
ECE1387: CAD FOR CIRCUIT SYNTHESIS AND LAYOUT 1

A Breadth-First Approach to MAX-SAT using
Branch and Bound

Nicholas V. Giamblanco, 1000324534

Abstract—The idea of logically representing an issue has
profound impacts in many fields of science and engineering. These
logical representations are typically known as Boolean expres-
sions. Boolean expressions take the form of a sequence of logical
ANDs, ORs and negations with regards to some logical claims.
Boolean expressions can either be evaluated to a logical truth
(true) or a logical fallacy (false). However in many real-world
problems, the assignments to logical conditions are unknown, and
as a result, the boolean formulation may not be solvable (evaluate
to a truth). In many cases however, it is desirable to satisfy a
maximum number of clauses within a boolean expression. In this
report, we implement and optimize a MAX-SAT solver, which
utilizes a breadth first search in cooperation with a modified
branch & bound algorithm. Specifically, we define greedy lower
bounding function which can reduce the required number of
nodes traditionally visited with the ability to still retrieve a global
maximum.

I. DESIGN AND IMPLEMENTATION

IN this report, we implemented a MAX-SAT solver based
on a breadth-first search approach. Through this section

and it’s subsections, (A) an explanation will be provided on
how we interpreted the problem of MAX-SAT, (B) we will
describe this implementation in a high-level way, in order to
encapsulate the major software routines and (C) elaborate on
our decision for a lower bound.

A. MAX-SAT Solvers & Evaluating Expressions

MAX-SAT [1] [2] has been an active research area for
many years. Their motivation can be encapsulated in the
following manner: in many fields and applications, sometimes
a logical argument may not be solvable. But supposing that
this argument A is made up of sub-arguments, it may be
optimal to find the maximum number of sub-arguments that
can be satisfied. MAX-SAT problems generally have a boolean
expression in Conjective-Normal Form (CNF) [4] which can
be viewed as this sub-argument approach where if A is logical
argument with n sub arguments, then:

A = B0 ∧B1 ∧ · · · ∧Bn (1)

and more specifically, each sub-argument has the following
form:

Bi = bi,0 ∨ bi,1 ∨ · · · (2)

Generally, the sub-arguments Bi are denoted as clauses.
Each clause consists of a variable number of conditions, bi,k.
Immediately, one may note that a clause is true as long as 1 of
the conditions1 in this clause is true. This is due to the string

1We will use conditions and variables interchangeably in this report.

of logical ORs which appear in the ith clause. We use this fact
to our advantage during implementation.

However, to attempt to find a maximum number of clauses
that are satisfiable from a boolean expression we may imme-
diately conclude to try every possible condition assignment.
Supposing we had 3 conditions, bi,0, bi,1, bi,2, we can search
the solution space by evaluating over all 23 − 1 possibilities.
This is easily search-able. However, if we had encountered a
boolean expression with just 15 more conditions, our solution
space grows to 218 − 1. This is large. Although this number
is easily handled with a modern computer, a typical boolean
expression may contain hundreds of conditions. Recall that
264 = 18, 446, 744, 073, 709, 551, 616. This is not feasible to
evaluate.

Hence we explored the ideas and added value of a Branch
and Bound algorithm [3]. Branch and Bound algorithm provide
an optimal solution to a given combinatorics problem through
the notion of usefulness. Specifically, a branch and bound
algorithm attempt to discover suboptimal solutions through an
enumeration of the solution space. A suboptimal solution will
not be explored further. This reduces the search complexity
that may required with a total solution space of 2n. The discov-
ery of these suboptimal solutions occurs through the notion of
an upper and lower bound, Φ(ν) and φ(ν) respectively. These
bounds need to be able to “provably” secure their reasoning
for remove exploration for a node ν

B. High-Level Interpretation

To implement the ideas discussed above, we had the fol-
lowing high-level requirements:

1) Some notion of an expression, which can be evaluated,
and a number of either satisfied clauses or unsatisfied
clauses can be returned.

2) A node, which can have two children nodes, and one
parent node. The children nodes will be denoted as left
and right, and will represent the boolean values false
and true respectively. Each node should contain either
a partial or complete solution for the given boolean
expression. Each node should also contain some identity
in regards to itself, as well as an assignment to it’s
parents condition. This structure will behave as a binary
tree.

3) Some system, which can construct a tree based on the
notion of a branch and bound algorithm, and arrive at
an optimum solution for a given boolean expression.
It should use a lower bounding function φ(ν), which
accepts a Node ν, provides a decision if exploration
should continue from this node.



ECE1387: CAD FOR CIRCUIT SYNTHESIS AND LAYOUT 2

Consequently, the following directory tree structure was
designed:

boolean_sat_bb/
docs/
inputs/
source/

bbdefs.h
graphics.*
expression.*
node.*
ms_solver.*
ms_util.*
expression.*
log.h

tests/

The files expression.∗, node.∗ and ms solver.∗ are the
implementation of the high level requirements, respectively.

C. Routine Flow

To explain the implementation, we will proceed through a
pass of the routine flow.

1) Initially, we required to interpret a boolean expres-
sion from a file in a specific format (∗.cnf for-
mat). A function read_in_expression() was
used to develop an Expression object. This object
was a vector< vector<int>> which each inner
vector being a clause, the other vector was the col-
lection of clauses, or the entire expression. This object
had two major routines, eval_expression(...)
and eval_expression_neg(...) which returned
the number of satisfied or unsatisfied clauses, respec-
tively.

2) Once an Expression was generated, an instance of
a MAX-SAT solver, MS_Solver was created. After
initialization of the object’s environment, it proceeds
to execute the routine solve(). This is the main
routine of this entire software implementation. It begins
by inspecting the Expression object’s variables. The
variance of the used variables to indicate how this
boolean expression should be solved. If an expression
exhibits large variance across it’s variables, it was found
through experimentation that a greedy lower bound may
produce suboptimal solutions. To counter this issue, a
high variance expression can brute force exploration up
to a level L. A low-variance equation also applies this
brute force exploration, but the depth of brute forcing
continues to l and is less than L. By brute-forcing up to
a given level n our optimized algorithm obtains a more
uniform view against the initial solution space. This
routine then decides on a starting variable through the
routine select_start(). The select_start()
discovers the variable that when set to either true or
false provides the least amount of unsatisfied clauses.
This variable is then transformed into a Node object,
and is denoted as the head of the tree.

3) As with most Branch and Bound algorithms, an initial
solution is required for use as a lower-bound against
partial solutions. Our algorithm handles an initial solu-
tion by assuming all conditions are evaluated to true,
and evaluates how many unsatisfied clauses exist. This
becomes φ(ν). An optimization we performed in this
algorithm was to only pass the entire initial solution
in to the head of the tree if and only if the boolean
expression had low variance. This is due to the idea of
symmetry within a boolean expression. This meant that
as the entire solution was passed down the tree during
runtime, enabling faster convergence towards an opti-
mum. Otherwise, if the boolean expression experiences
high-variance, we pass no initial solution.

4) This routine would now construct the tree. We use
a vector< vector< Node *>> as an intermedi-
ate stage for our tree structure, where each inner
vector<> holds the nodes visited per level, and the
outer vector<> holds all levels. The initial level con-
tains only the head node. The routine enters a while
loop, where each iteration of the loop, a new level χ
is created, and the number of potential nodes to be
inspected are 2χ. Recall that we have an initial burn-
in period up to a threshold level L or l. All potential
nodes are created during this period. After burning-in,
this while loop contains 4 stages of operations: (a)
Determine the best solution applicable on the level χ,
(b) create children nodes for the parent if and only if
the solution is at par or better than the given solution,
(c) continuing adding children if a quota of children
are not met, (d) move onto the next level. Each level
corresponds to a variable/condition2.

5) In (a), we do not explicitly visit a node since we
are calculating a hypothetical lower bound associated
to choosing a new node. During inspection, the lower
bound is modified if and only if the lower bound
associated with the level χ is better than the previously
found lower bound. The lower bound is the number
of unsatisfied nodes with the current partial solution.
This partial solution was passed down from a parent
of the previous level. If a hypothetical solution better
than the current lower bound is found, the lower bound
becomes the hypothetical solution. (a) is synonymous to
a breadth-first search. However, we compute the breadth
first search from right-to-left. Conducting the search
from left-to-right has no effect on the output, it was
purely a implementation choice to match how we found
our initial solution.

6) During stage (b), any children meeting or exceeding this
criteria are inserted into the level, and their respective
parents are connected. Hence, we only visit children that
meet or exceed this criteria. Using this greedy approach
provides limitations, where an inspection may have lead
to a lower bound conflict. That is, a newly inspected
level may not have changed the previous lower bound,

2The variable do not occur in a particular order, due to the usage of C++’s
unordered map.



ECE1387: CAD FOR CIRCUIT SYNTHESIS AND LAYOUT 3

in which case, more children should be added to meet
an inspection quota for the next level. An optimization
was made here to reduce the quota of children to insert
onto level.

7) Hence in (c), children with a suboptimal or optimal
solution are added, in hopes that the next level will
provide a better solution. We limit the quota of children
to be added with suboptimal solutions by geometrically
decreases an initial quota until some minimum amount.
We will keep the quota from the previous level if a
new best cost was not found (indicating a suboptimal
solution).

8) (d) We append this newly created level the tree structure.
This while loop executes until we have visited all
potential variables in the given expression.

It is interesting to note that we used an
unordered map < int, bool > to hold our partial solutions
for every node. This allowed for a O(1) look-up, and O(1)
insert. This mapping allowed for fast evaluation of our
expression with the specified partial solution.

D. Decisions on a Lower Bound

Two variations of a lower bounding function φ(ν) were
explored in this implementation:

• Initially, we explored a greedy approach that used the
number of satisfied clauses as a lower bound per partial
solution. That is, a node with a partial solution that
produced more satisfied clauses compared to either the
initial lower bound or previous lower bound would then
be assigned to the lower bound. By using this greedy
approach, several optimal solutions can be missed, and
would defeat the objective of MAX-SAT. These missed
solutions occur when either the level at which the tree
is being searched contains a less optimal solution. This
could have been used in tandem with the number of un-
satisfied clauses, making the number of satisfied clauses
an upper bound Φ(ν).

• An attempt was made to also provide a depth first
search with a lower bounding function on the number of
unsatisfied clauses. Using a depth first search guarantees
that an optimal solution will be found, at the cost of
time. The approach we outline in this report executes in
a much faster run-time than a depth first approach, and
still provides the correct variable assignments.

After some analysis, it was determined to use a breadth-
first search with a greedy lower bounding function on the
number of dissatisfied clauses. We reasoned that conducting
a breadth-first search allowed for the algorithm to explore all
variations of a particular variable assignment. However, by
greedily only selecting the nodes with only the best lower
bound could provide misleading results. That is, we cannot be
sure about unassigned clauses, then the lower bound that was
calculated at some level l could be misleading. Therefore, to
gain enough knowledge about each level, we enforce a quota
of children to be added per level. This provides a uniform view
against the solution space. We prioritize children that have a
better lower cost, but will meet the quota once all successful

candidates have been met. This can place a guarantee that we
will observe the best known solution at any level lk. However,
as we begin to fill in the unassigned clauses, it is possible for
us to reduce the quota per level. We only reduce the quota if
a new best cost if found at some level lx.

We also added an optimization, where we can “bypass” the
quota per level as long as we do not mind that intermediate
levels do not improve the lower bound. This means that we
only select the children with cost better than or equal to the
current lower bound.

II. RESULTS

Attached in this section are the results of the implementation
of this MAX-SAT algorithm. We tested this implementation
against four different boolean expressions, all of which are
non-satisfiable. We collected the following information during
each test:

• N : the number of visited nodes required to deduce the
solution.

• NT : the total number of possible nodes within the deci-
sion tree.

• τmedium: the elapsed time (in seconds) required for the
algorithm to complete on the specified test medium.

• S: the maximum number of clauses satisfied.
• ST : the total number of clauses present in the test.

TABLE I
RESULTS COLLECTED ACROSS ALL TEST FILES WITH −opt y.

Test File N NT τECF τUbuntu S/ST

1.cnf 7 8 0.00025 0.0003 7/8
2.cnf 6356 1.12× 1015 0.662 0.652 79/80
3.cnf 4225 1.15× 1018 0.680 0.691 159/160
4.cnf 4482 4.72× 1021 0.909 0.881 191/192

TABLE II
RESULTS COLLECTED ACROSS ALL TEST FILES WITH −opt n.

Test File N NT τECF τUbuntu S/ST

1.cnf 7 8 0.00025 0.0003 7/8
2.cnf 135258 1.12× 1015 18.662 18.842 79/80
3.cnf 784434 1.15× 1018 175.322 174.929 159/160
4.cnf 981054 4.72× 1021 323.98 324.1 191/192

This implementation (with the optimization) is able to
quickly deduce the maximum number of satisfiable clauses
within a very short time. In files 1.cnf, 3.cnf and 4.cnf the
algorithm proceeds in a very similar manner, greedily attaching
to true conditions. This can be seen in their respective figures
listed in the following subsections. We should also speculate
on the analysis of the file 2.cnf. The value of N for this file is
greater than all of the other N ’s for the other files. This could
be indicative of a boolean expression which requires more
exploration for deduction. That is, this expression is greedy
resilient. Since our implementation is greedy, it is possible
that less children would have been added during stage (b),
and required more exploration in stage (c).

Without the optimization, both N and τmedium increased,
since we ensure that we can provably explore better solu-
tions in subsequent levels, and find the MAX-SAT. As noted



ECE1387: CAD FOR CIRCUIT SYNTHESIS AND LAYOUT 4

previously, our optimization is not guaranteed to identify the
MAX-SAT, but will generally find it. As concluded from our
results, both the guaranteed and optimized MAX-SAT deduce
the same results.

In addition to these values, we also collected the true and
false values assigned to the maximum satisfied solution per
test file. These results, as well as their graphical representa-
tions are listed in the subsections 1.cnf to 4.cnf. We included
the figures of the implementation with the optimization (as
it provided the same results with less visited nodes). All
figures shown in these subsections do not indicate a level
to variable mapping. This was done to improve the image
quality of this report. However, this implementation requires
such a mapping for the highlighted solution to correlate to
the textual values. By zooming into the tree representation
(using the provided graphics application), the level to variable
mapping is highlighted with textual tags as in Figure 1.

Fig. 1. Example of textual tags appearing for 2.cnf’s tree representation. The
number associated with each level is a variable within the boolean expression.

A. 1.cnf

Fig. 2. The Decision Tree of 1.cnf

Var [1] = TRUE
Var [2] = TRUE
Var [3] = TRUE

B. 2.cnf

Fig. 3. The Decision Tree of 2.cnf

Var [50] = FALSE
Var [49] = TRUE
Var [13] = TRUE
Var [48] = FALSE
Var [12] = FALSE
Var [20] = TRUE
Var [1] = TRUE
Var [41] = TRUE
Var [5] = TRUE
Var [21] = TRUE
Var [38] = TRUE
Var [2] = TRUE
Var [40] = FALSE
Var [4] = TRUE
Var [23] = TRUE
Var [22] = TRUE
Var [39] = TRUE
Var [3] = TRUE
Var [42] = TRUE
Var [6] = FALSE
Var [19] = TRUE
Var [43] = TRUE
Var [7] = TRUE
Var [18] = FALSE
Var [44] = TRUE
Var [8] = FALSE
Var [17] = FALSE
Var [45] = TRUE
Var [9] = TRUE
Var [16] = TRUE
Var [46] = TRUE
Var [10] = TRUE
Var [15] = TRUE
Var [47] = TRUE
Var [11] = TRUE
Var [14] = FALSE
Var [24] = FALSE
Var [37] = TRUE
Var [25] = TRUE
Var [36] = TRUE
Var [26] = TRUE
Var [35] = TRUE
Var [27] = TRUE
Var [34] = TRUE
Var [28] = FALSE
Var [33] = TRUE
Var [29] = TRUE
Var [32] = TRUE
Var [30] = TRUE
Var [31] = TRUE



ECE1387: CAD FOR CIRCUIT SYNTHESIS AND LAYOUT 5

C. 3.cnf

Fig. 4. The Decision Tree of 3.cnf

Var [60] = TRUE
Var [59] = TRUE
Var [58] = TRUE
Var [57] = TRUE
Var [56] = TRUE
Var [55] = TRUE
Var [54] = TRUE
Var [53] = TRUE
Var [52] = TRUE
Var [51] = TRUE
Var [50] = TRUE
Var [49] = TRUE
Var [13] = TRUE
Var [48] = TRUE
Var [12] = TRUE
Var [20] = TRUE
Var [1] = TRUE
Var [41] = TRUE
Var [5] = TRUE
Var [21] = TRUE
Var [38] = TRUE
Var [2] = TRUE
Var [40] = TRUE
Var [4] = TRUE
Var [23] = TRUE
Var [22] = TRUE
Var [39] = TRUE
Var [3] = TRUE
Var [42] = TRUE
Var [6] = TRUE
Var [19] = TRUE
Var [43] = TRUE
Var [7] = TRUE
Var [18] = TRUE
Var [44] = TRUE
Var [8] = TRUE
Var [17] = TRUE
Var [45] = TRUE
Var [9] = TRUE
Var [16] = TRUE
Var [46] = TRUE
Var [10] = TRUE
Var [15] = TRUE
Var [47] = TRUE
Var [11] = TRUE
Var [14] = TRUE
Var [24] = TRUE
Var [37] = TRUE
Var [25] = TRUE
Var [36] = TRUE
Var [26] = TRUE
Var [35] = TRUE
Var [27] = TRUE
Var [34] = TRUE
Var [28] = TRUE
Var [33] = TRUE
Var [29] = TRUE

Var [32] = TRUE
Var [30] = TRUE
Var [31] = TRUE

D. 4.cnf

Fig. 5. The Decision Tree of 4.cnf

Var [63] = TRUE
Var [64] = TRUE
Var [62] = TRUE
Var [65] = TRUE
Var [61] = TRUE
Var [66] = TRUE
Var [60] = TRUE
Var [67] = TRUE
Var [59] = TRUE
Var [68] = TRUE
Var [58] = TRUE
Var [69] = TRUE
Var [57] = TRUE
Var [70] = TRUE
Var [56] = TRUE
Var [71] = TRUE
Var [55] = TRUE
Var [72] = TRUE
Var [54] = TRUE
Var [53] = TRUE
Var [52] = TRUE
Var [51] = TRUE
Var [50] = TRUE
Var [49] = TRUE
Var [13] = TRUE
Var [48] = TRUE
Var [12] = TRUE
Var [20] = TRUE
Var [1] = TRUE
Var [41] = TRUE
Var [5] = TRUE
Var [21] = TRUE
Var [38] = TRUE
Var [2] = TRUE
Var [40] = TRUE
Var [4] = TRUE
Var [23] = TRUE
Var [22] = TRUE
Var [39] = TRUE
Var [3] = TRUE
Var [42] = TRUE



ECE1387: CAD FOR CIRCUIT SYNTHESIS AND LAYOUT 6

Var [6] = TRUE
Var [19] = TRUE
Var [43] = TRUE
Var [7] = TRUE
Var [18] = TRUE
Var [44] = TRUE
Var [8] = TRUE
Var [17] = TRUE
Var [45] = TRUE
Var [9] = TRUE
Var [16] = TRUE
Var [46] = TRUE
Var [10] = TRUE
Var [15] = TRUE
Var [47] = TRUE
Var [11] = TRUE
Var [14] = TRUE
Var [24] = TRUE
Var [37] = TRUE
Var [25] = TRUE
Var [36] = TRUE
Var [26] = TRUE
Var [35] = TRUE
Var [27] = TRUE
Var [34] = TRUE
Var [28] = TRUE
Var [33] = TRUE
Var [29] = TRUE
Var [32] = TRUE
Var [30] = TRUE
Var [31] = TRUE

III. CONCLUSION

In conclusion, a MAX-SAT solver was implemented in this
assignment. To reduce the overall runtime of searching the
solution space, a Branch and Bound algorithm was introduced
and modified to (a) find the optimal solution per boolean
expression, (b) reduce the runtime of searching the solution
space, (c) reduce the number of nodes required per visit. Our
results indicate that this implementation has met these criteria.
By using a Breadth-First exploration of partial solutions, and
a greedy lower bound function, our implementation is able to
compute the optimal solution.

REFERENCES

[1] Jens Gramm, Edward A Hirsch, Rolf Niedermeier, and Peter Rossmanith.
Worst-case upper bounds for max-2-sat with an application to max-cut.
Discrete Applied Mathematics, 130(2):139–155, 2003.

[2] Steve Joy, John Mitchell, and Brian Borchers. A branch and cut algorithm
for max-sat and weighted max-sat. In SATISFIABILITY PROBLEM:
THEORY AND APPLICATIONS, VOLUME 35 OF DIMACS SERIES
ON DISCRETE MATHEMATICS AND THEORETICAL COMPUTER
SCIENCE. Citeseer, 1997.

[3] Eugene L Lawler and David E Wood. Branch-and-bound methods: A
survey. Operations research, 14(4):699–719, 1966.

[4] Raymond J Nelson. Simplest normal truth functions. The Journal of
Symbolic Logic, 20(2):105–108, 1955.


