick

oL
W X
oL —
s Z=pu+oQ@e
9L ~ N(0,1)

Em

Figure: Reparameterized Version

Digression: Common Reparameterization Tricks

Reparameterized

N(u, o) pu+o-N(0,1)
Uniform(a, b) a+ (b— a) - Uniform(0,1)
Exp(}) Exp(1)/A

Cauchy(u,) f + v - Cauchy(0, 1)

Digression: Common Reparameterization Tricks

Reparameterized

N (o) o+ o N(0,1)
Uniform(a, b) a+ (b— a) - Uniform(0, 1)

Exp(A) Exp(1)/A
Cauchy(u, 7) 1+ - Cauchy(0,1)

u ~ Uniform(—1,1)

Laplace(p, b) ft—b-sgn(u)-In[1—|ul]

Digression: Common Reparameterization Tricks

Reparameterized

N(u, o) p+o-N(0,1)
Uniform(a, b) a+ (b— a) - Uniform(0, 1)

Exp(\) Exp(1)/A
Cauchy(p, 7) 1+ - Cauchy(0,1)

u ~ Uniform(—1,1)

Laplace(u, b) pt—b-sgn(u)-In[1—|ul]

Categorical(7)? X

1Can be approximated with Gumbel Softmax

Reverse KL: Learning a Bimodal (Initial)

Distplot for Models
0.35

W Learned Model
True Model

Sample

Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(0,1)

Reverse KL: Learning a Bimodal (Results)

Distplot for Models

s Learned Model
True Model

Sample

Figure: @ ~ N(—7.02,1.41)

Reverse KL: Learning a Bimodal Attempt 2 (Results)

Distplot for Models
W Learned Model
0.30 True Model

Sample

Figure: Q@ ~ N(7.01,1.46)

Reverse KL: Zero-Forcing

oo

Dii(Q | P) =/

—00

q(x)log (%) dx

Log Loss

» Unlike the Forward KL, * ‘ -
Reverse KL is Zero-forcing w 017

2.640

» Why? Because we no © 2263
Y 1.885

longer suffer a penalty from . o
q(X) =0 1131

0.754
» However, if p(x) =0, then . ‘ |0377
the optimal value for g(x) R

is 0
Figure: Loss Landscape for Reverse
» Result — Mode Collapse

KL Divergence

Jensen - Shannon Divergence: A Symmetric Divergence

1 1
JSD(P || Q) = 5 De(P || M)+ 3Dk (Q | M)
M = %(P + Q)

» The JS Divergence is a symmetrized version of the KL
Divergence

» M is the average of distributions P and @, and can be
represented as a Mixture Model

Jensen - Shannon Divergence: Bimodal (Initial)

Distplot for Models

[Learned Model
True Model

Sample

Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(0,1)

Jensen - Shannon Divergence: Bimodal (Result)

Distplot for Models

s Learned Model
True Model

0.10

30

Sample

Figure: Q ~ N(—0.04,48.20)

[m] = =

Distplot for Models
0.35

[Learned Model
True Model

Sample

Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(1,1)

Jensen - Shannon Divergence: Right Shift (Attempt 2)

Jensen - Shannon Divergence: Right Shift (Result)

Distplot for Models
I Learned Model
True Model

Sample

Figure: Q@ ~ N(6.99,1.43)

Jensen - Shannon Divergence: Left Shift (Attempt 3)

Distplot for Models

W Learned Model
True Model

Sample

Figure: P ~ {N(-7.3,1.4), N(7.3,1.4)}
Q~N(-1,1)

Jensen - Shannon Divergence: Left Shift (Result)

Distplot for Models

s | earned Model
True Model

Density

Sample

Figure: Q@ ~ N(—6.98,1.38)

Jensen - Shannon Divergence Loss

1 1
JSD(P || Q) = EDKL(P | M)+ iDKL(Q | M)

M :%(P-q— Q)

Log Loss

50
0.3581
03183
02785

0.2387

Figure: Loss Landscape for JS Divergence

A Family of Divergences: f-Divergence

» KL Divergence is a special case of the f-divergence

» The f-divergence is a family of divergences that can be written
as:

Weight
D¢ (P || Q):/sz\)f@dx

Odds Ratio

A Family of Divergences: f-Divergence

Weight
= . (p(x)
De(P | Q :/ q(x) f <) dx
(Pl=[769 (2
Odds Ratio
Divergence | f(t)
Forward KL tlogt
Reverse KL —logt
Hellinger Distance (\/f — 1)2, 2 (1 — \/f)
Total Variation Ft—1]
Pearson 2 (t — 1)2, 2 -1, t2—t
Neyman x? (Reverse Pearson) 11,1

Earth Mover's Distance (Wasserstein Distance)

| 2 Norm
EMD(P,Q) = inf > lp—dll 7(p,q)
vell g S~——

Joint Marginal

» v (p, q) states how we distribute the amount of "earth" from
one place g over the domain of p, or vice versa

» EMD is the minimal total amount of work it takes to transform
one distribution into the other

Ill_ - _III -
Q P

Earth Mover's Distance (Wasserstein Distance)

EMD (P, Q) = inf p—qlv(p, g
(P.Q) = inf 3 lIp = allv(p. 9

Summary of Methods

log p(x) x~ P ‘ log g(x) x~Q
Cross-Entropy v v
Forward KL v v v
Reverse KL v v v
JS Divergence v v v v
f-Divergence v v v
Wasserstein? 4 4

2\Wasserstein GAN

Practical Uses of Divergences

» Forward Kullback-Leibler

» Maximum Likelihood Estimation
£2: Mean Squared Error (Normally Distributed)
£1: Mean Absolute Error (Laplace Distributed)
Binary Cross Entropy (Bernoulli Distributed)

» Cross Entropy (Multinomially Distributed)
» Log-Likelihood Models

> PixelCNN

> Glow

> Variational Autoencoders

vYyy

Practical Uses of Divergences

Reverse Kullback-Leibler

» Evidence Lower Bound (ELBO)
Jensen-Shannon Divergence

» Generative Adversarial Network (Original)

v

v

Earth Mover's Distance

» Wasserstein GAN (WGAN)
Pearson x? Divergence

» Least Squares GAN (LSGAN)

v

v

Potpourri: Advanced Techniques

1. Invertible Transforms
» Normalizing Flow Models
2. Expectation—Maximization
3. Variational Inference
» ELBO
4. Adversarial Training (Forest of GANs)
5. Markov Chain Monte Carlo
» Metropolis-Hastings
Gibbs Sampling

Hamiltonian Monte Carlo
NUTS

vV vy

Source Code

v

Repo for Differentiable Probabilistic Models
Notebook to generate training examples
Notebook for EMD

IATEX source code for presentation

v

v

v

https://github.com/nextBillyonair/DPM
https://github.com/nextBillyonair/DPM/blob/master/Notebooks/Divergences/DivergencePresentationExamples.ipynb
https://github.com/nextBillyonair/DPM/blob/master/Notebooks/EMD/EMD.ipynb
https://github.com/nextBillyonair/DPM/blob/master/Presentations/divergences/presentation.tex

Further Reading

v

Machine Learning: A Probabilistic Perspective by Kevin Murphy

v

Friendly Introduction to Cross-Entropy Loss

v

Categorical Reparameterization with Gumbel Softmax
Wasserstein GAN and the Kantorovich-Rubinstein Duality
Are all GAN's created Equal?

Tutorial on MCMC Methods

v

v

v

http://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
http://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
https://arxiv.org/pdf/1611.01144.pdf
https://vincentherrmann.github.io/blog/wasserstein/
https://arxiv.org/pdf/1711.10337.pdf
http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

