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Solutions 1.1-1.4 7

Chapter 1 Introduction
1.1 Substituting (1.1) into (1.2) and then differentiating with resiptow; we obtain
N M
Z ( wjrd — tn> zh = 0. 1)
n=1 \j=0
Re-arranging terms then gives the required result.

1.2 For the regularized sum-of-squares error function given by (1.4) tiregmonding
linear equations are again obtained by differentiation, akd the same form as
(1.122), but withA,; replaced byA;;, given by

Aij = Aij + M. @)
1.3 Let us denote apples, oranges and limes:py and!/ respectively. The marginal
probability of selecting an apple is given by
p(a) = pla|r)p(r) + p(alb)p(b) + p(alg)p(g)
3 1 3
where the conditional probabilities are obtained from the propastiof apples in
each box.
To find the probability that the box was green, given that the fugitselected was
an orange, we can use Bayes’ theorem
p(olg)p(g)
plglo) = == (4)
1= o)
The denominator in (4) is given by
p(o) = p(o|r)p(r) + p(o|b)p(b) + p(olg)p(9)
= i><02+1><02+i><06—036 5)
TR R TR
from which we obtain 3 0.6 )
p(Q\O):TO X036 2 (6)
1.4 We are often interested in finding the most probable value for sametiy. In

the case of probability distributions over discrete varialies poses little problem.
However, for continuous variables there is a subtlety arising ff@mature of prob-
ability densities and the way they transform under non-lineangks of variable.



Solution 1.4

Consider first the way a functiofiz) behaves when we change to a new variable
where the two variables are related by= g(y). This defines a new function of
given by

fy) = flg(y)). @)

Supposef (z) has a mode (i.e. a maximum)aso thatf’(z) = 0. The correspond-

ing mode off(y) will occur for a valuey obtained by differentiating both sides of
(7) with respect ta

@) = f9@)g'(y) =o0. 8
Assumingg’(y) # 0 at the mode, therf’(g(y)) = 0. However, we know that
/() = 0, and so we see that the locations of the mode expressed in tégasto
of the variables: andy are related by = ¢(y), as one would expect. Thus, finding
a mode with respect to the variahles completely equivalent to first transforming

to the variabley, then finding a mode with respectgoand then transforming back
to x.

Now consider the behaviour of a probability dengifyx) under the change of vari-
ablesz = g(y), where the density with respect to the new variablg,ig/) and is
given by ((1.27)). Let us write’(y) = s|¢’(y)| wheres € {—1,+1}. Then ((1.27))
can be written

py(y) = p2(9(y))sg' (y).
Differentiating both sides with respect¢ahen gives

Py () = spl(9w){d' W)} + sp2(9(v))g" (v). €)

Due to the presence of the second term on the right hand side dig(8lationship

7 = ¢g(y) no longer holds. Thus the value ofobtained by maximizing., (z) will

not be the value obtained by transformingtdy) then maximizing with respect to

y and then transforming back to This causes modes of densities to be dependent
on the choice of variables. In the case of linear transformatfmsécond term on
the right hand side of (9) vanishes, and so the location of thérman transforms
according tar = g(y).

This effect can be illustrated with a simple example, as showFigure 1.  We
begin by considering a Gaussian distributjpy(x) over z with meany = 6 and
standard deviatiom = 1, shown by the red curve in Figure 1. Next we draw a
sample of N = 50,000 points from this distribution and plot a histogram of their
values, which as expected agrees with the distribytiqn).

Now consider a non-linear change of variables froto y given by
z=g(y) =In(y) —In(1 —y) + 5. (10)
The inverse of this function is given by

1
1 +exp(—z+5)

y=g '(z) (11)
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Figure 1 Example of the transformation of

the mode of a density under a non- P (y)'
linear change of variables, illus- Y g ()
trating the different behaviour com- -0 0 =
pared to a simple function. See the y |
text for details. |

0.5 '

Pz ()
0
0 5 10

which is alogistic sigmoid function, and is shown in Figure 1 by the blue curve.

If we simply transfornp,.(z) as a function of: we obtain the green curye. (¢(y))
shown in Figure 1, and we see that the mode of the depsity) is transformed
via the sigmoid function to the mode of this curve. However, dieesity overy
transforms instead according to (1.27) and is shown by the magenta on the left
side of the diagram. Note that this has its mode shifted relatitbe mode of the
green curve.

To confirm this result we take our samplefo¥, 000 values ofz, evaluate the corre-
sponding values of using (11), and then plot a histogram of their values. We see
that this histogram matches the magenta curve in Figure 1 arttiengteen curve!

1.5 Expanding the square we have

E[(f(2) —E[f(@)])!] = Elf(2)* - 2f()E[f(2)] + E[f(x)]*]
= E[f(2)"] - 2E[f(2)|E[f ()] + E[f ()"
E[f(z)*] - E[f(2)]?

as required.

1.6 The definition of covariance is given by (1.41) as
covlz,y] = E[zy] — E[z]E[y].

Using (1.33) and the fact thatz, y) = p(z)p(y) whenz andy are independent, we

obtain
Elzy] = Y pla,y)ay
> p@)z Y ply)y

= E[z]E[y]
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1.7

and henceov[z,y| = 0. The case where andy are continuous variables is analo-
gous, with (1.33) replaced by (1.34) and the sums replaced yralse

The transformation from Cartesian to polar coordinates is defined by
x = rcosb (12)
y = rsinf (13)

and hence we have’ + y? = r? where we have used the well-known trigonometric
result (2.177). Also the Jacobian of the change of variablessityesseen to be

oxr Ox
ox,y) or 00
a(r,0) dy By
ar 00
cosf) —rsinf
- sinf rcosf | "

where again we have used (2.177). Thus the double integral in5)lbE2omes

I’ = /OQW/OOOeXp (—27;22>7’d7“d9 (14)
= 27 /OOO exp (—%) %du (15)
= 7 [exp (—%‘2) (—202)}20 (16)
— 92702 17)

where we have used the change of variabfes: u. Thus

I = (27702)1/2.

Finally, using the transformatiopn= x — 1, the integral of the Gaussian distribution
becomes

[e%¢) 1 o) y2
2 —
/ N (z|p,0%) dz = Zro?) 2 /Oo exp <_W> dy

I

(27r02)1/2

as required.

1.8 From the definition (1.46) of the univariate Gaussian distrdwtive have

o 1/2
E[z] = /Oo <27r102) exp {—2;(96 - u)z} xdx. (18)
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Now change variables using= = — u to give

oo 1/2
E[z] =/_ <27r102> exp{—;‘zyz}(yﬂw)dy. (19)

[oe]

We now note that in the factdy + i) the first term iny corresponds to an odd
integrand and so this integral must vanish (to show this exiylieirite the integral
as the sum of two integrals, one frorpo to 0 and the other fron to oo and then
show that these two integrals cancel). In the second teri:a constant and pulls
outside the integral, leaving a normalized Gaussian distabuwthich integrates to
1, and so we obtain (1.49).

To derive (1.50) we first substitute the expression (1.46) for tmmabdistribution
into the normalization result (1.48) and re-arrange to obtain

/ exp {—2}‘2(37 — ,u)2} dx = (2%02)1/2 . (20)

— 00

We now differentiate both sides of (20) with respecibtoand then re-arrange to

obtain
1\ 1 2 2 2
<2m2) / exp{—wu—m }(z—m dr=o’  (20)

[ee)

which directly shows that

E[(x — p)?] = var[z] = o> (22)
Now we expand the square on the left-hand side giving
E[z?] — 2uE[z] + p? = o°.
Making use of (1.49) then gives (1.50) as required.
Finally, (1.51) follows directly from (1.49) and (1.50)
El2’] — Elz]* = (p* + 0?) — p* = 0>

For the univariate case, we simply differentiate (1.46) with eespox to obtain

d 2\ _ oy ¥ — H
@/\/’(xm,a)— N (z|p, 0?) O

Setting this to zero we obtain= p.
Similarly, for the multivariate case we differentiate (1.52) witlspect tak to obtain

TNl D) = N el )V {x— 0)" S (x )
= —Nx[p,Z)=" (x - p),

where we have used (C.19), (C.2@nd the fact thak ' is symmetric. Setting this
derivative equal t@, and left-multiplying by, leads to the solutiog = .

INOTE: In the 1 printing of PRML, there are mistakes in (C.20); all instances ¢¥ector)
in the denominators should he(scalar).
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1.10 Sincez andz are independent, their joint distribution factorizés, z) = p(z)p(2),

and so
Elz+ 2] = //(91; + 2)p(z)p(z) dz dz (23)
= /xp(x) dx + /zp(z) dz (24)
= E[z]+E[z]. (25)

Similarly for the variances, we first note that
(x4 2z —Elz +2))? = (z — E[z])? + (2 — E[2])? + 2(z — E[z])(z — E[z]) (26)

where the final term will integrate to zero with respect to the faméal distribution
p(z)p(z). Hence

varjz + 2] = //(x + 2 —E[z + 2])*p(x)p(z) dz dz

— [ BlalPpdot [ Bl d:
= var(z) + var(z). 27)

For discrete variables the integrals are replaced by summasindghe same results
are again obtained.

1.11 We use/ to denoteln p(X|u, o?) from (1.54). By standard rules of differentiation

we obtain
o 1Y
o~ o7 2o )

n=1

Setting this equal to zero and moving the terms involving the other side of the

equation we get
1 1
3D tn=—5Nn
n=1

and by multiplying ing both sides by* /N we get (1.55).
Similarly we have

o1 ( p N1
do?  2(0?)2 — I H 2 o2
and setting this to zero we obtain
N1 R ,
257 = 3prE 2o T )
n=1

Multiplying both sides by2(c?)? /N and substituting, for 1 we get (1.56).
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1.12 If m = n thenz,x,, = 22 and using (1.50) we obtaif[z2] = 12 + o2, whereas if
n # m then the two data points, andx,, are independent and henEer,,z,,] =
Elz,)E[z,,] = p? where we have used (1.49). Combining these two results we
obtain (1.130).

Next we have

N
Elpme] = Z (28)
using (1.49).
Finally, considerE[c3,; ]. From (1.55) and (1.56), and making use of (1.130), we
have

=
S)
zw
e
Il
=
2=
ME
VR
=
3
|
2=
[~]=
=
3
~—
[\V)

n=1 m=1

1 9 N N N
— 2
= N E_IE z,, —an _lxm—i— E_ E_ mxl]

1 1

2 2 2 12
= 2

puo+o <u + UU> +N }

_ (N]; 1) o (29)
as required.

1.13 Inasimilar fashion to solution 1.12, substitutindor ., in (1.56) and using (1.49)
and (1.50) we have

1 N
E{xn} [N Z (fIJ
n=1

Ex, [22 — 2z, + 112

I
=z =
M=

3
Il
N

I
=
] =

(12 + 0 = 2up + p?)

3
Il
—

Il
Q

1.14 Define

S A

1
wy; = Q(wm -+ wji) wy; = 5 (Wi — wﬂ) (30)

2 (
from which the (anti)symmetry properties follow directly, as doegéhationw;; =
wy; + wis. We now note that

D D D D 1 D D
Z Z l‘z$j = Z Zwijxixj - 5 ZZU}jiIil‘j =0 (31)

i=1 j=1 i=1 j=1
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Solution 1.15

1.15

from which we obtain (1.132). The number of independent compter'newisj can be
found by noting that there a®? parameters in total in this matrix, and that entries
off the leading diagonal occur in constrained paifs = w;; for j # i. Thus we
start with D? parameters in the matrix?;, subtractD for the number of parameters
on the leading diagonal, divide by two, and then add badkr the leading diagonal
and we obtaifD? — D)/2+ D = D(D +1)/2.

The redundancy in the coefficients in (1.133) arises from integphaymmetries
between the indices,. Such symmetries can therefore be removed by enforcing an
ordering on the indices, as in (1.134), so that only one membeadh group of
equivalent configurations occurs in the summation.

To derive (1.135) we note that the number of independent paessvetD, M)
which appear at orde¥/ can be written as

nwmﬂ:222}~231 (32)

D i M1
n@JD:Z%z:~ZN} (33)

11=1 10=1 v =1

where the term in braces has— 1 terms which, from (32), must equali,, M —1).
Thus we can write

D
n(D, M) = n(is, M 1) (34)

which is equivalent to (1.135).

To prove (1.136) we first sdD = 1 on both sides of the equation, and make use of
0! = 1, which gives the valué on both sides, thus showing the equation is valid for
D = 1. Now we assume that it is true for a specific value of dimensitynal and
then show that it must be true for dimensionalidyt- 1. Thus consider the left-hand
side of (1.136) evaluated fdp + 1 which gives

D+1 (i 4+ M —2)! _ (D+M—-1)! (D+M—1)!
; (i—)(M-1)!  (D-1)!M! * DI(M —1)!
_ (D+M-1)D+(D+M-1IM
; DIM!
- % (35)

which equals the right hand side of (1.136) for dimensionality- 1. Thus, by
induction, (1.136) must hold true for all values bf
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Finally we use induction to prove (1.137). Fbf = 2 we find obtain the standard
resultn(D,2) = $D(D + 1), which is also proved in Exercise 1.14. Now assume
that (1.137) is correct for a specific ordief — 1 so that

(D + M —2)!
n(D,M—l):(D_l)!(M_l)!. (36)

Substituting this into the right hand side of (1.135) we obtain

2 (i+M-2)
nﬂle:Ej@(lﬁmj)U! 37)

which, making use of (1.136), gives

(D+ M —1)!
DM)=-————-
and hence shows that (1.137) is true for polynomials of ofdeThus by induction
(1.137) must be true for all values 61.

NOTE: In the 1% printing of PRML, this exercise contains two typographical errors
On line 4, M6th should beM*" and on the l.h.s. of (1.139)V(d, M) should be
N(D,M).

The result (1.138) follows simply from summing up the coefficiaitall order up
to and including orden/. To prove (1.139), we first note that whéih = 0 the right
hand side of (1.139) equals 1, which we know to be correct sinsastthe number
of parameters at zeroth order which is just the constant offséterpblynomial.
Assuming that (1.139) is correct at ordef, we obtain the following result at order
M+1

<

+1
N(D,M+1) = n(D,m)

m=0

M

= Z n(D,m)+n(D,M + 1)
D+ M)! (D + M)!
DIM! (D —1)I(M +1)!
(D + M) (M + 1) + (D + M)!D

DI(M +1)!

(D + M +1)!
D\(M +1)!

(=)

which is the required result at ordéf + 1.
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1.17

1.18

Now assumé\l > D. Using Stirling’s formula we have
(D + M)D+M6_D_M

nD,M) = DI MMM
MD+M—D D\ PtM
= — (1 + )
D! MM M
MPe=P D(D + M)
>~y — 1+ ——F
D! M
(1+D)e " p
~ DI M

which grows likeM P with M. The case wher® > M is identical, with the roles
of D and M exchanged. By numerical evaluation we obtaii10, 3) = 286 and
N(100,3) = 176,851.

Using integration by parts we have
Fz+1) = / ue™ " du
0

o z]zo + / zu”te " du = 0+ z'(x). (39)
0

I
|
)
<

Forz = 1 we have
INOSES / e “du= [—e_“]go =1 (40)
0

If = is an integer we can apply proof by induction to relate the garfunetion to
the factorial function. Suppose thétz + 1) = 2! holds. Then from the result (39)
we havel'(z + 2) = (z + 1)['(x + 1) = (z + 1)!. Finally,I'(1) = 1 = 0!, which
completes the proof by induction.

On the right-hand side of (1.142) we make the change of variables? to give

2

where we have used the definition (1.141) of the Gamma functiorth®left hand
side of (1.142) we can use (1.126) to obtaifi/2. Equating these we obtain the
desired result (1.143).

The volume of a sphere of raditisn D-dimensions is obtained by integration

Vp = SD/O rP=ldr = R

e / e~y D/2=1 gy — %SDF(D/2) (41)
0

(42)

For D = 2 andD = 3 we obtain the following results

4
Sy = 2, S3 = 4, Vy = ma?, Vy = gﬂag. (43)
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The volume of the cube i2a)”. Combining this with (1.143) and (1.144) we obtain
(1.145). Using Stirling’s formula (1.146) in (1.145) the ratio beesnfor largeD,

volume of sphere ( e )D/2 1

volume of cube ~ \2D D (44)

which goes td) asD — oo. The distance from the center of the cube to the mid
point of one of the sides ig, since this is where it makes contact with the sphere.
Similarly the distance to one of the cornersigD from Pythagoras’ theorem. Thus
the ratio isv/D.

Sincep(x) is radially symmetric it will be roughly constant over the sh#lkadius
r and thickness. This shell has volumé P ~e and sincd|x||? = r? we have

/ p(x) dx ~ p(T’)SDTD_16 (45)
shell

from which we obtain (1.148). We can find the stationary points(ef by differen-
tiation

d D—2 D—1 r r’
—p(r) « [(D - 1)r +r (——)} exp | —5 5 | = 0. (46)

dr o2

Solving forr, and usingD >> 1, we obtain’ ~ v/Do.
Next we note that

pT+e) o (T+e)P lexp [—(?2—;?1

= exp [— <?2_;§)2 +(D—=1)In(r+ 6):| . 47)

We now expandy(r) around the poinf. Since this is a stationary point @fr)
we must keep terms up to second order. Making use of the expelngib+ =) =
x — 2?/2 + O(x3), together withD >> 1, we obtain (1.149).

Finally, from (1.147) we see that the probability density at thigin is given by

Plx=0) =G i
while the density afix|| = 7 is given from (1.147) by

T

PR =1) = (2mo2)1/2 P\ To02 ) T (2mo2)1/2 P 2

where we have usetl~ v/Do. Thus the ratio of densities is given byp(D/2).
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Solutions 1.21-1.24

1.21 Since the square root function is monotonic for non-negative rusybve can take

1.22

1.23

the square root of the relatian< b to obtaina'/? < b'/2. Then we multiply both
sides by the non-negative quantity/? to obtaina < (ab)'/2.

The probability of a misclassification is given, from (1.78), by

p(mistake) = /p(x,Cg)dx—l-/ p(x,Cq) dx
R1

R

_ /R p(Calx)p(x) dx + / pCopx)dx.  (48)

R

Since we have chosen the decision regions to minimize the pilapaf misclassi-
fication we must have(Cs|x) < p(Ci|x) in regionRy, andp(Cy|x) < p(Ca|x) in
regionR,. We now apply the result < b = a'/? < b'/? to give

p(mistake) < 72{p(ClIX)ID(Cz|><)}1/2P(X)01X

+ [ {p(Ci]x)p(Calx)} ?p(x) dx

Ra
- / (PG X)p()p(Ca)p(x)} /2 dx (49)

since the two integrals have the same integrand. The finalradtegtaken over the
whole of the domain ok.

SubstitutingL; = 1 — d;; into (1.81), and using the fact that the posterior proba-
bilities sum to one, we find that, for eaghwe should choose the claggor which

1 — p(C;|x) is a minimum, which is equivalent to choosing théor which the pos-
terior probabilityp(C;|x) is a maximum. This loss matrix assigns a loss of one if
the example is misclassified, and a loss of zero if it is correxd#lgsified, and hence
minimizing the expected loss will minimize the misclassifion rate.

From (1.81) we see that for a general loss matrix and arbitrary class ptine ex-
pected loss is minimized by assigning an ingub class the/ which minimizes

Z Lyjp(Crlx) = p(lx) Z Lijp(x|Cx)p(Cr)

and so there is a direct trade-off between the prig€s ) and the loss matriXy;.

1.24 A vectorx belongs to clas§; with probabilityp(Cx|x). If we decide to assigr to

classC; we will incur an expected loss of’, L ;p(Ck|x), whereas if we select the
reject option we will incur a loss of. Thus, if

j = argmin zk: Lyip(Cr|x) (50)
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then we minimize the expected loss if we take the followingosct

class j, if min; ), Lip(Crlx) < A;
choose{ reject, otherwise. (51)

For aloss matrid.; = 1 — I,; we have) ", Liyp(Cr|x) = 1 — p(Ci|x) and so we
reject unless the smallest value lof- p(C;|x) is less tham\, or equivalently if the
largest value op(C;|x) is less tharl — A. In the standard reject criterion we reject
if the largest posterior probability is less th@nThus these two criteria for rejection
are equivalent providefl = 1 — \.

The expected squared loss for a vectorial target variable is giye
B(L] = [ [ Iy — et ) axe

Our goal is to choosg(x) so as to minimizeéE[L]. We can do this formally using
the calculus of variations to give

SE[L] R
5y (x) —/2(}'( ) — t)p(t,x) dt = 0.

Solving fory(x), and using the sum and product rules of probability, we obtain

tp(t,x) dt
ywz/‘z/wmwa

/ p(t,x) dt

which is the conditional average ttonditioned orx. For the case of a scalar target
variable we have

i) = [ tptebe)at
which is equivalent to (1.89).

NOTE: In the 1%* printing of PRML, there is an error in equation (1.90); the inte-
grand of the second integral should be replaced#yt|x]p(x).
We start by expanding the square in (1.151), in a similar fastoathé univariate
case in the equation preceding (1.90),
ly(x) = t]I* = [ly(x) — E[t|x] + E[t|x] — t||*
= |ly(x) - Eftx]|* + (v(x) - E[t|x])" (E[t|x] - t)
+HEft|x] - t)" (y(x) — E[t]x]) + [E[t]x] - t]*.
Following the treatment of the univariate case, we now sultstihis into (1.151)
and perform the integral ovér Again the cross-term vanishes and we are left with

Ewr=/Www—mhwwmwdx+/kmhﬂmwdx
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Solutions 1.27-1.28

1.27

1.28

from which we see directly that the functigr{x) that minimizesE[L] is given by
E[t|x].

Since we can choosgx) independently for each value &f the minimum of the
expected., loss can be found by minimizing the integrand given by

/wwwiwmmw (52)

for each value ok. Setting the derivative of (52) with respectiy(x) to zero gives
the stationarity condition

/@mw—ﬂqﬁ@@@w¢mmww

y(x) [e'e)
-q/ |mm—ﬂ%wuma—q/ ly(x) — 7 p(t]x) dt = 0

—o0 y(x)

which can also be obtained directly by setting the functioeaiMdtive of (1.91) with
respect tay(x) equal to zero. It follows thaj(x) must satisfy

y(x) o
/ y@—Wlmw&—/ y(x) — " p(tx) dr. (53)

—o0 y(x)
For the case of = 1 this reduces to
y(x) o0
/ p(t|x)dt = / p(t|x) dt. (54)
—o0 y(x)

which says thay(x) must be the conditional median of

Forg — 0 we note that, as a function of the quantity|y(x) — ¢|? is close to 1
everywhere except in a small neighbourhood arouady(x) where it falls to zero.
The value of (52) will therefore be close to 1, since the densityis normalized, but
reduced slightly by the ‘notch’ close to= y(x). We obtain the biggest reduction in
(52) by choosing the location of the notch to coincide withlt#rgest value op(t),
i.e. with the (conditional) mode.

From the discussion of the introduction of Section 1.6, we have
h(p®) = h(p) + h(p) = 2 h(p).
We then assume that for &ll< K, h(p*) = k h(p). Fork = K + 1 we have
h(p"™ ) = h(p®p) = h(p™) + h(p) = K h(p) + h(p) = (K + 1) h(p).
Moreover,

n/m m n m n m/m n
h(p"™) = nh(p'/™) = —mh(p!/™) = — h(p™/™) = — h(p)
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and so, by continuity, we have thatp”) = z h(p) for any real numbet.

Now consider the positive real numbersand ¢ and the real number such that
p = ¢*. From the above discussion, we see that

h(p)  h(g®)  xh(g)  hlg)

In(p)  In(¢g”) xIn(g) In(q)
and hencé(p) x In(p).

The entropy of an\/-state discrete variablecan be written in the form

M

H(z) = — ZP(CIH) Inp(z;) = ZP(%’) In

=1

P(%) (53)

The functionin(z) is concave~ and so we can apply Jensen'’s inequality in the form
(1.115) but with the inequality reversed, so that

M 1
H(z) <In Zp(xi)m =1InM. (56)

NOTE: In PRML, there is a minus sign-’) missing on the |.h.s. of (1.103).
From (1.113) we have

KL(pllq) = —/p(fv) Ing(z)dz + /p(l“) Inp(z)dz. (57)

Using (1.46) and (1.48)— (1.50), we can rewrite the first integral om.the. of (57)
as

52

- / p(z) Ing(x) dz = / Nl 0%)5 <ln(27r82) + M) dz

= % <1n<27‘1’82> + ;/N(xu,UZ)(x2 — 2xm +m?) dx)

(58)

1 2 2_2 2
= 2<ln(27rsg)—|—g e ,um—i—m)l

52

The second integral on the r.h.s. of (57) we recognize from (1.198)enegative
differential entropy of a Gaussian. Thus, from (57), (58) and (1.118have

0% 4+ p? = 2um + m?

KL(p|lq) = % (111(271’52) + = 11— 1n(2’ﬂ'0’2)>

_ ! In s +02+,u2—2pm—|—m2_1 .
2 o2 52
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Solutions 1.31-1.33

1.31 We first make use of the relatidifx;y) = H(y) — H(y|x) which we obtained in

1.32

1.33

(1.121), and note that the mutual information satisf{@sy) > 0 since it is a form
of Kullback-Leibler divergence. Finally we make use of thatieln (1.112) to obtain
the desired result (1.152).

To show that statistical independence is a sufficient cardfor the equality to be
satisfied, we substitug(x,y) = p(x)p(y) into the definition of the entropy, giving

H(x,y) = //p(x,y)lnp(x,y)dxdy
— [ ppty) (0 + mp(y) axay

= / p(x)Inp(x) dx + / p(y)Inp(y) dy
= H(x)+ H(y).
To show that statistical independence is a necessary comdite combine the equal-
ity condition
H(x,y) = H(x) + H(y)
with the result (1.112) to give

H(y[x) = H(y)-

We now note that the right-hand side is independertafd hence the left-hand side
must also be constant with respecktoUsing (1.121) it then follows that the mutual
informationI[x, y] = 0. Finally, using (1.120) we see that the mutual information is
a form of KL divergence, and this vanishes only if the two disttibns are equal, so
thatp(x,y) = p(x)p(y) as required.

When we make a change of variables, the probability densitamsformed by the
Jacobian of the change of variables. Thus we have

yi

=p(y)|A (59)

where| - | denotes the determinant. Then the entropy ean be written

H(y) = —/p(Y) np(y)dy = — /p(X) In {p(x)|A|""} dx = H(x) +In|A]

(60)
as required.

The conditional entropyd (y|x) can be written

H(ylz) = ZZP yilz;)p(x;) Inp(yilx;) (61)
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which equals 0 by assumption. Since the quantiy(y;|z;) Inp(y;|x;) is non-
negative each of these terms must vanish for any valusuch thatp(z;) # 0.
However, the quantity In p only vanishes fop = 0 or p = 1. Thus the quantities
p(y;|z;) are all either 0 or 1. However, they must also sum to 1, sinceitha
normalized probability distribution, and so precisely one & gfy;|z;) is 1, and
the rest are 0. Thus, for each valuge there is a unique valug; with non-zero
probability.

Obtaining the required functional derivative can be done sirbplypspection. How-

ever, if a more formal approach is required we can proceed as folloing tise
techniques set out in Appendix D. Consider first the functional

Under a small variatiop(z) — p(z) + en(x) we have

Ilp(z) + en(z)] = / p(a)f () dz + ¢ / n()f () de

and hence from (D.3) we deduce that the functional derivativevengdy

Wy

Similarly, if we define
Jpta)) = [ pla)tnplz) ds

then under a small variatignz) — p(x) + en(xz) we have
o) +ente) = [ ple)mple) da
+e {/ n(z) Inp(z)dz + /p(a:)(lx>n(x) da:} + O(€?)

p

and hence 57
— =p(z) + 1.
5p() p(z)

Using these two results we obtain the following result for the fiomal derivative
—Inp(z) — 1+ A1 + Xoz + A3(x — p)2.

Re-arranging then gives (1.108).

To eliminate the Lagrange multipliers we substitute (1.108) #ach of the three
constraints (1.105), (1.106) and (1.107) in turn. The solutionastraasily obtained
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Solutions 1.35-1.36

1.35

1.36

by comparison with the standard form of the Gaussian, and ndtatghe results

1
A= 11— 3 In (27r02) (62)
1
. = 4
% = 55 (64)

do indeed satisfy the three constraints.

Note that there is a typographical error in the question, whidulshread "Use
calculus of variations to show that the stationary point offthectional shown just
before (1.108) is given by (1.108)".

For the multivariate version of this derivation, see Exercidd 2.

NOTE: In PRML, there is a minus sign-’) missing on the |.h.s. of (1.103).

Substituting the right hand side of (1.109) in the argumenheflbgarithm on the
right hand side of (1.103), we obtain

Hlz]

- / p(e) Inp(z) da

_ / p(z) (—;ln(27r02) - (9”205)2> da
(ln(27ra2) + % / (@) (@ — p)? dx)

(ln(27r02) + 1) ,

[N O

where in the last step we used (1.107).
Consider (1.114) withh = 0.5 andb = a + 2¢ (and hence = b — 2¢),

0.5f(a)+0.5f(b) > f(0.5a+ 0.5b)
0.5£(0.5a + 0.5(a + 2¢)) + 0.5£(0.5(b — 2€) + 0.5b)
0.5f(a+e€)+0.5f(b—¢€)

We can rewrite this as
f) = f(b—e€) > fla+e€)—f(a)
We then divide both sides hyand lete — 0, giving
f(6) > f'(a).

Since this holds at all points, it follows th@t' (x) > 0 everywhere.
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To show the implication in the other direction, we make use @fldr's theorem
(with the remainder in Lagrange form), according to which there eist* such
that

F(2) = (o) + /(o) @ = 0) + 5 /" (2*) (& — w0)".

Since we assume thdt'(z) > 0 everywhere, the third term on the r.h.s. will always
be positive and therefore

f(@) > f(xo) + f'(20)(x — x0)

Now letzy = Aa + (1 — A)b and consider setting = a, which gives

fla) > f(zo) + f'(xo)(a — x0)

= fzo) + f'(x0) (1 = A)(a —D)). (65)
Similarly, settinge = b gives
f(0) > f(wo) + f'(z0)(A(b — a)). (66)
Multiplying (65) by A and (66) byl — A and adding up the results on both sides, we
obtain
Af(a) + (1 =A)f(b) > fzo) = f(Aa+ (1 — A)b)
as required.

1.37 From (1.104), making use of (1.111), we have

Hxyl = - [ [ pby)mpexy) axdy

~ [ [ pxy)m oty o0 axay

= [ #x.3) tnpt + npto) ey

—//p(x,y) Inp(y|x) dxdy — //p(x,y) In p(x) dx dy
=~ [ [ ey mptyl) dxdy — [ pompx) dx

= Hy[x] + H[x].

1.38 From (1.114) we know that the result (1.115) holdsfé6r= 1. We now suppose that
it holds for some general value and show that it must therefore hold fbf + 1.
Consider the left hand side of (1.115)

M+1 M
f (Z )\ixz) f </\M+1$M+1 + Z )‘ixi> (67)

i=1

M
f (/\M+117M+1 + (1 = Anr41) 2771171) (68)

i=1
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1.39

where we have defined
by

R a— 69
1 —Av41 (69)

i

We now apply (1.114) to give

M+1 M
f (Z /\zwi) S A f(@aa) + (1= ) f (Z m%) - (70)

We now note that the quantities by definition satisfy

M+1

> a=1 (72)

and hence we have
M

Z Ai=1—=Aum (72)

=1

Then using (69) we see that the quantitipsatisfy the property

M 1 M
2 T )

Thus we can apply the result (1.115) at ordérand so (70) becomes

M+1 M M+1
f (Z m) <A f @aren) F (=) D mif () = Y Aif(x) (74)
=1 =1 =1
where we have made use of (69).

From Table 1.3 we obtain the marginal probabilities by sumomaéind the condi-
tional probabilities by normalization, to give

y y
x [0 273 0] 1 0] 1
1173 173 | 2/3 [0 1]12
10|12
p(z) p(y) p(zly)
y
0 1
x [0 1212
1/ 0|1
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Diagram showing the relationship be-
tween marginal, conditional and joint en-
tropies and the mutual information.

From these tables, together with the definitions

H(z) = =) ple)np(:) (75)
H(zly) = —Zzp(ﬂﬁi,yg‘)lﬂp(ﬂﬁﬂyj) (76)

and similar definitions fo# (y) and H (y|z), we obtain the following results
(@) H(z)=In3—2In2

(b) H(y)=In3—2In2

() H(ylx) = %1112

(d) H(ly) = 2In2

() H(z,y)=1n3

() I(x;y):ln3731n2

where we have used (1.121) to evaluate the mutual informatioa.cétresponding
diagram is shown in Figure 2.

The arithmetic and geometric means are defined as
LK x 1/K
:EA:K;J% and zg = (E[xk> ,
respectively. Taking the logarithm of, andz, we see that
1 & 1 &
InZpn =1In (sz:xk> and lnszsz:lnxk.

By matchingf with In and \; with 1/K in (1.115), taking into account that the
logarithm is concave rather than convex and the inequalitetbee goes the other
way, we obtain the desired result.
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1.41 From the product rule we hayéx,y) = p(y|x)p(x), and so (1.120) can be written
as

I(x;y) = —//p(XJ) Inp(y) dxdy+//p(x,y) Inp(y|x) dxdy

= —/p(y) Inp(y) dy+//p(x,y) Inp(y|x) dx dy
= H(y)— H(y[x). (77)

Chapter 2 Probability Distributions

2.1 From the definition (2.2) of the Bernoulli distribution we have

> plalp) = pla=0lu)+pl=1lp)
z€{0,1}

= (I-p+p=1
> apalp) = Oplx=0lp)+ Lp@=1lu) = pu
z€{0,1}
S (w—w’plalp) = pPpla=0lu)+ (1 - p)’p(z=1|p)
ze{0,1}

= 21— p)+ (1= p)’u = p(l - p).

The entropy is given by

Hz] = - > plalw) mpx|u)

z€{0,1}

= Y W e+ (- 1) )}
z€{0,1}

= —(1=p)In(l —p) —plnp.

2.2 The normalization of (2.261) follows from

plz = 1) + pla = —1p) = (ﬁ“) ¥ (1;“> 1

The mean is given by
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To evaluate the variance we use
1—p 14+ p
]E 2 == = 1
== (5 + ()

var[z] = E[z?] — E[z]?> = 1 — u°.

from which we have

Finally the entropy is given by

r=+1

Hia] = =) p(alu)Inp(z|n)

r=—1

() () (5 (52)

2.3 Using the definition (2.10) we have

N NY N N
<n)+<n1> B n!(an)!Jr(n—l)!(NJrlfn)!
(N+1—-n)N!'+nN!  (N+41)!
n(N+1-n)!  nl(N+1-n)
- <Nn+1>. (78)

To prove the binomial theorem (2.263) we note that the theoremvislly true
for N = 0. We now assume that it holds for some general véluand prove its
correctness folV + 1, which can be done as follows

N

G+ = 1+ (Z):U"

n=0

()N

(oS (2 ) (e

> =

x

N
_ (N N+1\ o (N4 v
- (e () (G0

n=1
N+1
S (N * 1) o (79)
n=0 n
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Solutions 2.4-2.5

2.4

2.5

which completes the inductive proof. Finally, using the bimartheorem, the nor-
malization condition (2.264) for the binomial distributiorvegs

i (:) L e I u)NZA_T: (JD (ﬁfﬂ)n

n=0 v
- 1V <1+“> -1 (80)

as required.

Differentiating (2.264) with respect {@ we obtain
N
N . n (N—n)]
nl— N—n [" —
2 ()rom [5G

n=1

Multiplying through byu(1 — x) and re-arranging we obtain (2.11).
If we differentiate (2.264) twice with respect towe obtain

(- {3 GE8] - - 65) -

n=1

We now multiply through by?(1 — 1)? and re-arrange, making use of the result
(2.11) for the mean of the binomial distribution, to obtain

E[n’] = Nu(l — p) + N?p2.
Finally, we use (1.40) to obtain the result (2.12) for the variance

Making the change of variable= y + «x in (2.266) we obtain

'(a)T(b) = /OOO 21 {/:O exp(—t)(t — x)b_ldt} dz. (81)

We now exchange the order of integration, taking care over thigsliof integration

/ / Lexp(—t)(t — z)°~ dzdt. (82)

The change in the limits of integration in going from (81) to (82) b& understood
by reference to Figure 3. Finally we change variables ircthigegral usingr = tu
to give

L(a)T(b) = /OO exp(— zf)ta1tb1tdt/01ua1(1—/1)1’1 dp
~ T(a+b) / )Pt dp. (83)
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Figure 3  Plot of the region of integration of (81)
in (z,t) space.

2.6 From (2.13) the mean of the beta distribution is given by

Ely] —/O WWHM(I )t

Using the result (2.265), which follows directly from the normali@atcondition for
the Beta distribution, we have
T(a+0b) T(a+1+0) a

Bl = ST Ta+ T0) ~ atb

where we have used the propelty: + 1) = 2I'(z). We can find the variance in the
same way, by first showing that

2 1I‘(a+2—|—b) a+2)—1 -1
Bl = tare /0 T(a + 2)T(b) pHTH L= ) dp
_ Tlat+b)TPla+2+4b) @ a+1 (84)
C(a)T®) T(a+2)T'() (a+b)(a+1+Db)
Now we use the result (1.40), together with the result (2.15) toelénie result (2.16)
for var[u]. Finally, we obtain the result (2.269) for the mode of the beséritiution
simply by setting the derivative of the right hand side of (248 respect tqu to
zero and re-arranging.

I'(a+b

— =

~—

2.7 NOTE: In PRML, the exercise text contains a typographical error. Onftind line,
“mean value oft” should be “mean value qgi”.

Using the result (2.15) for the mean of a Beta distribution we Isa€the prior mean
is a/(a + b) while the posterior mean is1 + n)/(a + b + n + m). The maximum
likelihood estimate for. is given by the relative frequeney/ (n+m) of observations
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Solutions 2.8-2.9

2.8

2.9

of x = 1. Thus the posterior mean will lie between the prior mean andigsdmum
likelihood solution provided the following equation is ségs for A in the interval
(0,1)
a (=) noo_ a+n .
a+b n+m a+b+n+m
which represents a convex combination of the prior mean and gxénmim likeli-
hood estimator. This is a linear equation fowhich is easily solved by re-arranging

terms to give

1
T 1+ (mtm)/(atb)

Sincea > 0,b > 0, n > 0, andm > 0, it follows that the term(n +m)/(a + b) lies
in the rangg0, oo) and hence\ must lie in the rang€0, 1).

To prove the result (2.270) we use the product rule of probability

/{/xp(ny) dw}p(y) dy
= / / zp(z,y) dedy = / zp(z) dz = E,[]. (85)

For the result (2.271) for the conditional variance we make uskeofesult (1.40),
as well as the relation (85), to give

Ey [Ez[2[y]]

Ey [var,[z|y]] + vary [Eu[z[y] = E, [E.lz’ly] - x|y2]
+E, [Ex[2y)?] — Ey [Ex [2[y])*

= E.[2%] — E,[2]® = var,[z]

where we have made usel6f [E, [z?|y]] = E,[z?] which can be proved by analogy
with (85).

When we integrate ovet,;_; the lower limit of integration ig), while the upper

limitis 1 — ij‘if w; since the remaining probabilities must sum to one (see Fig-
ure 2.4). Thus we have

1 23112/“
Par—1(f1s - pi—2) —/ o (s oy piar—1) dpar—1
0

M—1

1-y M-z, ap—1

=1

|| pgk ™ 1]/ pir (1 E u;) dpins—1.
0

In order to make the limits of integration equal@cand 1 we change integration
variable fromu,, 1 to ¢ using

M—2
pp—1 =1 <1 - Z w)
j=1
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which gives

pM—l(Hla cee >,UM—2)

obes)

- o | T] (
1

M—2

k—

where we have used (2.265). The right hand side of (86) is seen totaralized
Dirichlet distribution overM —1 variables, with coefficients, ..., ay o2, apr—1+
ayr, (note that we have effectively combined the final two categdr@d we can
identify its normalization coefficient using (2.38). Thus

M—2 ap—1t+ap—1 1

1=y uj> / gom—1 (] pem gy
j=1 0
M —

1 _

- Cy

2 ap—1+ap—1
> w) e S CD

= an—1 + any)

C _ F(O{l—f—...—f—a]y[) ' F(aM—1+OéM)
" I(aq)...TDlap—2)T(ap—1 +anr) Tlanr—1)T(anr)
Dlog + ...+ an)

= 87
I'(o)...T(aar) ®7)
as required.
Using the fact that the Dirichlet distribution (2.38) is norraeli we have
M
r ...
J T e au = Ho e (@)
i} 040)

where [ dp denotes the integral over t§@/ — 1)-dimensional simplex defined by

0 < pp <1and Zk ur = 1. Now consider the expectation pf which can be
written

_ F(Qfo) o ak—l
= N T / v [ L du
_ (o) T(a1)---Tla; +1)---T(oar) _
F(Oél) . 'F(Oé[\/[) P(OZO + ].) (%))

where we have made use of (88), noting that the effect of the exttarfaf 1. is to
increase the coefficient; by 1, and then made use bfz + 1) = «I'(z). By similar
reasoning we have

varl] = Elf] - Elpy]’ = Lot~ *%
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Likewise, forj # [ we have

a0 a; o

covligm] = Blg] —ElylBpul = SO =0
o Y%M
a ad(ap+1)

2.11 We first of all write the Dirichlet distribution (2.38) in the form

M
Dir(pler) = K () [T it
k=1

where
['(ap)

P(aa) - Tlam)

K(a) =

Next we note the following relation

0 1 o
ap—1
0wt = fHexp((akfl)ln,uk)
Oay; P Oay; P
M
= Hlnuj exp{(ar — 1) In pg}
k=1

M
= Inpy, H pEt
k=1

from which we obtain

1 1 M
Ellnp;] = K(a)/ / Iy [T dpny - s
0 0 k=1

9 1 1 M o
= K(a)m/ / H“kk Ydps ... dpo
iJo 0 ko1
o 1

)9, Kla)
)
= —a—uj In K(ct).

Finally, using the expression fdf («), together with the definition of the digamma
function(-), we have

Elln ;] = (a;) — ¢(ao).
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2.12 The normalization of the uniform distribution is proved trivially

b
1 b—a
de = =1
/a b—a """ b_a

For the mean of the distribution we have

2(b—a) 2

x? ]b b? — a? a+b

E[m]:/abbiaxda:: [Q(b_a)

The variance can be found by first evaluating

b 3 b 3_ .3 2 2
E[mQ]:/bl xde:[ T )] _ b -a® a®fabtbd

a

—a

and then using (1.40) to give

V&I‘[fﬂ] :E[.’EQ] *E[.’L‘]Q _ a +C;b+b . (a—zb) — (b IQ(I) .

2.13 Note that this solution is the multivariate version of Solntib30.
From (1.113) we have

KL(pllg) = — / p(x) In g(x) dx + / p() I p(x) dx.

Using (2.43), (2.57), (2.59) and (2.62), we can rewrite the first integgrdhe r.h.s.
of () as

- / p(x) In g(x) dx

= /./\/(x|u, 22)% (DIn(27) +In|L| + (x — m)"L™"(x — m)) dx
1

3 (DIn(27) + In |L| + TrL™ " (up" + X)]
—uL_lm—mTL_1u+mTL_1m) . (89)

The second integral on the r.h.s. of () we recognize from (1.104hes¢gative
differential entropy of a multivariate Gaussian. Thus, from (), (88) 68.41), we
have

KLl = 5 (10 5 + T G + )]

— 'L 'm—m"L 'y 4+ m"L 'm — D)
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2.14 As for the univariate Gaussian considered in Section 1.6, werede use of La-
grange multipliers to enforce the constraints on the maximum gysolution. Note
that we need a single Lagrange multiplier for the normalizationstraint (2.280),
a D-dimensional vectom of Lagrange multipliers for thé constraints given by
(2.281), and @ x D matrix L of Lagrange multipliers to enforce thie? constraints
represented by (2.282). Thus we maximize

ity - - [ p<x>1np<x>dx+x< [0 dx—1>

+m?® ( / p(x)xdx — u)
+Tr{L </p(X)(X—u)(X—u)TdX—E>}- (90)

By functional differentiation (Appendix D) the maximum of thisnfttional with
respect tg(x) occurs when

0=—1-Inp(x) +A+mTx+ Tr{L(x — p)(x — p)*}.

Solving forp(x) we obtain
p(x)=exp{A—1+m'x+ (x—p)"'L(x—p)}. (91)
We now find the values of the Lagrange multipliers by applyirggdbnstraints. First
we complete the square inside the exponential, which becomes
1 B 1 1
A—1+ <x —p+ 2L1m> L <x —p+ 2L1m> +pTm — ZmTLflm.
We now make the change of variable
|
y=X—p+ §L m.

The constraint (2.281) then becomes

1 1
/exp {)\ —14+y"Ly+ p'm — 4mTL_lm} (y +p— 2L_lrn> dy = p.
In the final parentheses, the termyinvanishes by symmetry, while the term in
simply integrates tqu by virtue of the normalization constraint (2.280) which now
takes the form

1
/exp {)\ —14+y"Ly+ pTm — 4mTle} dy = 1.

and hence we have )
—~L 'm=0
2
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where again we have made use of the constraint (2.280). ithus 0 and so the
density becomes

p(x) = exp {A — 1+ (x — ) "L(x — )}

Substituting this into the final constraint (2.282), and makhegchange of variable
x — p = z We obtain

/exp {)\ -1+ zTLz} zz' dx = 3.
Applying an analogous argument to that used to derive (2.64)ManL = —%2.

Finally, the value of\ is simply that value needed to ensure that the Gaussian distri-
bution is correctly normalized, as derived in Section 2.3, amt&és given by

1 1
A_lzm{@ﬂmﬂﬂm}'

2.15 From the definitions of the multivariate differential entropy () and the multi-
variate Gaussian distribution (2.43), we get

H[x] = —/N(xm,E)an\/(xm,E)dx

(DIn2m) +In B[+ (x — p) "2 (x — p)) dx

N =

- /N(xm,E)
= % (DIn(27) + In |[Z| + Tr [£7'%])
= %(Dln(27r)+ln|2\+D)

2.16 We havep(z;) = N (z1|u1, 7 ") andp(zs) = N (za|pa, 75 '). Sincer = z; + a9
we also havep(z|rs) = N (x| + 2,7, '). We now evaluate the convolution
integral given by (2.284) which takes the form

T\Y2 e \/2 [ T T
p(r) = (i) (ﬁ) / exp {—51(96 — p1 = 22)° — 52(372 - uz)Z} dz.
(92)
Since the final result will be a Gaussian distribution#¢r) we need only evaluate
its precision, since, from (1.110), the entropy is determined bydhiance or equiv-
alently the precision, and is independent of the mean. Thae/alus to simplify the
calculation by ignoring such things as normalization cortstan

We begin by considering the terms in the exponent of (92) whiplede onz, which
are given by

oo

1
_537%(7'1 + 7o) + wp {1 (2 — 1) + T2pta}

2 2
1 — _
R T1(z — p1) + Tapo " {ri(z — ) + 12p2}
2 T +7'2 2(7’1 +T2>
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where we have completed the square owger When we integrate out,, the first

term on the right hand side will simply give rise to a constantdamdependent
of z. The second term, when expanded out, will involve a term?n Since the
precision ofz is given directly in terms of the coefficient of in the exponent, it is
only such terms that we need to consider. There is one other tetfrarising from

the original exponent in (92). Combining these we have

2
T o T 5 1 e

-t 2" = —=
2 2(’7’1+7'2) 27’1+7'2

from which we see that has precision; o /(11 + 72).

We can also obtain this result for the precision directly by ajipgo the general
result (2.115) for the convolution of two linear-Gaussian disttions.

The entropy of is then given, from (1.110), by
Hz] = éln{w} .

T1T2

2.17 We can use an analogous argument to that used in the soldtiBreocise 1.14.
Consider a general square matfixwith elements\;;. Then we can always write

A = A® + AS where
Aij + Aji
2 )

A
Aij = (93)

and it is easily verified thad® is symmetric so thaAZSj = AJSi, andA” is antisym-
metric so that/\f} = —A]S.i. The quadratic form in the exponent of adimensional
multivariate Gaussian distribution can be written

1 2.2
B Z Z(ﬂﬁz — pi)Nij (25 — ) (94)
i=1 j=1

whereA = X! is the precision matrix. When we substittte= A* + AS into
(94) we see that the term involving”* vanishes since for every positive term there
is an equal and opposite negative term. Thus we can alwayatékée symmetric.

2.18 We start by pre-multiplying both sides of (2.45) h)Tl, the conjugate transpose of
u;. This gives us

uIZui = )\iuj:u,’. (95)
Next consider the conjugate transpose of (2.45) and postpiyitiby u;, which
gives us

uzTZTui = /\;‘ujui. (96)

where\? is the complex conjugate of;. We now subtract (95) from (96) and use
the fact theX is real and symmetric and henEe= X7, to get

0=\ — \)ulu,.
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Hence\; = \; and so\; must be real.
Now consider

uiu\;, = uZu;
= uiTETuj
= (Eui)T 11j
= /\iu;-ruj,
where we have used (2.45) and the fact tRais symmetric. If we assume that

0 # \; # A; # 0, the only solution to this equation is thaf u; = 0, i.e., thatu;
andu; are orthogonal.

If 0 # X\i = A\; # 0, any linear combination ofi; andu; will be an eigenvector
with eigenvalue = \; = A;, since, from (2.45),
Y(au; +bu;) = alu; +bAju;
= Aau; + buy).

Assuming thatn; # u;, we can construct

u, = au;+ bu;
ug = cu; +du;

such that, andug are mutually orthogonal and of unit length. Sinceandu; are
orthogonal touy, (k # i, k # j), so areu, andug. Thus,u, andug satisfy (2.46).

Finally, if A; = 0, ¥ must be singular, withu; lying in the nullspace ok. In this
case,u; will be orthogonal to the eigenvectors projecting onto the r@aespofX:

and we can chosgu;|| = 1, so that (2.46) is satisfied. If more than one eigenvalue
equals zero, we can chose the corresponding eigenvectors grbitriong as they
remain in the nullspace &, and so we can chose them to satisfy (2.46).

2.19 We can write the r.h.s. of (2.48) in matrix form as
D
Z Auul = UAUT = M,
=1

whereU is aD x D matrix with the eigenvectors,, . .., up as its columns and
is a diagonal matrix with the eigenvalugs, . . ., \p along its diagonal.

Thus we have
U™U = UTUAUTU = A.

However, from (2.45)—(2.47), we also have that

UTSU = UTAU = UTUA = A,
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and soM = X and (2.48) holds.
Moreover, sincdJ is orthonormallU~! = UT and so

D
7' = (UAUT) ' = (UT) AU = UATUT =) duu
i=1

2.20 Sinceuy,...,up constitute a basis fak”, we can write
a = dlul +&2u2 + ...+ ELDUD,

wherea., ..., ap are coefficients obtained by projectiagphuy, ..., up. Note that
they typically donot equal the elements af

Using this we can write

T

a'Ya= (ajuj +...+apup) B (a;u; + ...+ apup)

and combining this result with (2.45) we get
(aquf + ...+ apup) (G\uy + ...+ apApup).
Now, sinceuiTuj = 1 onlyif i = j, and0 otherwise, this becomes
M+ ...+ abAp

and sincea is real, we see that this expression will be strictly positivedioy non-

zeroa, if all eigenvalues are strictly positive. It is also clear tHian eigenvalue,
i, IS zero or negative, there exist a vecigle.g.a = u;), for which this expression
will be less than or equal to zero. Thus, that a matrix has egtavs which are all
strictly positive is a sufficient and necessary condition fer ithatrix to be positive
definite.

2.21 A D x D matrix hasD? elements. If it is symmetric then the elements not on the
leading diagonal form pairs of equal value. There Brelements on the diagonal
so the number of elements not on the diagond)is— D and only half of these are
independent giving

D?—-D
5
If we now add back thé elements on the diagonal we get
D?-D D(D+1)

D=
2 + 2

2.22 Consider a matriXM which is symmetric, so tha¥IT = M. The inverse matrix
M ! satisfies
MM ! =1
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Taking the transpose of both sides of this equation, and ubagelation (C.1), we
obtain

(M) MT=1" =1

since the identity matrix is symmetric. Making use of the syrtigneondition for
M we then have

M) M=1

and hence, from the definition of the matrix inverse,
(M) =M
and soM ! is also a symmetric matrix.

Recall that the transformation (2.51) diagonalizes the cootglisgstem and that
the quadratic form (2.44), corresponding to the square of the Matiaiadistance,
is then given by (2.50). This corresponds to a shift in the origirhefdoordinate
system and a rotation so that the hyper-ellipsoidal contowrsgaivhich the Maha-
lanobis distance is constant become axis aligned. The whontained within any
one such contour is unchanged by shifts and rotations. We ndwe tha further

transformationy; = /%y, fori = 1,..., D. The volume within the hyper-ellipsoid
then becomes

D D D
/H dy; = HAW/H dz; = |22V AP
=1 i=1 =1

where we have used the property that the determinabt isf given by the product
of its eigenvalues, together with the fact that in theoordinates the volume has
become a sphere of radidswhose volume id/p AP,

Multiplying the left hand side of (2.76) by the matrix (2.287) iaNy gives the iden-
tity matrix. On the right hand side consider the four blocks @ tasulting parti-
tioned matrix:

upper left
AM -BD !CM = (A -BD!C)(A-BD!C) ! =1
upper right
—~AMBD ' +BD ' +BD 'CMBD !
—(A-BD!C)(A-BD!C)"'BD ! + BD!
= -BD '+BD !=0
lower left

CM-DD 'CM=CM - CM =0
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2.25

2.26

2.27

2.28

lower right
~CMBD '+DD !'+DD !CMBD '=DD !=1
Thus the right hand side also equals the identity matrix.

We first of all take the joint distributiop(x,, xs, X.) and marginalize to obtain the
distribution p(x,, x5). Using the results of Section 2.3.2 this is again a Gaussian
distribution with mean and covariance given by

M Eaa Z:ab
= a E pu— .
w=i) =G )

From Section 2.3.1 the distributigi(x,, x;) is then Gaussian with mean and co-
variance given by (2.81) and (2.82) respectively.

Multiplying the left hand side of (2.289) byA + BCD) trivially gives the identity
matrix I. On the right hand side we obtain
(A+BCD)(A™'-A'B(C'+ DA 'B)"'DA ™)
= I+BCDA ' -B(C'+DA'B)"'DA!
~-BCDA'B(C™' + DA 'B) 'DA!
= I+BCDA'-BC(C'+DA'B)(C!'+DA'B)'DA™
I+ BCDA ! -BCDA ! =1

Fromy = x + z we have trivially thaffy] = E[x] + E[z]. For the covariance we
have

covly] = E[(x-E[x +y-Ely))(x—Ex]+y—E[y])"]
= E[x-Ex)x—-ExX)"| +E[(y - Ely))(y - Ely])"]
+E[(x—E[x)(y —E[y)"] +E [(y - Ely])(x — E[x])"]

= cov[x]+ cov[z]i .

where we have used the independence andz, together withE [(x — E[x])] =

E [(z — E[z])] = 0, to set the third and fourth terms in the expansion to zero. For
1-dimensional variables the covariances become variances einthtain the result

of Exercise 1.10 as a special case.

For the marginal distributiop(x) we see from (2.92) that the mean is given by the
upper partition of (2.108) which is simply. Similarly from (2.93) we see that the
covariance is given by the top left partition of (2.105) and ise¢fare given byA !,

Now consider the conditional distributigriy|x). Applying the result (2.81) for the
conditional mean we obtain

Hyx = Ap+b+ AAT'A(x —p) = Ax +b.
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Similarly applying the result (2.82) for the covariance of theditanal distribution

we have
covly|x] =L+ AATTAT - AATTAATTAT =L
as required.
2.29 We first define
X=A+ATLA (97)
and
W = —LA, and thusWT = —ATLT = —ATL, (98)

sinceL is symmetric. We can use (97) and (98) to re-write (2.104) as
X Wt
(W)

and using (2.76) we get

X WT\ M ~MWTL"!
W L “\ -L'WM L'+ L 'WMW'L™!
where now .
M= (X-W'L'W) .
SubstitutingX andW using (97) and (98), respectively, we get

M= (A+ATLA - ATLL"'LA) "

—A!
~MWTL ' = A TATLL ' = A1AT

and

L'+ L 'LAATATLL !

L'+ AA AT,

L'+ L '"WMWTL!

as required.

2.30 Substituting the leftmost expression of (2.105)Rort in (2.107), we get

At ATTAT Ap— ATSb
AA™Y ST AATIAT Sb
B A™' (Ap— ATSb) + A7'ATSD
~ \AA T (Ap—ATSb) + (ST + AATTAT) Sb
B pw—A"ATSb+ AT'ATSD
"\ Ap—AA'ATSb+b+ AATTATSH

- < A,f—b)
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2.31 Sincey = x + z we can write the conditional distribution gfgivenx in the form
p(ylx) = N(ylp, + x,X,). This gives a decomposition of the joint distribution
of x andy in the formp(x,y) = p(y|x)p(x) wherep(x) = N (x|u,, Xx). This
therefore takes the form of (2.99) and (2.100) in which we can ideptif» w,,

AP S 3S A1 b— u, andL~! — X,. We can now obtain the marginal
distributionp(y) by making use of the result (2.115) from which we obtajgy) =
N(y|p, + 1y, 2, + Ex). Thus both the means and the covariances are additive, in
agreement with the results of Exercise 2.27.

2.32 The quadratic form in the exponential of the joint distributismgiven by
(= WA~ )~ Sy~ Ax—b)"L(y ~ Ax~b).  (99)

We now extract all of those terms involvingand assemble them into a standard
Gaussian quadratic form by completing the square

1
— _EXT(A +A"LA)x +x" [Ap+ ATL(y — b)] + const

_ —%(x ~m)"(A + ATLA)(x — m)

1
—|—§mT(A + ATLA)m + const (100)
where
m=(A+A"LA)"" [Ap+ A"L(y — b)].

We can now perform the integration ovemwhich eliminates the first term in (100).
Then we extract the terms g from the final term in (100) and combine these with
the remaining terms from the quadratic form (99) which depeng tmgive

1 _

= —in {L-LAA+A"LA)'ATL}y
+y" [{L-LA(A+A"LA)'A'L} Db
+LA(A+ATLA)'Ap]. (101)

We can identify the precision of the marginal distributjgy) from the second order
term iny. To find the corresponding covariance, we take the inverse ofréeégon
and apply the Woodbury inversion formula (2.289) to give

{L-LA(A+ALA)'ATL} " =L7'+ AA AT (102)

which corresponds to (2.110).

Next we identify the meaw of the marginal distribution. To do this we make use of
(102) in (101) and then complete the square to give

1 _
—i(y —v)T (L' + AATTAT) ' (y —v) + const
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where
v=(L"'"+AAT'AT) (L' + AATTAT) '+ LA(A + ATLA) 'Ap| .

Now consider the two terms in the square brackets, the first ondving b and the
second involvingu. The first of these contribution simply gives while the term in
© can be written

= (LT'+AATTAT)LAA+ATLA) 'Ap

= AT+AT'ATLA)I+AT'ATLA) A "Ap = Ap

where we have used the general reslBC)~' = C~!B~!. Hence we obtain
(2.109).

To find the conditional distributiop(x|y) we start from the quadratic form (99) cor-
responding to the joint distribution(x,y). Now, however, we treat as a constant
and simply complete the square oweto give

1 1
—5(x—m)"Alx — )~ 5(y — Ax —b)"L(y ~ Ax —b)
1
= —§xT(A + ATLA)x +x" {Ap + AL(y — b)} + const

_ —%(x —m)"(A + ATLA)(x — m)

where, as in the solution to Exercise 2.32, we have defined
m=(A+A"LA)"" {Ap+ATL(y — b)}

from which we obtain directly the mean and covariance of the ¢mmdil distribu-
tion in the form (2.111) and (2.112).

Differentiating (2.118) with respect & we obtain two terms:

For the first term, we can apply (C.28) directly to get

N 0 N, -\T

For the second term, we first re-write the sum

N
Z(Xn —w)TE (x, —pu) = NTr [2718} ,

n=1
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2.35

where
1 N
=N Z - "

Using this together with (C.21), in which= X;; (element(é, j) in X), and proper-
ties of the trace we get

Ty —1 _ 9 -1
Z(Xn—p,) Y (xp—p) = NazijTr[E S]

d
= NT > !'s
r[az“ ]

)y
= —-NTr|x ' —%7'S
r[ 0%i; ]
ox
= —NT »isyt
r[ﬁzu ]
= -N(z=7'szT),

where we have used (C.26). Note that in the last step we have @jttoedact that
Yi; = i, so thatoX/0%;; has al in position (i, j) only and0 everywhere else.
Treating this result as valid nevertheless, we get

a N
20w 200 -

Combining the derivatives of the two terms and setting the résulero, we obtain

N
“xp,—p) = 52—182—1.

l\')\)—l

N N
52—1 =_—_yisy L

Re-arrangement then yields

as required.

NOTE: In PRML, this exercise contains a typographical eridfk, x,,] should be
E [x,x},] onthe Lh.s. of (2.291).

The derivation of (2.62) is detailed in the text between (2.58p82) and (2.62)
(page 83).

If m = n then, using (2.62) we havg{x,, x| = pu™ + X, whereas if» # m then
the two data points,, andx,, are independent and hen&gx,, x,,] = pu* where
we have used (2.59). Combining these results we obtain (2.291n @&®&®9) and
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(2.62) we then have

E[Zw] = %ZE

1
{uuT +3 -2 (uuT + Z) + ppt + 2}
— (NZ\;1> 5 (103)

as required.

2.36 NOTE: In the 1%t printing of PRML, there are mistakes that affect this solutione T
sign in (2.129) is incorrect, and this equation should read

eN) — p(N—1) N =),

—an—1%(
Then, in order to be consistent with the assumption #ié} > 0 for # > 6* and
f(0) < 0forf < 6*in Figure 2.10, we should find the root of the expeateghtive
log likelihood. This lead to sign changes in (2.133) and (2),184t in (2.135), these
are cancelled against the change of sign in (2.129), so in eff2di35) remains
unchanged. Alsax,, should ber,, on the I.h.s. of (2.133). Finally, the labelsand
v in Figure 2.11 should be interchanged and there are corresporttmges to
the caption (see errata on the PRML web site for details).

Consider the expression fofN) and separate out the contribution from observation
xy to give

(rn — M)2

o 2

-1 (zn — p)?
- Sl

1 (rn — p)?
= Oin_1) NU(QNfl) TN
2

1
ON-1) T 57 {(en — ) —ofn_1y} - (104)

If we substitute the expression for a Gaussian distributiontimaesult (2.135) for
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2.37

the Robbins-Monro procedure applied to maximizing likelihowd,obtain

o [ 1 (en — 1)?
2
ofny = Ofn-1)tan-1 —Ino?y_ ) —
(V) v-1) 907 1){ (V-1 T o2
(u”UN—M)2
= oly_1ytan_1
Y { 2U?N71>
aN -1
= oln-n T3 o (wzv u) — ol y}- (105)

-1
Comparison of (105) with (104) allows us to identify

aN—-1 = 720?]\/71)
N

NOTE: In PRML, this exercise requires the additional assumptionweatan use

the known true mearny, in (2.122). Furthermore, for the derivation of the Robbins-

Monro sequential estimation formula, we assume that the cov@mienatrix is re-

stricted to be diagonal. Starting from (2.122), we have

N
= = (xn — 1) (x0 — )"

=
] =

n=1

z

2=
N

—

(xn — ) (x5 — )"

—

n

—

+N (xnv — p) (xnv — )"

N — 1
= N 2% D"‘ﬁ(XN—H)(XN—M)T
1 _
= = U+ N ((XN — ) (xy — )" — Sy ”) . (106)

From Solution 2.34, we know that

— o Inp(e |, B )
82%_1) ML

1 N - ~) !
= S (307) (v - v - " =30 (B007)

1 1\ 2 _
= S (507 (e - - - =0Y)

1
where we have used the assumption ®&} ", and hence(ZﬁVL*l)) , is diag-
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onal. If we substitute this into the multivariate form of (2.135% get
N N—
S = S
—2
A (B) 7 (6o - ) en - )" - 2V a07)

whereA y_; is a matrix of coefficients correspondingdg _; in (2.135). By com-
paring (106) with (107), we see that if we choose

2 _ 2
ANfl - N (Eg\/JI\L 1)) .

we recover (106). Note that if the covariance matrix was restrictetidy to the
form o1, i.e. a spherical Gaussian, the coefficient in (107) wouldrabacome a
scalar.

The exponent in the posterior distribution of (2.140) take<the

1 -
gzl ) = 55 > (o

n=1
2
H 1 N Ho Z
:2<0‘8+02)+M< +7 1.’I,'TL>+COHSt

where tonst.” denotes terms independent @f Following the discussion of (2.71)
we see that the variance of the posterior distribution is giwen b

1 N 1
012\,_02 ol

Similarly the mean is given by

—1 N
N 1 Lo 1
UN = <0_2 + 0(2)> (US + ; ngl 1‘n>

2 NO_2

0
= . 108
NoZ + o2 Ho + NoZ + o2 HML (108)
(109)
From (2.142), we see directly that
1 1 N 1 N -1 1 1 1
P R R L b (110)
oy 05 O o o o oN_1 O
We also note for later use, that
1 24 No2 0%+ 03
T:0t200: g (111)
O'N 060 O'Nila'
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and similarly

1 02+ (N —1)o2
=T % (112)
N-1 0

Using (2.143), we can rewrite (2.141) as

2 2V
g JO Zn:l Tn

= +
pN NU%—FUZMO No? +o?
N—
o*po + o Zn:ll Ln ngN
No3 + o2 Noj + o2

Using (2.141), (111) and (112), we can rewrite the first term of this asa as

2 2 2 \N-1 2
X OCpo+0o5) ) T _ ON
2 2 2 )

ony-1 (N—1og+o ON-—1

HN—1-

Similarly, using (111), the second term can be rewritten as

2
ON
o2 ON
and so
ok ok
UN = —5 —HUN-1+ —5TN. (113)
UN—I ag
Now consider
plulpn,ox) = plplpn—1, 05 _1)p@n|w, o®)

= Npuluy-1, 05 )N (@nlp, o?)

1 (g = 2upN 1+ 17 2% — 2onp+ p?
€XPqy 75 2 + o2
N-—1

2

B 1 (0 (uR—y = 2ppn—1 + %)
exp — = 02 02
N-—1

sy~ 2o )
012\,_102

2 2
2 OX_10

1 (0% +o)p? —2(c®pun-1 + o} 2n)p
= expy — +C,

whereC' accounts for all the remaining terms that are independent &rom this,
we can directly read off
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and

2 2
O°UN—1 +ON_ 1N
2 2
oy_,to
2 2
o ON-1

= 5 o oHN-1 + 2 4 2
on_,to ony_,toO

N =

TN
2 2

o o
N N
= —5 —UN-1T+ TN
o o2
N-1

and so we have recovered (110) and (113).

The posterior distribution is proportional to the product of tHerand the likelihood
function

p(plX) o< p(p Hp Xp |, 3

Thus the posterior is proportional to an exponentlal of a quadi@tm in p given
by

1 1
o (1= 10) TS0 (1~ ) 52 CE)

N
1
— —§NT (B + NS ) ptpt <201u0 + ¥t an> + const

n=1

where const.” denotes terms independent pf Using the discussion following
(2.71) we see that the mean and covariance of the posteriobdisbr are given by

py = (S NS (Z0 e + 27 Vi) (114)
> = 4N (115)

wherep,,; is the maximum likelihood solution for the mean given by

1
My, = Nzlxn-
n=

If we consider the integral of the Gamma distribution ovend make the change of
variablebr = u we have

oo 1 o0
Gam(7|a,b)dr = / b7 L exp(—br)dr
| emmrenar - o (~br)

1 o0
= but "t exp(—u)b "% du
ol Y

= 1

where we have used the definition (1.141) of the Gamma function.
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2.42 We can use the same change of variable as in the previous exer@galuate the
mean of the Gamma distribution

E[r] = F(la,)/o b7 exp(—br) dT

1 o0
= — beu® exp(—u)b~ % du
ol -

I'a+1) a

bC(a) b

where we have used the recurrence relafign + 1) = aI'(a) for the Gamma
function. Similarly we can find the variance by first evaluating

E[r?] = F(la) /0 b7 2 exp(—br) dT
= F(la) /000 blu M exp(—u)b™ o du
~ TI'(a+2) (a+DI'(a+1) ala+1)
h@) 0 B

and then using

ala+1) a®> a
PR PR T

Finally, the mode of the Gamma distribution is obtained sintpyl differentiation

var[r] = E[r?] — E[7]? =

a

% {Ta_l exp(—bT)} = [ ; L b] 7 L exp(—br) =0

from which we obtain
a—1

b

Notice that the mode only existsdf > 1, sincer must be a non-negative quantity.
This is also apparent in the plot of Figure 2.13.

mode[7] =

2.43 To prove the normalization of the distribution (2.293) consitierintegral

oo |x|q o0 xq
Iz/_ooexp (—W der =2 ; exp 552 dx
and make the change of variable

24
202"
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Solution 2.44 53

Using the definition (1.141) of the Gamma function, this gives

2(20%)'/70(1/q)
q

T 207 -/
I1=2 —(20%u)" TV exp(—u) du =
0 q

from which the normalization of (2.293) follows.

For the given noise distribution, the conditional distribatiof the target variable
given the input variable is

pltx, w,0%) =

q = y(xw)f
2(202)1/aT(1/q) P ( 202 > ‘

The likelihood function is obtained by taking products of @astof this form, over
all pairs{x,, t,, }. Taking the logarithm, and discarding additive constantshtain
the desired result.

From Bayes’ theorem we have

(s A[X) o< p(X |, A)p(p, A),

where the factors on the r.h.s. are given by (2.152) and (2.154gctsgy. Writing
this out in full, we get

N N N
p(, ) o [AYZexp 7/\7!12 exp )\,uzgcn 2 Za:2
BA o
(BN exp [—2 (1 = 20p0 + ) | A" Fexp (=bA)

where we have used the defintions of the Gaussian and Gammibludishs and we
have ommitted terms independentoandA. We can rearrange this to obtain

N/2ya—1 1 ol s B s

AN/2 x0T exp { — b+§z:ﬂn+§,uo A

AN + 3) 2 al
_ (/f— 13 {ﬂuo+nz_lxn}u)]

and by completing the square in the argument of the secondergal,

(MN+mf”WpP

<6#0 + Zgzl xn) 2
DT

N
1
)\N/Q)\a—lexp o b+§zwi+§ﬂg*
n=1

(AN + 5))"/? exp

_/\(N +ﬁ) _ ﬁMO + Zivzl Tn
2 a N+8
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2.45

2.46

we arrive at an (unnormalised) Gaussian-Gamma distribution,
N (uluy, (N + B)A) ") Gam (Max, b))

with parameters

5#0 + 27]:’:1 T

pN = N+3
N
anN = CL+5
1 3., N+§
_ 2 2 2
bn = b+§§7lxn+§u0— 5 M-

We do this, as in the univariate case, by considering the ltigelil function ofA for
a given data sefx;, ..., xn }:

N N
EN(xnlu, A™Y o AN exp (—; nz_l(xn — ) A(xp, — u))

1
= AN ?exp <2Tr [AS]> ,

whereS = " (x, — p)(x,, — p)". By simply comparing with (2.155), we see
that the functional dependence dnis indeed the same and thus a product of this
likelihood and a Wishart prior will result in a Wishart posterior.

From (2.158), we have
> pee(=br)pa=l ,r \1/2 T 5
- (L — Lz — d
/O T'(a) (27r> eXp{ 5@ “)} ’

(LY e (v Y

We now make the proposed change of variabte A, whereA = b+ (z — p)?/2,
yielding

e 1\ >
- A—a—l/Q a—1/2 .
ol CRE A

ba 1 1/2 —a—1/2
“ i (a) T
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where we have used the definition of the Gamma function (1.14halli we sub-
stituteb + (z — p)?/2 for A, v/2 for a andv /2 for b:

F(—CL+1/2) a 1 12 a—1/2
fa 0 (5r) s

W (2 (L) (5t
2 12 i e
) (2) ) ()

2.47 Ignoring the normalization constant, we write (2.159) as
A . o7 —(v—=1)/2
St(z|p, A\, v) o [1 + (x,u)}
1%

= exp<— _11n [1+w]> (116)

For larger, we make use of the Taylor expansion for the logarithm in the form

In(1 +¢) = e+ O(e?) (117)

to re-write (116) as

exp (‘V;1 In [1+Mx;”)2]>

~ exp (” - ! [W —n° 0(V—2)]>

14

= exp <—W + O(u1)> :

We see that in the limit — oo this becomes, up to an overall constant, the same as
a Gaussian distribution with meanand precision\. Since the Student distribution

is normalized to unity for all values ofit follows that it must remain normalized in
this limit. The normalization coefficient is given by the sand expression (2.42)
for a univariate Gaussian.
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2.48 Substituting expressions for the Gaussian and Gamma digbrisunto (2.161), we
have

St A 0) = AT (s (1)) Ganlal2./2)

_ (’//2)'//2 |A‘1/2 - nD/2nu/2—le—un/26—nA2/2 dn
I'(v/2) (2m)P/2 J, '

Now we make the change of variable

v 1 -
7'=77[+2A2}

2
which gives
v —D/2—v/2
I T
/oo 7-D/2+u/271677 dr
0
_ T(v/2+d/2) |A]Y? [1 . AQ]—D/Q—VM
I'(v/2) (mv)D/2 by
as required.

The correct normalization of the multivariate Student’s t-disition follows directly
from the fact that the Gaussian and Gamma distributions are niaedal From
(2.161) we have

/St (x|p, A, v) dx = //N(Xu,, (nA)~") Gam (n|v/2,v/2) dndx
=[] A (el o)) x Gamn Gl 2,0/2) i
- /Gam (nlv/2,v/2) dn = 1.
2.49 If we make the change of variabde= x — p, we can write

E[x] —/St(x|u,A,u)de—/St(z|O,A,1/)(z+u) dz.

In the factor(z + p) the first term vanishes as a consequence of the fact that the

zero-mean Student distribution is an even functiore @hat is St(—z|0, A,v) =
St(—z|0, A, v). This leaves the second term, which equalsince the Student dis-
tribution is normalized.
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The covariance of the multivariate Student can be re-expressasify the expres-
sion for the multivariate Student distribution as a convoluiod a Gaussian with a
Gamma distribution given by (2.161) which gives

covlx| = /St(xm, A, v)(x — p)(x —p)tdx

| [ in)ox = = )" ax a2, /2)

= / nilAflGam(n|1//2, v/2)dn
0

where we have used the standard result for the covariance of aanialte Gaussian.
We now substitute for the Gamma distribution using (2.146)ve gi

cov[x] = 1 (K)V/Q ~ 67”77/217”/2*2 dnA71
I(v/2) \2 0
_ vlw/2-2),
2 T(v/2)
_ v —1
=2

where we have used the integral representation for the Gammaduntdigether
with the standard result(1 + z) = zT'(z).

The mode of the Student distribution is obtained by differeiutia

T'(v/2+D/2) |A|V? N e
Fom o |1+ 5 AR

ProvidedA is non-singular we therefore obtain

ViSt(x|p, A, v) =

v

mode[x] = p.

2.50 Just like in univariate case (Exercise 2.47), we ignore the nozatadn coefficient,
which leaves us with

5] el ) )
1+ — =expy—|=-+—=|In|14+—
v 2 2 v

whereA? is the squared Mahalanobis distance given by
A? = (x — p)TA(x — p).

Again we make use of (117) to give

exp{— <12/ + 12)) In [1 + Aj]} —exp{—A; +0(1/y)}.

As in the univariate case, in the limit— oc this becomes, up to an overall constant,
the same as a Gaussian distribution, here with meand precision\; the univariate
normalization argument also applies in the multivariate case
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2.51 Using the relation (2.296) we have
1 = exp(iA) exp(—iA) = (cos A+ isin A)(cos A —isin A) = cos® A + sin” A.
Similarly, we have
cos(A—B) = Rexp{i(A— B)}
= Rexp(iA)exp(—iB)
= R(cos A+ isinA)(cos B —isin B)
cos Acos B + sin Asin B.
Finally

sin(A—B) = Sexp{i(A— B)}
= Sexp(id)exp(—iB)
S(cos A+ isin A)(cos B — isin B)
= sinAcos B — cos Asin B.

2.52 Expressed in terms @fthe von Mises distribution becomes
p(€) o exp {m cos(m™/%¢)} .
For largem we havecos(m~1/2¢) = 1 —m~'€2/2 + O(m~2) and so
p(§) o< exp {—€2/2}
and hence(6) o exp{—m(0 — 6y)?/2}.
2.53 Using (2.183), we can write (2.182) as

N N N
E (cos By sin B,, — cos 0, sin By) = cos Oy g sin#,, — sin g cosf, = 0.
n=1 n=1 n=1

Rearranging this, we get

sin 6 sin 0
Zn L 0 = tan 90,
>, cosb,  cosby

which we can solve w.r.t}; to obtain (2.184).

2.54 Differentiating the von Mises distribution (2.179) we have

1 .
p'(0) = “Snlo(m) exp {mcos(6 — 6p)} sin(0 — 6y)
which vanishes whefi = 6, or whenf = 6, + 7 (mod2r). Differentiating again
we have
1
p"(0) = exp {mcos(f — )} [sin®(0 — 6) + cos(d — 6p)] .

"~ 2nly(m)
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2.56

Solutions 2.55-2.56 59

Sincely(m) > 0 we see thap”(6) < 0 whenf = 6, which therefore represents
a maximum of the density, whilg’(¢) > 0 whenf = 6, + 7 (mod2x), which is
therefore a minimum.

NOTE: In the 15" printing of PRML, equation (2.187), which will be the starting
point for this solution, contains a typo. The-" on the r.h.s. should be a+”, as is
easily seen from (2.178) and (2.185).

From (2.169) and (2.184), we see tifat= ). Using this together with (2.168)
and (2.177), we can rewrite (2.187) as follows:

N N
1 1
A(my) = (N g Cos0n> COS@S/ILJr (N E sin0n> sin@%}“‘

n=1 n=1

ML ML
90 60

= Tcosfcos + 7 sin 6 sin
=7 (cos2 65" + sin” 93“‘)

T.

We can most conveniently cast distributions into standardmeptial family form by
taking the exponential of the logarithm of the distributioor Ehe Beta distribution
(2.13) we have

Beta(u|a,b) = W exp{(a—1)Inpg+ (b—1)In(1 —p)}

which we can identify as being in standard exponential form (2. h8uh

M) = 1 (118)
g(a,b) = m (119)
a(y) = <ln<11”£‘ M)> (120)
n(a,b) — (Z:D (121)

Applying the same approach to the gamma distribution (2.146)btain

Gam(a,b) — I‘lza) exp {(a—1)InA—bA}.
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from which it follows that

h()) = 1 (122)
gla,b) = I“ZZa) (123)
u(d) = (lnA A) (124)
n(a,b) = <a—b1>' (125)

Finally, for the von Mises distribution (2.179) we make use efittentity (2.178) to
give

p(0|6p,m) = exp {m cos @ cos Oy + msin Osin Oy}

1
21 Io(m)
from which we find

ho) = 1 (126)
g(0o,m) %—Ij(m) (127)

u(d) = <gf§g> (128)
n(lo,m) — <j;;ggjgg>. (129)

2.57 Starting from (2.43), we can rewrite the argument of the exponeaial
1 —1 T Ty —1 1 Ty —1
—§Tr[2 xx]—!—uE X—§u2 .

The last term is indepedent fbut depends op and3 and so should go intg(n).

The second term is already an inner product and can be kept a® ideal with

the first term, we define th®?-dimensional vectorg and A, which consist of the
columns ofxx™ and X, respectively, stacked on top of each other. Now we can
write the multivariate Gaussian distribution on the form (2.194hw

N
w = [1]
h(x) = (2m)~ P/
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2.59

2.60

Solutions 2.58-2.60 61

Taking the first derivative of (2.226) we obtain, as in the text,

T hngn) = gln) [ 1) exp {70} uix) dx

Taking the gradient again gives
YT Ingn) = gn) [ Hexexp " ux) b ulxjui” dx

V() / h(x) exp {n"u(x)} u(x) dx
= Eu(u()7] - Eu()Eu)"
= cov[u(x)]

where we have used the result (2.226).

[ot(E)ar = 2 [roa
= > [t
S LUt

sincef(x) integrates td.

The value of the density(x) at a pointx,, is given byh,,), where the notatiogi(n)
denotes that data point, falls within regionj. Thus the log likelihood function

takes the form
N N
Z Inp(x,) = Z Inhj(p).
n=1 n=1

We now need to take account of the constraint tfig) must integrate to unity. Since
p(x) has the constant valug over regioni, which has volumé\;, the normalization
constraint become§ . h;A; = 1. Introducing a Lagrange multipliex we then
minimize the function

N
> b + A (Z hil\; — 1)
n=1 %

with respect tdu;, to give

ng
0=—+ XA
I + k

wheren;, denotes the total number of data points falling within redgioMultiplying
both sides by, summing ovelk and making use of the normalization constraint,
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we obtainA\ = —N. Eliminating A then gives our final result for the maximum
likelihood solution forh,, in the form
N 1
hy = ——.
TN A

Note that, for equal sized bins; = A we obtain a bin height;, which is propor-
tional to the fraction of points falling within that bin, as eqted.

2.61 From (2.246) we have
K

" NV(p)

p(x)

whereV (p) is the volume of aD-dimensional hypersphere with radigswhere in
turn p is the distance fronx to its K" nearest neighbour in the data set. Thus, in
polar coordinates, if we consider sufficiently large valueglie radial coordinate,
we have

p(x) oc r P,
If we consider the integral of(x) and note that the volume elemedk can be
written asr”~! dr, we get

/p(x)dxoc/7“_[)7"[)_1 dr:/r_ldr

which diverges logarithmically.

Chapter 3 Linear Models for Regression

3.1 NOTE: In the 1% printing of PRML, there is & missing in the denominator of the
argument to thetanh’ function in equation (3.102).

Using (3.6), we have

2 14 e 2
l+e 22 14e2
1—e 20
14 e 2a
e —e @
et 4 e @
= tanh(a)
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3.3

Solutions 3.2-3.3 63

If we now takea; = (z — p;)/2s, we can rewrite (3.101) as
y(x,w) = wo+ ijff(?aj)

= wo+ Z 20’ 2a] -1+ 1)

M
= U+ Z uj tanh(a;),

j=1

whereu; = w;/2,forj =1,..., M, andug = wy +Z L w; /2.
We first write

o(@"®) eV = PV

= 0D + 0,0 + .y oM
wherep,, is them-th column of® andv = (@T'I))*@Tv. By comparing this
with the least squares solution in (3.15), we see that
y = ®wy, = ®(PTP) 1Pt

corresponds to a projection bbnto the space spanned by the column&oflo see
that this is indeed an orthogonal projection, we first note thaafiy column of®,

P

P(PTR)'Pp, = [B(2D)RD] =g,

and therefore
_ T
y—1)" @, = (@wy, — 1) @, =t (B(27®)'®T — 1) ¢, =0
and thugy — t) is ortogonal to every column @ and hence is orthogonal &

If we defineR. = diag(ry, ..., ry) to be a diagonal matrix containing the weighting
coefficients, then we can write the weighted sum-of-squares audidn in the form

1
Ep(w) = §(t — dw)"R(t — dw).
Setting the derivative with respecttoto zero, and re-arranging, then gives
w* = (3"R®) " "Rt

which reduces to the standard solution (3.15) for the gase.

If we compare (3.104) with (3.10)—(3.12), we see thatan be regarded as a pre-
cision (inverse variance) parameter, particular to the data prjn ¢,,), that either
replaces or scalgs.
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Solution 3.4

3.4

Alternatively, r,, can be regarded as affective number of replicated observations
of data point(x,,, t,,); this becomes particularly clear if we consider (3.104) with
taking positive integer values, although it is valid for afy> 0.

Let

D
Yo = wWo+ Z Wi (i + €ni)

1=1
D
= Yn + § W;€ni
=1

wherey,, = y(z,, w) ande,; ~ N(0,0?) and we have used (3.105). From (3.106)
we then define

E = {gn - tn}z

DN | —
] =

S
I
—

I
N | —
M=

n=1

] =

1
2

D D 2
Y2+ 20 Y wien; + <Z wﬁm)
i=1 i=1

D
_2tnyn - 2tn Z Wi€ns + t12’l

i=1

1

<

13

If we take the expectation df under the distribution of,;, we see that the second
and fifth terms disappear, sin,,;] = 0, while for the third term we get

D 2 D
E g W; €ni = g w?aQ
i=1 i=1

since the:,,; are all independent with varianeé.
From this and (3.106) we see that

D
- |
E [E} —Ep+ Qlegaz’

as required.
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3.5 We can rewrite (3.30) as
M
1
(St -a) <0
j=1

where we have incorporated th¢2 scaling factor for convenience. Clearly this does
not affect the constraint.

Employing the technique described in Appendix E, we can comtiiis with (3.12)
to obtain the Lagrangian function

Z{t —wip(x,)} + <Z|w1|q_7]>

and by comparing this with (3.29) we see immediately that theydentical in their
dependence ow.

Now suppose we choose a specific value\aof 0 and minimize (3.29). Denoting
the resulting value ofv by w* (), and using the KKT condition (E.11), we see that

the value ofy is given by
M
n=y_ Wy
j=1

3.6 We first write down the log likelihood function which is given by

InL(W,%) = —— 1n 1= - = Z — WP (x,))"S 7 (6, — WT(x,)).

First of all we set the derivative with respect¥d equal to zero, giving

ZE (tn — WTe(x)) (%) "

Multiplying through by and introducing the design matri and the target data
matrix T we have

TOW =o' T
Solving forW then gives (3.15) as required.

The maximum likelihood solution faE is easily found by appealing to the standard
result from Chapter 2 giving

=5 Z = Wi o (x0)) (b — Wi ()"

as required. Since we are finding a joint maximum with respect th W and>
we see that it i3V, which appears in this expression, as in the standard result for
an unconditional Gaussian distribution.



Solutions 3.7-3.8

3.7 From Bayes’ theorem we have

p(wt) oc p(tjw)p(w),

where the factors on the r.h.s. are given by (3.10) and (3.48), riggdgcWriting
this out in full, we get

N
p(wlt) o [HN(tnIW%(Xn),ﬁ_l)]N(Wlmo,So)

n=1

X exp <_§(t —dw)T(t - <I>w)>
1 Tq-1
exp —i(w —mg) Sy (W —my)
1
= exp(2 (Wwh(Sg'+ 02" ®)w— ftT@w — Sw &t + [t
m; Sy 'w — w'S; 'mg + mgSglm0)>
1
= exp<—2 (WT (Sgl + ﬁ@T@) w — (Salmo + 6<I>Tt)T w

—w' (S5 'my + 3®"t) + Bttt + my Sglmo)>

= exp (—; (w— mN)T SX/I (w— mN))

1
exp (—2 (ﬂtTt +my Sy 'mg — m%SNlmN))

where we have used (3.50) and (3.51) when completing the squ#re last step.
The first exponential corrsponds to the posterior, unnormalizags&an distribution
overw, while the second exponential is independentvaind hence can be absorbed
into the normalization factor.

3.8 Combining the prior
p(w) = N(wlmy,Sy)
and the likelihood

B ﬂ 1/2 ﬂ . )
pANt1[XN11, W) = 2 exp —g(tNH — W ONy1) (130)
whereg ., = ¢(xn41), We obtain a posterior of the form
p(W[tn+1,XN41, mpy, SN)

o exp <—;(w - mN)TS]_Vl(w —my) — %ﬂ(tNH - WT¢N+1)2> )



3.9

3.10

3.11

Solutions 3.9-3.11 67

We can expand the argument of the exponential, omitting-thé factors, as fol-
lows

(w —my) 'Sy (w — my) + Btnss — W dyy)?
= WTS;\,lw — 2WTSX,1mN
+ 6WT¢»%+1¢N+1W — 28w PN 1t 41 + const
=w(Sy' + BN 1On)W — 2w (Sy'my + Sy 1tn 1) + const,

whereconst denotes remaining terms independentwofFrom this we can read off
the desired result directly,

P(W\tNH, XN+1, My, SN) = N(W\mNH, SN+1),
with

Snhi =Sy + BdN 1PN (131)

and
mpyy; = Syt (S]T/'lmN + BN 1tn+1)- (132)

Identifying (2.113) with (3.49) and (2.114) with (130), such that
x=w p=>my A '=Sy
y=itnvs A=dxna) =¢y,, b=0 L '= gL
(2.116) and (2.117) directly give
p(Wltny1,Xv11) = N(Wimpy i1, Sny1)
whereS ;1 andmy_; are given by (131) and (132), respectively.
Using (3.3), (3.8) and (3.49), we can re-write (3.57) as

et ) = [ N (Hl000 7w, 5 A (wlm, Si) dw.
By matching the first factor of the integrand with (2.114) andgbeond factor with
(2.113), we obtain the desired result directly from (2.115).

From (3.59) we have

0% 4 (%) = ; + (%) Sn116(x) (133)

whereS 1 is given by (131). From (131) and (3.110) we get

Sny1 = (Sj_\/'l + ﬁ¢N+1¢%+1)_1
(SN¢N+151/2) (ﬂ1/2¢%+1SN)
14 BéN 1SNy
SN 1PNSN

1+ BpN SNy

N
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Using this and (3.59), we can rewrite (133) as
2 1 T 5SN¢N+1¢]F{I+1SN >
= = Sy —
b = 5T ee ( YT oS ) P
BH(x)"SN P11 PN SNB(X)
1+ 5¢%+1SN¢N+1

SinceSy is positive definite, the numerator and denominator of therxded:erm in
(134) will be non-negative and positive, respectively, anctketi, , | (x) < o3,(x).

= ki -

(134)

3.12 ltis easiest to work in log space. The log of the posterior digtidlm is given by

lnp(w,Bt) = Ilnp(w +Zlnpt W p(xn),7")

M 1 _
= ?lnﬁ — §1n|SO| — g(w — mO)TS0 1(w —1myg)

—bofB + (a 0—1)1115

—1 B — fZ{wTd) Xp) — tn}? + const.

Using the product rule, the posterior distribution can be writism(w, G|t) =
p(w|B,t)p(B|t). Consider first the dependencewn We have

Inp(w|3,t) = ﬁ wl [<I>T<I> +Sy } w+w' [ﬂso_lmo + 6'I’Tt] + const.
Thus we see that(w|3,t) is a Gaussian distribution with mean and covariance given
by
my = Sy [S;'mg+ &'t (135)
Sy = B(Sy'+@"e). (136)

To find p(5|t) we first need to complete the square oweto ensure that we pick
up all terms involvings (any terms independent gfmay be discarded since these
will be absorbed into the normalization coefficient which litseill be found by
inspection at the end). We also need to remember that a factd? () In 3 will be
absorbed by the normalisation factorgfv|3,t). Thus

g g

Inp(p|t) = ngS mo—f—QmNS my

N
lnﬂ—boﬂ—l—(ao—llnﬂ gz + const.
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We recognize this as the log of a Gamma distribution. Readihthefcoefficients
of 4 andln 3 we then have

N

ay = agp+ DY (137)
1 N

by = b+ (:rnOTso-lm0 —mySy' my + Zti) : (138)
n=1

Following the line of presentation from Section 3.3.2, the prédg distribution is
now given by
p(tx,t) = //N(t|¢(x)Tw,ﬂ_l)N(w|mN,ﬂ_ISN) dw
Gam (Blay,by) A (139)

We begin by performing the integral over. Identifying (2.113) with (3.49) and
(2.114) with (3.8), using (3.3), such that

x=>w p=>my A '=Sy
y=t A=¢x)T=¢" b=0 L'=p"
(2.115) and (136) give
p(tlf) = N (tlp my,57" + ¢ Sno)
= N(tlo'my, 07 (1+0"(So+0"¢) '9)).
Substituting this back into (139) we get

pltbe X, = [N (1o Ty, 575) Gam (3o, ) d,
where we have defined
s=14+¢"(So+9¢'¢) .
We can now use (2.158)— (2.160) to obtain the final result:
p(t|x, X, t) = St (t|u, A, v)
where

u:(ﬁTmN )\:a—Ns_l v=2ay.
bn

3.14 Fora = 0 the covariance matri® 5 becomes

Sy = (B®T®)L. (140)
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Let us define a new set of orthonormal basis functions given leaticombinations
of the original basis functions so that

Y(x) = Vo(x) (141)

whereV is anM x M matrix. Since both the original and the new basis functions
are linearly independent and span the same space, this masbbminvertible and
hence

d(x) = V' (x).
For the data sefx,, }, (141) and (3.16) give

¥ =¢VT

and consequently
=0V "

whereV~—" denoteg V~!)T. Orthonormality implies
vy =1

Note that V=) = (V1) ~! asis easily verified. From (140), the covariance matrix
then becomes

Sy = ﬁ*l(q)Tq))fl _ ﬁfl(va‘I,T\Ilvfl)fl _ ﬁflvTV.

Here we have used the orthonormality of thgx). Hence the equivalent kernel
becomes

k(x,x") = Bp(x)TSnp(x) = p(x)"VIVP(xX') = 9(x)T9p(x')

as required. From the orthonormality condition, and setfirg1, it follows that

N N
Z¢Z(Xn)w1(xn) = Z Vi(xn) = din

where we have used (x) = 1. Now consider the sum

N N N M
D kx) = Y ) TP(xa) = > > hi(x)i(xn)
n=1 n]\jl n=1 i=1

= D i) =a(x) =1

which proves the summation constraint as required.
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This is easily shown by substituting the re-estimation form(3a@2) and (3.95) into
(3.82), giving
E(mN) = g ||t — {3’1111\[”2 + %m%mN
_N—-~v ~v N

2 22
The likelihood function is a product of independent univar@sissians and so can
be written as a joint Gaussian distribution ovevith diagonal covariance matrix in
the form

p(tlw, ) = N(t|®w, 5~ Ly). (142)
Identifying (2.113) with the prior distributiop(w) = N (w|0,a'I) and (2.114)
with (142), such that

x=>w pu=0 A '=a Iy
y=t A=® b=0 L !'= Iy,

(2.115) gives
ptla. B) = N(t|0, 57 Iy + o~ @S").

Taking the log we obtain
N 1 -1 -1 T
Inp(tje, ) = —Eln(27r) - iln ‘[3 In+a @ ‘
— %tT (B 'y + o '@@")t. (143)
Using the result (C.14) for the determinant we have
7y +a ' @@"| = BV|Iy+ fa @D
= BV |y + Ba ' 2T |
= g Na ™M ‘aIM + ,8<I'T<I"
= 7™M |A
where we have used (3.81). Next consider the quadratic tetrariil make use of
the identity (C.7) together with (3.81) and (3.84) to give
L -1 156 T) !
—5t(B7 Iy +a Tl @®T)
1 _
= 5t [MN — 8% (aly + 307 ®) @Tﬂ] t
2
~ Py + B rea-1amy
2 2
p

1
= fgtT'[ + gm%AmN

8 «
= —5lt- Pmy||* - ngTva
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3.17

3.18

where in the last step, we have exploited results from Solutib®. Bubstituting for
the determinant and the quadratic term in (143) we obtain (3.86).

Using (3.11), (3.12) and (3.52) together with the definition fer @aussian, (2.43),
we can rewrite (3.77) as follows:

) = [ pltiw. Dp(wla) dw
(2&)]\]/2 <;T>M/2/exp(ﬁED(w))exp (f%wTw> dw

_ (fﬂ) v (o)™ [ e (- Ew) aw,

whereE(w) is defined by (3.79).
We can rewrite (3.79)

gHt—@sz—l—%wTw
B 1 T TgT Q7
§(t t—2tPw+w P (I)W)+§W w
1
= 5(BtTt—2ﬁtT<I>w—|—WTAW)

where, in the last line, we have used (3.81). We now use the trickdding0 =
mi Amy — myAmy and usingl = A~ A, combined with (3.84), as follows:

1 (ﬁtTt — 20t ®dw + w'Aw)
(BTt — 28t @A Aw + W Aw)

(Bt't — 2myAw + w'Aw + myAmy — myAmy)

w\>—~l\3\>—~w\>~

("t —myAmy) + %(W —mpy)"A(w — my).

Here the last term equals term the last term of (3.80) and so it ren@show that
the first term equals the r.h.s. of (3.82). To do this, we use the sacks again:

% (ﬁtTt - m%AmN) _!

5 (Bt = 2my Amy + myAmy)

(Bt"t —2mFAA T @G + m}y (ol + f2TP) my)
(BtTt — 2m{ @t + fmy " Pmy + amymy)
(

Bt — ®dmpy)" (t — Pmy) + am%mN)

[t — dmy|® + 2mJT\,mN

M\QM\HL\D\H[\DM—!
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3.21

Solutions 3.19-3.21 73

as required.
From (3.80) we see that the integrand of (3.85) is an unnormalizacgs$an and

hence integrates to the inverse of the corresponding normatpingtant, which can
be read off from the r.h.s. of (2.43) as

(2m) M/ | A2,

Using (3.78), (3.85) and the properties of the logarithm, we get

Inp(tle, B) = %(lna —1In(27)) + g(lnﬂ —1In(27)) + ln/exp{—E(w)} dw
= %(lna —In(27)) + g(lnﬁ —In(27)) — E(my) — %ln |A| + % In(27)
which equals (3.86).

We only need to consider the terms of (3.86) that depend,omhich are the first,
third and fourth terms.

Following the sequence of steps in Section 3.5.2, we stdhnttivi last of these terms,
1
——1In|A|.
2

From (3.81), (3.87) and the fact that that eigenvectgrare orthonormal (see also
Appendix C), we find that the eigenvectorsdfio bea+ \;. We can then use (C.47)
and the properties of the logarithm to take us from the left to the sigle of (3.88).

The derivatives for the first and third term of (3.86) are more easitgiobd using
standard derivatives and (3.82), yielding

1 (M .

We combine these results into (3.89), from which we get (3.92) vi@0}3. The
expression fory in (3.91) is obtained from (3.90) by substituting

MO\ g
— \; + «

for M and re-arranging.

The eigenvector equation for thd x M real, symmetric matriXA can be written
as

Au; = nu;
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where{u;} are a set of\/ orthonormal vectors, and the eigenvaluegn;} are all
real. We first express the left hand side of (3.117) in terms of thenea@ues ofA.
The log of the determinant ok can be written as

M M
In|A| = lnHm = Zlnm.
i=1 i=1

Taking the derivative with respect to some scalave obtain

We now express the right hand side of (3.117) in terms of the e@g@orexpansion
and show that it takes the same form. First we note Ahatn be expanded in terms
of its own eigenvectors to give

M

T

A= E 7; 0,4,
i=1

and similarly the inverse can be written as

Thus we have

Mo M
+Tr (Z ;uiug Z 7; (bju]T + ujb;-r)> (144)

whereb; = du;/da. Using the properties of the trace and the orthognality of
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eigenvectors, we can rewrite the second term as

M
Tr (Z 7;uu Zn] b]uj +uij)>

=1

M
1
= Tr (Z %uiu;r Z QUjujbjT>
j=1

1=1

M M
Zz%uzu uij)
K3

However,

which is constant and thus its derivative w.axtwill be zero and the second term in
(144) vanishes.

For the first term in (144), we again use the properties of the tractharatthognal-
ity of eigenvectors to obtain

M

d 1 dn;
Tr{A'—A ) = —.
r< da ) z_; i da

We have now shown that both the left and right hand sides of (3thk@ the same
form when expressed in terms of the eigenvector expansion. WNexise (3.117) to
differentiate (3.86) w.r.tw, yielding

d M1 1 1 d
—1 = —- - _m?% —~Tr{A '—A
do np(tjaf) 2 o 2mNmN 2 r< da >
1 /M
= 3 < —miymy — Tr (A1)>
o
1 (M T 1
= — | ——mympy —
2 NN i +a

which we recognize as the r.h.s. of (3.89), from which (3.92) candoeetl as de-
tailed in Section 3.5.2, immediately following (3.89).
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3.22 Using (3.82) and (3.93)—the derivation of latter is detailedectn 3.5.2—we get
the derivative of (3.86) w.r.{3 as the r.h.s. of (3.94). Rearranging this, collecting the
(-dependent terms on one side of the equation and the remaimimgtethe other,
we obtain (3.95).

3.23 From (3.10), (3.112) and the properties of the Gaussian and Ganstndowtions
(see Appendix B), we get

pt) = / / p(t}w, )p(w|5) dwp(5) 4

_ // (i)m exp {—g(t —w)T(t - @w)}

g\ 8
(27r> |So|1/2exp{—2(w—mO)TSal(w—mU)} dw

[(ao) 1030 %~ exp(—bo3) d3

T (en M«l::|s E //e p{ (t=&w) (tq)w)}

exp{2<w mo) TS (w mo>}dw

3ot N2 M2 exp(—by 3) A B

T (@) M‘l:aNOIS|1/2// {‘W my)"Sy (w—mN)} dw

exp {—g (tTt +m;S; 'my — m%SI_\,lmN)}
BN BMI2 exp(—boB) dB

where we have completed the square for the quadratic fonn umsing

my = Sy [S;'m,+ @t
Sy’ = B(S;'+@"®)
any = a0+5
1 N
by = by+ B (mgS(TImo — m%SJ—VlmN + Zti) .
n=1

Now we are ready to do the integration, first oveiand thens, and re-arrange the
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terms to obtain the desired result

bao
p(t) = 0 (QW)M/QISNl/Q/ﬁ“N_l exp(—by3)ds
((2m)M+N|Sy|)"/?
1 |SN|1/2 bgo F(CI,N)
(27r)N/2 \SO|1/2 b?VN T(ag)

3.24 Substituting the r.h.s. of (3.10), (3.112) and (3.113) into (8).1Wwe get

(t) . N(t|<I>w,ﬁ’1I)N(w|m0,ﬁ’1SO) Gam (ﬁ‘ao,bo)
= N (wimy, 3-1Sx) Gam (Blax, by) :

(145)

Using the definitions of the Gaussian and Gamma distributiwasan write this as

8\ 8
(2) e (-5ie-2wr?)

M/2
() oo (=t = mo) s (o - ) )

2w
I(ag) ~'bg° B~ exp(—boB)
g\""* g
{<27T> |SN|1/2exp <—2(w—mN)TSN1(W—mN)>

-1
r(aN>—1bﬁvNﬂaN—1exp<bNﬂ>} . (146)

Concentrating on the factors corresponding to the denominmata#ab), i.e. the fac-
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tors inside{...})~! in (146), we can use (135)—(138) to get
N (wmy, 37'Sy) Gam (Blan, by)

AN 8
<27T> ISy |2 exp( - g(WTS;W —w'Sy'my — mySy'w

+m%s;vlmN)>r<aN>—1b§;NﬂaN—l exp(~bw )

5\ M2 5
B <27T> Sn|'/? exp(Q(WTSO_IWJFWT'i’T{’WWTSo_lmo

~wleTt - mIS'w —tT®w + m%SJ_\,lmN)>
F(aN)flbizVNﬁa0+N/2fl

1
exp (— (bo + 3 (mOTSO_ImO — m%S&lmN + tTt)> ﬁ)

g\ M2 3
- <2w> x|/ exp <_2 ((w — ) TSy (w — my) + |t - ‘I’W||2))
T(an) by BN/ exp(—bo3).

Substituting this into (146), the exponential factors alonigpyiotN/2=1( 3 /27)M/2
cancel and we are left with (3.118).

Chapter 4 Linear Models for Classification

4.1 Assume that the convex hulls ¢k, } and{y,,} intersect. Then there exist a point
z such that
Z = Zanxn = Zﬂ’m}’m
n m

where,, > 0 forallmand)_ G, = 1. If {x,} and{y,,} also were to be
linearly separable, we would have that

wliz +wy = E anWrx, +wy = E an(
n

n

sincew'x,, + wy > 0 and the{a,,} are all non-negative and sum to 1, but by the
corresponding argument

Wz 4+ wy = Z B Wy m + wo = Zﬁm(v/&\nym + wp) <0,
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which is a contradiction and hené&,,} and{y,,} cannot be linearly separable if
their convex hulls intersect.

If we instead assume thék,, } and{y,, } are linearly separable and consider a point
z in the intersection of their convex hulls, the same contraaticrise. Thus no such
point can exist and the intersection of the convex hull$of} and{y,,} must be
empty.

For the purpose of this exercise, we make the contribution diiteseweights explicit
in (4.15), giving

Ep(W) = %Tr {XW +1wj — T)"(XW + 1w; — T)}, (147)

wherew is the column vector of bias weights (the top rOWAYT transposed) antl
is a column vector of N ones.

We can take the derivative of (147) w.it,, giving
2Nw, + 2(XW — T)T1.
Setting this to zero, and solving fer,, we obtain
wo=t-WT'x (148)
e f= ~TT1 and %= —XT1.
N N
If we subsitute (148) into (147), we get
Ep(W) = %Tr {XW+T-XW-T)"(XW+T -XW-T)},

where - o
T=1t" and X=1x".

Setting the derivative of this w.r.¥W to zero we get
W= (X™X)'XTT = XIT,
where we have define = X — X andT = T — T.
Now consider the prediction for a new input vectdr,
y(x*) = Wx* +wy
Wix* +t - W'k
—~ ~N\T
— 77 (XT) (x* — %). (149)

If we apply (4.157) tat, we get

— 1
T TmT
t —_ — _b.
a Na T'1
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Solutions 4.3-4.5

4.3

4.4

4.5

Therefore, applying (4.157) to (149), we obtain
aTy(x*) = aTt+a’™T" (f@)T (x* —X)
= a't=-p,
sincea™ T = aT(T — T)T = b(1 — 1)T =0".
When we consider several simultaneous constraints, (4.158)es
At, +b =0, (150)

whereA is a matrix andb is a column vector such that each rowAfand element
of b correspond to one linear constraint.

If we apply (150) to (149), we obtain

~ ~ T
Ay(x*) = At- ATT (XT ) (x* — %)
= A_ = —b?

o+

sinceATT = A(T — T)T = b1” — b1” = 0". ThusAy(x*) + b = 0.

NOTE: In the 1% printing of PRML, the text of the exercise refers equation (4.23)
where it should refer to (4.22).

From (4.22) we can construct the Lagrangian function
L=w'(my—mi)+A(w'w—1).
Taking the gradient of. we obtain
VL = my—m; +2\w (151)
and setting this gradient to zero gives

1
W = —ﬁ(mz — ml)

form which it follows thatw o« my — m;.
Starting with the numerator on the r.h.s. of (4.25), we can us&)42d (4.27) to

rewrite it as follows:

(mg — m1)2 = (WT(m2 — ml))2

= wi(my —m;)(my; —m;)'w
= w'Spw. (152)
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Similarly, we can use (4.20), (4.23), (4.24), and (4.28) to rewrite &mechinator of

the r.h.s. of (4.25):

S+sE = > (o —m) Y (g — ma)’

neCy keCq
2 2
= Z (WT(Xn - ml)) + Z (WT(Xk — m2))
neCy keCs
= Z WT(X,L —my)(x, — l’l’ll)TW
neCy

+ Z WT(Xk —my)(xg — mg)Tw
keCq

= wliSyw.

Substituting (152) and (153) in (4.25) we obtain (4.26).

(153)

4.6 Using (4.21) and (4.34) along with the chosen target codingreehwe can re-write

the I.h.s. of (4.33) as follows:

(154)
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We then use the identity

T T T T T
E (x; —my) (x; —myg) = g (xixi —x;mj —mgX; + mkmk)
1€Cy 1€Cy
= E XZ'X? — Nkmkm;g
1€Cy,

together with (4.28) and (4.36) to rewrite (154) as

<SW + Nll’l’llmrlr + N2m2m2T

1
_(N1m1 + Nng)N(Nlml + NQITIQ))W — N(m1 — mg)

N? N1 N.
<SW + (Nl — ]\;> mlmlT — }V 2 (mlmg + m2m1)

N3 T
+ | No— —= | mom, |w— N(m; —my)

N
Ni + Ny)N; — N? N N.
— (Sw-l-( ! j\)fl !mym] — }VQ(mlmg—kmgmﬁ
Ny + Ny)Ny — N2
+( Lt j\)72 2m2mg>w—N(m1—m2)
Ny, N
= <SW + j\f 1 (mlm? —mm; —mym,; + mgmg)> w
—N(m; — m5,)
Ny, N
— <SW—|— j\flsg>w—N(m1—m2),

where in the last line we also made use of (4.27). From (4.33), th&t equal zero,
and hence we obtain (4.37).

4.7 From (4.59) we have

1 _l—l—e_a—l
l4e@  14e@
B e ¢ B 1

1+e—a_e“+1:

1—0(a) = 1

o(—a).
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The inverse of the logistic sigmoid is easily found as follows

1
14e@

4.8 Substituting (4.64) into (4.58), we see that the normalizingstanmts cancel and we
are left with

exp (=4 (c— )" 27 (x = 1)) (1)

T e (Ch ) B () (G

1
= -3 (XETX —xXp, — pul X+ pl S,

p(Cy
—xETx + xBpy + pl Tx — Zug) +In EC ;
2
_ 1 _ p(Cy
= (=) B x— o (W27 g — 3 Bpy) +1n ()
2 p(C2)

Substituting this into the rightmost form of (4.57) we obtain B},6vith w andwy
given by (4.66) and (4.67), respectively.

4.9 The likelihood function is given by

p{&n, tad{md) = [T T {p(onlCh)me}

n=1k=1

and taking the logarithm, we obtain

N K
Inp ({gn, tnf{mr}) = Z Z nk AN P(Pn|Cr) + Iy} . (155)
n=1 k=1

In order to maximize the log likelihood with respectitp we need to preserve the
constraint |, m, = 1. This can be done by introducing a Lagrange multiphend

maximizing
K
Inp ({¢n, tnH{m}) + A <Z T — 1) :
k=1
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Solution 4.10

4.10

Setting the derivative with respect4q equal to zero, we obtain
N
t
d o pa=o.
n=1 Tk

Re-arranging then gives
~mA =Dtk = Ni. (156)

Summing both sides ovérwe find that\ = — NV, and using this to eliminat& we
obtain (4.159).

If we substitute (4.160) into (155) and then use the definitiothef multivariate
Gaussian, (2.43), we obtain

Inp ({@n, tnf{mr}) =

[\3\}—‘ ~—

N K
3 t 0[S+ (b, — 1) 'S (@ - )}, (157)
n=1 k=1

where we have dropped terms independeryof} andX.
Setting the derivative of the r.h.s. of (157) w.p4,, obtained by using (C.19), to

zero, we get
N K
DD taE T ¢, — ) = 0.

n=1 k=1
Making use of (156), we can re-arrange this to obtain (4.161).
Rewriting the r.h.s. of (157) as

N K
leZtnk {n|=|+Tr (27, — ) (@ —1i)"] }

n=1 k=1

I£

we can use (C.24) and (C.28) to calculate the derivative \BY:t'. Setting this to
zero we obtain

DN |

N T
SN i {Z = (¢ — ) (b — )"} =0
k

n=1

Again making use of (156), we can re-arrange this to obtain (4.168),Syigiven
by (4.163).

Note that, as in Exercise 2.34, we do not enforce Bahould be symmetric, but
simply note that the solution is automatically symmetric.
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4.11 The generative model fap corresponding to the chosen coding scheme is given by

p(¢|Ch) = Hp bua | Cr)

where

where in turn{ u.,,; } are the parameters of the multinomial models¢or
Substituting this into (4.63) we see that

ar = Inp(¢|Ck)p(Ck)

iS]

M:

= Inp(Cx) +

I
—

m

L
Z Gt 1IN figernt,

11=1

M=

= Inp(Cx) +

3
I

which is linear ing,,,;.
4.12 Differentiating (4.59) we obtain

—a

di e
da (1+ e—“)2

= o { 1 i*:_a }

_ 14+e7 @ 1
- U(a) 1+e—a_1+e—a

— o(a)(1 - o(a)).

4.13 We start by computing the derivative of (4.90) w.g.1.

oFE 1—1t t
- n_In (158)
OYn 1—yn Yn
_ Yn(L —tn) — tn(1 — yn)
yn(l - yn)
_ (159)
yn(l - yn)
_ (160)

Yn(1 = yn)
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4.14

4.15

From (4.88), we see that

gZ: - aggin) =o(an) (1 —0o(an)) = yn(l = yn). (161)

Finally, we have
Va, = ¢, (162)

whereV denotes the gradient with respectto Combining (160), (161) and (162)
using the chain rule, we obtain

N
E = —Va,
v Z ayn aan va

as required.

If the data set is linearly separable, any decision boundaryatpgthe two classes
will have the property
WT¢n{>O |ftn:1,

< 0 otherwise.

Moreover, from (4.90) we see that the negative log-likelihood fa& minimized

(i.e., the likelihood maximized) whep, = o (wr¢,,) = t,, for all n. This will be

the case when the sigmoid function is saturated, which occuemith argument,
wT¢, goes tatoo, i.e., when the magnitude of goes to infinity.

NOTE: In PRML, “concave” should be “convex” on the last line of theeecise.

Assuming that the argument to the sigmoid function (4.87) igefirthe diagonal
elements oR will be strictly positive. Then

vI®TREY = (vVI®TR2) (R'/2®v) = |[RV?®v|" > 0

whereR!/2 is a diagonal matrix with elements,, (1 — y,,))"/?, and thusb " R® is
positive definite.

Now consider a Taylor expansion &fw) around a minimaw*,

E(w) = E(w*) + % (w—w*)"H(w—w*)

where the linear term has vanished sim¢eis a minimum. Now let

w=w"+)\v
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wherev is an arbitrary, non-zero vector in the weight space and consider

O°F T
This shows thaf(w) is convex. Moreover, at the minimum &f(w),
Hw-w")=0

and sinceH is positive definite H ! exists andw = w* must be the unique mini-
mum.

4.16 |If the values of the(t,,} were known then each data point for which= 1 would
contributep(t,, = 1|¢(x,)) to the log likelihood, and each point for whi¢h = 0
would contributel — p(t,, = 1|¢(x,)) to the log likelihood. A data point whose
probability of havingt,, = 1 is given by, will therefore contribute

TP (th = (%)) + (1 = m) (1 — p(tn = 1d(xn)))

and so the overall log likelihood for the data set is given by

N
ZW” Inp(t,=1]¢xn) + (1 —m)In(1—p(t, =1]d(xs))). (163)

This can also be viewed from a sampling perspective by imagisargpling the
value of eaclt,, some numbef/ times, with probability of,, = 1 given byr,,, and

then constructing the likelihood function for this expandethdzt, and dividing by
M. Inthe limit M — oo we recover (163).

4.17 From (4.104) we have

oY etk ek 2

% = Zveai - <Z-€ai> :yk(l_yk)v
Y. etk e .

Oa; (>, eai)2

Combining these results we obtain (4.106).

4.18 NOTE: In the 1** printing of PRML, the text of the exercise refers equation (4.91)
where it should refer to (4.106).

From (4.108) we have
OE  tng

ayn k Ynk .
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If we combine this with (4.106) using the chain rule, we get

6anj 5ynk aang
K
tnk
= - Z Lynk (Ik:] yn])
k=1 Ynk
= Ynj tn]>

where we have used thett : ), ¢, = 1.
If we combine this with (162), again using the chain rule, we ob{4i109).

4.19 Using the cross-entropy error function (4.90), and following Exer4i48, we have
oF _ Yn—tn

— = 164
OYn yn(l - yn) ( )
Also
From (4.115) and (4.116) we have
Oyn  0®(an,) 1
90, ~ Oa, —me . (166)
Combining (164), (165) and (166), we get
N
VE = Z OB Oyn g, =N~ Yn=tn 1 iy (167)

8yn aan p—) yn(l - yn) V2T

In order to find the expression for the Hessian, it is is convenafitst determine

i Yn — tn _ yn(l - yn) _ (yn - tn)(l - 2yn)
Oy Yn(1 = yn) Yn(L = yn)? Yn(l = un)?

Y2 (1 —yn)?

(168)

Then using (165)—(168) we have

VVE = i{a[ Un = In ] g,V
B 8yn yn(l_yn) V2 n Vi

e‘“fb(—2an)¢)nVan}

n=1
Yn — ln 1

yn(1 = yn) V2r

N
Z <yn +tn — 2yn n 1 e—ai —2a (y —¢ )) ei2ai¢n¢$
yn yn) V 2T e " V 2’/Tyn(]. — yn)

n=1
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4.20 NOTE: In the 1** printing of PRML, equation (4.110) contains an incorrect legdin

4.21

minus sign (=’) on the right hand side.
We first write out the components of tié K x M K Hessian matrix in the form

0’E
Owkiawﬂ

N
= Zynk(fkj = Ynj)PniPni-
n=1

To keep the notation uncluttered, consider just one term isdhemation oven, and
show that this is positive semi-definite. The sum onewill then also be positive
semi-definite. Consider an arbitrary vector of dimensidid with elementsuy;.
Then

u'Hu = Z uriyk (Ixj — yj)didrugi
ikl

= > byl — yy)b
ik

2
St - (z bkyk>
k k

where

by, = Z Uki P -

We now note that the quantitigs satisfy0 < y, < 1and), y, = 1. Furthermore,
the function f(b) = b? is a concave function. We can therefore apply Jensen’s
inequality to give

> ubh = ukflbr) = f (Z ykbk) = (Z ykbk:>
k k k k

and hence
u'Hu > 0.

Note that the equality will never arise for finite valuesaf wherea; is the set

of arguments to the softmax function. However, the Hessiarbeapositivesemi-
definite since the basis vectapg; could be such as to have zero dot product for a
linear subspace of vectoug;. In this case the minimum of the error function would
comprise a continuum of solutions all having the same valubeérror function.

NOTE: In PRML, (4.116) should read

®(a) = % {1+erf <\;§>}

Note that® should bed (i.e. not bold) on the L.h.s.
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We consider the two cases where> 0 anda < 0 separately. In the first case, we
can use (2.42) to rewrite (4.114) as

D(a) = / N (6]0,1) d9+/0a \/12?exp (f) de

11 [V 2\ /3
= -4+ — e —u 2du
5t )

1 a
= —<ql4ef|— ,
where, in the last line, we have used (4.115).

Whena < 0, the symmetry of the Gaussian distribution gives

®(a) =1— P(—a).

Combining this with the above result, we get

B(a) = 1—;{1+erf (-\;‘5)}
(o))

where we have used the fact that gaéfunction is is anti-symmetric, i.eerf(—a) =

—erf(a).
4.22 Starting from (4.136), using (4.135), we have

p0) = [p(D16)p(6) a6
p (D | Oniar) p (Oniar)
/exp <—;(9 - 9MAP>A71(9 - 0MAP)> de
(2m)M72
[A[1/2
whereA is given by (4.138). Taking the logarithm of this yields (4.137).

12

= p(D | Omar)p (Omar)

4.23 NOTE: Inthe1®* printing of PRML, the text of the exercise contains a typograahi
error. Following the equation, it should say tli#&is the matrix of second derivatives
of thenegative log likelihood.

The BIC approximation can be viewed as a laig@pproximation to the log model
evidence. From (4.138), we have

A = —VVinp(D|Onap)p(Onap)
= H—VVlnp(eMAp)
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and ifp(@) = N(6|m, V), this becomes
A=H+V;"

If we assume that the prior is broad, or equivalently that thebemof data points
is large, we can neglect the tei¥fj, ' compared td. Using this result, (4.137) can
be rewritten in the form

1 _ 1
lnp(D) ~ lnp(D|0MAp) — *(HMAP — m)VO 1(0MAP — m) — —In |H| -+ const

2 2 (169)
as required. Note that the phrasing of the question is mislgadince the assump-
tion of a broad prior, or of largéV, is required in order to derive this form, as well
as in the subsequent simplification.

We now again invoke the broad prior assumption, allowing usgglett the second
term on the right hand side of (169) relative to the first term.

Since we assume i.i.d. dat, = —VV In p(D|0\ap) consists of a sum of terms,
one term for each datum, and we can consider the following appatidn:

N
H:§:Hn:Nﬁ

n=1

whereH,, is the contribution from the™ data point and

Combining this with the properties of the determinant, we have
In|H| = In|NH| = In (NM\ﬁ|) — MInN + In|H]|

whereM is the dimensionality of. Note that we are assuming tHdthas full rank

M. Finally, using this result together (169), we obtain (4.139lmpping thén |ﬁ|
since thisO(1) compared tdn N.

Consider a rotation of the coordinate axes of Aiedimensional vectow such that
w = (w),w1) wherew" ¢ = w¢||, andw is a vector of length\/ — 1. We
then have

[owtonmmas = [ [ o (wylol) atwlupatun) duy aw.
= /awwwmwmww

Note that the joint distributiop(w , w) is Gaussian. Hence the marginal distribu-
tion ¢(w)) is also Gaussian and can be found using the standard resultatecse
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Solutions 4.25-4.26

4.25

4.26

Section 2.3.2. Denoting the unit vector

oo 1
el

we have
q(w)) = N(w|‘|eTmN,eTSNe).

Defininga = w)||¢| we see that the distribution efis given by a simple re-scaling
of the Gaussian, so that

q(a) = N(a|l¢ ' my, ¢ " Sno)

where we have useliip|le = ¢. Thus we obtain (4.151) with,, given by (4.149)
andc? given by (4.150).

From (4.88) we have that

dﬁ
da

o (0)(1 = o(0))

1 1 1
Since the derivative of a cumulative distribution functioniie@ly the corresponding
density function, (4.114) gives

a=0

d®(\a) B
da |, = AN (0]0,1)
1
= A—.
V2T

Setting this equal to (170), we see that

V2r

A=Y= orequivalently A2 = <.
1 q y 8

This is illustrated in Figure 4.9.

First of all consider the derivative of the right hand side witbpect tou, making
use of the definition of the probit function, giving

1\2 2 1
— exp ] — .
o 29021 02) [ (A2 1 02)1/2

Now make the change of variable= 1 + oz, so that the left hand side of (4.152)

becomes
e 1 1
DA+ - —=2?
/ (A + Aoz) (2ro?)1/? exp{ 22 } odz

— 00
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where we have substituted for the Gaussian distribution. Ndfgrdntiate with
respect tqu, making use of the definition of the probit function, giving

1 [ 1, A )
27T/Ooexp{—Qz —?(,u—l—az) odz.

The integral over: takes the standard Gaussian form and can be evaluated analyt-
ically by making use of the standard result for the normalizatioafficient of a
Gaussian distribution. To do this we first complete the squattearexponent

1 A2
—§z2 - ?(u + 02)?

1 1

= —5,22(1 +A20%) — 2\ o — 5)\2/12
1 2 1 Ap2o? 1

- _Z /\2 1 /\2 2\—1 1 )\2 2 - o 7/\2 2.
2[24— po(1+X20®) 7" (1+ U)+2(1+)\20_2) g K

Integrating over: then gives the following result for the derivative of the left hand

side
1 1 1 1 Mp?o?
[ T A
e { 5 w+

(2m)1/2 (1 + A202)1/2 P 2 (142202

1 1 1 Ap?
= eXPY — =55y [ -
(27)1/2 (1 + A202)1/2 P75 (14 \202)

Thus the derivatives of the left and right hand sides of (4.158) véispect tq. are
equal. It follows that the left and right hand sides are equal uguoction ofo? and

A. Taking the limity — —oo the left and right hand sides both go to zero, showing
that the constant of integration must also be zero.

Chapter 5 Neural Networks

5.1 NOTE: Inthe1®® printing of PRML, the text of this exercise contains a typogiegh
error. On line 2g(-) should be replaced by(-).

See Solution 3.1.

5.2 The likelihood function for an i.i.d. data sef(x;,t1),...,(xn,txn)}, under the
conditional distribution (5.16) is given by

N

H N (toly (x5, w),37'T) .

n=1
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Solution 5.3

If we take the logarithm of this, using (2.43), we get

N
Zln/\/(my(xn,w),ﬁ*ll)

n=1

y(Xn, W) (BT) (t,, — y (x5, W)) + cONst

l\D\»—t

y(x,, w)||* + const

i

M\Q

where ‘const’ comprises terms which are independent ofThe first term on the
right hand side is proportional to the negative of (5.11) and &enaximizing the
log-likelihood is equivalent to minimizing the sum-of-square®e

5.3 In this case, the likelihood function becomes

N
p(T|X,W,2) = HN<tn|Y(XnaW)’ 2),

n=1

with the corresponding log-likelihood function

In p(T|X, w,3)
N 1
_ _ 1t o \Ty—lg
=3 (In|X| + K In(27)) 2ng_l(tn Vo) X (tn —yn), (171)

wherey,, = y(x,,w) andK is the dimensionality of andt.

If we first treatX as fixed and known, we can drop terms that are independemnt of
from (171), and by changing the sign we get the error function

1 Ts1—1
E(W) = §Z<tn_Yn) 3 (tn_Yn)'
If we consider maximizing (171) w.r.E, the terms that need to be kept are

——1n|2|—fz Yn TE ( _yn)'

By rewriting the second term we get

N 1 ZN
—1 T
—?ln|2|—§Tl’ 2 (tn*Yn)(tn*yn)

n=1
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5.5
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Using results from Appendix C, we can maximize this by settimgdérivative w.r.t.
>~ to zero, yielding

1 N
NZ _yn)T-

Thus the optimal value faE depends o throughy,,.

A possible way to address this mutual dependency betweand: when it comes
to optimization, is to adopt an iterative scheme, alternalietyveen updates of
andX until some convergence criterion is reached.

Lett € {0,1} denote the data set label andAet {0, 1} denote the true class label.
We want the network output to have the interpretatjox, w) = p(k = 1|x). From
the rules of probability we have

p(t =1]x) = Zpt—1|k (k|x) = (1 — )y(x, w) + e(1 — y(x,w)).

The conditional probability of the data label is then
p(tx) = p(t = 1|x)"(1 = p(t = 1x)" "

Forming the likelihood and taking the negative logarithm wentlobtain the error
function in the form

N
= {taIn [(1 = )y(xn, W) + e(1 — y(x,, W))]

(=~ ta) I [L — (1= )y, W) — (1 — y(xn, W))]} .
See also Solution 4.16.

For the given interpretation aofx(x, w), the conditional distribution of the target
vector for a multiclass neural network is

K
p(tlwy, ..., wg) = Hy,tc"
k=1

Thus, for a data set a¥ points, the likelihood function will be

N K
p(T|lwy,...,wg) = H H yfﬁf

n=1k=1

Taking the negative logarithm in order to derive an error functienobtain (5.24)
as required. Note that this is the same result as for the mukitdasstic regression
model, given by (4.108) .
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5.6 Differentiating (5.21) with respect to the activatiap corresponding to a particular
data pointz, we obtain

OF 1 Oy, 1 Oyn
— = —tp— = —tn . 172
da,, Yn Oan, +(1 )1 — Yn 3an (172)
From (4.88), we have
Yn
20—y (1= y,). 173
90, Y (1= yn) (173)
Substituting (173) into (172), we get
9By =) gy y¥n(l =)
day Yn (1= yn)
= Yn — 1ty
as required.
5.7 See Solution 4.17.
5.8 From (5.59), using standard derivatives, we get
dtanh e’ ee"—e?) n e e (e —e )
da et te® (et gea)’  efteT (e 4ema)
et tet  1—e—e? 41
ev +e7@ (ea + e—a)2
_ 6211 —9 + 6—2(1
(e +e~2)?

(ea o e—a)(ea o 6—(1)
(v + e ) (e + e )
= 1—tanh®(a)

5.9 This simply corresponds to a scaling and shifting of the binamputs, which di-
rectly gives the activation function, using the notation fron1 9, in the form

y =20(a) — 1.

The corresponding error function can be constructed from (5.21) blyiagpthe
inverse transform tg,, andt,,, yielding

S +y+< )n(")

N
Z 14 y) + (1—to)In(l —y)} + N1n2

L\')\»—l



5.10

5.11
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where the last term can be dropped, since it is independemt of

To find the corresponding activation function we simply appblthear transforma-
tion to the logistic sigmoid given by (5.19), which gives

2
yla) = 20(a)—1= T

1—e @ ea/Z _ 67(1/2

l14+e @  ea/24 e/
tanh(a/2).

From (5.33) and (5.35) we have
ll;-THllZ‘ = uZT)\,u7 = )\7

Assume thaH is positive definite, so that (5.37) holds. Then by setting u; it
follows that
A\ =u/Hu; >0 (174)

for all values ofi. Thus, if H is positive definite, all of its eigenvalues will be
positive.

Conversely, assume that (174) holds. Then, for any veetone can make use of

(5.38) to give
viHv = (ZQ‘W) H(chu])

( J

T
= <Z ciui> (Z )\jClej)
( J
= Z)\,C? >0
where we have used (5.33) and (5.34) along with (174). Thus, if #lboeigenvalues

are positive, the Hessian matrix will be positive definite.

NOTE: In PRML, Equation (5.32) contains a typographical eresrshould be~.

We start by making the change of variable given by (5.35) whitdwal the error
function to be written in the form (5.36). Setting the value of the refumction
E(w) to a constant valué€’ we obtain

* 1 2
E(w )+§Z)\iai =C.

Re-arranging gives
> el =20 -2B(w*)=C
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Solutions 5.12-5.15

5.12

5.13

5.14

5.15

whereC is also a constant. This is the equation for an ellipse whoss are aligned
with the coordinates described by the variables}. The length of axigi is found
by settinge; = 0 for all ¢ # 5, and solving for; giving

which is inversely proportional to the square root of the corresimgneigenvalue.

NOTE: See note in Solution 5.11.

From (5.37) we see that, H is positive definite, then the second term in (5.32) will
be positive whenevefw — w*) is non-zero. Thus the smallest value whi€liw)
can take is£(w*), and sow* is the minimum ofE'(w).

Conversely, ifw* is the minimum ofE/(w), then, for any vectow # w*, E(w) >

E(w™). This will only be the case if the second term of (5.32) is pesifor all

values ofw # w* (since the first term is independentw). Sincew — w* can be
set to any vector of real numbers, it follows from the definition T BatH must
be positive definite.

From exercise 2.21 we know that® x W matrix hasiV (W + 1)/2 independent
elements. Add to that thid” elements of the gradient vectbrand we get
W(W +1) WW4+1)+2W  W?4+3W  W(W +3)

2 +W= 2 2 9

We are interested in determining how the correction term

E(wi; +€) — E(w;; —¢€)
2¢e

depend on.
Using Taylor expansions, we can rewrite the numerator of thetéirst of (175) as

2
E(wij) + B (wi;) + %E”(wm‘) +0(e%)
2
— Blwig) + B (wy) — S (wi) + O() = 26B (w) + O(e).
Note that the-2-terms cancel. Substituting this into (175) we get,

o 2eE’(w,-j) + 0(63)
B 2¢

1) —E/(’U)Z'j) 20(62).

The alternative forward propagation scheme takes the first line@3)&s its starting
point. However, rather than proceeding with a ‘recursive’ definiof dy, /0a,;, we
instead make use of a corresponding definitioney/0x;. More formally

Oy Oyx da;
sz N (:)Il N ; aaj 635,




5.16

5.17
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wheredy;,/Ja; is defined by (5.75), (5.76) or simply ag;, for the case of linear
output units. We defin8a; /0xz; = wj; if a; is in the first hidden layer and otherwise

8aj o 0aj 8al
ox; Z Oa; Ox; (176)
where 5
by
aszl = wj b/ (a;). (177)

Thus we can evaluaté,; by forward propagatin@a,/0x;, with initial value w;;,
alongsidez;, using (176) and (177).

The multivariate form of (5.82) is

1 N

E = 5 Z(Yn - tn)T(YH - tn)

n=1
The elements of the first and second derivatives then become

N
OF 10¥n

n=1

and

PE [ 0yn" Oyn v 0y
= - n— tn .
Ow; 0w, ; {6wj ow; +ly ) ow; Ow; }

As for the univariate case, we again assume that the secondftérensecond deriva-
tive vanishes and we are left with

N
H-= Z B,B",
n=1
whereB,, isalW x K matrix, K being the dimensionality of,,, with elements

_ aynk
(Bn)lk - awl .

Taking the second derivatives of (5.193) with respect to twaimsiw, andw, we
obtain

8wr6ws Z/ {gzyvk SZ’Z } pix) dx
23 / { S () - Etk[tux])}p(x) dx. (178)
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Solutions 5.18-5.20

5.18

5.19

Using the result (1.89) that the outputs(x) of the trained network represent the
conditional averages of the target data, we see that thedéon in (178) vanishes.
The Hessian is therefore given by an integral of terms involvirly the products of
first derivatives. For a finite data set, we can write this resuthénform

oy oy
8w7~8w9 N Z Z awkr awi

which is identical with (5.84) up to a scaling factor.

If we introduce skip layer weight&], into the model described in Section 5.3.2, this
will only affect the last of the forward propagation equations64%, which becomes

D
Y = E wkaj E Uki Ty
i=1

Note that there is no need to include the input bias. The dendvatr.t. ux; can be
expressed using the outpt, } of (5.65),

If we take the gradient of (5.21) with respect#g we obtain

N N

VE(w) = Z E?TEW” = (Yn — tn)Van,

n=1

where we have used the result proved earlier in the solution tocEre5.6. Taking
the second derivatives we have

VVE(w) = Z {gyn Va,Vay, + (yn tn)VVan} .

n=1

Dropping the last term and using the result (4.88) for the derigaiivthe logistic
sigmoid function, proved in the solution to Exercise 4.12, walfjnget

VVE Z yn yn vanvan = Z yn yn)bnb;l;

n=1

whereb,, = Va,,.

5.20 Using the chain rule, we can write the first derivative of (5.24) as

N K

OE Oday,
a2 s 79
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From Exercise 5.7, we know that

oF
aank
Using this and (4.106), we can get the derivative of (179) wu;tas

8ank c‘)anl 0? ank

n=1 k=1

= Ynk — tnk-

For atrained model, the network outputs will approximate thed@mnal class prob-
abilities and so the last term inside the parenthesis willsfam the limit of a large
data set, leaving us with

N E X 8& da
an::z::z:: ke (Ll — Ynt) &Zlk aﬂ:;l

NOTE: In PRML, the text in the exercise could be misunderstood; a&tdarmu-
lation is: “Extend the expression (5.86) for the outer produgraximation of the
Hessian matrix to the case &f > 1 output units. Hence, derive a form that allows
(5.87) to be used to incorporate sequentially contributions froaividual outputs
as well as individual patterns. This, together with the idgr{5.88), will allow the
use of (5.89) for finding the inverse of the Hessian by sequéniiatorporating
contributions from individual outputs and patterns.”

From (5.44) and (5.46), we see that the multivariate form of (5.82) is

(ynk - tnk>2 .

Hyg =) > bub, (180)

whereb,,, = Va,rx = Vyni. The double index indicate that we will now iterate
over outputs as well as patterns in the sequential build-upeoHessian. However,
in terms of the end result, there is no real need to attribute ternisisrsum to
specific outputs or specific patterns. Thus, by changing ttexiation in (180), we
can write it

J
=Y cjc] (181)
j=1
whereJ = NK and
c; = bugiy)
n(j) = G-1)oK+1

k() = (—-1HoK+1
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Solution 5.22

5.22

with @ and® denoting integer division and remainder, respectively. Ttheaatage
of the indextion in (181) is that now we have a single indexed and so we can use
(5.87)—(5.89) as they stand, just replactgwith cr,, letting L run from0 to J — 1.

NOTE: The first printing of PRML contained typographical errors in etgpraf5.95).
On the r.h.s.,H., should belM,,.. Moreover, the indiceg and j’ should be
swapped on the r.h.s.

Using the chain rule together with (5.48) and (5.92), we have

ok, 0B, Oay
6w,(€2j) B 8%@
= O0rzj (182)
Thus,
0*E, 00z

o) dwg),  ow),

and sincez; is independent of the second layer weights,

OB, a0y

_ 9B, - OO

ow) owy) T ow?),
0°E,  Oay

s om0k
! Day dar guy)
= 22y My,
where we again have used the chain rule together with (5.48) a8l (5

If both weights are in the first layer, we again used the chain thig time together
with (5.48), (5.55) and (5.56), to get

8En o 8En 6a]-
ow'y a;j o)
8En 8ak
= xi —_—
zk: 8ak 8aj
k

Thus we have

0°E 0 ( )
t— = x; b (a;) E w6 | .
(1) o, (1) " ! J kj =¥
Ow,;” Ow,i g %

Now we note that; andw,” do not depend om';;), while 1/(a;) is only affected

j/,L‘/v

in the case wherg = j’. Using these observations together with (5.48), we get

O’FE o,

— " =z h (a;) ] E w6y, + il (a;) E w'? . (183)
W A it i)tii kj Ok T Lilb (G ki 5 (D)

Ow;" Ow A A W
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From (5.48), (5.55), (5.56), (5.92) and the chain rule, we have

66;€ - Z 82En 8ak/ 8aj/
k' 0

8w5}), ar Oakr Dajr 3w](}1),

mi/h’(aj) Zw’(jj)/Mkkr (184)
k/

Substituting this back into (183), we obtain (5.94).

Finally, from (182) we have

82En . adej/

1) g,,2) N
Owy;" Owys Qwy;

Using (184), we get

?E,

g5 szl (a;) S w® My + e (a;)2;
o) ow’) ! ) 2wy 2

1%

= xih’(aj) <5k1jj’ -+ Zw](jj)Mkk’> .

k:/
If we introduce skip layer weights into the model discussedenti®n 5.4.5, three

new cases are added to three already covered in Exercise 5.22.
The first derivative w.r.t. skip layer weight.; can be written

= = i 185
Ou; day, Ouy; Oay, i ( )

Using this, we can consider the first new case, where both veeagltin the skip
layer,

0?E, 0*E, Oay
= X
8uki aum/ 8ak 8ak/ 8uk@/
= Mgz,

where we have also used (5.92).

When one weight is in the skip layer and the other weight ib@tidden-to-output
layer, we can use (185), (5.48) and (5.92) to get

O Bn OB, v
Qug; Ol dardaw gu)

= Mkk/zjxi'
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Finally, if one weight is a skip layer weight and the othernghe input-to-hidden
layer, (185), (5.48), (5.55), (5.56) and (5.92) together give

OB, 0 (0B,
dupiow't) o'} <0ak )
_ Z 0°E,, Oay
day, Oay aw(l) i

= mzyh/(aj) E Mkk/wk,j?.
k/

5.24 With the transformed inputs, weights and biases, (5.113) besome

Z5 = h (Z 17)]'1'57; + @jg) .

Using (5.115)—(5.117), we can rewrite the argumerit(©f on the r.h.s. as

Z(llwﬂ(aﬂcz+b )+ wjo — Zwﬂ

%

= E Wj;T; + — E wj; + wjo — — E Wy
- a = a =
i i i

= Z Wj; T + Wijo-
A

Similarly, with the transformed outputs, weights and biase&1¢5.becomes

@k = Z{[)k:jzj + Wro.
Using (5.118)—(5.120), we can rewrite this as

cyr +d = chkaj + cwpo + d
k

c <Z Wi 25 + wk()) +d.

By subtractingd and subsequently dividing byon both sides, we recover (5.114)
in its original form.

5.25 The gradient of (5.195) is given

VE =H(w — w")
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and hence update formula (5.196) becomes

w(™ =w(™ D — pH(wWT) — w*).

Pre-multiplying both sides with]T we get

wﬁﬂ = u;-fw(T) (186)
= u;-FW(T_l) - pu;-FH(W(T_l) —w")
= w Y~ pnug (w - w)
=y = (w7 - w), (187)

where we have used (5.198). To show that
wi? = {1— (1= pny)Thwj

forr =1,2,..., we can use proof by induction. Fer= 1, we recall thaww(®) = 0
and insert this into (187), giving

w

©
;W)

1 0
o = w® oy
= pnjwj
{1 —(1—pnj)}wj.

Now we assume that the result holds foe= N — 1 and then make use of (187)

N N—-1 N—-1
wi™ = Wi — oy (WY — )
N-—-1
= 0"V~ ) + prjwy

{1 - Q= pn))N " Y wi (1 = pny) + pnjw}
= {(1=pny) = (1= pn)N }w} + pnjw}
= {1-(—pn)"}w;

as required.

Provided thatl — pn;| < 1 then we havel — pn;)” — 0 asT — oo, and hence
{1 —(1- pnj)N} — landw(™ — w*.

If 7 is finite butn; > (p7)~', 7 must still be large, sincg;pr > 1, even though
|1 — pn;| < 1. If 7is large, it follows from the argument above th@gf) ~ wj.

If, on the other handy; < (p7)~!, this means thain; must be small, sincen; 7 <
1 andr is an integer greater than or equal to one. If we expand,

(L—=pn;)" =1—7pn; +O(pn7)
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and insert this into (5.197), we get

|w§f)\ = [{1 =1~ pn;)" }wj
{1 = —7pn + O(pn})) } wi|

;| < ]

1

Recall that in Section 3.5.3 we showed that when the regutasizparameter (called
« in that section) is much larger than one of the eigenvaludie(ca; in that section)
then the corresponding parameter valuewill be close to zero. Conversely, when
« is much smaller than; thenw; will be close to its maximum likelihood value.
Thusa is playing an analogous role jo-.

5.26 NOTE: In PRML, equation (5.201) should read

k

Xn

In this solution, we will indicate dependency an) with a subscript: on relevant
symbols.

Substituting the r.h.s. of (5.202) into (5.201) and then ugi@0), we get

2
1 8ynk
Q = 3 Zk: (Z Tnax> (188)

i

2
k i

whereJ,,;; denoted/y; evaluated ak,,. Summing (189) oven, we get (5.128).

By applyingg from (5.202) to the equations in (5.203) and making use of (5.205)
we obtain (5.204). From this, we see tligt can be written in terms at,,;, which

in turn can be written as functions @f,; from the previous layer. For the input layer,
using (5.204) and (5.205), we get

ﬂnj = E WjiQnj
i
= E wjigl‘m'
i
s Y g
— W LY
gt ne
; 7 axni’
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Thus we see that, starting from (19), is propagated forward by subsequent appli-
cation of the equations in (5.204), yielding thAg, for the output layer, from which
Q,, can be computed using (5.201),

Qn = ; zk: gynk = Z ank

Consideringd(2,,/dw,s, we start from (5.201) and make use of the chain rule, to-
gether with (5.52), (5.205) and (5.207), to obtain

0y,

0w,

Z (gynk) g (6nkrzns)

k

= Z Qnk (¢nk7‘zns + 5nk7‘ans) .
k

The backpropagation formula for computifig,,- follows from (5.74), which is used
in computing the Jacobian matrix, and is given by

5nkr - h/(anr) Z wlr5nkl-

Using this together with (5.205) and (5.207), we can obtain paipagation equa-
tions for ¢y,

¢nkr - g(Snkr
- g (h/(anr) Z wlrénkl>
l

= 1"(anr)Bur Z wip Okt + h' (any) Z Wir Priki -
! l

5.27 If s(x,£) =x+ &, then
0sp . Os
- I iy LSy S0
o, " e g

and since the first order derivative is constant, there are no higter derivatives.
We now make use of this result to obtain the derivatives wfr.t. &;:

Z 8y 8sk _ — b,
afz 88k 851 857, ’

:I’

dy ob; D, b,
¢, 0¢; agj Z ds, 0  0s; Y
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Using these results, we can write the expansioﬁafs follows:

b= // {y(x) — t}*p(t]x)p(x)p(€) d€ dx dt
i / / {y(x) — t}bT€p(&)p(t/x)p(x) A€ dx dt
+ ;// £T ({y(x) - t}B + bbT) 5p(€)p(t|x)p(x) dé dx dt.

The middle term will again disappear, sin€&] = 0 and thus we can writ& on
the form of (5.131) with

- % / / €' ({y(x) — t}B + bb™) £p(&)p(t|x)p(x) d€ dx dt.

Again the first term within the parenthesis vanishes to leadidgran& and we are
left with

Q ~ //5 (bb™) £p(€)p(x) dé dx
- . / / Trace|(¢€7) (bb™)] p(€)p(x) d€ dx
— ;/Trace[I (bb™)] p(x) dx

1
= 2/bpr /IVy )IPp(x

where we used the fact thafée"™) =1

5.28 The modifications only affect derivatives with respect to wsdgh the convolutional
layer. The units within a feature map (mdex;a()l have different inputs, but all share
a common weight vectory (™. Thus, errorsi™ from all units within a feature
map will contribute to the derlvatlves of the corresponding Wweigector. In this
situation, (5.50) becomes

aEn 8E 80’ ’rn) ’m,)
= 0 .
aw§m> ; dal™ j Z

Here aém) denotes the activation of thg" unit in them'® feature map, whereas

w!™ denotes theé™ element of the corresponding feature vector and, finajW,)
denotes the'" input for thej*" unit in them'" feature map; the latter may be an
actual input or the output of a preceding layer.

Note thatdj(.m) = 0F, /8a§m) will typically be computed recursively from thés
of the units in the following layer, using (5.55). If there are layepi®ceding the
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convolutional layer, the standard backward propagation em&will apply; the
weights in the convolutional layer can be treated as if thesewedependent param-
eters, for the purpose of computing thefor the preceding layer’s units.

5.29 This is easily verified by taking the derivative of (5.138), us{tgt6) and standard
derivatives, yielding
9 _ 1
Ow; 3oy, meN (wilp, oF)

S A g o) 1)
J

Combining this with (5.139) and (5.140), we immediately obthmsecond term of
(5.141).

5.30 Since theu;s only appear in the regularization terfi,w), from (5.139) we have
OE 00
— =
O Oy,

Using (2.42), (5.138) and (5.140) and standard rules for differéomiavve can cal-
culate the derivative df?(w) as follows:

o0 1
Ouj zl: Zj/ i N (wi|,uj’a02)

j/
Wi — 1
= = yw) =

2
9

(191)

N (wilps, 07) wia_z et

J

Combining this with (191), we get (5.142).

5.31 Following the same line of argument as in Solution 5.30, wednthe derivative
of Q(w) w.r.t. ;. Again using (2.42), (5.138) and (5.140) and standard rules for
differentiation, we find this to be

o0 o 1 1 1 (wz — /Lj)Q
30]- o zl: Z], 7Tj/,/\/ (U}Z|‘u]/’ O'?,) 7T] (27‘(‘)1/2 { O'JQ- exp ( 20’?

+i‘ exp <_ (w; — éij)z) (w; —Suj)2 }

0j 207 o}

_ (o {2 wimy)?
= Z ;5 (w;) { Py 05-’ .
Combining this with (191), we get (5.143).

5.32 NOTE: In the first printing of PRML, there is a leadingmissing on the r.h.s. of
equation (5.147). Moreover, in the text of the exercise (lasj life equation of the
constraint to be used should read’; i (w;) = 1 for all .

Equation (5.208) follows from (5.146) in exactly the same way (4&t06) follows
from (4.104) in Solution 4.17.
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5.33

5.34

Just as in Solutions 5.30 and 5.3} only affectes throughQ(w). However; will
affectn;, for all values oft (not justj = k). Thus we have

Z 0 Omy (192)

(977] ory, On;

From (5.138) and (5.140), we get
- Yk (wi)
7 Tk -
Substituting this and (5.208) into (192) yields

00 _ Vk _
877]]‘ - 877] Z {6]k7r] Tj T‘—k}

= ) {m- %‘(wi)},

i

where we have used the fact thaf, ;. (w;) = 1 for all 7.

From standard trigometric rules we get the position of the endeofitbt arm,
<x§1), x(Ql)) = (L cos(#y), Ly sin(6y)) .

Similarly, the position of the end of the second arm relativdeoend of the first arm
is given by the corresponding equation, with an angle offset (fee Figure 5.18),
which equals a change of sign

(mﬁ”, :cg)) = (Lacos(0y + 0y — ), Ly sin(fy + 0 — m))
= — (LQ COS(91 + 92), LQ sin(91 -+ 92)) .

Putting this together, we must also taken into accountéthet measured relative to
the first arm and so we get the position of the end of the second #aiveeto the
attachment point of the first arm as

(.’El, .’EQ) = (Ll cos(@l) — L2 COS(01 + 92), L1 sin(@l) — L2 sin(@l + 92)) .

NOTE: In the 1%* printing of PRML, the L.h.s. of (5.154) should be replaced with
Tk = Yk(tn|xn). Accordingly, in (5.155) and (5.156); should be replaced by
Ynx @and in (5.156)¢; should be,,;.

We start by using the chain rule to write

8ak 87r] 8ak
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Note that because of the coupling between outputs causdeisoftmax activation
function, the dependence on the activation of a single ouipiitinvolves all the
output units.

For the first factor inside the sum on the r.h.s. of (193), standerdatives applied
to then'™® term of (5.153) gives

8En Nnj . 7@

=— = (194)
871']- leil TN Tj
For the for the second factor, we have from (4.106) that
on;
?%Zr:ﬂ—j(jjk_ﬂ—k)‘ (195)

Combining (193), (194) and (195), we get

K
aEn Tnj
= = =2 —millik = 7k)
daj jz_; j
K K
= —Z%j([jk—ﬂk)z—Vnk-f-Z%j?Tk=7Tk—7nk7
j=1 j=1

where we have used the fact that, by (5.1@)]{(:1 Ynj = 1 forall n.

5.35 NOTE: See Solution 5.34.
From (5.152) we have

aﬁl = Kkl
and thus
ok, 0E,
36% 8#1@1'
From (2.43), (5.153) and (5.154), we get
OB, _ TeNnk  tul — Mk
aﬂkl Zk’ ﬂ-k:’Nnk’ U}%(Xn>

frl — to
= t —_—.
Tnk ( n|Xn) Ui(Xn)

5.36 NOTE: In the 1% printing of PRML, equation (5.157) is incorrect and the correct
equation appears at the end of this solution ; see also Solbig3.

From (5.151) and (5.153), we see that

OE, 0E, 0oy
dag Doy, daf’

(196)



112 Solution 5.37
where, from (5.151),
0ok _ (197)

— =
daf]

From (2.43), (5.153) and (5.154), we get

L2
OB, _ 1 (LN L (el
0o}, Yow N \ 27 oL+t 20}
1 th - “k||2 ||tn - Hk”Q
+O'L exp< 20} op

_ (L thu’k|2)
= Tnk - 3 .
(0% Uk:

Combining this with (196) and (197), we get

ok, tn — pgll?
o (- Lz l),

o 2
daf oi

5.37 From (2.59) and (5.148) we have

Eftlx] = /tp(t|x) dt

We now introduce the shorthand notation

K
te=p(x) and t=) m(x)t.
k=1
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5.39
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Using this together with (2.59), (2.62), (5.148) and (5.158), we get
s*(x) =E [[[t - E[t[x]||*|x] = / [t —t[I°p (t]x) dt

K
_ / (tTt —tTE-tt+ ETE) >N (g (x), 03 (x)) dt
k=1

K
3 () {g,g I T e o ETE}
k=1

K
= ) me(x) {0 + |t — 7}
k=1
2

K
= Zﬂk(x) or +
k=1

K
e (x) — Z Ty (%)
l

Making the following substitions from the r.h.s. of (5.167) and &),
X =W [ = W)AP A7l = A
y=t A=g' b=yxwusp)—g wmap L '=p5",
in (2.113) and (2.114), (2.115) becomes
p(t) - N (t‘gTWMAP + y(x, WMAP) — gTWMAp,B_1 + gTA_lg)
= N (t‘y(X,WMAP),Oj) )
whereo? is defined by (5.173).

Using (4.135), we can approximate (5.174) as
p(Dla, B) ~ p(D|wwmar, B)p(Waap|@)
1
/eXp {2 (w— WMAP)TA (w— WMAP)} dw,
whereA is given by (5.166), ag(D|w, 3)p(w|«) is proportional top(w|D, «, 3).

Using (4.135), (5.162) and (5.163), we can rewrite this as

N

p(Dler, B) = [ [N (tnly(xn, Wrtar), 7N (Waiap|0, 07 'T)

n

(27T)W/2
|A|1/2 :

Taking the logarithm of both sides and then using (2.42) andBj2we obtain the
desired result.
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5.40 For aK-class neural network, the likelihood function is given by

5.41

Chapter 6

N K

H H Yk (Xru W)tnk

n k

and the corresponding error function is given by (5.24).

Again we would use a Laplace approximation for the posteridrilligion over the
weights, but the corresponding Hessian matiidx,in (5.166), would now be derived
from (5.24). Similarly, (5.24), would replace the binary cross entrapgreéerm in
the regularized error function (5.184).

The predictive distribution for a new pattern would again haved@pproximated,
since the resulting marginalization cannot be done analjyic However, in con-
trast to the two-class problem, there is no obvious candidatdifoapproximation,
although Gibbs (1997) discusses various alternatives.

NOTE: In PRML, the final “const” term in Equation (5.183) should be oittea.

This solutions is similar to Solution 5.39, with the differertbat the log-likelihood
term is now given by (5.181). Again using (4.135), the corresponaippgoximation
of the marginal likelihood becomes

p(Dl]a) ~ p(D|wniap)p(Wiap|)
/exp <—;(w - WMAP)TA(W - WMAP)> dw, (198)

where now
A =-VVnp(Djw)=H+ al.

Performing the integral in (198) using (4.135) and then takingaberithm on, we
get (5.183).

Kernel Methods

6.1

We first of all note that/ (a) depends on only through the fornKa. Since typically
the numberN of data points is greater than the numBérof basis functions, the
matrix K = ®®7 will be rank deficient. There will then b2/ eigenvectors oK
having non-zero eigenvalues, aNd- M eigenvectors with eigenvalue zero. We can
then decomposa = a| + a WhereaﬁaL = 0andKa; = 0. Thus the value of
a, is not determined by (a). We can remove the ambiguity by settiag = 0, or
equivalently by adding a regularizer term

€

T
—a|a|
2 J_
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to J(a) wheree is a small positive constant. Then= a wherea, lies in the span

of K = ®&T and hence can be written as a linear combination of the colwhns
®, so that in component notation

M
an = Z uipi(Xn)
i=1

or equivalently in vector notation

a= Pu. (199)
Substituting (199) into (6.7) we obtain
1
J(u) = 5 (K®u —t)" (K®u —t) + guTQTK'I’u
1
= 5 (22T Pu- t)" (@2 ®u—t) + %u%%qﬂqm (200)

Since the matrix®™ ® has full rank we can define an equivalent parametrization
given by

w=®"du
and substituting this into (200) we recover the original rega&tierror function
(6.2).

Starting with an initial weight vectow = 0 the Perceptron learning algorithm in-
crementsw with vectorst,, ¢(x,,) wheren indexes a pattern which is misclassified
by the current model. The resulting weight vector therefore corpadinear com-
bination of vectors of the form, ¢(x,,) which we can represent in the form

N
W= antno(xy) (201)
n=1

wherea,, is an integer specifying the number of times that pattenvas used to
updatew during training. The corresponding predictions made by the tdafey-
ceptron are therefore given by

y(x) = sign(w' ¢(x))

N
= sign (Z Ozntn¢(Xn)T¢(X)>

n=1

N
= sign (Z antnk:(xn,x)> )

n=1
Thus the predictive function of the Perceptron has been expressety in terms
of the kernel function. The learning algorithm of the Perceptram sieilarly be
written as
ap — ay + 1
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for patterns which are misclassified, in other words patternsiwdatisfy

tn (WTd)(X”)) > 0.

Using (201) together with.,, > 0, this can be written in terms of the kernel function

in the form
N
tn (Z k:(xm,xn)) >0

m=1

and so the learning algorithm depends only on the elementg déthm matrix.

6.3 The distance criterion for the nearest neighbour classifier eaxpressed in terms
of the kernel as follows

D(x,%xn) =[x =%y
= x'x+ xzxn —2x'x,,
= k(x,x) + k(Xn,xp) — 2k(x,x%,,)

wherek(x,x,) = x'x,. We then obtain a non-linear kernel classifier by replacing
the linear kernel with some other choice of kernel function.

(571)

We can verify this by calculating the determinant of

2—-A -2
-3 4-X )

setting the resulting expression equal to zero and solve foigkewalues\, yielding

6.4 An example of such a matrix is

A ~5.65 and A\, ~0.35,

which are both positive.

6.5 Theresults (6.13) and (6.14) are easily proved by using (6.1) vdgtihes the kernel
in terms of the scalar product between the feature vectors for tput wectors. If
k1 (x,x’) is a valid kernel then there must exist a feature vegiotr) such that

ki(x,x") = (%) (x).

It follows that
cky(x,x') = u(x)Tu(x’)

where
u(x) = ¢/2¢(x)
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6.7
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and sack; (x, x’) can be expressed as the scalar product of feature vectors, ared henc
is a valid kernel.

Similarly, for (6.14) we can write

FE)k1(x,x) f(x') = v(x) v (x)

where we have defined
v(x) = f(x)p(x).

Again, we see thaf(x)k;(x,x’)f(x’) can be expressed as the scalar product of
feature vectors, and hence is a valid kernel.

Alternatively, these results can be proved be appealing to ¢émergl result that
the Gram matrixK, whose elements are given Byx,, x,,), should be positive
semidefinite for all possible choices of the $&t,}, by following a similar argu-
ment to Solution 6.7 below.

Equation (6.15) follows from (6.13), (6.17) and (6.18).
For (6.16), we express the exponential as a power series, ygeldin

k(x,x') = exp(k (x,x))

i (k1 (3, )"
m! ’
m=0
Since this is a polynomial ik, (x, x’) with positive coefficients, (6.16) follows from
(6.15).

(6.17) is most easily proved by making use of the result, digzlies page 295, that
a necessary and sufficient condition for a functigx, x’) to be a valid kernel is
that the Gram matri¥, whose elements are given byx,,, x,,,), should be positive
semidefinite for all possible choices of the $&t,}. A matrix K is positive semi-
definite if, and only if,

a’Ka>0

for any choice of the vectai. Let K; be the Gram matrix fok; (x,x’) and letK,
be the Gram matrix fok,(x, x’). Then
aT(K1 +Kya= a'TK,a+aTK,a >0

where we have used the fact tHdt and K, are positive semi-definite matrices,
together with the fact that the sum of two non-negative numiwitstself be non-
negative. Thus, (6.17) defines a valid kernel.

To prove (6.18), we take the approach adopted in Solution 6.&eSue know that
ki (x,x") andkq(x,x’) are valid kernels, we know that there exist mappiggs)
and)(x) such that

ki(x,x) = ¢(x)Tp(x)  and  ka(x,x') = h(x) P (x).
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6.8

6.9

6.10

Solutions 6.8-6.10

Hence

ki1 (x,x")ka(x,x")
¢(X) o(x) P(x)"

= Z¢m ¢m

m=1 1=1

= ZZ%

m=1n=1

K
= D ee®en(x
k=1

T

= (p(X) QO(X/)7

whereK = M N and

Pr(%X) = (h—1)oN)+1 (X)P((k-1oN)+1(X),
where in turn and® denote integer division and remainder, respectively.
If we consider the Gram matri¥, corresponding to the I.h.s. of (6.19), we have

i = k‘(Xi,Xj) = k3 (¢(Xi)7 d)(xj))

where K3 is the Gram matrix corresponding g (-, -).
kernel,

(K) = (Ks),;

Sinceks(-, ) is a valid
uKu = uTK;zu > 0.
For (6.20), letK = XTAX, so that(K);; = x; Ax;, and consider

u'Ku = u"XTAXu
= vIAvV >0

where ,v = Xu and we have used that is positive semidefinite.

Equations (6.21) and (6.22) are special cases of (6.17) and (62&pgctively, where
kq(-,-) and ky(-,-) only depend on particular elements in their argument vectors.
Thus (6.21) and (6.22) follow from the more general results.

Any solution of a linear learning machine based on this kernedtrtake the form

N N
x) = Y ank(xn,%) = (Z anf(xn)> f(x) = Cf(x).
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6.11 As discussed in Solution 6.6, the exponential kernel (6.16) lwa written as an
infinite sum of terms, each of which can itself be written as areinproduct of
feature vectors, according to (6.15). Thus, by concatenating #teréevectors of
the indvidual terms in that sum, we can write this as an innerymdf infinite
dimension feature vectors. More formally,

exp (x"x'/0%) = > ¢,,(x) h(x)
= Y)Y

wherey(x)" = [y (x)", ¢, (x)",...]. Hence, we can write (6.23) as

where

XTX

(%) = exp <U) $(x).

6.12 NOTE: In the 1** printing of PRML, there is an error in the text relating to this
exercise. Immediately following (6.27), it sayisi| denotes the number sfibsets
in A; it should have said:A| denotes the number efementsin A.

Since A may be equal td (the subset relation was not defined to be strigt)D)
must be defined. This will map to a vector®P! 1s, one for each possible subset
of D, including D itself as well as the empty set. FdrC D, ¢(A) will have 1s in

all positions that correspond to subsetsiodnd 0Os in all other positions. Therefore,
d(A;)Tp(As) will count the number of subsets shareddyandA,. However, this
can just as well be obtained by counting the number of elesnarthe intersection
of A; and A, and then raising 2 to this number, which is exactly what (6d08s.

6.13 In the case of the transformed paramef€6), we have
g(0,x) = Mgy (202)
whereM is a matrix with elements

;i

M;; =
00,

(recall thatyy(0) is assumed to be differentiable) and
gy = VyInp (x[1(0)).
The Fisher information matrix then becomes

F = Ex[Mgyg,M']
= ME, [gyg;] M". (203)
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6.14

6.15

6.16

Substituting (202) and (203) into (6.33), we get
—1
k(x,x") = giMT (MIEx [gwgi] MT) Mg,
—1 —1 _
= gyM' (M) Ex[gyg;] M Mgy
—1
= guEx [gvg)] 8y, (204)

where we have used (C.3) and the fact ##é@) is assumed to be invertible. Since
6 was simply replaced by (8), (204) corresponds to the original form of (6.33).

In order to evaluate the Fisher kernel for the Gaussian we firstthateéhe covari-
ance is assumed to be fixed, and hence the parameters compyifieeoelements of
the meanu. The first step is to evaluate the Fisher score defined by (6.32n #re

definition (2.43) of the Gaussian we have

g(p,x) =V, InN (x|p,S) = S (x — p).
Next we evaluate the Fisher information matrix using the dédimi6.34), giving

F = E, [g(p,x)g(1,x)"] = S7'Ex [(x — p)(x —p)"] 87"

Here the expectation is with respect to the original Gaussginildition, and so we
can use the standard result

Ex [(x —p)(x—p)'] =8

from which we obtain
F=S1.

Thus the Fisher kernel is given by
k(x,x') = (x — p)"S7H(x" — p),
which we note is just the squared Mahalanobis distance.

The determinant for thg x 2 Gram matrix

(ko) ko)

equals
k($1,x1)k(l‘27$2) - If(331,332)27

where we have used the fact thdt:,, x5) = k(z2, 21). Then (6.96) follows directly
from the fact that this determinant must be non-negative for aipesiemidefinite
matrix.

NOTE: In the 1% printing of PRML, a detail is missing in this exercise; the text
“where w] ¢(x,,) = 0 for all n,” should be inserted at the beginning of the line
immediately following equation (6.98).
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We start by rewriting (6.98) as
W=w| + W,y (205)

where
N
w| = Zan¢(xn)~
n=1

Note that sinceav | ¢(x,,) = 0 for all n,

Using (205) and (206) together with the fact tkat ¢(x,,) = 0 for all n, we can
rewrite (6.97) as

Jw) = f(wi+wi)To(x1),....(w+wi) o(xn))
+g (W) +wi) " (w) +w))
= f (wﬁcﬁ(xl), . 7Wﬁd)(xz\;)> +yg (WEW” + WJT_WL) .

Sinceg(+) is monotonically increasing, it will have its minimum w.m.; atw,; =
0, in which case

N
W =W = Z @ (Xn)
n=1

as desired.

6.17 NOTE: Inthel®' printing of PRML, there are typographical errors in the text relating
to this exercise. In the sentence following immediately afte39%.f (x) should be
replaced byy(x). Also, on the L.h.s. of (6.40)(x,,) should be replaced by(x).
There were also errors in Appendix D, which might cause confusieasge consult
the errata on the PRML website.

Following the discussion in Appendix D we give a first-princgpbtéerivation of the
solution. First consider a variation in the functigfx) of the form

y(x) — y(x) + en(x).
Substituting into (6.39) we obtain

1 N
Bly+enl = 33 [ oca+ €+ enfon +6) — ) () e

Now we expand in powers @fand set the coefficient ef which corresponds to the
functional first derivative, equal to zero, giving

N
> [ o+ €)= tahnta + E0(6)d = 0. (207)
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6.18

This must hold for every choice of the variation functigfx). Thus we can choose

n(x) = d(x - z)

whered( - ) is the Dirac delta function. This allows us to evaluate thegrakover{
giving

N
S [ v+ €)= ta) 8lxa + €~ 2hol€) de = Z{y ) — ta} v(z — %),

Substituting this back into (207) and rearranging we then olitenmequired result
(6.40).

From the product rule we have

p(t|r) =

With p(t, z) given by (6.42) and
fl@—zp,t—t,) =N ([x — 2o, t — ][0, 0°T)
this becomes
SN N (= xn,t—tn]T|0,021)
[N N ([# = @yt — £,0]7]0,021) dt
anlf\/ — x,]0,02)N (t — 1, \00)
SN N (& = 2,0]0, 02)

From (6.46), (6.47), the definition ¢f(z, t) and the properties of the Gaussian dis-
tribution, we can rewrite this as

p(tfr) =

WE

p(tlr) = k(x, zn,) N (t - tn|0,a2)

3
Il
-

WE

k(z, 20N (t[tn, %) (208)

S
I
A

where
N (xz — x,]0,0?)

ZZ:H\/’(% - xm|0702)‘

We see that this a Gaussian mixture model where z,,) play the role of input
dependent mixing coefficients.

k(x,z,) =
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Using (208) it is straightforward to calculate various expectetio

Eltlx] = /tp(t|:1:)dt

N
/tZk(x,xn)/\/ (t[tn, 0?) dt

n=1

N
Zk(az,zn)/w\/(ttn,a2) dt
n=1

N
Z k(z,x,) ty
n=1

and
varftlz] = E [(t — E[t|a])?]

- / (t — Elt|a])? p(t]a) dt
N
- Zk(x,xn)/(tE[tm})2./\/(ttn,a2) dt

- Z k(z,x,) (0 + t — 2t,E[t|2] + E[t|z]?)

N
= o —E[tl] + ) k(x,zn) 1.

n=1

6.19 Changing variables tg,, = x,, — £,, we obtain

N
E = % Z/ [(2n) — tn]” 9(Xn — 2,) dzy,.

n=1
If we set the functional derivative df with respect to the functiop(x), for some
general value o%, to zero using the calculus of variations (see Appendix D) we hav
OFE
dy(x)

N
-y / [y(7) — ta] g0 — 20)5(x — 7,) dz,
N

= > lyx) — ta] gl —x) = 0.

n=1

Solving fory(x) we obtain

y(x) =D k(x,%n)tn (209)
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where we have defined

g(xn - X)

B an(xn _X).

This an expansion in kernel functions, where the kernels satisfggimmation con-
straint) | k(x,x,) = 1.

k(x,xp)

6.20 Given the joint distribution (6.64), we can identify;,; with x, andt with x; in
(2.65). Note that this means that we are prepending rather thamdingt ., to t
andCy . ; therefore gets redefined as

kT
CN+1:<IC< CN)

It then follows that

He = 0 Hy = 0 xp =t
Sw=c Zp=Cy Zup=2 =k’
in (2.81) and (2.82), from which (6.66) and (6.67) follows directly.

6.21 Both the Gaussian process and the linear regression model gevéoriGaussian
predictive distribution(tx.1|xx.1) SO we simply need to show that these have
the same mean and variance. To do this we make use of the epprés$4) for the
kernel function defined in terms of the basis functions. Using2(6tiée covariance
matrix C y then takes the form

Cy = lopr + 67y (210)
«
where ® is the design matrix with element®,, = ¢,(x,), andIy denotes the
N x N unit matrix. Consider first the mean of the Gaussian processqgpineti
distribution, which from (210), (6.54), (6.66) and the definitionthia text preceding
(6.66) is given by
My = a lo(xnin) T (o 1@ 4 5 Iy) L.
We now make use of the matrix identity (C.6) to give
3T ('@ + 57 'Ty) =B (BBT® +aly) BT = afSyD".

Thus the mean becomes

MN+1 = ﬂ(b(XNH)TSN@Tt

which we recognize as the mean of the predictive distributiothf®tinear regression
model given by (3.58) withn 5 defined by (3.53) anl v defined by (3.54).
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For the variance we similarly substitute the expression (210jHerkernel func-
tion into the Gaussian process variance given by (6.67) andubei(6.54) and the
definitions in the text preceding (6.66) to obtain

o (xng1) = o lo(xng) d(xNg) + 67
—a%p(xn 1) @7 (' ®BT + 57 Iy) Bd(xni1)
= '+ ¢(XN+1)T(CY_1IM
—a 0" (0 '®BT + 5 Iy)  ®)p(xnya).  (211)

We now make use of the matrix identity (C.7) to give
o Ty — o Ty (B0 Ta)®" + 87 y) Ba Ty
— (al+387®) ' =Sy,

where we have also used (3.54). Substituting this in (211), werobta

0% (xn+1) = ; 4+ d(xni1) TS d(xn )

as derived for the linear regression model in Section 3.3.2.

From (6.61) we have

t.~ . t.~
P <[ Nt N+ ]) - < [ NN+ ] ‘ 0’C>

with C specified by (6.62).
For our purposes, it is useful to consider the following pantiiof C:

o= (e e ).
whereC,, corresponds toy 1. n+r andCy, corresponds td,  n. We can use
this together with (2.94)—(2.97) and (6.61) to obtain the caowkil distribution
PN vrrlti ) =N (Evg vrn Bap, A7) (212)
where, from (2.78)—(2.80),

A,; = Cu —CyCplChy (213)
Aab = _Aaacabclgyl

2The indexing and ordering of this partition have been chosen to match tarimgdused in
(2.94)—(2.97) as well as the ordering of elements used in the singtdevaase, as seen in (6.64)—
(6.65).
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6.23

6.24

6.25

6.26

and
Bajp = —Aga Aasti v = CarCpl'ts N (214)

Restricting (212) to a single test target, we obtain the corredipg marginal distri-
bution, whereC,,,, C;, andC,,;, correspond te, k andCy in (6.65), respectively.
Making the matching substitutions in (213) and (214), we sektiiey equal (6.67)
and (6.66), respectively.

NOTE: In the 1%* printing of PRML, a typographical mistake appears in the text
of the exercise at line three, where it should say. ‘a training set of input vectors

X1y 9y XN

If we assume that the target variables,. .., tp, are independent given the input
vector,x, this extension is straightforward.

Using analogous notation to the univariate case,
p(tn41|T) = N(tniam(xyi1), o (xn41)T),
whereT is aN x D matrix with the vectors, ...t} as its rows,
m(xyy1)' =kTCyT

ando(xy.1) is given by (6.67). Note thaf , which only depend on the input
vectors, is the same in the uni- and multivariate models.

Since the diagonal elements of a diagonal matrix are also tfenedlues of the
matrix, W is positive definite (see Appendix C). Alternatively, for an adoiy, non-
Zero vectorx,

xTWx = Z.I?Wu > 0.
A
If x™Wx > 0 andx®Vx > 0 for an arbitrary, non-zero vecter, then

xT (W4 V)x =x"Wx +x"Vx > 0.

Substituting the gradient and the Hessian into the Newtorh&apformula we ob-
tain

ayV = any+ (CX,l + VVN)_1 [tN —ON — C&laN]
= (Cy' +Wn) 'ty — on + Wyay]
= CN(I + VVNC:N)i1 [tN —OoON + WNaN]
Using (2.115) the mean of the posterior distributign .1 [t 5) iS given by
k'Cylay.
Combining this with the condition

—1 _*
CNaNZtN—O'N
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satisfied byay, we obtain (6.87).

Similarly, from (2.115) the variance of the posterior distributidan 1 |t 5) iS given
by

varfaniity] = c—kTCr'k+ ch—lcN(I +WxyCy) 'Cy'k
= c—k'Cy [I-(Cy' +Wn)'Cy']k
= ¢—k'Cy(Cy +Wy)"Wyk
= c—k'(Wy +Cpy)"!
as required.
Using (4.135), (6.80) and (6.85), we can approximate (6.89) as fsilow

pixle) = [ ptvlanp(anio) day
p(tylay)p(ay|0)
/exp {—; (ay —ak) H(ay — a?v)} day

(27r)N/2
‘H|1/2 '

1

= exp(¥(ay))

Taking the logarithm, we obtain (6.90).
To derive (6.91), we gather the terms from (6.90) that inv@lyg, yielding

1
-3 (aN'Cylay + In|Cy|+1In|Wy + C;|)
1 1

Applying (C.21) and (C.22) to the first and second terms, respagtive get (6.91).
Applying (C.22) to the |.h.s. of (6.92), we get

31n|WN+C 1|8a 1 al _1\—1 OW\ Oa},
“Z ar 20, __2§Tr Wy +C3) " 5ar ) o0,

n=1

N
- 1 1 OW \ Oar
=-3 ng_l Tr <(CNWN + I) Cn 8@;) aej . (215)

Using the definition oW together with (4.88), we have
dW,,,, do’ (1 —o})
day, da},
= op(l—0p)’ —oy?(1—0p)
= op(l—o03)(1-207)
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Solution 7.1

Chapter 7

and substituting this into (215) we the the r.h.s. of (6.92).
Gathering all the terms in (6.93) involvirigy:;, /06; on one side, we get

day  0Cy
(I+CNxWy) 26, ~ 06, (tv —on).

Left-multiplying both sides witH{I + Cy'W )~ !, we obtain (6.94).

Sparse Kernel Machines

7.1

From Bayes’ theorem we have

p(tx) o< p(x|t)p(t)

where, from (2.249),

1 <A1
p00) = - D kX301
n=1

HereN, is the number of input vectors with labgl+1 or —1) andN = N, + N_;.
d(t,t,) equalsl if t = t,, and0 otherwise. Z;, is the normalisation constant for
the kernel. The minimum misclassification-rate is achieved if efach new input
vector,x, we chosé to maximisep(t|%). With equal class priors, this is equivalent
to maximizingp(x|t) and thus

1 1
+1 iff — k(x,x;) > — k(x,x;
N'H i:tizi-l ( ) N_y j:tjz_l ( j)

—1 otherwise.

1
|

Here we have dropped the factotZ;, since it only acts as a common scaling factor.
Using the encoding scheme for the label, this classificatitnaan be written in the

more compact form
oy’
t = sign (Z N—nk(i, xn)> :

n=1 tn

Now we takek(x, x,,) = xTx,, which results in the kernel density

Here, the sum in the middle experssion runs over all vectgror whicht,, = +1
andx™ denotes the mean of these vectors, with the correspondingtitefifor the
negative class. Note that this density is improper, sincavinot be normalized.
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However, we can still compare likelihoods under this densgsulting in the classi-
fication rule

i+ if xTxt > xTx",
] —1 otherwise.

The same argument would of course also apply in the feature gpja¢e

Consider multiplying both sides of (7.5) by > 0. Accordingly, we would then
replace all occurences of andb in (7.3) withyw and~b, respectively. However,
as discussed in the text following (7.3), its solution watandb is invariant to a
common scaling factor and hence would remain unchanged.

Given a data set of two data points; € C, (t; = +1) andxy, € C_ (t2 =
—1), the maximum margin hyperplane is determined by solving (TuBjest to the
constraints

WTX1+b = +1 (216)
wix,+b = —1. (217)

We do this by introducing Lagrange multiplieksandn, and solving
1
arg min {2||w|2 + A (WTX1 +b— 1) +n (wa2 +b+ 1)} .
w,b

Taking the derivative of this w.r.tv andb and setting the results to zero, we obtain

0 = w+Axy + %2 (218)
0 = A+n. (219)
Equation (219) immediately gives= —r, which together with (218) give

w = A(x; — Xz). (220)

For b, we first rearrange and sum (216) and (217) to obtain
2b = —w" (x; + x3).
Using (220), we can rewrite this as

A
b = —5 (Xl — XQ)T (X1 —+ XQ)

A
= *5 (XrlI‘Xl — XEXQ) .
Note that the Lagrange multiplierremains undetermined, which reflects the inher-
ent indeterminacy in the magnitudewfandb.
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7.4 From Figure 4.1 and (7.4), we see that the value of the margin

1
andso — = ||w]?*.

p = —
[w P’

From (7.16) we see that, for the maximum margin solution, thersgterm of (7.7)

vanishes and so we have
1

Using this together with (7.8), the dual (7.10) can be written as

L(w,b,a) |WH2.

from which the desired result follows.

7.5 These properties follow directly from the results obtained in thetsm to the pre-
vious exercise, 7.4.

7.6 If p(t =1ly) = o(y), then
pt=—1ly) = 1-pt=1y) = 1 -0o(y) = o(-y),

where we have used (4.60). Thus, given i.i.d. data= {(t1,%,),..., (tn,XN)},
we can write the corresponding likelihood as

N
p(D) = [[own) I o) =11 otnwn),

tn=1 tr=—1

wherey,, = y(x,), as given by (7.1). Taking the negative logarithm of this, we get
N
- lnp(D) = —In H U(tnyn)
n=1

N
Z Ino(thyn)
n=1

N
= Z ln(l + eXp(*tnyn)%
n=1

where we have used (4.59). Combining this with the regularization \ || w||?, we
obtain (7.47).
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7.7 We start by rewriting (7.56) as
N N 1 N
~ . o~
> Cé+ 2_:1 Clu+ 5w'w - ;(unén + Finkn)

an(e + En + WTd)(Xn) + b - tn)

i
IM="

N
= Gn(e+ & — whe(x,) — b+ t),
n=1

where we have used (7.1). We now use (7.1), (7.57), (7.59) and (7.6@yriterthis
as

n:11 N N " N

+3 Zp ) — ) (s Z i + Tint)
N N N
Z(anfn +Ankn) — eZ(an +an) + Z(a — Gt
n;l N n=1 n=1

=30 D (= @) am = ) $(x) Tl —bz N ).
n=1m=1

If we now eliminate terms that cancel out and use (7.58) to edimithe last term,
what we are left with equals the r.h.s. of (7.61).

7.8 This follows from (7.67) and (7.68), which in turn follow from the KKT atitions,
(E.9)—(E.11), fonu,,, &, 11, and&,, and the results obtained in (7.59) and (7.60).

For example, fop,, and¢,,, the KKT conditions are

& =2 0
pn = 0
pnén = 0 (221)
and from (7.59) we have that
o =C — ay,. (222)
Combining (221) and (222), we get (7.67); similar reasoning@tpandgn lead to

(7.68).
7.9 From (7.76), (7.79) and (7.80), we make the substitutions

x=w p=0 A= dagla)
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7.10

y=t A=® b=0 L= /gl

in (2.113) and (2.114), upon which the desired result follows from1@).land
(2.117).

We first note that this result is given immediately from (2.113)-42)1but the task
set in the exercise was to practice the technique of complétiegquare. In this
solution and that of Exercise 7.12, we broadly follow the prest@ in Section
3.5.1. Using (7.79) and (7.80), we can write (7.84) in a form simdg3t78)

3 )N/2 1

M
P(tIX, a0, 5) = (% oo Lo [eo By o @29)

where )

E(w) = g”t — dw|* + EWTAW
andA = diag(a).
Completing the square over, we get

E(w) = %(w ~m)'S(w —m) + E(t) (224)

wherem andX are given by (7.82) and (7.83), respectively, and
E(t) = % (ATt —m"%"'m). (225)
Using (224), we can evaluate the integral in (223) to obtain
/exp {—E(w)} dw = exp {—E(t)} (2m)M/?|x|'/2, (226)
Considering this as a function ofwe see from (7.83), that we only need to deal
with the factorexp {—E(t)}. Using (7.82), (7.83), (C.7) and (7.86), we can re-write
(225) as follows

Et) = ATt —m"="'m)

(
(BtTt—ptTeETE ' ne tp)

th (81— peE®3)t

th (B - BR(A + 52 @) '®TB)t

T (87 T+ 2ATIST)

[l M S B N I NCR I NN

= —tTc't.
2
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This gives us the last term on the r.h.s. of (7.85); the two prege@dirms are given
implicitly, as they form the normalization constant for the jpoistr Gaussian distri-
butionp(t|X, a, 3).

If we make the same substitutions as in Exercise 7.9, the desisett follows from
(2.115).

Using the results (223)—(226) from Solution 7.10, we can write (7r88)e form of
(3.86):

N 1o 1 N
np(t|X,a, f) = - nf+ o > na; - E(t) - 5[] = 5 In2r). (227)

By making use of (225) and (7.83) together with (C.22), we can tia&a&erivatives
of this w.r.ta;, yielding
1 1 1

IV 22
pe ~ 3% 5 (228)

0
1 X =
5o mp(tX. )

Setting this to zero and re-arranging, we obtain
R

ai:72 = —F

2 )
m; m;

where we have used (7.89). Similarly, fémwe see that

0 1 /N
33 Inpt|X, o, B) = 5 (5 — It — ®m||> — Tr [2<1>T<1>]> ) (229)
Using (7.83), we can rewrite the argument of the trace operator as
TP = X®TP+[7IZA-[FIZA
= Z(@T®3+A)B ! -pIZA
= (A+p527®) (@T®3+ A3 - 37IZA
(I-AX)3 L (230)

Here the first factor on the r.h.s. of the last line equals (7.88)jem in matrix form.
We can use this to set (229) equal to zero and then re-arrange to 0h&8).

We start by introducing prior distributions ovarandg,

ple) = Gam (o|ano,bgo),i=1,...,N,
p(B) = Gam(Blago,bso)-

Note that we use an independent, common prior fatvalMe can then combine this
with (7.84) to obtain

p(a, B,tX) = p(t|X, e, B)p(x)p(3).
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Rather than maximizing the r.h.s. directly, we first take ttgaldhm, which enables
us to use results from Solution 7.12. Using (227) and (B.26), we get

N
N 1 1 N
Inp(a, 4,1|X) = ?lnﬁ t3 E Ina; — E(t) — 5 In|X| — 51n(27r)

N
~NInT(dao) " + Naaonbag + Y _ ((aao — 1) Ine; — baper;)
i=1

—InT(ago) ™" +apgoInbgy + (ago — 1) In B — bgo3-
Using (228), we obtain the derivative of this w.nt. as

1 1
2Ck7; 2

0 Qa0 — 1
aai lnp(a,ﬂ,t\X) -

1
Eii — §mf + — baO-

Q5

Setting this to zero and rearranging (cf. Solution 7.12) we obtain

new
%

_’Yi+2a040_2

mf — 2ba0 ’

where we have used (7.89).

For 3, we can use (229) together with (B.26) to get

9 (N 2 _ T ago—1
%lnp(a,ﬁ,tX)2<ﬁ [t — ®m|® - Tr [Z® @})+ 5 bso-

Setting this equal to zero and using (7.89) and (230), we get

1 [t — ®mlf> + 2bs

ﬁncw a50+2+N—Zi’yi'

7.14 If we make the following substitions from (7.81) into (2.113),
X=W g=m A_1:>E,
and from (7.76) and (7.77) into (2.114)
y=t A=¢x" b=0 L= 31,

(7.90) and (7.91) can be read off directly from (2.115).
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Using (7.94), (7.95) and (7.97)—(7.99), we can rewrite (7.85) as follows

1
ptX,08) = ~3{Nen) 4+ mC |1+ o T C

C_ Tc-
—|—tT (C; —1 ‘iozfz > t}
a’t + 50 C—Z (PZ

1 —
= 73 {NIn(27) +In|C_;| +t"CZjt}

+ ClpplCT| t]

1
4= | =In|l +a; '/ Clp,| +t
2[ | i i CLiwil o+ @TC g,

1 q;
= L(Oéfi) + 5 |:1I1 a; — ln(ai + Si) + W:|

= L(O{,i) + )\(Ckz)

If we differentiate (7.97) twice w.r.ty;, we get

a2y 11 Lo !
do?  2\a?  (a;+s:)2)°

7

This second derivative must be negative and thus the solgiiem by (7.101) cor-
responds to a maximum.

Using (7.83), (7.86) and (C.7), we have
Lo BI— % (A +507R) 9T = f1— 5T

Substituting this into (7.102) and (7.103), we immediatelagb(7.106) and (7.107),
respectively.

As the RVM can be regarded as a regularized logistic regressionlmeeecan
follow the sequence of steps used to derive (4.91) in Exercisketd.derive the first
term of the r.h.s. of (7.110), whereas the second term follows frondatd matrix
derivatives (see Appendix C). Note however, that in Exercis8 #é are dealing
with the negative log-likelhood.

To derive (7.111), we make use of (161) and (162) from Exercise 4.13e {frite
the first term of the r.h.s. of (7.110) in component form we get

N

0 6yn 8an
% Z(tn - yn>¢nz = - Z da, awj ¢m

J n=1

= _Zyn — Yn ¢n]¢nza

which, written in matrix form, equals the first term inside the paresis on the r.h.s.
of (7.111). The second term again follows from standard matrix derést
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7.19 NOTE: In the1®' printing of PRML, on line 1 of the text of this exercise, “approxi
mate log marginal” should be “approximate marginal”.

We start by taking the logarithm of (7.114), which, omitting tethvegt do not depend
on «, leaves us with

. 1 1 1 2
Inp(w |a)+§ln|2| =—3 <1n|2 |+Z(wz) ai—lnai>,

where we have used (7.80). Making use of (7.113) and (C.22), we ffarediiate
this to obtain (7.115), from which we get (7.116) by using= 1 — a;3;;.

Chapter 8 Graphical Models

8.1 We want to show that, for (8.5),

;;p Z ZHPJ?HP% =1.

T k=1

We assume that the nodes in the graph has been numbered such ihé#te root
node and no arrows lead from a higher numbered node to a lower nuinede.
We can then marginalize over the nodes in reverse order, stariting: x

K—
ZMZP(X) = Z-~-ZP($K\P3K H p(zk|pay)
RSP T tovioos

rr—1 k=1

since each of the conditional distributions is assumed t@b@ctly normalized and
none of the other variables depend:on. Repeating this proceds — 2 times we

are left with
Z p(z1|0) = 1.

8.2 Consider a directed graph in which the nodes of the graph are machbach that
are no edges going from a node to a lower numbered node. If thers axd#tected
cycle in the graph then the subset of nodes belonging to tiesteid cycle must also
satisfy the same numbering property. If we traverse the cycle initbetwn of the
edges the node numbers cannot be monotonically increasiog wi@ must end up
back at the starting node. It follows that the cycle cannot beectdid cycle.
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Comparison  of the distribu- ]a ‘ b‘ p(a,b) ‘
tion p(a,b) with the product of 0101 336000
marginals p(a)p(b) showing that :

these are not equal for the given 0] 1| 264.000
joint distribution p(a, b, ¢). 110 | 256.000
1| 1| 144.000

Lalb] pla)pd) |

0 | 0 | 355200.000

0 | 1| 244800.000

1] 0| 236800.000

1|1 163200.000

The distributiorp(a, b) is found by summing the complete joint distributipfa, b, ¢)
over the states af so that

pla,b) = > pla,b,c)
ce{0,1}
and similarly the marginal distributionga) andp(b) are given by
pla) = Z Z (a,b,¢) and p(b) Z Z (a,b,c). (231)
be{0,1} ce{0,1} ac{0,1} ce{0,1}

Table 1 shows the joint distributiop(a,b) as well as the product of marginals
p(a)p(b), demonstrating that these are not equal for the specified distnib

The conditional distribution(a, b|c) is obtained by conditioning on the value of
and normalizing

p(a,b,c)
Zae{(),l} Zbe{o,l} pla,b,c)’
Similarly for the conditionalg(a|c) andp(b|c) we have
Zbe{m} p(a,b,c)
ac{0,1} Zbe{o,l} p(a,b,c)

p(a,ble) =

plale) = 5

and
ZaE{O,l} p(a7 b> C)

p(tle) = |
Zae{o,l} ZbE{O,l} p(a7 b7 C)

Table 2 compares the conditional distributjefa, b|c) with the product of marginals
p(ale)p(b|c), showing that these are equal for the given joint distribuiém b, ¢)
for bothec = 0 ande = 1.

(232)

In the previous exercise we have already compupted in (231) andp(b|c) in (232).
There remains to computéc|a) which is done using

> befoqy Plasb,c)
Zbe{oﬂ} Zc€{0,1} p<a> b, C)

p(cla) =
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Table 2 Comparison of the condi- ’
tional distribution p(a,b|c) with the
product of marginals p(alc)p(b|c) show-
ing that these are equal for the given
distribution.

p(b|c) evaluated by marginalizing and
conditioning the joint distribution of

Table 8.2.

Solutions 8.5-8.6

a|b]c]plabl) | [a]b]c]plale)p(ble) |

0|00 0.400 0|00 0.400

010 0.100 0|10 0.100

1100 0.400 1/{0|0 0.400

11110 0.100 1{1]0 0.100

001 0.277 001 0.277

0O([1]1 0.415 0O([1]1 0.415

1101 0.123 1101 0.123

1(1]1 0.185 1111 0.185

The required distributions are given in Table 3.

Table 3 Tables of p(a), p(cla) and  [a [ p(a) | [c[a]p(a)] [ b ] ¢ | p(ble)
0 | 600.000 0| 0] 0.400 0| 0| 0.800
1 | 400.000 1| 0] 0.600 1|01 0.200
0| 1] 0.600 0| 1| 0.400
1|1/ 0.400 1|1/ 0.600

Figure 4

8.5

8.6

Multiplying the three distributions together we recover thatdistributionp(a, b, ¢)
given in Table 8.2, thereby allowing us to verify the validitytbE decomposition
p(a,b,c) = p(a)p(cla)p(blc) for this particular joint distribution. We can express
this decomposition using the graph shown in Figure 4.

Directed graph representing the joint distribution « c b

given in Table 8.2. ( ) ,( ) ,( )

NOTE: In PRML, Equation (7.79) contains a typographical erygt;, |x,,, w, 37 !)
should bep(t,, |x,,, w, 3). This correction is provided for completeness only; it does
not affect this solution.

The solution is given in Figure 5.

NOTE: In PRML, the text of the exercise should be slightly altereéapk consult
the PRML errata.

In order to interpret (8.104) suppose initially that = 0 and thaty; = 1 — ¢
wheree < 1fori = 1,..., K. We see that, if all of the;; = 0 thenp(y =
lz1,...,7x) = 0 while if L of thez; = 1thenp(y = 1|zy,...,2x) = 1 — €&
which is close td.. Fore — 0 this represents the logical OR function in whigh= 1
if one or more of ther; = 1, andy = 0 otherwise. More generally, if just one of
thex, = 1 with all remainingz;.; = 0 thenp(y = 1jzy,...,2x) = p; and so
we can interprefi; as the probability off = 1 given that only this one;; = 1. We
can similarly interprej., as the probability ofy = 1 when all of thex; = 0. An
example of the application of this model would be in medidabdosis in whichy
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Figure 5 The graphical representation of the relevance
vector machine (RVM); Solution 8.5.

represents the presence or absence of a symptom, and eachrptéipeesents the
presence or absence of some disease. Foitthdisease there is a probability
that it will give rise to the symptom. There is also a backgrourabability ..o that
the symptom will be observed even in the absence of diseaseadtiqge we might
observe that the symptom is indeed present (soithatl) and we wish to infer the
posterior probability for each disease. We can do this using8akieorem once we
have defined prior probabilitiesz;) for the diseases.

8.7 Starting withy, (8.11) and (8.15) directly gives

=Y wiiElz;] + b = by,
JED

fo = Z wo; E[z;] + by = wa1by + by

j€{z1}

and
Mg = Z ws;E[z;] 4+ by = wsz(wa1b1 + b2) + bs.
je{z2}

Similarly for X, using (8.11) and (8.16), we get

covlzy, ] = Zwljcov[xl,xk} + vy = vy,

ke
COV[QZl,IQ] = Z U}QjCOV[l’l,J?k] + .[121}2 = W21V,
ke{x,}
cov(ry, x3] = Z wsjcov(zy, Tg] + 1303 = Waawaq vy,
ke{x2}
cov[za, xa] = Z WajCOV|[Ta, T ] + [oovs = wglvl + Vg,
ke{x,}
cov|zs, x3] = Z wsjCcov|xy, x| + logvs = wgg(wglvl + v3)

ke{xs}



140

Solutions 8.8-8.10

8.8

8.9

8.10

and

cov(zs, x3] = Z wsjcov(zs, ] + Is3vs = w§2(w311}1 + vg) + v,
ke{zo}

where the symmetry aE gives the below diagonal elements.

a 1L b, c | d can be written as
p(a, b, c|d) = p(ald)p(b, c|d).
Summing (or integrating) both sides with respect,tave obtain
p(a,bld) = p(ald)p(bld) ~ or  allbld,
as desired.

Consider Figure 8.26. In order to apply the d-separation criteriemeed to con-
sider all possible paths from the central nogeo all possible nodes external to the
Markov blanket. There are three possible categories of such.pgiitss, consider
paths via the parent nodes. Since the link from the parent notie tooidex; has its
tail connected to the parent node, it follows that for any sudh g& parent node
must be either tail-to-tail or head-to-tail with respect to ththpd@hus the observa-
tion of the parent node will block any such path. Second cemgdths via one of
the child nodes of node; which do not pass directly through any of the co-parents.
By definition such paths must pass to a child of the child nattk leence will be
head-to-tail with respect to the child node and so will be bldck&he third and
final category of path passes via a child nod&pénd then a co-parent node. This
path will be head-to-head with respect to the observed child aodehence will
not be blocked by the observed child node. However, this pdtreither tail-to-
tail or head-to-tail with respect to the co-parent node and hebserwation of the
co-parent will block this path. We therefore see that all posghtés leaving node
x; Will be blocked and so the distribution &f, conditioned on the variables in the
Markov blanket, will be independent of all of the remaining ahfées in the graph.

From Figure 8.54, we see that

p(a;b, ¢,d) = p(a)p(b)p(cla, b)p(d|c).

Following the examples in Section 8.2.1, we see that

pla,b) = Y plabe,d)
c d
p(@)p(b) Y plcla,b) Y p(dle)
c d

= pla)p(b).
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Similarly,

> .plab,c,d)
Za Zb Zc p(a, b> &) d)
p(dla, b)p(a)p(b)
p(d)
# plald)p(b|d)

in general. Note that this result could also be obtained dirdtim the graph in
Figure 8.54 by using d-separation, discussed in Section 8.2.2.

p(a, b‘d> =

8.11 The described situation correspond to the graph shown in Figbdevtha = B,
b=F,c=Gandd = D (cf. Figure 8.21). To evaulate the probability that the tank
is empty given the driver’s report that the gauge reads zero, we axgesBtheorem

p(D = 0[F = 0)p(F = 0)

p(F = 0[D = 0) = D=0

To evaluatep(D = 0|F = 0), we marginalize oveB3 andG,

p(D=0|F =0)=> p(D=0/G)p(G|B,F =0)p(B) =0.748  (233)
B,G

and to evaluatg(D = 0), we marginalize also over,

p(D=0)= > p(D=0|G)p(G|B, F)p(B)p(F) = 0.352. (234)
B,G,F

Combining these results wifi{ F = 0), we get
p(F =0|D =0)=0.213.
Note that this is slightly lower than the probability obtaina (8.32), reflecting the

fact that the driver is not completely reliable.

If we now also observ& = 0, we longer marginalize ovds in (233) and (234), but
instead keep it fixed at its observed value, yielding

p(F =0|D=0,B=0)=0.110

which is again lower than what we obtained with a direct obsemweof the fuel
gauge in (8.33). More importantly, in both cases the value isddiren before we
observedB = 0, since this observation provides an alternative explanationtive
gauge should read zero; see also discussion following (8.33).

8.12 In an undirected graph af/ nodes there could potentially be a link between each
pair of nodes. The number of distinct graphs is then 2 raiselegower of the
number of potential links. To evaluate the number of digtlimks, note that there
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Figure 6

8.13

8.14

8.15

are M nodes each of which could have a link to any of the othér— 1 nodes,
making a total ofM (M — 1) links. However, each link is counted twice since, in
an undirected graph, a link from nodeo nodeb is equivalent to a link from node
b to nodea. The number of distinct potential links is therefav& M — 1)/2 and so
the number of distinct graphs 287(»-1/2_ The set of 8 possible graphs over three
nodes is shown in Figure 6.

oo do ob oo
Lo o 4%

The set of 8 distinct undirected graphs which can be constructed over M = 3 nodes.

The change in energy is

E(l‘j =+1) - E(.Tj =-1)=2h—-20 Z x; — 2ny;
i€ne(j)

wherene(j) denotes the nodes which are neighbours of

The most probable configuration corresponds to the configuratitintihe lowest
energy. Sincey is a positive constant (anfd= 5 = 0) andz;,y; € {—1,+1}, this
will be obtained whenx; = y; foralli =1,...,D.

The marginal distributiom(z,,_1, z,,) is obtained by marginalizing the joint distri-
butionp(x) over all variables except,_; andz,,

P(Trn_1,%n) :Z Z Z Zp(x)

Tn—2 Tn+1 TN

This is analogous to the marginal distribution for a singlealalg, given by (8.50).

Following the same steps as in the single variable case dedarbSection 8.4.1,
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we arrive at a modified form of (8.52),

pan) = 5

Z wn72,nfl(xn72’ xnfl) e [Z ¢1,2(x17 .’Ez)] e ’l/)nfl,n(xnfh xn)

o (Tn—1)
Z '(/)n,n+1(l’n,l’n+1> . [Z wN—l,N(xN—h-IN)] ],
1 (zn)

from which (8.58) immediately follows.

8.16 Observingxy = Xy will only change the initial expression (message) for fhe
recursion, which now becomes

pa(Xn—1) = Yn—1,N(XN-1,XN).

Note that there is no summation owey. p(x,) can then be evaluated using (8.54)—
(8.57)foralln=1,...,N — 1.

8.17 With N = 5 andx3 andxz; observed, the graph from Figure 8.38 will look like in
Figure 7. This graph is undirected, but from Figure 8.32 we seelibadquivalent

Figure 7 The graph discussed in Solu- O 7\ . 7\
I Xro T3

tion 8.17. \_/ U

Ty xIs

directed graph can be obtained by simply directing all the eftges left to right.
(NOTE: In PRML, the labels of the two rightmost nodes in Figure 8.32tudth be
interchanged to be the same as in Figure 8.32a.) In this direcsguh gthe edges
on the path frome, to x5 meet head-to-tail at; and sincers is observed, by d-
separation:, Il x5|x3; note that we would have obtained the same result if we had
chosen to direct the arrows from right to left. Alternatively, we cou@ve obtained
this result using graph separation in undirected graphs, ilkestia Figure 8.27.

From (8.54), we have

p(e2) = Zha(ea)is(es) (235)

ta(22) is given by (8.56), while foyiz(x2), (8.57) gives

pa(xe) = Z V2,3(%2, T3) g (23)

]

= 1) 3(wa, T3)pp(Ts3)



144 Solutions 8.18-8.19

Figure 8

8.18

8.19

The graph on the left is an T T2 T T2
undirected tree. If we pick
x4 to be the root node and
direct all the edges in the
graph to point from the root
to the leaf nodes (z1, x> and
x5), we obtain the directed
tree shown on the right. T4 L5 T4 Ts5

I3 Zs3

sincexs is observed and we denote the observed valuerhus, any influence that
x5 might have onuz(73) will be in terms of a scaling factor that is indepedent:of
and which will be absorbed into the normalization constamt (235) and so

p(132|333a$5) = p(a:2|x3).

The joint probability distribution over the variables in a gexalirected graphical
model is given by (8.5). In the particular case of a tree, each nasla kingle parent,
sopa,, will be a singleton for each nodg, except for the root node for which it will
empty. Thus, the joint probability distribution for a tree wik lsimilar to the joint
probability distribution over a chain, (8.44), with the differertbat the same vari-
able may occur to the right of the conditioning bar in severalitional probability
distributions, rather than just one (in other words, althougihemde can only have
one parent, it can have several children). Hence, the argum&dtion 8.3.4, by
which (8.44) is re-written as (8.45), can also be applied to proibablistributions
over trees. The result is a Markov random field model where eachttinction
corresponds to one conditional probability distribution indivected tree. The prior
for the root node, e.gu(x;) in (8.44), can again be incorporated in one of the poten-
tial functions associated with the root node or, alternatjvedy be incorporated as a
single node potential.

This transformation can also be applied in the other directiamerGan undirected
tree, we pick a node arbitrarily as the root. Since the graph is attiees is a
unigue path between every pair of nodes, so, starting at rootvarkding outwards,
we can direct all the edges in the graph to point from the root toehénodes.
An example is given in Figure 8. Since every edge in the tree carnesm a two-
node potential function, by normalizing this appropriately, aixain a conditional
probability distribution for the child given the parent.

Since there is a unique path beween every pair of nodes in arecteti tree, once
we have chosen the root node, the remainder of the resultingelireee is given.
Hence, from an undirected tree witf nodes, we can construst different directed
trees, one for each choice of root node.

If we convert the chain model discussed in Section 8.4.1 intactof graph, each
potential function in (8.49) will become a factor. Under théstbr graph model,
p(z,,) is given by (8.63) as

p(xn) = an71771—>$n (In)ufn,nJrl_’-Tn (xn> (236)
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where we have adopted the indexing of potential functions frodBj&o index the
factors. From (8.64)—(8.66), we see that

Bfn 1 n—zn (xn) = Z wnfl,n(:yn*l?xn)umn—1*>fn—1,n (.an,l) (237)
Tnp—1
and
/’l’fn,n+1_’xn (xn) = Z ¢n,n+1(x7u $7L+1)/’L:En+1—>fn,n+1(xn+1)' (238)
Tn41

From (8.69), we further see that

/Ll’n—l*’fn—l,n ("Enfl) = N‘fn—z,n—l*ﬁrn—l (‘rnfl)

and
K1 — frnta ($n+1) = Hfrngingz—Tng (xn+1)-

Substituting these into (237) and (238), respectively, we get

[fos s, (Tn) = Z Un—1,0(Tn—15 T )W fr s o1 —wp—s (Tn—1) (239)

Tn—1

and

,ufn)nJrl—»wn (In) - Z d}n,n—i-l(xna ‘rn+1)“fn+1,n+2*>ln+1 (xn+1)~ (240)

Tn+1

Since the messages are uniquely identified by the index of #rguments and
whether the corresponding factor comes before or after the argumoele in the
chain, we can rename the messages as

Hfnomn—1—Tn_1 (In—l) = ,uoz(wn—l)

and
Hfrginiz—Tnit (xn—i-l) = Kp (ITH-l)‘

Applying these name changes to both sides of (239) and (240gatbagly, we re-
cover (8.55) and (8.57), and from these and (236) we obtain (8.54)pthealization
constant /Z can be easily computed by summing the (unnormalized) r.h(8.54).
Note that the end nodes of the chain are variable nodes whichusginmessages to
their respective neigbouring factors (cf. (8.56)).

We do the induction over the size of the tree and we grow the tre@ode at a time
while, at the same time, we update the message passing sehBidte that we can
build up any tree this way.

For a single root node, the required condition holds trivialletrsince there are no
messages to be passed. We then assume that it holds for a tie¥ witdes. In the
induction step we add a new leaf node to such a tree. This néwdel® need not
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8.21

8.22

to wait for any messages from other nodes in order to send its ingtgessage and
so it can be scheduled to send it first, before any other messagssrd. Its parent
node will receive this message, whereafter the message prapagait follow the
schedule for the original tree witN nodes, for which the condition is assumed to
hold.

For the propagation of the outward messages from the root bacle tedles, we
first follow the propagation schedule for the original tree wikhnodes, for which
the condition is assumed to hold. When this has completedpanent of the new
leaf node will be ready to send its outgoing message to the eafinbde, thereby
completing the propagation for the tree with+ 1 nodes.

NOTE: In the1®* printing of PRML, this exercise contains a typographical errar. O
line 2, f,(xs) should bef,(x;).

To computep(xs), we marginalizep(x) over all other variables, analogously to

(8.61),
=) p(x)

x\xs

Using (8.59) and the defintion df,(x, X) that followed (8.62), we can write this
as

p(xs) - Zfs(xs H H F(quzj)

x\ x5 i€ne(fs) jeEne(x;)\ fs

) I Y. I B xip)

i€ne(fs) x\xs j€ne(z;)\ fs

H :ua:i—>fs ivi )

i€ne(fs)

where in the last step, we used (8.67) and (8.68). Note that thgimatization over
the different sub-trees rooted in the neighbourg oivould only run over variables
in the respective sub-trees.

Let X, denote the set of variable nodes in the connected subgrapleoésh and
X, the remaining variable nodes in the full graph. To compute the phistribution
over the variables iX,, we need to marginalize(x) over X,

=) p(x)

We can use the sum-product algorithm to perform this marginadiz&tficiently, in
the same way that we used it to marginalize over all variahles,bwhen computing
p(z,,). Following the same steps as in the single variable case (se®1$58.4.4),
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we can write can write(X,) in a form corresponding to (8.63),

p(Xa)

Hfsa(Xsa) H ZFS(mmXé)

seneX, X

[T T s (@) (241)

s€neX,

Here, s, indexes factors that only depend on variablesXin and soX,, C X,

for all values ofs,; s indexes factors that conneat, and X; and hence also the
corresponding nodes, € X,. X, C X, denotes the variable nodes connected to
x via factor f;. The messaggsy, .., (zs) can be computed using the sum-product
algorithm, starting from the leaf nodes in, or connected to noges,. Note that the
density in (241) may require normalization, which will involuensming the r.h.s. of
(241) over all possible combination of values oy,.

This follows from the fact that the message that a nadewill send to a factorf,,
consists of the product of all other messages received biyrom (8.63) and (8.69),
we have

ple) = J[ mp—ei@)

s€ne(x;)
= Hfooa (i) H Pfy—a; (Ti)
t€ne(x;)\ fs

NOTE: In PRML, this exercise contains a typographical error. On thtlias,
f(xs) should bef(x).

See Solution 8.21.
NOTE: In the 1%* printing of PRML, equation (8.86) contains a typographical error

On the third line, the second summation should sum eyenotz,. Furthermore,
in equation (8.79), fi,—r,” (no argument) should be;, . ¢, (z2)".
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Starting from (8.63), using (8.73), (8.77) and (8.81)—(8.83), we get

p(x1) = ppo—a (1)
Zfa(xhxz)uzwfa (z2)

Zfa :171 x2)/’l’fb_’m2(x2)iuf —>3€2(x2)
Zfa Ty, T2 Zfb Lo, T3 ch 502,174
= ZZZfa(:cl,xz fo(z2, 23) fe(22, 24)

To T3 T4

2.2 2 )

T2 T3 T4

Similarly, starting from (8.63), using (8.73), (8.75) and (8.77)—(8.W&) get

5(1‘3) = :L/“fb—w:s(x?))
Zfb($27$3)ﬂx2—>fb($2)

T2

Zfb T2, T3) [t fo - (T2) i fo oy (T2)
Zfb Lo, T3 Zfa L1, T2 ch T2, T4)
ZZZfa 1, 22) fo (T2, 73) fe (22, 24)

1 T2 T4

= 2.2 0 0

1 T2 T4

Finally, starting from (8.72), using (8.73), (8.74), (8.77), (8.81) an84B we get

p(r1,w2) = fa(zy, m2) e, — g, (T1) oy g, (22)
= fal®1, o) pfy—a, (T2)pfo -y (T2)

— fa(;m,xz)Zfb(xg,xg)Zfb@%M)
= ZZfa(x17x2)fb(x2;xS)fb(xz,x4)

T3 T4

= > > bx)

T3 Xy
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8.26 We start by using the product and sum rules to write

8.27

8.28

8.29

D(@as ) = plaslea)p@a) = > p(x) (242)

X\ab

wherex, ,;, denote the set of all all variables in the graph exegpandz,,.

We can use the sum-product algorithm from Section 8.4.4 to firstiai&l(z, ), by
marginalizing over all other variables (including). Next we successively fix,,
at all its allowed values and for each value, we use the sum-ptadgorithm to
evaluatep(xp|z,), by marginalizing over all variables excepf andz,, the latter
of which will only appear in the formulae at its current, fixed valtinally, we use
(242) to evaluate the joint distributigix,, x).

An example is given by

l2=0 z=1 x=2
y=0 00 01 02
y=1| 00 01 02
y=2| 03 01 00

for whichz = 2 andy = 2.

If a graph has one or more cycles, there exists at least one sete$ mamd edges
such that, starting from an arbitrary node in the set, we can vigtt@hodes in the
set and return to the starting node, without traversing any edge tian once.

Consider one particular such cycle. When one of the nadeés the cycle sends a
message to one of its neighboursin the cycle, this causes a pending messages on
the edge to the next nodg in that cycle. Thus sending a pending message along an
edge in the cycle always generates a pending message on trezlgexn that cycle.
Since this is true for every node in the cycle it follows that theilbalways exist at
least one pending message in the graph.

We show this by induction over the number of nodes in the tnaeistred factor
graph.

First consider a graph with two nodes, in which case only twosagss will be sent
across the single edge, one in each direction. None of thessagesswill induce
any pending messages and so the algorithm terminates.

We then assume that for a factor graph withnodes, there will be no pending
messages after a finite number of messages have been semt.sGivea graph, we
can construct a new graph wif¥i + 1 nodes by adding a new node. This new node
will have a single edge to the original graph (since the graph mamstin a tree)
and so if this new node receives a message on this edge, indilce no pending
messages. A message sent from the new node will trigger propagdtmessages
in the original graph withV nodes, but by assumption, after a finite number of
messages have been sent, there will be no pending message atgorithm will
terminate.



150 Solutions 9.1-9.4
Chapter 9 Mixture Models and EM
9.1 Since both the E- and the M-step minimise the distortion megSut® the algorithm
will never change from a particular assignment of data poinfgatotypes, unless
the new assignment has a lower value for (9.1).
Since there is a finite number of possible assignments, eathaxgorresponding
unique minimum of (9.1) w.r.t. the prototypefy, }, the K-means algorithm will
converge after a finite number of steps, when no re-assignmeatditaf points to
prototypes will result in a decrease of (9.1). When no-reassignta&es place,
there also will not be any change fip; }.
9.2 Taking the derivative of (9.1), which in this case only involwgs w.r.t. ., we get
oJ
— =2 n n = .
PR Tnk(X Bi) = z(py)
Substituting this into (2.129), witp,. replacingd, we get
1 = R 4 (% — pY)
where by (9.2)u5' will be the prototype nearest to, and the factor of 2 has been
absorbed intay,,.
9.3 From (9.10) and (9.11), we have
K
x) =Y p(x[z)p(z) = Y]] (N (X, Zh))™
z z k=1
Exploiting the 1-of K representation faz, we can re-write the r.h.s. as
5 [T (el B0 = Z% (<l )
j=1 k=1
wherel;,; = 1if k = j and O otherwise.
9.4 From Bayes’ theorem we have

p(X|0)p(6)

po1x) = "2

To maximize this w.r.tf, we only need to consider the numerator on the r.h.s. and
we shall find it more convenient to operate with the logarithmhaf expression,
Inp(X|6) + Inp(0) (243)

where we recognize the first term as the l.h.s. of (9.29). Thus wenfdhe steps
in Section 9.3 in dealing with the latent variabl&s, Note that the second term in



9.5

9.6

9.7
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(243) does not involv& and will not affect the corresponding E-step, which hence
gives (9.30). In the M-step, however, we are maximizing @and so we need to
include the second term of (243), yielding

Q(0)6°'Y) +1np(8).

Consider any two of the latent variable nodes, which we denaedz,,. We wish

to determine whether these variables are independent, comeglition the observed
dataxq,...,xy and on the parametegs, X and=w. To do this we consider every
possible path fronz,; to z,,. The plate denotes that there a¥eseparate copies of
the notex,, andx,,. Thus the only paths which connegtandz,, are those which
go via one of the parameter nodgsX or 7. Since we are conditioning on these
parameters they represent observed nodes. Furthermore, any paijhtioree of
these parameter nodes must be tail-to-tail at the parametey aadidnence all such
paths are blocked. Thus andz,, are independent, and since this is true for any pair
of such nodes it follows that the posterior distribution facesi over the data set.

In this case, the expected complete-data log likelihood fandtecomes
N K
Ez [lnp(X, Z|p, 2, )] Z}:;Mnmm+mNmmmzﬂ
n=1 k=1

wherey(z,;) is defined in (9.16). Differentiating this w.r£ ", using (C.24) and
(C.28), we get

N\Z

N K
Z Z Znk) — py) (Xn — Hk)T
n=1 k=1

where we have also used th@k}i1 v(znk) = 1 for all n. Setting this equal to zero
and rearranging, we obtain

l\’)\»—l

Consider first the optimization with respect to the parametggs X }. For this we
can ignore the terms in (9.36) which dependlom;. We note that, for each data
pointn, the quantities,,;, are all zero except for a particular element which equals
one. We can therefore partition the data set ilitgroups, denoteX,,, such that all
the data pointx,, assigned to componehtare in groupX,. The complete-data log
likelihood function can then be written

K
lwmlW&MIZ{ZmMmm&%-

k=1 \(neXy
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This represents the sum &f independent terms, one for each component in the
mixture. When we maximize this term with respectp and X, we will simply

be fitting thek*™ component to the data sX,, for which we will obtain the usual
maximum likelihood results for a single Gaussian, as discliss€hapter 2.

For the mixing coefficients we need only consider the termis iry, in (9.36), but
we must introduce a Lagrange multiplier to handle the constdaipr;, = 1. Thus

we maximize
N K K
Zzznklnﬂk + A (Zﬂk — 1)

n=1 k=1 k=1
which gives
N
=32k A
n=1 Tk
Multiplying through byr;, and summing ovek we obtain\ = — N, from which we
have

T = — Znk = ——
NN

where Ny, is the number of data points in gro{. .

9.8 Using (2.43), we can write the r.h.s. of (9.40) as

N K
1 J—
9 Z 27('2”1)(’(71 - Nj)TE 1(Xn - Mj) + const.,

n=1 j=1

where ‘const.” summarizes terms independent pffor all j). Taking the derivative
of this w.r.t. i, we get

N

= ) (B = 2 x)

n=1
and setting this to zero and rearranging, we obtain (9.17).
9.9 If we differentiate (9.40) w.r.t=; ", while keeping they(z,;,) fixed, we get

o I p(X, 2l B )] = D7D ur) (B~ e~ ) — 1))
n=1 k=1

where we have used (C.28). Setting this equal to zero and rearramggngbtain
(9.19).

Appendix E Form;,, we add a Lagrange multiplier term to (9.40) to enforce the comstrai

K
EZ:WkZZI
k=1
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Solution 9.10

yielding
K
Ez [Inp(X, Z|p, B, 7)] + A (Z T — 1) :

k=1
Differentiating this w.r.tzr;, we get

N,
Zv Znk) 7_._)\_7"7_'_)\
Tk

where we have used (9.18). Setting this equal to zero and rearramgirget

Nk = —7Tk/\.

153

Summing both sides ovér, making use of (9.9), we see that\ = N and thus

T — N.

For the mixture model the joint distribution can be written

P(Xa,Xp) g Tkp(Xa, Xp k).

We can find the conditional densityx;|x,) by making use of the relation

P(Xa, Xp)

Pk =)

For mixture model the marginal density f is given by

K
= Z ka(xa|k)
k=1
where
p(xal) = / p(xa, x0lk) dxs.

Thus we can write the conditional density in the form

K
Zﬂ_k}p(xav Xb’k)

p(Xb|Xa) = =L

K
Z ij(XaU)
j=1
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9.11

9.12

Now we decompose the numerator using

P(Xa; Xp|k) = p(Xp[Xa, k)P(Xa| k)

which allows us finally to write the conditional density as aimie model of the
form

p(xy[xa) = Z Akp(%p]Xa, k) (244)

where the mixture coefficients are given by

71'kp(xa|k)

Z 7T]p Xa |.7

andp(xy|x,, k) is the conditional for componett

)\k— (k| a) (245)

As discussed in Section 9.3.2(z,x) — rn, ase — 0. X = €l for all £ and
are no longer free parameters, will equal the proportion of data points assigned
to clusterk and assuming reasonable initializationzofand { 1, }, 7 will remain
strictly positive. In this situation, we can maximize (9.40).w{u, } independently
of 7r, leaving us with

N K N K
ZZTW InN (x|, €I) = ZZ <—|Xn uk||2> + const.

n=1 k=1 n=1 k=1

which equal the negative of (9.1) upto a scaling factor (whilndependent of

{1 })-

Since the expectation of a sum is the sum of the expectatiertsawe

Z Bk [x Z Ty

whereE x| denotes the expectation efunder the distributiop(x|k). To find the
covariance we use the general relation

covlx] = E[xx"] — E[x|E[x]"
to give
covlx] = E[xx"]-E[xJE[x]"
— Zﬂ'k]Ek [xx"] — Ex]E[x]"

= Zﬂ'k {Zk + prpy } — EX]E[x]".
k=1
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9.13 The expectation ok under the mixture distribution is given by

Z mREx[x Z T b

Now we make use of (9.58) and (9.59) to give

Zﬂ-k Z'Y an
n=1 k=1
1 N

= N len

where we have uset,, = Ny /N, and the fact that(z,,;) are posterior probabilities
and hence , v(zni) = 1.

Now suppose we initialize a mixture of Bernoulli distributidngsetting the means
to a common valug, = pfor k = 1,..., K and then run the EM algorithm. In the
E-step we first compute the responsibilities which will be gitagn

TEP\X Tk
V(an): — p( n|lj'k) _ — =y

> mipxaley) Y om
=1 =1

and are therefore independentofin the subsequent M-step the revised means are
given by

= X

where again we have made usem@f= N, /N. Note that since these are again the
same for allk it follows from the previous discussion that the responsibditia the
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next E-step will again be given by(z,x) = 7, and hence will be unchanged. The
revised mixing coefficients are given by

1 N
N Z’Y(f%zk) =T

n=1

and so are also unchanged. Thus the EM algorithm has convengledoafurther
changes will take place with subsequent E and M steps. Natéttis is a degenerate
solution in which all of the components of the mixture are itit and so this
distribution is equivalent to a single multivariate Bernodiktribution.

9.14 Forming the product of (9.52) and (9.53), we get

K K

H (¢ per.)” H (p(x| ) i)™ -

k=1

If we marginalize this ovez, we get

K K
ZH (p(x|pe) i)™ = ZH X|Nk77k "

z k=1 k=1
K
= E TP X|U]

where we have exploited the 1-&f-coding scheme used far

.
—

9.15 Thisis easily shown by calculating the derivatives of (9.58ltisg them to zero and
solve foruyg;. Using standard derivatives, we get

0 al Tni 1 — Tn;
Ez|lnp(X,Z|p, ™) = Y(2zn o m
Opuri z{lnp( )] z:: g (Mki 1- Uk:z’)
_ Z an: Tni — Z Y an),ukz
/“m(l - /“ﬂ)

Setting this to zero and solving fai,;, we get

o Zn 'Y(an>xni

ki —
D DRCTEAY
which equals (9.59) when written in vector form.

9.16 This is identical with the maximization w.r.fr;, in the Gaussian mixture model,
detailed in the second half of Solution 9.9.
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9.17

9.18
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This follows directly from the equation for the incomplete logelikood, (9.51).
The largest value that the argument to the logarithm on the o (9.51) can have

is 1, sincevn, k : 0 < p(xp|py) < 1,0 < < 1 andeK 7, = 1. Therefore, the
maximum value foin p(X|u, 7) equals 0.

From Solution 9.4, which dealt with MAP estimation for a genen&ture model,
we know that the E-step will remain unchanged. In the M-step wenmiaz

Q(6,6°) +1np()

which in the case of the given model becomes,

N K D
Z ’Y(an) {lnﬂ'k + Z T I s + (1 - xni) ln(l - MkL)]}

=1

K D K
+ 30> {(aj = DInpyer + (b — 1) In(1 — pjir)} Zal—llnm (246)

where we have used (9.55), (2.13) and (2.38), and we have droppedinelepsn-
dent of{u,,} andw. Note that we have assumed that each paramatehas the
same prior for each but this can differ for different componenits

Differentiating (246) w.r.tuy; yields

al Tni 1 — Ty ay 1 — by
Z V(an) - + -
M 1 — g Mri o 1 — pigg

n=1

_Nkfki-l-a—l Np — Ngxp; +b—1
Hki 1 — i

whereN, is given by (9.57) and,; is thei'" element ofk defined in (9.58). Setting
this equal to zero and rearranging, we get

NiZTpi +a—1
Nk—f—a—l-i-b—l'

fki = (247)

Note that ifa;, = by, = 1 for all k, this reduces to the standard maximum likelihood
result. Also, asN becomes large, (247) will approach the maximum likelihood
result.

When maximizing w.r.t,, we need to enforce the constra@k m, = 1, which
we do by adding a Lagrange multiplier term to (246). Dropping temdgpendent
of = we are left with

Z ¥(Znk ln7rk+Zal—lln7rl+/\<Z7rj—l)

n=1 k=1 1=1 j=1
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Solution 9.19

9.19

Differentiating this w.r.tzry,, we get

N +ap—1
Tk

+A

and setting this equal to zero and rearranging, we have
N+ ap — 1 = —Amy,.

Summing both sides ové, usingzk m, = 1, we see that- A = N + oy — K,
whereqy is given by (2.39), and thus

N +ap—1
N + (07 K’
Also in this case, ifo,, = 1 for all k&, we recover the maximum likelihood result

exactly. Similarly, asV gets large, (248) will approach the maximum likelihood
result.

(248)

T —

As usual we introduce a latent varialdg corresponding to each observation. The
conditional distribution of the observed data set, given dberit variables, is then

p(X|Z, p) Hp Xp| )"

Similarly, the distribution of the latent variables is given by

p(Z|m) = HTI'

n=1

The expected value of the complete-data log likelihood famcig given by

N k D M
Z Z’Y(an) {lnﬂ'k + Z Z:}:mj ln,u;ﬂ'j}
n=1

k=1 i=1 j=1
where as usual we have defined responsibilities given by

V(an) = E[an] = M

Z ij(xn“l’j)
j=1

These represent the E-step equations.

To derive the M-step equations we add to the expected compdtdelay likelihood
function a set of Lagrange multiplier terms given by

(m) S ()

k=1 i=1
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9.21
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to enforce the constraint, . T = 1 as well as the set of constraints

M
Z prij =1
j=1

for all values of; andk. Maximizing with respect to the mixing coefficientg, and
eliminating the Lagrange multipliex in the usual way, we obtain

_ Nee
T — N
where we have defined N
Ny, = ZV(an)-
n=1
Similarly maximizing with respect to the parametgys;, and again eliminating the

Lagrange multipliers, we obtain

L&
Hhij = N, Z’Y(znk)xmj-

n=1

This is an intuitively reasonable result which says that tHeevaf ;.;;; for compo-
nentk is given by the fraction of those counts assigned to compaheritich have
non-zero values of the corresponding elemeiaisd;;.

If we take the derivatives of (9.62) w.rd4., we get

9 M1l .
a—a]E Inp(t,w|a, B)] = 55" 5[[*3 [wiw] .

Setting this equal to zero and re-arranging, we obtain (9.63).

Taking the derivative of (9.62) w.r.ti, we obtain

0 N1 1
%E [Inp(t,w|a, B)] = 23 3 ;E [(tn —wT n)2] . (249)
From (3.49)—(3.51), we see that
E[(tn ~w",)"] = E[f—2,w"g, + Trlg, sl ww"]]

= 2 —2t,m\e, +Tr[¢,¢, (mym} + Sy)]
= (ta —my¢,)* +Tr [$,¢,Sn] .
Substituting this into (249) and rearranging, we obtain

1 1

5= v (It @my|? 4 Tr [@T@Sy]).
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9.22

9.23

NOTE: In PRML, a pair of braces is missing from (9.66), which should read

Ew [In {p(t|X, w, B)p(w|)}] .

Moreoverm should bem in the numerator on the r.h.s. of (9.68).
Using (7.76)—(7.83) and associated definitions, we can rewréé) s

Ew [InN (t}@w,37'T) + In N (w]0,A™")]

M
= 5IEW NIng— |t — dw|]® + Ehnai — Tr [Aww™] | + const
- ;(Nlnﬂ =Bt — ®m|* + Tr[@" X))
M
+ Z Ina; — Tr[A(mm™ + E)]) + const. (250)
i=1

Differentiating this w.r.to;, using (C.23), and setting the result equal to zero, we get

which we can rearrange to obtain (9.67).
Differentiating (250) w.r.t5 and setting the result equal to zero we get

e

Using (7.83), (C.6) and (C.7) together with the fact tAas diagonal, we can rewrite
&' PX as follows:

1

TeY = @'PAT (I+p2 RAT')
— T (I+/0A'ST) @A
= B(1-1+8" (57 '1+ 2A7'07) @A)
-3 (1 —A (A—l + A" (514 @A BT <I>A‘1>>
- 5(1—A(A+5<1>T<1>)’1) —B(I-AY).
Using this together with (7.89), we obtain (9.68) from (251).

NOTE: In the 1** printing of PRML, the task set in this exercise is to show that th
two sets of re-estimation equations are formally equivalenhawit any restriction.
However, it really should be restricted to stationary pointdefdbjective function.
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Considering the case when the optimization has convergedawstart withv;, as
defined by (7.87), and use (7.89) to re-write this as

*
* 1—Oéi2i7;

o =

1 )

2
my
wherea = oV = «; is the value reached at convergence. We can re-write this as

af(mi +3y) =1

which is easily re-written as (9.67).
For 3, we start from (9.68), which we re-write as

1t emyf? Y

B* N BN~

As in the a-case,3* = "V = ( is the value reached at convergence. We can

re-write this as
1
g* <N_ Z%') = It - @my|?,

which can easily be re-written as (7.88).
This is analogous to Solution 10.1, with the integrals repdnesums.

This follows from the fact that the Kullback-Leibler divergentd.(q||p), is at its
minimum, 0, wheny andp are identical. This means that

)
%KL(qu) =0,

sincep(Z|X, 0) depends o®. Therefore, if we compute the gradient of both sides
of (9.70) w.r.t.0, the contribution from the second term on the r.h.s. willlhend
so the gradient of the first term must equal that of the I.h.s.

From (9.18) we get
N;sld _ Z 'YOld(an)- (252)

We getN;*™ by recomputing the responsibilitieg(z,,), for a specific data point,
X, yielding

NP =3 ™ ) 9" (2mi)- (253)

n#m
Combining this with (252), we get (9.79).
Similarly, from (9.17) we have

1
old __ old
By = 01d§ Y7 (2nk) Xn
k n
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and recomputing the responsibilitiegz,,.x. ), we get

1
Hzew = N]?ew ( Z 701d (an)xn + ’Ynew <ka)xm>

n#m

1 old , old old(

= N pew ( A Y ka)Xm +7new<zmk)xm>
k

1

_ W <(N]?ew o ,Ynew(zmk) + 'YOld(ka)) “zld
k

_,yold (ka:)xm + ’YHGW(ka)Xm>
o Y Z k) B ’YOId(Z k) o
pet + ( - ) (X — 1Y),

N]?ew
where we have used (9.79).

new(

9.27 Following the treatment oft;, in Solution 9.26, (9.19) gives

Eild Old Z,y an - Old)(Xn - ‘uzld)T

where NP is given by (252). Recomputing the responsibilitigs.,x,), and using
(253), we get

gk (00 ) s )"

n#m

9 (k) (= ) (X u;;ewT)

1 (0] o 0. (o) [0 T
= Nnew (Nkldzkld -7 ld(zmk) ( Hkld) ( Nkld)
k
9 ) (e = ™) (e — 1))
R old Zm .
- Y N(newk) <(Xm _ Hild) ( uc];ld) _ 2k1d>
k

,.ynew Zmk new new o.
+ Nr(lcw ) ((Xm = 1) (Xm — py; ) - Zkld)
k

where we have also used (9.79).
Form, (9.22) gives

N

old

old _ N

7Tk ZTLk
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and thus recomputing(z,, ) we get

N
1
= N (Z VOld(znk) + ’Ynew(zmk))

n#m
1
_ N (N’/T]Ocld _ ,yold(zmk) + ,ynew(zmk))
old new
_ ngd _ Y xmk) + Y ](\:mk)

Chapter 10 Approximate Inference
10.1 Starting from (10.3), we use the product rule together with (10.4¢to g
p (X, Z)}
L = Z)1 dZ
W = [i@w{7
p(X|7Z) p(X)}
= 7)1 dZ
o {"*
_ p(X|7)
= —KL(q[p)+Inp(X).
Rearranging this, we immediately get (10.2).
10.2 By substitutingE[z;] = m; = p; andE[zs] = ma = ps in (10.13) and (10.15),

respectively, we see that both equations are satisfied anikss ¢hsolution.
To show that it is indeed the only solution whefx) is non-singular, we first sub-
stituteE[z;] = my andE[z3] = my in (10.13) and (10.15), respectively. Next, we
substitute the r.h.s. of (10.13) fot, in (10.15), yielding

my = g — Ay Aoy (pn — A Ags (o — pi) — )

= o — Ay Aoy AT Aga(my — o)

which we can rewrite as

mo (1 — A2_21A21A1_11A12) = W2 (1 — A2_21A21A1_11A12) .

Thus, unless\,,' Ao A A, = 1, the solutionu, = ms is unique. Ifp(z) is non-
singular,
|A| - A11A22 - A21A12 # 0

which we can rewrite as

A AL As Ay # 1
as desired. Sincg, = m. is the unique solution to (10.15); = m; is the unique
solution to (10.13).
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10.3 Starting from (10.16) and optimizing w.rd; (Z;), we get

M
KL(p|q) = —/p<Z> [Zlnq¢<zi>

= —/ <P (Z)Ing; (Z;)+p(Z) Zln qi (Zl)) dZ + const.

i#j

dZ + const.

= - /p(z)ln% (Z;) dZ + const.
- —/lnqj (Z;) [/P(Z)H dZi] dZ; + const.
i#j
= _/Fj(zy‘)ln% (Z;) dZ; + const.,
where terms independent gf (Z,) have been absorbed into the constant term and
we have defined
£(@) = [r@]] iz
i#£]

We use a Lagrange multiplier to ensure thatZ ;) integrates to one, yielding

—/Fj<zj)1nqj (Z;) dZ; + A (/qj (Z;) dZ; — 1).

Using the results from Appendix D, we then take the functionalvdévie of this
w.r.t. ¢; and set this to zero, to obtain

From this, we see that
Agj (Z;) = Fy(Z;).

Integrating both sides ové#;, we see that, sincg (Z;) must intgrate to one,

A—/Fj(zj)dzj—/ [/p(Z)H dZi] dz; =1,

i£]
and thus

0(2) = £2) = [0@]] az.

i#j
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10.4 The Kullback-Leibler divergence takes the form

10.5

KL(plo) =~ [ o g dx+ [ px) () ax

Substituting the Gaussian fg(x)we obtain

KL(pllq)

~ [0 {-gmimi- Jox— TS ) ot

% {n|S|+Tr(S7'E [(x — p)(x — p)"]) } + const.

% S|+ p"S - 20" S 'Ex] + Tr (Z7'E [xxT]) }
+const. (254)

Differentiating this w.r.tu, using results from Appendix C, and setting the result to
zero, we see that

p=E[x]. (255)
Similarly, differentiating (254) w.r.t= !, again using results from Appendix C and
also making use of (255) and (1.42), we see that

¥ =E [xx"] — pp" = cov[x].

We assume that(Z) = ¢(z)q(0) and so we can optimize w.rg(z) andq(0) inde-
pendently.

For ¢(z), this is equivalent to minimizing the Kullback-Leibler digence, (10.4),
which here becomes

p(z,0]X)
L(gllp)= // T @a0) dzde.

For the particular chosen form 9{@), this is equivalent to

KL(q|lp) = —/q(Z)andz+const.

_ , nP(ZWo’X)p(OO\X) 2+ cons
= /q( )1 2(2) dz + t.

= —/q(z)lnp(zQO’X)dz—i—const.7
q(z)

where const accumulates all terms independent=f. This KL divergence is min-
imized whery(z) = p(z|60,, X), which corresponds exactly to the E-step of the EM
algorithm.
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10.6

To determineg;(0), we consider

p(X,0,z) ,
/‘“")/Q(Z)lnqwm(z) dzd6

= /q(G)Eq(z) (lnp(X,0,2z)] dO — /q(@) Ing (@) dO + const.

where the last term summarizes terms independent(6. Sinceq(6) is con-
strained to be a point density, the contribution from the entrepy {which formally
diverges) will be constant and independen@gf Thus, the optimization problem is
reduced to maximizing expected complete log posterior disgich

Eq(z) [h’lp (Xa 007 Z)] )
w.r.t. 8¢, which is equivalent to the M-step of the EM algorithm.

We start by rewriting (10.19) as

4
D) = oz (1- [ torratoras) (256)
so that
1 1-—

o = ;O‘ and 4, = —*. (257)

We note that
lim1 vy = 0 (258)
lim1 v» o= 1 (259)
l—v = 7, (260)

Based on observation (258), we make a Maclaurin expansiariagf« in v, as
follows

¢ = exp (14lng) = 1+ 74 Ing+ O (v5) (261)

whereg is a shorthand notation fg¥x). Similarly, based on (259), we make a Taylor
expansion op(z)?» in y, aroundl,

P’ = exp(yplnp)
= p—(1—v)plnp+0 ((vp—1)%)
= p—pp+0(y;) (262)

where we have used (260) and we have adopted corresponding sidonibiztion
for p(z).
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Using (261) and (262), we can rewrite (256) as

D(pllq)
~ 2 (1= [ 0 ()] 1 5y ma+0 ()] )
- 1—4a2 (1—/p+vq(plnq—plnp) d:c+0(7§)> (263)

whereO (2) account for all higher order terms. From (257) we have

4 2l-a) 2
1-a2le = 12  (1+0a)
4, _ (1-a?_ 1-a
1_a2 e 1—a? (14«
and thus
oal—>rnll—0(2’yq - 1

lim

2
a—1 1—0[27(1 B 0

Using these results together with (259), and (263), we see that

lim D(pllq) = — /p(lnq —Inp)dz = KL(pllq).

The proof thatx — —1 yieldsKL(q¢||p) is analogous.

NOTE: See note in Solution 10.9.

We take theu-dependent term from the last line of (10.25) as our starting pdit.
can rewrite this as follows

—@ {/\0 (1= o)+ Y (an — M)Q}

n=1
E[r] -
= 2{(>\0+N)M2+in2M(>\0M0+Nx)}
n=1
_ _El] ot N (= ot NT 2+§:$2_()\0mu0+1\7x)2
- 9 0 W+ N 2ot ho+ N

where in the last step we have completed the square javerhe last two terms
are indepenedent gif and hence can be dropped. Taking the exponential of the
remainder, we obtain an unnormalized Gaussian with mean awtiore given by
(10.26) and (10.27), respectively.
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For the posterior over, we take the last two lines of (10.28) as our starting point.
Gathering terms that multiply andln 7 into two groups, we can rewrite this as

N+1 1
(ao—l—;——l) Int — (bo+2E >T+const.

Taking the exponential of this we get an unnormalized Gamretildition with
shape and inverse scale parameters given by (10.29) and (10.3@xtresly.

N
> (@ = ) 4 o (= po)

10.8 NOTE: See note in Solution 10.9.

If we substitute the r.h.s. of (10.29) and (10.30) doandb, respectively, in (B.27)
and (B.28), we get

2a9 + N +1
E[r] = ~
200 + B [Mo(s = 10) + S0 (2 — 1)?]
var[t] = 200 + N +1 _
2 (b + 3 [l — o) + 2y (2 — )
E[r]

b+ 3E [Ao(s = o) + 0, (@ — 1)

From this we see directly that

A}im E[r] = < N
o E [Zn:1($n - N)ﬂ
lim var[r] = 0

as long as the data set is not singular.

10.9 NOTE: In the 1%* printing of PRML, an extra term of /2 should be added to the
r.h.s. of (10.29), with consequential changes to (10.31) an®8),0which should

read
1 1 ol 2 N - _ 2
£ = i S | = g (7 2Rl )
and

1 — g I .
g =@ T =g L@

—

respectively.
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ASSUminga() = b() = )\() =0, (1029), (1030) and (827) give

E[ ] N T _,UJ)Q
1 2

1 N
=%
=3

1
-

N T, — 2Tp b+ ,u2)

Taking the expectation of this undef.), making use of (10.32), we get

1 1
= 2, 2
E[7] N+1nz($” Tnt +NIE[])
N
N 1, 1,
- N—I—l(NIE[T] * +N;x”>

which we can rearrange to obtain (10.33).

169

10.10 NOTE: In the 1% printing of PRML, there are errors that affect this exerciseg,
used in (10.34) and (10.35) should reallybewvhereas’,,, used in (10.36) is given

in Solution 10.11 below.

This completely analogous to Solution 10.1. Starting from B)).®e can use the

product rule to get,

¢ = X a@monn{ FEX
m Z

(Z[m) g(m
(

q
Z,m|X) p(X
=¥ zzj q(Z|m)q(m)In {W}

= 33 a(@m)g(m) n {m} + Inp(X).

Rearranging this, we obtain (10.34).
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10.11 NOTE: Consult note preceding Solution 10.10 for some relevant caoret

10.12

10.13

We start by rewriting the lower bound as follows

B o) In p(Z,X,m)
o= 2D a@ml 1{<Z|m>< >}
S Zq (Zlm)q(m) {In p(Z, X|m) + In p(m) — I q(Z}m) — In g(m)}

= Z q(m) <1np(m) —Ing(m)

+ 3 @) (1p(2. X ) ~ ma(zim)
Z ) {In (p(m) exp{L,,}) —Ing(m)}, (264)

where

We recognize (264) as the negative KL divergence betwéer) and the (not nec-
essarily normalized) distributiop(m) exp{L,, }. This will be maximized when the
KL divergence is minimized, which will be the case when

g(m) o< p(m) exp{L,,}.

This derivation is given in detail in Section 10.2.1, startwith the paragraph con-
taining (10.43) (page 476) and ending with (10.49).

In order to derive the optimal solution fgfu,,, Ax) we start with the result (10.54)
and keep only those term which dependwgnor A, to give

Ing*(pg, Ax) = ln/\/(uk\mo, (ﬁoAk)fl) + In W(AL|Wo,1p)

+ZE Znk] In N (Xn|uk, ) + const.

n=1

3 1 1 _
- 7?0(1% —mg) " Ay (py — mo) + T Axl = 2! (AxWo)
N
vo—D—1 1
+% In|Ag| — 3 ZE[an] — ) A (%0 — 1)

N
1
+5 (Z E[znk]> In |Ay| + const. (265)

n=1
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Using the product rule of probability, we can expresg* (p,,, Aj) asln ¢* (py,|Ax)
+ Ing*(Ay). Let us first of all identify the distribution fog,. To do this we need
only consider terms on the right hand side of (265) which depend,0 giving

In q*(per,|Ar)

N N
1
= gk |Bo+ D Elear]| Ak + piAs ﬂomO+ZE[znk]xn]
n=1 n=1
—+const.

1 _
—iuf [Bo + Ni] Agpey, + ey Ay [Bomo + NiX] + const.

where we have made use of (10.51) and (10.52). Thus we se&tfidiu, |Ax)
depends quadratically qm, and hence* (| A ) is a Gaussian distribution. Com-
pleting the square in the usual way allows us to determine tteraed precision of
this Gaussian, giving

q*(py| Ax) = N (py,|my, B Ax) (266)
where

Br = Po+ Ni

ﬁlk (Bomg + NpXy,) .

my

Next we determine the form @f*(A) by making use of the relation
Ing*(Ax) = Ing* (g, Ax) — Ing* (g | Ag).
On the right hand side of this relation we substitutelfog* (u,,, Ax) using (265),

and we substitute fdn ¢* (p;,| Ax) using the result (266). Keeping only those terms
which depend om\ ;, we obtain

1 1 _
lnq*(Ak) = —%(/J,k — mO)TAk(/.Lk — mo) + B In ‘Ak| — §TI’ (Akwo 1)

N
vo—D —1 1
T A 5 DBl )" A 10
1 (& 3
k
t3 (;E[an]> In |Ag| + 7(!% —my,) " Ay (p, — my)

1
-5 In [Aj| + const.

-D-1 1
= %lnmk\ - §Tr (Akw,;l) + const.
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10.14

Here we have defined

N

Wit = Wgl + Gy, — mo) (py, — mo) ™ + Z]E[an](xn — ) (% — )"
n=1
—5k(ﬂk - mk)(#k; - mk:)T
= Wal + NSk + BolNr (ik — mo)(ik — mo)T (267)
Bo + N
N
v, = U+ Z]E[an]
n=1
- 140 + Nk7
where we have made use of the result
N N
D Elenalxaxn = > Elznk](xn — %) (% — Ke) "+ NiXiX,
n=1 n=1
= NS + Nkikiz (268)

and we have made use of (10.53). Note that the terms invojjnave cancelled
out in (267) as we expect sing&(Ay) is independent ofe,,.

Thus we see that*(Ay) is a Wishart distribution of the form

¢ (Ar) = W(AR Wy, vg).

We can express the required expectation as an integration wibatet® the varia-
tional posterior distributiog* (s, Ax) = ¢* (g, | Ax)q* (Ag). Thus we have

Epu, Ax [(Xn — ) Ay (xn — Nk)]

= // Tr {Ak(xn — ) (% — Nk)T} (1| AR) g™ (Ag) dpey dAy.

Next we use the result*(p,.|Ax) = N (u,|mg, B Ax) to perform the integration
over p,, using the standard expressions for expectations under a @aussiribu-
tion, giving

Elpy] = my
Elpppi] = mymf + 5 AL
from which we obtain the expectation with respecfipin the form
By, [(Xn — ) (X — Mk)T]
= X,Xp —X,m} —myx: +mymj + G, AL

= (xp —my)(x, —my)" + G A
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10.16

10.17
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Finally, taking the expectation with respectAq we have

Eu, Ax [(Xn - :“k)TAk'(Xn - Uk)]
= /Tr {Ak [(Xn — mk)(xn — mk)T + 6];11\];1] } q*(Ak) dlx;€
/ {(xs ) A (xn —my) + DB} g (Ag) dAy
= Dﬂk + Vk( Xp — mk)TWk(Xn — l’l’lk)

as required. Here we have usgdAy) = W(A,|Wy, 1), together with the stan-
dard result for the expectation under a Wishart distributionte BjiA ;] = v, Wy.

By substituting (10.58) into (B.17) and then using (B.24) tbgetwith the fact that
> x Ni. = N, we obtain (10.69).

To derive (10.71) we make use of (10.38) to give

N
= % > Elznr] {E[In Al — E[(xn — py)Ak(xn — 3,)] — DIn(27)} .

We now useéE|[z,,x| = r,i together with (10.64) and the definition af, given by
(10.65) to give

| MK N
E[llnp(D|z, u, A)] = B ZZrnk{lnAk

n=1 k=1
—DB = v(xn — my) T Wi (x, — my,) — Dln(27r)}.

Now we use the definitions (10.51) to (10.53) together with tisellt€268) to give
(10.71).
We can derive (10.72) simply by taking the logarithnmp¢£| ) given by (10.37)

E[lnp(z E[zpk|E[ln 7]

uMz
Mw

1 k=1

and then making use @|[z,x] = ., together with the definition of; given by
(10.65).

The result (10.73) is obtained by using the definitiorpof) given by (10.39) to-
gether with the definition of,, given by (10.66).



174 Solution 10.17

For the result (10.74) we start with the definition of the pridp, A) given by
(10.40) to give

Elln p(u, A)] =

%Z {DIn By — Dn(2m) + Efln |Ax|] — BoE[(py, — mo) " Ag (s — mo)] }
k=1
(1/0 - D — 1)E

K
+KIDB(W0,V0)+Z{ 2

I JAd] - 5THOWG EIALD }.
k=1

Now consider the terf[(u;, —mg) " Ay (p,, —my)]. To evaluate this expression we
first perform the expectation with respectdt(u,|Ax) then the subsequently per-
form the expectation with respectdd(A ). Using the standard results for moments
under a Gaussian we have

Elp,] = my
Elpypt] = mypmy + 6 AL

and hence

Ell'kAk (g — mO)TAk(Hk —my)| =Tr (Eﬂk-Ak [Ak(uk —my)(py, — mo)T])
= Tr(Ea, [Ae(B;'A}" +mym) — mym; — mym; + mem;)|)

= K@, + (my —my) E[Ag](my; — my).

Now we use (B.80) to giv&[Aj] = v W, andE[ln Ax] = In Kk from (10.65) to
give (10.74).

For (10.75) we take use the result (10.48)§ofz) to give

N
Ellng(z)] => > Elzns] Inrny
n=1 k=1
and usingE|[z,,x| = r,x we obtain (10.75).

The solution (10.76) foE[In ¢(7)] is simply the negative entropy of the correspond-
ing Dirichlet distribution (10.57) and is obtained from (B.22).

Finally, we need the entropy of the Gaussian-Wishart distdbu{x, A). First of
all we note that this distribution factorizes into a productaxtérsq(u,,, Aj) and
the entropy of the product is the sum of the entropies of the iddal terms, as is
easily verified. Next we write

Ing(py, Ax) = Ing(py|Ax) +Ing(Ag).

Consider first the quantit§[In (| A )]. Taking the expectation first with respect
to 1, we can make use of the standard result (B.41) for the entropy of asizewto
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give
1 D
Epenina(pg|A)] = B, |5 In|Ag[+ 5 (Infy — 1 —In(27))

= 111 Ap+ = b (lnﬁk —1—1In(27)).

The termE|[In ¢(Ay,)] is simply the negative entropy of a Wishart distribution, which
we write as—H[q(Ay)].

10.18 We start withgy, which appears in (10.71), (10.74) and (10.77). Using these, we can
differentiate (10.70) w.r.t3, !, to get

oL D (
Byt 2

Setting this equal to zero and rearranging the terms, we obtai6Q)L0We then

considermy,, which appears in the quadratic terms of (10.71) and (10.74). Thus
differentiation of (10.70) w.r.tm,, gives

oL
8m1€

—Ni, — Bo + Br) -

= —Nivp (kak — Wkik) — ﬁoljk (kak — ka0> .

Setting this equal to zero, using (10.60) and rearranging the terensbtain (10.61).

Next we tackle{ W, v, }. Here we need to perform a joint optimization w.M
andyy, for eachk = 1,..., K. Like 8;, W}, andv,, appear in (10.71), (10.74) and
(10.77). Using these, we can rewrite the r.h.s. of (10.70) as

;i <Nk lnAk — Npvp {Tr (SkWy) +Tr (Wk (Xe —my,) (X —my) >}
k

+ lnAk — ,())Oljk (mk — mo) Wk (mk — mo) + (I/o - D — 1) lnAk

— . Tr (W5 'Wy) — In Ay, + 2H [q(Ak]> (269)

where we have dropped terms independerdt\f;,, v }, In Ay is given by (10.65),
vV — D—-1

— wD
Hq(Ay] = — In B(Wj, vg) — In A ”’“2 (270)

where we have used (10.65) and (B.81), and, from (B.79),

D
In B(Wy, 13,) = 1n|Wk\—@—Zl r(”’““ ) (271)

Restricting attention to a single componédntand making use of (270), (269) gives

1 - D
5 (e 40— ) In K, - I;—kTr (WiFy) — In B(Wy, 3,) + ”kT (272)
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where

F, = Wal + NSk + N (ik — mk) (ik — mk)T
+5o (my, — my) (my —mp)"

_ N _ _
= WO ! + NkSk + Nk /f()ﬂ (Xk — mo) (Xk — mO)T (273)
0

as we shall show below. Differentiating (272) w.r4,, making use of (271) and
(10.65), and setting the result to zero, we get

d In Kk
Vi

1
0 = ((Nk—FVO—Vk)

5 —InAg — Tr (W,Fy)

D
L
+In[Wi[+DIn2+ Y InT <”’“+22> +D>
i=1

1

dln A
= <(Nk+V0—Vk;) i

de

5 — Tr(WiFy) + D) . (274)

Similarly, differentiating (272) w.r.tW, making use of (271), (273) and (10.65),
and setting the result to zero, we get

1
0 = 5 (Ne+vo—vi) Wi =Fr+ W)
1
= 5 ((Nk + vy — ) Wit — Wit — NSy
N, _
- lfoﬁo (% — mo) (X — mo)" + W 1) (275)

We see that the simultaneous equations (274) and (275) arégeshifignd only if

0 = Np+vy—u

NiBo _ T 1
_ _ _
N+ e (X —myp) (X —mp)” — W,

0 = W'+ NSy +

from which (10.63) and (10.62) follow, respectively. However, vilélsave to derive
(273). From (10.60) and (10.61), derived above, we have

my, — Bomg + NpXy,
Bo + Ny,
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and using this, we get

Ni (X — my) (Xg — mk)T + Bo (my — myg) (my — mo)T =

NFEL — NiX (Bomg + NipXp)"  Bomg + NiXp

X N XF
" B+ N Bo+ N, Tk
Ni(Bomg + NiXy)(Bomo + NpXp)™ n Bo(Bomo + NieXg)(Bomg + NpXi) ™
(Bo + Ni)? (Bo + Ni)?
(Bomg + NgXi)t  Bomg + NiXp, T "
— Pom - m, + Bomom, .
Bomyg B0+ Ny A Bomy + Fomem,

We now gather the coefficients of the terms on the r.h.s. asafsllo
Coefficients ofg;x; :
NN N N BN
Bo+Ne fo+Ne  (Bo+Ne)*  (Bo+ Ni)?
I SN, SN BN
Bo+ Nk Bo+ N (Bo+ Neg)? (8o + Ni)?
NuB2 + N2Bo + N2Bo + N} — 2(N2Bo + NE) + NP + BN}

(Bo + Ni.)?
_ NuB3+ BN _ NiBo(Bo+ Nik) _ Nibo
(Bo + Ni)? (Bo + Ni)? Bo + Ni

Coefficients ofx,m{ andm,X, (these are identical):

 NiBo n BoNE N B3 Ny, ~ Nibo
Bo+ Nk (Bo+Nip)?  (Bo+ Np)2  Bo+ Ny
Ni.Bo 2Nkfo  Nifo

" Bo+ N Bo+Ni  Bo+ Nk
Coefficients ofmom, :

Niwf3g o5 2053
(Bo + Ni)? " (Bo + Nk)2  Bo+ Ni o
BE(Nk+5o) 268 ny
(Bo + Ni)? Bo + Nk 0
B3 =265 + 65 + NiBo  Nifo
Bo + Ni "~ Bo+ Ny

Thus

Ny, (X — my) (X —my) " + By (my, — mg) (my, — my)"
_ _Nifo
Ny + Bo

(X, — my) (Xp —my)"  (276)
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as desired.

Now we turn our attention tax, which appear in (10.72) and (10.73), through
(10.66), and (10.76). Using these together with (B.23) and (B.2d)cawn differ-
entiate (10.70) w.r.ta; and set it equal to zero, yielding

8£ aln%k .

= [Nk+<a0—1)—(0(k—1>] A_M

lIl7Tk

(9#0% ooy,

_ [Nk+<ao—1>—<ak—1>]{zpl(ak)—wl(a)fi}

day,

., Oa

+p(@) — P(ar) —P(@) 90, T P(au)
[N + (0 — 1) = (g — D] {1 () — (@)} =0 (277)

wherey(-) andy (-) are di- and trigamma functions, respectively. If we assume that
ap > 0, (10.58) must hold for (277) to hold, since the trigamma functgostiictly
positive and monotoncally decreasing for arguments greatarzéro.

Finally, we maximize (10.70) w.r.t:,,;;, Subject to the constrainls;, r,, = 1 for
alln =1,...,N. Note thatr,,;, not only appears in (10.72) and (10.75), but also in
(10.71) throughVy, X; andS;, and so we must substitute using (10.51), (10.52) and
(10.53), respectively. To simplify subsequent calculations start by considering
the last two terms inside the braces of (10.71), which we writethegeas

K
Z v TH (W Q) (278)
=1

| —

where, using (10.51), (10.52) and (10.53),

Tnk (Xn — ik) (Xn — ik)T + N (ik — mk) (ik — mk)T

M) =

Qr =

3
I
—

M=

T — =T — =T
TnkXnX, — 2NpXiX; + NpXipXj

3
Il
_

. <ol <1 = T T
+NiXeX, — NpmyX;, — NpXemy, + Nymgpm,,

Tnk (Xn - mk:) (Xn - mk)T . (279)

WE

3
Il
_

Using (10.51), (278) and (279), we can now consider all terms in {J0vhich
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depend on,, and add the appropriate Lagrange multiplier terms, yielding

| X
5:21“% (1]{11&;€ - Dj,; )

K N
Z Z ok (Xn — my)" W (x, — my)

k=1

1

S 2
K N K
ZZ nklnﬂ'k_zzrnklnrnk"i_z/\ ( ZTnk>
k=1 n=1

k=1 n=1 k=1

Taking the derivative of this w.r.t;,, and setting it equal to zero we obtain

1 D 1
0= QIHAk_ﬁ_iljk( _mk)TWk (Xn_mk?)

+In7, —Inrpe —1— M\,
Moving In r, to the l.h.s. and exponentiating both sides, we see that ébrea

D 1
ok xRy e {50 = Lo = " Wi G, — o)}

which is in agreement with (10.67); the normalized form is thenrglwe (10.49).
10.19 We start by performing the integration overin (10.80), making use of the result
Elm] = =
«

to give
K (6%
pEID) = Y0 % [ [ AR A ol Ar) sy A
k=1

The variational posterior distribution ovarandA is given from (10.59) by

q(p, Ar) = N (pJmy, (BrAr) ™) W(ALIW, vk).

Using this result we next perform the integration opgr This can be done explicitly
by completing the square in the exponential in the usual wayye can simply
appeal to the general result (2.109) and (2.110) for the lineasstau model from
Chapter 2 to give

/N(§|uk, Alzl)./\/’ (uk\mk, (ﬁkAk)il) d/.Lk = N (§|mk, (1 + ,B,;l) A;l) .

Thus we have

K
p(i(\|D) = Z % /N (5{\|m]€, (1 + ﬁ;1> A,;l) W(Ak|Wk, I/k) dAy.
k=1
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The final integration oveA is the convolution of a Wishart with a Gaussian. Omit-
ting multiplicative constants which are independenkafe have

/N (i\mk, (1 + 6};1) A]:1> W(Ak|Wk, l/k) dA,
1 Y ~
. / |Ak|1/2+(l/k—D—1)/2 exp{_z(l—'_ﬂk_l)-rr [Ak(X _ mk)(x _ mk)T]
1 _
—5Tr (AW, ] } dAy.

We can now perform this integration by observing that the argufeht integral is
an un-normalized Wishart distribution (unsurprisingly since thigha#t is the conju-
gate prior for the precision of a Gaussian) and so we can write doswresult of this
integration, up to an overall constant, by using the known nbzaifon coefficient
for the Wishart, given by (B.79). Thus we have

/N (5E|mk, (1 + ﬁk_l) Alzl) W(Ak|Wk, I/k) dA

1 —(vp+1)/2
x (Wild (R my) (R —my)"
g (1+5.1)
1 7(1/;“—"—1)/2
x I+ ———Wi(X—my)(X—my)"
(1+5:1)

where we have omitted factors independenkaince we are only interested in the
functional dependence 64 and we have made use of the re$AlB| = |A||B| and
omitted an overall factor dW, '|. Next we use the identity

I+ab™|=(1+a"b)

wherea andb are D-dimensional vectors andis the D x D unit matrix, to give

//\/ (X[mg, (1+8;,") ALY WA Wi, vi) dAy,

1 —(Vk+1)/2
X 1+ f(ﬁ—mk)TW;{(ﬁ—mk) .
{ (1+6:7)

We recognize this result as being a Student distribution, armbmparison with the
standard form (B.68) for the Student we see that it has niegnprecision given
by (10.82) and degrees of freedom parameier 1 — D. We can re-instate the
normalization coefficient using the standard form for the Studesttibution given
in Appendix B.
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10.20 Consider first the posterior distribution over the precisionarhponent: given by
7" (Ak) = WAL Wi, ).

From (10.63) we see that for largé we havev, — Ny, and similarly from (10.62)

we see thaW,, — N, 'S, . Thus the mean of the distribution ovAy;, given by
E[Ag] = vy Wy — S,;l which is the maximum likelihood value (this assumes that
the quantities,,;, reduce to the corresponding EM values, which is indeed the case
as we shall show shortly). In order to show that this posteriorsis stharply peaked,

we consider the differential entro@yf]Ax] given by (B.82), and show that, &§, —

oo, H[Ax] — 0, corresponding to the density collapsing to a spike. Firstidens

the normalizing constanB(W, v,) given by (B.79). SincéV, — N, 'S, ' and

Vg — N,

Nk—i—l—i)

D
N,
—In B(Wp, vg) — —7’“ (DIn Ny, + In |Sy| — D1n2)+;lnf < 5

We then make use of Stirling’s approximation (1.146) to obtain

Np+1-i\ N,
InT <’“+22> ~ ZF (N, —In2 - 1)

which leads to the approximate limit

N D

N,
—InB(Wg,v,) — — (lnNk—ln2—lnNk+ln2+1)—7k1n|Sk|

N,
= f7k(1n|sk\ + D). (280)

Next, we use (10.241) and (B.81) in combination v, — Nk_lS,;1 andy, —
N}, to obtain the limit

N
Efn|A] — D1n7’“ +DIn2 — DIn N, — In |Sy|
= —ln|Sk\,

where we approximated the argument to the digamma functiaW;p{2. Substitut-
ing this and (280) into (B.82), we get

H[A] — 0

whenN;, — oo.
Next consider the posterior distribution over the mparof the.*® component given
by

q" (k| Ak) = N (g |my, BrAr).
From (10.61) we see that for largé the meanm;,, of this distribution reduces to
X Which is the corresponding maximum likelihood value. From (QPve see that
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10.21

10.22

B — Ny and Thus the precisiofi, Ay — Byvx Wi — NiS; ' which is large for
large N and hence this distribution is sharply peaked around its mean.

Now consider the posterior distributiarf(7) given by (10.57). For largév we
havea, — N and so from (B.17) and (B.19) we see that the posterior distribution
becomes sharply peaked around its m&#n,] = ar/a@ — Ni/N which is the
maximum likelihood solution.

For the distributiony*(z) we consider the responsibilities given by (10.67). Using
(10.65) and (10.66), together with the asymptotic result for igardma function,
we again obtain the maximum likelihood expression for the nesidities for large
N.

Finally, for the predictive distribution we first perform the intetipa overs, as in
the solution to Exercise 10.19, to give

K
p&ID) = Y0 % [ [N Rl Audaliag, M) dpg dA
k=1

The integrations oveg;, and A, are then trivial for largéV since these are sharply
peaked and hence approximate delta functions. We thereforenobtai

Y
p(X|D) = Wk/\/(ﬂsz,wk)
k=1
which is a mixture of Gaussians, with mixing coefficients gi® Ny, /N .

The number of equivalent parameter settings equals the rnunhipessible assign-
ments of K parameter sets t& mixture components¥k for the first component,
times K — 1 for the second component, timé&s— 2 for the third and so on, giving
the resultk’!.

The mixture distribution over the parameter space takes the form

Q(G) = % Z QH(GN)

wheref,, = {u,,, X, 7}, k indexes the components of this mixture &d- {6,, }.
With this model, (10.3) becomes

L(q) = /Q(G)ln{pg((é?)} de

K!
1
- I{'Z/qﬂ(en)lnp(x,eﬁ)deﬁ
T k=1

K! K!
_[;Z/QK(OH)IH <I§' qu/(em/)) dem

K'=1

= /q(@) Inp(X, 0) dO—/q(G) Ing(#)dé + In K!
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whereq(0) corresponds to any one of tiié! equivalenty, (6,;) distributions. Note
that in the last step, we use the assumption that the overtagbe these distribu-
tions is negligible and hence

/%(9) In g, (0)d0 ~0

whenk # k’.

10.23 When we are treatingr as a parameter, there is neither a prior, nor a variational
posterior distribution, overr. Therefore, the only term remaining from the lower
bound, (10.70), that involves is the second term, (10.72). Note however, that
(10.72) involves thesxpectations of In 7, underg(m), whereas here, we operate
directly with 7, yielding

N
Eqz[Inp(Zm)] =Y > rulnmy.

Adding a Langrange term, as in (9.20), taking the derivative.wt.tind setting the
result to zero we get

N,
“Fia=o, (281)

Tk
where we have used (10.51). By re-arranging this to

Nk = —)\ﬂ’k

and summing both sides overwe see that-A = >, N, = N, which we can use
to eliminate) from (281) to get (10.83).

10.24 The singularities that may arise in maximum likelihood estioraare caused by a
mixture componentk, collapsing on a data poink,,, i.e.,rx, = 1, p;, = %, and

However, the prior distributiom(u, A) defined in (10.40) will prevent this from
happening, also in the case of MAP estimation. Considerrbeyzt of the expected
complete log-likelihood ang(u, A) as a function ofA ;:

IEq(Z) [lnp(X|27 H, A)p(uv A)}
1 N
= D) Zrkn (ln |Ak| - (Xn - “k)TAk(Xn - Nk))
n=1
+In[Ag| — Bo(pey, — mo) " Ag(py, — my)
+(wo— D —1)In|Ag| —Tr [ngAk] + const.

where we have used (10.38), (10.40) and (10.50), together withetfi@tibns for
the Gaussian and Wishart distributions; the last term sumnsatiézes independent
of A. Using (10.51)—(10.53), we can rewrite this as

(vo + Nk — D) In |Ak| —Tr [(Wal + ﬁo(llzk — IIlO)(;I,k — mo)T + NkSk)Ak] ,
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Figure 9

10.25

10.26

lllustration of the true log marginal likelihood for a 4
Gaussian mixture model (x) and the correspond-
ing variational bound obtained from a factorized
approximation (o) as functions of the number of
mixture components, K. The dashed arrows em-
phasize the typical increase in the difference be-
tween the true log marginal likelihood and the
bound. As a consequence, the bound tends to
have its peak at a lower value of K than the true
log marginal likelihood.

0 <---—-X
Y ——"—

0 <--X
O €--mmmmmmmnnn X

K

where we have dropped the constant term. Using (C.24) and (C.28am@mpute
the derivative of this w.r.tA; and setting the result equal to zero, we find the MAP
estimate forA, to be

1
1 ‘Nr_l T
LN, D ﬁ() 12 my My — 11 + N, S - ).
V0+Nk‘ D( 0 ( k 0)( k 0) k k)

From this we see that\; '| can never become 0, because of the presend¥ pf
(which we must chose to be positive definite) in the expressiothe r.h.s.

As the number of mixture components grows, so does the numhariables that
may be correlated, but which are treated as independent undeatoral approxi-
mation, as illustrated in Figure 10.2. As a result of this, theprtion of probability
mass under the true distributign,Z, =, u, 3|X), that the variational approximation
q(Z,m, u,3) does not capture, will grow. The consequence will be that therse
term in (10.2), the KL divergence betwee(¥, 7, u, X) andp(Z, m, p, 2|X), will
increase. Since this KL divergence is the difference betweentrtie log marginal
and the corresponding the lower bound, the latter must decozaspared to the
former. Thus, as illustrated in Figure 9, chosing the number wipmments based on
the lower bound will tend to underestimate the optimal nunab@omponents.

Extending the variational treatment of Section 10.3 to alstuite 3, we specify the
prior for 5

p(B) = Gam (8|co, do) (282)
and modify (10.90) as

p(t,w,a, B) = p(tlw, B)p(wla)p(a)p(5) (283)
where the first factor on the r.h.s. correspond to (10.87) with épeddence op
made explicit.

The formulae forg* (<), (10.93)—(10.95), remain unchanged. kéw), we follow
the path mapped out in Section 10.3, incorporating the modditairequired by the
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changed treatment ¢f; (10.96)—(10.98) now become
Ing*(w) = Eg[lnp(tlw, )] + E, [Inp(w|a)] + const

N
= _@ ; {WTqbn — tn}2 — @WTW + const
= —%WT (Ela]I+E[F]®"®) w + E[S]lw" @t + const.
Accordingly, (10.100) and (10.101) become
my = E[ﬁ]SN‘ﬁt
Sy = (E[I+E[B)®T®) .
Forg(/3), we use (10.9), (282) and (283) to obtain
Ing*(B)

Ew [Inp(tjw, 3)] + Inp(B) + const
N

S (w0, )

n=1

%lnﬁ—ng + (co—1)InpB —dyp

which we recognize as the logarithm of a Gamma distribution péttameters

B N
N Ty
1 N 2
dN = dO -+ §E El (WT¢n — tn)

do + % (Tr (®"®E [ww']) +t't) —t' ®E[w]
= do+ % (It = @myl* + Tr (2T ®Sy))

where we have used (10.103) and, from (B.38),

Elw] = mp. (284)
Thus, from (B.27), .
E[A] = ﬁ. (285)

In the lower bound, (10.107), the first term will be modified and tvesvrterms
added on the r.h.s.We start with the modified log likelihoadte
N E[3
By [Eu lnp(thw, B)] = > (E[5] - In(2)) ~ “E [|t - @wl?]
N
5 (¢(en) —Indy — In(27))
CN

ST (It — @wl|® + Tr (@ @Sy ))
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10.27

where we have used (284), (285), (10.103) and (B.30). Next we cortbieléerm
corresponding log prior oves:

Ellnp(B)] = (co—1E[ng] — doE[f] + colndy — InT(cp)
= (co—1)(W(en) —Indy) — d;JCVN + colndy — InT(cp)

where we have used (285) and (B.30). Finally, from (B.31), we get #iddam in
the form of the negative entropy of the posterior oger

—E[lng*(8)] = (en — 1)¢(en) +Indy — eny —InT'(en).

Finally, the predictive distribution is given by (10.105) an@.(06), with1/5 re-
placed byl /E[5].

Consider each of the five terms in the lower bound (10.107) in tEor the terms
arising from the likelihood function we have

N
E[lnp(tjw)] = —g In(27) + %lnﬁ - g]E [Z<t" - qubn)z]

n=1

N N
= —Eln(27r) + Elnﬁ

—g {t"t —2E[w"]®"t + Tr (Elww"|®" @)} .

The prior overw gives rise to

E[llnp(w|a)] = f% In(27) + %E[ln al — @E[WTW}.
Similarly, the prior overy gives
Ellnp(a)] = aglnby + (ag — D)E[lna] — byE[a] — InT'(ag).

The final two terms irC represent the negative entropies of the Gaussian and gamma
distributions, and are given by (B.41) and (B.31) respectivelyhat

1 M
—E[lng(w)] = 3 In [Sy| + ?(1 + In(27)).
Similarly we have

—E[lng(a)] = —(a, — )Y(an) + anx +InT(an) + Inby.
Now we substitute the following expressions for the moments

E[W} = my
E[WWT} = mNm% + SN

Eja] = %
Ellna] = ¢(an)—Inby.

and combine the various terms together to obtain (10.107).
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10.28 NOTE: In PRML, Equations (10.119)—(10.121) contain errors; pleaseutbtise
PRML Errata for relevant corrections.

We start by writing the complete-data likelihood, given by (7).8nd (10.38) in a
form corresponding to (10.113). From (10.37) and (10.38), we have

p(X,Z|7T,/1,,A) = p(X‘Z K, )(Z|7T)

N
HH WkN Xn‘“zm 1))an

which is a product over data points, just like (10.113). Foagssin the individual
factors of this product, we have

K K
p(Xn,Zn|7T,M, H WkN Xn|ﬂ‘lm 1))an = eXp{ZZ"k <lnﬂ—k
k=1

k=1
1 D 1
T3 In|Ag| - 5 In(27) — §<Xn — ) TA (% — Mk)) }

Drawing on results from Solution 2.57, we can rewrite this in the fofr{l6.113),
with
Appy,
ALy
Ay
n=| plApw, (286)
In 7

(287)

K
h(Xn,2n) H —D/2y? (288)
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and the operato]7[ which returns a vector formed by stacking the columns of the
argument matrix on top of each other.

Next we seek to rewrite the prior over the parameters, given by §1@ssd (10.40),
in a form corresponding to (10.114) and which also matches (286). ,Radh89),
(10.40) and Appendix B, we have

plm,p,A) = Dir(mlog) [N (milmo, (BoAr) ™) W (Ax[Wo, )

k=1

KD/2 K
= C(a) <2ﬂ:r> B(Wy, VO)Kexp{Z(ao —1)Inmg

k=1
vy — D

+ In|Ag| — %Tr (Ax [Bo(pey, — mo)(py — mo)" + Wo])}

we can rewrite this in the form of (10.114) withgiven by (286),

mg
-1 (ﬁomomg + Wt
Xo= Y (289)
(vo — D)/2

g — 1 k=1,.. K

g(n) =1

3 KD/2
o) = Clon) () BOWa)

anduv, replaces/, in (10.114) to avoid confusion with, in (10.40).

Having rewritten the Bayesian mixture of Gaussians as a cotgugadel from the
exponential family, we now proceed to rederive (10.48), (10.5d) (@0.59). By
exponentiating both sides of (10.115) and making use of (2888)}(2ve obtain
(10.47), withp,,;. given by (10.46), from which (10.48) follows.

Next we can use (10.50) to take the expectation Wrih (10.121), substituting,,
for E[z,x] in (287). Combining this with (289), (10.120) and (10.121) become

vN=v9+N=14+N
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and
[ Bomy X
_1 T —1 N 1 T
> (fomomg + W 3XnX,
UNXN = —Bo/2 + Z Tnk fl%
(vo—D)/2 n=t 3
L ap — 1 k=1,.. K 1 k=1,.. K
[ Bomg + NipX,
-5 (ﬁomomOT + Wy + N (Sk + ikig))
- —(Bo + Ni)/2 (290)
(vo — D + Ng)/2
- ap — 14 N k=1,.. K

where we usey instead ofvy in (10.119)—(10.121), to avoid confusion with,
which appears in (10.59) and (10.63). From the bottom row of (287)29@), we
see that the inner product gfandvyx 5 gives us the r.h.s. of (10.56), from which
(10.57) follows. The remaining terms of this inner product are

Z {NEAk (Bomyg + NpXy)

K
k=1

1 .

—5T (Ak [ﬁomomg + Wi+ Ni(Sk + iki;f)J)
1 1

- 5(50 + Nk)I«LEAkMk + 5(7/0 + Ni — D) In |A‘}

Restricting our attention to parameters corresponding to aesmgdture component
and making use of (10.60), (10.61) and (10.63), we can rewrite this as

1 1 1
- iﬁkﬂgAklik + Bepy Apmy — §/gkm5Akmk +3 In|A|

1 T 1 G T o L= —T
+ 5t Ay, — STr (Ak [ﬁomomo + W+ Ne(Sk+ xkxk)])
1
+ 5 =D —1)In|A].

The first four terms match the logarithm &f (., |my, (ﬁkAk)’l) from the r.h.s.
of (10.59); the missind/2[In ), — In(27)] can be accounted for ifi(vy, x ). TO
make the remaining terms match the logarithmf A ;| W, 1) from the r.h.s. of
(10.59), we need to show that

T — =T T
Bomomy + NpXipX;, — Spmpmj,
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10.29

equals the last term on the r.h.s. of (10.62). Using (10.60), (J1@u&d.(276), we get

Bomomy + NipXipX), — fpmypmy
Bomomy + NypXpX;, — fomom;, — NpX,my,
= Bomem, — Bymom}, + NpX.X; — NpXpm) + Bpmpm} — Bymzm;
= 50m0moT - 60m0m;£ - 50mkzmoT —+ ﬂomkm}f
—Q—Nkikf’]g — Nkikm;f — Nkmki;g + Nkmkmz
= Bo(my —mp)(my —mg)" + Ni (X — my)(X — my) "
BoNk _

= 3o+ Nk (X — myg) (X, —myg) "

Thus we have recoverdd W (A, |Wy, 1) (missing terms are again accounted for
by f(vn, xn)) @and thereby (10.59).

NOTE: In the 1* printing of PRML, the use of\ to denote the varitional param-
eter leads to inconsistencies w.r.t. exisiting literature.rd@medy this\ should be
replaced by, from the beginning of Section 10.5 up to and including the lexst |
before equation (10.141). For further details, please consuRRML Errata.

Standard rules of differentiation give

dln(z) 1

dr  x
d?In(z) 1
dx? 2

Since its second derivative is negative for all value:pin(z) is concave fo) <
xr < oQ.

From (10.133) we have

g(n) = min{nz - f(z)}
= min{nz —In(z)}.
We can minimize this w.r.tz by setting the corresponding derivative to zero and
solving forz:
dg 1

1
_77—7:0 :> xr = —.
dx x n

Substituting this in (10.133), we see that

gt =1-1n (;) |

If we substitute this into (10.132), we get

(&) = min {m— 1 +1In (;) }
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Again, we can minimize this w.r.iy by setting the corresponding derivative to zero
and solving for:

d, 1 1

—f =r— — = O — ’[7 = —,

dn n x
and substituting this into (10.132), we find that

@) = éx “14ln (1}3) — In().

NOTE: Please consult note preceding Solution 10.29 for relevanta@ns.
Differentiating the log logistic function, we get

% Ino = (1 + e_"’c)_1 e ¥ =o(x)e " (291)
and, using (4.88),
2
= Ino =o(z)(1 —o(z))e ™ —o(x)e”™ = —o(x)’e™™

which will always be negative and henkes () is concave.
From (291), we see that the first order Taylor expansidn efz) arounds becomes

Ino(z) =Ino(€) + (z — o(§)e ¢+ O ((z — xi)?) .
Sinceln o () is concave, its tangent line will be an upper bound and hence
Ino(z) <Ino(€) + (z — &)a(€)e . (292)

Following the presentation in Section 10.5, we define

n=oc(¢e " (293)
Using (4.60), we have
I
= =09
= 1-0()
and hence
o(§) =1-n

From this and (293)
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Using these results in (292), we have
Ino(xz) <In(l—n)+2n—n[n(l —n) —1Inn|.
By exponentiating both sides and making use of (10.135), weiof10.137).

10.31 NOTE: Please consult note preceding Solution 10.29 for relevantctams.
Taking the derivative of (z) w.r.t. x we get

df 1 Lo —apo 1 (:z;)
_— —_—_—— — x — x = —— h —
da er/2 + e~x/2 2 (e ‘ ) 2 tan 2

where we have used (5.59). From (5.60), we get

1= 4 (- (3)).

Sincetanh(z/2)? < 1 for finite values ofz, f”(x) will always be negative and so
f(x) is concave.

Next we defingy = 22, noting thaty will always be non-negative, and expresas

a function ofy:
fly) = —1n {exp (“f) Fexp (—?) } |

We then differentiatg’ w.r.t. , yielding

LoD )
1

N S, (V?) | (295)

and, using (5.60),
S | ?
din = 8y3/2tanh {1—‘5 ) }
1 NG 1 VY 1
: 8y<wh<z>{m h(z>}—2>-

We see that this will be positive if the factor inside the ontest parenthesis is
positive, which is equivalent to

\;ytanh <\§7> > % {1 — tanh? (?) } :
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If we divide both sides byanh (,///2), substitutes for \/7/2 and then make use
of (5.59), we can write this as

1 e +e * et—e @
a ea—e—a_e“—i-e—“
(e® + 67(1)2 — (e® — e’a)2
(e@ —e™2) (e® 4+ e~ @)
4

e2a _ 6—2a'

Taking the inverse of both sides of this inequality we get

a< % (62(1 — 672“) .

If differentiate both sides w.r.t. we see that the derivatives are equat at 0 and
for a > 0, the derivative of the r.h.s. will be greater than that of thesl. Thus, the
r.h.s. will grow faster and the inequality will hold far > 0. Consequently (296)
will be positive fory > 0 and approach-oc asy approaches.

Now we use (295) to make a Taylor expansiory ¢f?) around¢?, which gives

f@®) = f()+ (@ =) f(€) +0 (" - €)?)

> —In {exp <§> + exp <—§> } — (2% - 52)415 tanh (g) .

where we have used the fact thats convex function ofr? and hence its tangent
will be a lower bound. Defining

A(§) = 41§tanh (g)

we recover (10.143), from which (10.144) follows.

We can see this from the lower bound (10.154), which is simply aaitine prior
and indepedent contributions from the data points, all of whrehquadratic irw. A
new data point would simply add another term to this sum andameregard terms
from the previously arrived data points and the original prior ctiely as a revised
prior, which should be combined with the contributions from tee/mata point.

The corresponding sufficient statistics, (10.157) and (10.1&8),be rewritten di-
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rectly in the corresponding sequential form,

N
my = SN <S_1m0 + Z t - 1/2)¢n>

= Sy |[Sy mo—}-Zt -1/2)¢, (N—1/2)¢N>

z

—1

= Sy |(Sy_;Sn—: (S my + (tn — 1/2)¢n) + (tn — 1/2)¢N>

= Sy (SyLimy_1+ (tv —1/2)0y)

and

N
So' 2> AMén)d. b

n=1
N—-1

Sot +2 ) Mén)dadn + 2MEn )by DN

n=1

Sy

SyL1 +2MEN) PN DN

The update formula for the variational parameters, (10.163), rerhaisame, but
each parameter is updated only once, although this upddteenplart of an iterative
scheme, alternating between updating, andS y with £y kept fixed, and updating
&n with my andSy kept fixed. Note that updatingy will not affectmpy_; and
Sny_1. Note also that this updating policy differs from that of the balearning
scheme, where all variational parameters are updated usingtistatiased on all
data points.

10.33 Taking the derivative of (10.161) w.r§,,, we get

8@ _ 1 o' _1_ / T WWT _ 2
% = (m (€n) N (&) (0nE [ww™] ¢ — &) + A(€a) 260
1 ’ T T 2
- (m o(6)(1 = 0(2)) = 5 = N(&) (42 [ww] ¢ - &)
= [am - ;] 2%,

= —N(&) (o E[ww'] ¢ —&)

where we have used (4.88) and (10.141). Setting this equal to wer@btain
(10.162), from which (10.163) follows.
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10.34 NOTE: In the 1% printing of PRML, there are a number of sign errors in Equation
(10.164); the correct form is

ISl 1
2 Se] T 2

al 1
#3- o6 - 56+ AeE )

1
§m0TSglm0

T —1
NSN my —

L) =

We can differentiateC w.r.t. &, using (3.117) and results from Solution 10.33, to

obtain
oL 1 10SN OSN / 2
@ 3 (S 2%, ) + =Tr <aNaN 9E, > + XN (&€ (297)

where we have defined

anNy — SI_VlmN- (298)
From (10.158) and (C.21), we get
oSy a(sy!) Sy
= —5,~—=-Sn SN

= —SN2N(&n)dn¢, SN
Substituting this into (297) and setting the result equal to,2@e get
LT (SR + avak) SN2X(€)0u61SN) + N(E)E = 0.
Rearranging this and making use of (298) we get
¢ = .S~ (Sy' +anay)Snén
= ¢, (Sy + mymy) ¢,
where we have also used the symmetrBaf.

10.35 NOTE: See note in Solution 10.34.
From (2.43), (4.140) and (10.153), we see that

p(W)h(w,€) = (2m)" /2 |8,| 7/

exp{—lw <S +22)\ §n)Pn® )
(S mo—i—Zqﬁn t - =
exp{ mOS m()+2*+>\fn }

—

O'

I

n=1
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10.36

10.37

Using (10.157) and (10.158), we can complete the squarevoygielding

N

p(w)h(w.&) = (2m) "2 S| [] o(&n)

n=1

esxp {—;w — my) TSy (w mN>}

1
exp{2mJT\,SN1mN meS m02—+)\§n }

Now we can do the integral over in (10.159), in effect replacing the first exponen-
tial factor with (2)"V/2|S v |'/2. Taking logarithm, we then obtain (10.164).

If we denote the joint distribution corresponding to the firsactors byp; (6, D),
with corresponding evidengs (D), then we have

p,(D) = / p,(6.D)d6 = / py1(0.D) f,(0) A6
— pa(D) / Py (61D)f;(6) o
~ p;(D) / 45-1(0)£;(8) 48 = p;_,(D)Z;.

By applying this result recursively we see that the evidencévisngoy the product
of the normalization constants
D) =]]%-
J

Here we use the general expectation-propagation equation©4)9(20.207). The
initial ¢(0) takes the form
(init 9) H f’L

i#0
wherefo(e) = fo(@). Thus
°6) < [[ £:(6)
i#0
andg™*¥(0) is determined by matching moments (sufficient statisticsinstia
\O(e)fo(e) = Ginit(0).

Since by definition this belongs to the same exponentiallfaform as¢"*¥ () it

follows that
4" (0) = qnic(0) = ¢'\°(0) fo(6).
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Thus
ZO qnew (9)
q\°(6)

Z= [ d@®1n0)20 = [ ¢6)a0 =1,

The ratio is given by

fo(8) = = Zofo(0)

where

1 1
(0) x o0 ml? s 1o - m )

X exp {—10T0 <1 — 1) +6" <1m - 1mn)}
2 v vy v Un

from which we obtain the variance given by (10.215). The mean iz db¢ained by
completing the square and is therefore given by

m\" = o\» (vilm — v;lmn)
= o\® (vilm - vilmn) + 0\ m — 0\ 'm

= v\”(vfl v, )m—i—v\" Y(m —m,)

Hence we obtain (10.214).
The normalization constant is given by

Z. - /,/\/(Om\",v\"’I) {(1 = w)N (xn]0, 1) + wN (x,,]0, al)} d6.

The first term can be integrated by using the result (2.115) whidest#fitond term
is trivial since the background distribution does not depen@ amd hence can be
taken outside the integration. We therefore obtain (10.216).

NOTE: In PRML, a termv\" D should be added to the r.h.s. of (10.245).

We derive (10.244) by noting

1
Vo lnZy = Ve [ 47 (6)1,(6) 40
= 5 [amone { L (m \“—0>}d0
B m\n [ ]
Cy\n v\’
We now use this to derive (10.217) by substituting Zgrusing (10.216) to give
1 1
Venr I Zy = —= (L= w)N (e [m ", (02" + D)o (0 = m')

1

- —m\
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Chapter 11

where we have defined
1
pn = (L= w) =N (s [m"", (0" + 1)I) = 1 - Zﬂ/\/(xnm,al).

n

Similarly for (10.245) we have
1
VoelnZy= 5 Voo [0 (0)1,6)d0

1 T
= Zin / ¢\ () £.(0) {2(11\”)2 (m\" -~ 6) (m\"-8) - 2v\n} de

_ 1 T Ty, \n \n |2 D
- W{E[G 6] —2E[0"]m\" + |m\"|*} — g\

Re-arranging we obtain (10.245). Now we substituteAgrusing (10.216) to give

1
VonInZz, = Z—(l — w)N (x,|/m\", (v\" + 1)T)

1

E YRR [—
2(v\r +1)2

[[%n — m\" m
Next we note that the variance is given by

vI =E[00"] —E[O|E[0"]
and so, taking the trace, we have

Dv =TE[0"6] - E[0T]|E[0]

whereD is the dimensionality of. Combining the above results we obtain (10.218).

Sampling Methods

111

Since the samples are independent, for the mean, we have

2[7]= 33 [ 0wt = 1SRl =l

Using this together with (1.38) and (1.39), for the variance, weha

wli] - [(-3[7)]

- E[P?| -EUT.
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Now note

E [f(Z(k)),f(z(m))] _ { Var[f] +E[f2] if =k,

E[f?] otherwise,
= E[fQ] + mpvar(f],

where we again exploited the fact that the samples are independ
Hence

= LS pamn LN 2
Var[f} = E z;f(z )L;f(z )| —E[f]
Ll L B
= ﬁZZ{E[f | 4 i var] } E[f

m=1 k=1
1
= ZVaf[f]
1 2
= JE[(/-E)]

From (1.27) we have,
py(y) = p=(h(y)) [F'(y)] -
Differentiating (11.6) w.r.ty and using the fact that, (h(y)) = 1, we see that

py(y) = p(y).

Using the standard integral

1 1
[armau=ta () 0
a4+ u a a

where(' is a constant, we can integrate the r.h.s. of (11.8) to obtain
oo 1 1
z=hy)= [ pEH)dy=_tan™(y) + 5

where we have chosen the constant 1/2 to ensure that the range of the cumula-
tive distribution function ig0, 1].

Thus the required transformation function becomes

y=h'(z) = tan <7T <z _ ;)) .

We need to calculate the determinant of the Jacobian
6(21, 22)
A(y1,v2)
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In doing so, we will find it helpful to make use of intermediary vaies in polar
coordinates

0 = tan 2 (299)
21
r? = zf—l—zg (300)
from which it follows that
z1 = rcosf (301)
z3 = rsinf. (302)

From (301) and (302) we have
0(z1, 22) < cos sin 6 )

a(r,0) —rsinf rcosf
and thus
' a(,g?i” Zi) = r(cos? 0 +sin? ) = r. (303)
From (11.10), (11.11) and (300)—(302) we have
_ 2\ 1/2
o= 2 ( 21§T > = (—21nr2)1/2 cos (304)
r
_ 2\ 1/2
Yo = 22< 21;” ) = (—21117"2)1/281119 (305)
r

which give

Oy1,y2) _ ( —2cosf(—2Inr?)"/?r=1 _2sinf(—2Inr2)" /7 p1 )

a(r,0) —sin9(—21nr2)1/2 cos@(—anr2)1/2
and thus
ar,0) | |0y, y2)| -1 2 2y T
3. 9) —’ 90.0) —( 2r~"(cos” f + sin 9)) =-3
Combining this with (303), we get
' 0(z1, 22) (z1,22) O(r,0)
(1, y2) o(r,0) 9(y1,y2)
|0z, ) || O(r0) | r?
= % e =3 (396)

However, we only retain the absolute value of this, since baths of (11.12) must
be non-negative. Combining this with

1
p(zh 22) = p
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which follows from the fact that; andz, are uniformly distributed on the unit circle,

we can rewrite (11.12) as
1 2

P(Y1,42) = o (307)
i

By squaring the left- and rightmost sides of (304) and (305), addmthe results
and rearranging, we see that

1
= e (3 2+ 2) )
which toghether with (307) give (11.12).

11.5 SinceE [z] = 0,
Ely] =E[p+Lz] = p.

Similarly, sinceE [zz"] =1,

covly] = Elyy'] —E[y]E[y"]
= E [(u +Lz) (u+ LZ)T] —ppt
LLT
.

11.6 The probability of acceptance follows directly from the mechanised to accept or
reject the sample. The probability of a sampleeing accepted equals the probability
of a sample., drawn uniformly from the interveD, kq(z)], being less than or equal
to a valuep(z) < kq(z), and is given by is given by

p(z) 1 n
p(acceptance|z) = / du p(2)
o kg

(z) kqlz)

Therefore, the probability of drawing a sampiejs

q(z)p(acceptance|z) = q(z) IZ((ZZ)) = f% (308)

Integrating both sides w.rz, we see thakp(acceptance) = Z,, where

Z, = /5(z) dz.
Combining this with (308) and (11.13), we obtain

q(z)p(acceptance|z) 1

p(acceptance) - ZP(Z) = p(z)

as required.
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11.7 NOTE: In PRML, the roles of; andz in the text of the exercise should be swapped
in order to be consistent with the notation used in Sectiot.2lincluding (11.16);
this is opposite to the notation used in Section 11.1.1.

We will suppose thay has a uniform distribution oft), 1] and we seek the distribu-
tion of z, which is derived from

z=btany + c.
From (11.5), we have
dy
= 309
a(2) =p() |1, (309)

From the inverse transformation

y = tan '(u(z)) = tan~* (Z ; c)

where we have implicitly defined(z), we see that

dy d 1 du

- = 7

dz du an”"(u) dz
_ 1 du
14w dz

Substituting this into (309), using the fact thdt)) = 1 and finally absorbing the
factor1/b into k, we obtain (11.16). .

11.8 NOTE: In PRML, equation (11.17) and the following end of the sentemeed to
modified as follows:

q(z) = kidiexp{-Xi (z —2))}  Zic1i <2< Ziin
wherez,_; ; is the point of intersection of the tangent linesat; andz;, A; is the
slope of the tangent at andk; accounts for the corresponding offset.

We start by determining(z) with coefficientsk;, such thaty(z) > p(z) everywhere.
From Figure 11.6, we see that

q(zi) = p(z)
and thus, from (11.17),

A(z) = kdiexp(=Ai(z — 2))
)

kidi = p(2:). (310)
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Next we compute the normalization constantdon terms ofk;,
z = [aa

K . Ziit1
— Zki)\i/ exp (—Ai(z — z;)) dz
i=1

Zi—1,1

K
= D ki (311)

where K denotes the number of grid points and

_ Ziit1
kz‘ = kz)\z/ exXp (_)\Z(Z_Z’l>> dz

Zi—1,i

= ki (exp{-Ni Giri—2)} —exp{-Ni Giip1 — 2)}) . (312)

Note thatz, ; andzk k1 equal the lower and upper limits on respectively, or
—ool+oo where no such limits exist.

11.9 NOTE: See correction detailed in Solution 11.8

To generate a sample fron(z), we first determine the segment of the envelope
function from which the sample will be generated. The probahifigss in segment
i is given from (311) a%;/Z,. Hence we draw from U (v|0, 1) and obtain

1 if v < k‘l/Zq
i=4q m ifZ;n:_llkj/Zq<v<Z;n:1k:j/Z, l<m< K
K otherwise.

Next, we can use the techniques of Section 11.1.1 to sampletfreraxponential

distribution corresponding to the chosen segmeniVe must, however, take into
account that we now only want to sample from a finite interval ef élkponential

distribution and so the lower limit in (11.6) will bg_, ;. If we consider the uni-

formly distributed variablev, U (w|0, 1), (11.6), (310) and (311) give

w = h(z)—[ o(3) dz

Zi—1,i

ks : .
= k)\iexp()\izi)/ exp (—A;z) dz

i—1,%

- k;i exp (Aiz;) [exp (—\iZi—1.:) — exp (—\;2)] .
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Solutions 11.10-11.11

11.10

11.11

Thus, by drawing a sample* and transforming it according to

L
z¥ = —ln|w= !

= —exp(—AZi—1
i kiexp (N\iz;) ( i)

= )\7 hl [w* (eXp {_)\i/z\ifl,i} — exXp {_/\i/z\i,i+1}) — exp (—/\i/z\i,l’i)]

X2

where we have used (312), we obtain a sample fgoa.

NOTE: In PRML, “2(!) = 0” should be % = 0” on the first line following
Equation (11.36)

From (11.34)—(11.36) and the fact tfa{z(")] = 0 for all values ofr, we have

E.« [(g(r))ﬂ = 05E,+-n [(Z(Tfl))ﬂ +025E -1 [(2(771)+1)2}
+0.25E, 1) [(zw—l) N 1)2}
1
= B [(Z(H)ﬂ Ty (313)

With 2(°) = 0 specified in the text following (11.36), (313) gives

E.a) {(2(1))2} =E.q) [(z“)))g} + % = %

Assuming that

-

DN {(Z(k)ﬂ =3

(313) immediatly gives

and thus , -
E.o) [(27)] = 2.

This follows from the fact that in Gibbs sampling, we sample aglsivariable 2y,
at the time, while all other variable$z; };.+, remain unchanged. Thu§s.}z, =
{zi }iz1 @and we get

P (2)T(2z,2) = p* (21, {zi}izn) D" (2] {2 Yin)
*(zil{zitizr)p* ({2 biz )™ (2
( p*(
(

P ( [{zi}izn)
“(2kl{ 21 biger )0 ({21 Figer )" (2
p*(

{zi}ize)

TSI

* *

p

p
= p

P (2il{2i i) 0™ (2 {21 }ivn)
p*(Z/)T(Z/,Z),

where we have used the product rule together ®ith, z') = p* (2 [{z: }izx)-
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11.13
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Gibbs sampling isiot ergodic w.r.t. the distribution shown in Figure 11.15, siree t
two regions of non-zero probability do not overlap when projectdd either the; -
ot the z,-axis. Thus, as the initial sample will fall into one and onhecof the two
regions, all subsequent samples will also come from that rediowever, had the
initial sample fallen into the other region, the Gibbs sampleuld have remained
in that region. Thus, the corresponding Markov chain would hexe dtationary
distributions, which is counter to the definition of the edprilm distribution.

The joint distribution over, i andr can be written
p(x, 1, 7o, s0,a,0) = N (z[p, 771) N (plpo, s0) Gam (7a,b) .
From Bayes’ theorem we see that
p(pl, 7, o, s0) < N (e, 71) N (ual o, 50)
which, from (2.113)—(2.117), is also a Gaussian,
N (pl,’s)

with parameters

w)
|
|

-1
Sog +7T

S(ta+ sy o) -

=)
\

Similarly,
p(rlz, p,a,b) < N (2|, 77 1) Gam (7|a, b)

which, we know from Section 2.3.6, is a gamma distribution

Gam (7'|a, /b\>
with parameters
~ n 1
a = a+ <
2
~ 1
b = b+ 5 (z—p)?.

NOTE: In PRML, o should bex? in the last term on the r.h.s. of (11.50).
If we take the expectation of (11.50), we obtain

El] = E|m+al—m)+o(1-a?)"y]

wi +a (Elzi] — p) + o4 (1 — a2)1/2

Hi-

E[v]
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Solutions 11.15-11.17

11.15

11.16

11.17

Now we can use this together with (1.40) to compute the variaheg

var[z] = E[(z{)z}—E[zf]Q

n1/2 \2 2
= E (Mz‘+a(zi*ui)+m(1*a) l/) —

= o’E[(z — )’ + 07 (1-a®)E V7]

= Ui

where we have used the first and second order momentsaody.
Using (11.56), we can differentiate (11.57), yielding
OH 0K
or; or;
and thus (11.53) and (11.58) are equivalent.
Similarly, differentiating (11.57) w.r.tz; we get
OH 0F
0z; 0z’
and from this, it is immediately clear that (11.55) and (11.59)eap@valent.

i

From the product rule we know that
p(r|z) o< p(r, z).

Using (11.56) and (11.57) to rewrite (11.63) as

par) = e (-H(mr)
— %exp(—E(Z)—K(r))

= o (Il ) o (@)

Thus we see that(z, r) is Gaussian w.r.t- and hence(r|z) will be Gaussian too.

NOTE: In the 1% printing of PRML, there are sign errors in equations (11.68) and
(11.69). In both cases, the sign of the argument to the exp@hésrining the second
argument to thenin-function should be changed.

First we note that, iff (R) = H(R’), then the detailed balance clearly holds, since
in this case, (11.68) and (11.69) are identical.

Otherwise, we either havH (R) > H(R') or H(R) < H(R'). We consider the
former case, for which (11.68) becomes

1 1
Z exp(—H(R))(SV?
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since themin-function will return1. (11.69) in this case becomes

L exp(—H(R)))SV £ exp(H(R') = H(R)) = —— exp(—H(R))3V ~.
Zy 2 Zy 2
In the same way it can be shown that both (11.68) and (11.69) equal

1 1

whenH(R) < H(R').

Chapter 12 Continuous Latent Variables

12.1 Suppose that the result holds for projection spaces of dimeal#ip /. The M +

1 dimensional principal subspace will be defined by itieprincipal eigenvectors
uy, ..., uy together with an additional direction vectey; . ; whose value we wish
to determine. We must constrainy,; such that it cannot be linearly related to
uy, ..., uy (otherwise it will lie in theM -dimensional projection space instead of
defining anM + 1 independent direction). This can easily be achieved by reguirin
thatu,,., 1 be orthogonal tauy, . . ., u,s, and these constraints can be enforced using
Lagrange multipliersy,, ..., na.
Following the argument given in section 12.1.1 fgrwe see that the variance in the
directionuy,, 1 is given byu}4+1SuM+1. We now maximize this using a Lagrange
multiplier A,;1 to enforce the normalization constraim}{MluMH = 1. Thus we
seek a maximum of the function

M

u]TWHSuMH + At (1 - u}4+1uM+1) + Z niu}@rlui.

i=1

with respect tau,, ;. The stationary points occur when

M
0=2Sunry1 — 2 pm41up41 + Zmui.

i=1

Left multiplying with ujT, and using the orthogonality constraints, we seesghat 0
forj=1,..., M. We therefore obtain

Sunr1 = A1

and sou,s; must be an eigenvector & with eigenvalueu,,;.;. The variance
in the directionuy, . is given byu}4+1SuM+1 = Aup41 and so is maximized by
choosingu,, ., to be the eigenvector having the largest eigenvalue amahgse

not previously selected. Thus the result holds also for prajecpaces of dimen-
sionality M + 1, which completes the inductive step. Since we have alreaolyrsh
this result explicitly forAM = 1 if follows that the result must hold for any/ < D.
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Solutions 12.2-12.3

12.2 Using the result (C.24) we can set the derivative/ofith respect toU to zero to

12.3

obtain A
0=(S"+S)U-UMH" +H).

We note thas is symmetric so tha®™ = S. Similarly we can choosH to be sym-
metric without loss of generality since any non-symmetric congod would cancel

from the expression fod since the latter involves a trace Hf times a symmetric
matrix. (See Exercise 1.14 and its solution.) Thus we have

SU = UH.

Clearly one solution is take the columns@fto be eigenvectors @&. To discuss the
general solution, consider the eigenvector equatiodfaiven by

HY = L.

SinceH is a symmetric matrix its eigenvectors can be chosen to be a etenpl
orthonormal set in theD — M )-dimensional space, addwill be a diagonal matrix
containing the corresponding eigenvalues, With (D— M ) x (D— M )-dimensional
orthogonal matrix satisfying* & = 1.

If we right multiply the eigenvector equation f8rby ¥ we obtain
SU¥ = UHY = U¥L
and defininng = U we obtain
SU = UL

so that the columns dF are the eigenvectors &f, and the elements of the diagonal
matrix Lk are the corresponding eigenvalues.

Using the cyclic property of the trace, together with the orthhadity property
¥ W, the distortion function can be written

J =Tr(UTSU) = Tr(¢TUTSUW) = Tr(USU) = Tr(L).

Thus the distortion measure can be expressed in terms of the shm@fenvalues
of S corresponding to theD— M) eigenvectors orthogonal to the principal subspace.

By left-multiplying both sides of (12.28) by, we obtain

1
NVEXXTVZ‘ = )\Z‘V;[‘Vi = )\1
where we have used the fact thatis orthonormal. From this we see that
T 2
[XTvi]|” = N

from which we in turn see that; defined by (12.30) will have unit length.
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Using the results of Section 8.1.4, the marginal distributarthis modified proba-
bilistic PCA model can be written
p(x) = N(x|Wm + p, 0T+ WIS™'W).

If we now define new parameters

W = x/2w

p = Wm+p
then we obtain a marginal distribution having the form
p(x) = N (x|f, 0*T + WTW).

Thus any Gaussian form for the latent distribution therefore gigesta a predictive
distribution having the same functional form, and so for convergeve choose the
simplest form, namely one with zero mean and unit covariance.

Sincey = Ax + b,
p(ylx) =6(y — Ax—b)
i.e. a delta function aAx + b. From the sum and product rules, we have

ply) = /p(y, x)dx = /p(YX)p(X) dx
= /6(y — Ax — b)p(x) dx.
WhenM = D andA is assumed to have full rank, we have
x=A"'(y - b)
and thus

ply) = N(A ' (y —Db)|p, %)
= N(y|Ap+b,AZAT).

WhenM > D,y will be strictly confined to aD-dimensional subspace and hence
p(y) will be singular. In this case we have

x=A"(y -b)
whereA ~T is the left inverse ofA and thus
ply) = N(A™"(y—b)u,X)
ST 14 -1) !
N (ylap+b, (A7) 57A) ).
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Solutions 12.6-12.9

12.6

12.7

12.8

12.9

The covariance matrix on the last line cannot be computed, butam still compute
p(y), by using the corresponding precision matrix and constrainiaglémsity to be
zero outside the column spaceAf

ply) = N (yrAu+b, ((A—L)Tz—lA—L)‘1> 5(y — AAL(y—b)—b).

Finally, whenM < D, we can make use of (2.113)—(2.115) andlset = 0 in
(2.114). While this means tha(y|x) is singular, the marginal distribution(y ),
given by (2.115), is non-singular as longAsandX: are assumed to be of full rank.

Omitting the parameterd¥, p ando, leaving only the stochastic variablesand
x, the graphical model for probabilistic PCA is identical witke tthe ‘naive Bayes’
model shown in Figure 8.24 in Section 8.2.2. Hence these twaetsexhibit the
same independence structure.

From (2.59), the multivariate form of (2.270), (12.31) and (12.32), vie ge
Elx] = Eg[Ex[xz]]

E, [Wz + u]

M.

Combining this with (2.63), the covariance formula correspondir{g@ 271), (12.31)
and (12.32), we get

covix] = E,[covx[x|z]] + covx [Ex[x]|z]]
= E, [0°T] + cov, [Wz + p]

= o’I+E, [(Wz+u—Ez Wz + p)) (Wz + p — E, [Wz + p])"
= 0’ 1+E, [Wzz'W"]
= o’ I+ WWT,

NOTE: In the 1%¢ printing of PRML, equation (12.42) contains a mistake; the co-
variance on the r.h.s. should béM .

By matching (12.31) with (2.113) and (12.32) with (2.114), we hiwen (2.116)
and (2.117) that
p(zlx) = N (z|I+0*W'W)'"WoI(x — p), T+ 0 >W W) )
= N(zZM "W (x —p),ec?M ™),
where we have also used (12.41).
By expanding the square in the last term of (12.43) and then malse of results
from Appendix C, we can calculate the derivative wg.tand set this equal to zero,

yielding
N

-NC'p+C ') x,=0. (314)
7k

n=1
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12.11

12.12

12.13
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Rearrangning this and making use of (12.1), we get
M =X.
Using results from Appendix C, we can differentiate the r.h.s. D4f3v.r.t. i, giving
—-NC™.

If 2 > 0, C will be positive definite, in which cas€~! is also positive definite,
and hence the log likelihood function will be concave with &ue maximum ag.

Takingo? — 0in (12.41) and substituting into (12.48) we obtain the posteriean
for probabilistic PCA in the form

(Wi, W) ™ Wy (x — X).

Now substitute fofW 1, using (12.45) in which we tak® = I for compatibility
with conventional PCA. Using the orthogonality propetff, U,, = I and setting
0% = 0, this reduces to

L™2UY (x - X)

which is the orthogonal projection is given by the conventidt@A result (12.24).

For o2 > 0 we can show that the projection is shifted towards the origin teiia
space by showing that the magnitude of the latent spacenisateduced compared
to theo? = 0 case. The orthogonal projection is given by

Zorth = L;/QUEI (X - i)

whereL ), andU), are defined as in (12.45). The posterior mean projection is given
by (12.48) and so the difference between the squared magnittidasloof these is
given by
Zorin | — I1E[z[x] |

- x-%)T (UML;j“UM - WMLM—lM—lwﬁL) (x — %)

= x-%)"Uy{L"' =L+ '} Uyx-x)
where we have use (12.41), (12.45) and the factthahd M are symmetric. The
term in curly braces on the last line is diagonal and has elenaérits;(\; + o2)
which are all positive. Thus the matrix is positive definite aadthe contraction

with the vectorU,,(x — X) must be positive, and so there is a positive (non-zero)
shift towards the origin.

Substituting the r.h.s. of (12.48) f@il{z|x] in (12.94), we obtain,

. -1 _
Xp = W (Wi W) Wy (%, — X).
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Solutions 12.14-12.15

12.14

12.15

From (12.45) we see that

1

(WI\T/ILWML)71 = (Ly —o°I)
and so
in = U]wU’]T\/[(Xn — i)

This is the reconstruction of,, — X using theM eigenvectors corresponding to
the M largest eigenvalues, which we know from Section 12.1.2 mirgsithe least
squares projection cost (12.11).

If we substituteD — 1 for M in (12.51), we get

D(D_1)+1_(D—1)((D—1)—1) _ 2D%? —2D +2—D?+3D —2
2 2
_ D*+D D(D+1)
N 2 2

as required. Settinfy/ = 0in (12.51) given the value 1 for the number of parameters
in C, corresponding to the scalar variance parameter,

NOTE: In PRML, a termM /2 1n(27) is missing from the summand on the r.h.s. of
(12.53). However, this is only stated here for completenessadutlly does not
affect this solution.

Using standard derivatives together with the rules for matrifecdhtiation from
Appendix C, we can compute the derivatives of (12.53) viWtando?:

N

aiWE[lnp (X, Z|p. W, 0%)] = Zl {;(xn —R)E[z,]" - ;WE[znzg]}

and

N

9 2 1 TIwT
@E[lnp (X, Zip, W,o )} = Z:l {M]E[znzn]w w

1 0y 1. 4. D

Setting these equal to zero and re-arranging we obtain (12.56) arkrjlrespec-
tively.
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12.16 We start by noting that the marginal likelihood factorizesral@ta points as well as
the individual elements of the data points,

(X[, W,0%) — / W(Z)p(X|Z, 1. W, 02) dZ

N
- 1I / DD 18, W, 0% i
n=1

N D
— H /p(zn) HJ\/’(xm'\wizn + 1, 02) dz, (315)
n=1 i=1

wherez,,; denotes thé'" element ofx,,, 1.; denotes thé'® element of andw; the

i** row of W. If we assume that any missing values are missing at random (gee pa
441 of PRML), we can deal with these by integrating them out o5)3lLetx? and

x denote the observed and missing partspf respectively. Using this notation,
we can rewrite (315) as

N
pXluW,o") = ] [pta) T] Monlwizn + .0
n=1

T €EXY,

H N (20| Wiz + pj,0°) dxy dz,
Tnj €X3)
N
= H /p(zn) H N(mni|wizn + 1, 02) dZn
n=1 Tni €EXY,
N
= Hp(X%“J‘aWa 02)'

n=1

Thus we are left with a ‘reduced’ marginal likelihood, where fortedata pointx,,,
we only need to consider the observed elemexiis,

Now we can derive an EM algorithm for finding the parameter valbhas maxi-
mizes this ‘reduced’ marginal likelihood. In doing so, we sfialdl it convenient to
introduce indicator variables,,;, such that,,; = 1 if z,,; is observed and,; = 0

otherwise. This allows us to rewrite (12.32) as

D
p(x|z) = HN(.’L',;‘WZ'Z + pi, o)t

i=1

and the complete-data log likelihood as

N D
Inp(X,Zlp, W,o) = Z {lnp(zn) + me- In N (2| Wizpn + ,ui,UQ)} .

n=1 =1
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Following the path taken in Section 12.2.2, making use of31Rand taking the
expectation w.r.t. the latent variables, we obtain

N
M 1
E[np(X,Z|p, W,0)] = — Z:l{ 5 In(27) + oAl (E [znz])
1
+ Z an{ln 27TJ (xTLL Mni)2 - ;E[Zn]’rw?(fﬂnz - ,uni)

1
b T (5 [z, ww) } }

Taking the derivative w.r.iu; and setting the result equal to zero, we obtain

N

1
new __
i N E lnilni-
Zm:l bmi n=1

In the E step, we compute the sufficient statistics, which dubé altered form of
p(x|z) now take slightly different shapes. Equation (12.54) becomes

E[Zn] = Mglw;l;Yn

wherey,, is a vector containing the observed elements,pminus the correspond-
ing elements of.**%, W,, is a matrix formed by the rows &V corresponding to
the observed elements ®f, and, accordingly, from (12.41)

M, = WIW, +¢’L

Similarly,
E [znzﬂ = o’M, ! + E[z,]E[z,]".

The M step is similar to the fully observed case, with

Wiew = [ZynE[zn}T [ZE[znzﬂ]

2 new
o = zzbm{ s — 1)
Zn 1 Z —1bni p—1 i=1

—2E[z,]T (W) (5 — pio)

+Tr (E [znzﬂ (W?GW)T w?ew> }

wherew?" equals the'™ row W ..

In the fully observed case, all,; = 1, y, = x,, W,, = W andu**" = X, and
hence we recover (12.54)—(12.57).




Solutions 12.17-12.19 215

12.17 NOTE: In PRML, there are errors in equation (12.58) and the preceding text.
(12.58),X should beX™ and in the preceding text we defifieto be a matrix of size
M x N whosen'" columnis given by the vectoE|z,,].

Setting the derivative of with respect tqu to zero gives

N

OZ—Z(xn—u—Wzn)

n=1

from which we obtain

1 & 1 &
u:NZXn—NZWzn:i—WZ.
n=1

n=1
Back-substituting inte/ we obtain

N

J=) (k0 — %X = W(z, —2)|”

n=1

We now defineX to be a matrix of sizéV x D whosen'™ row is given by the vector
x,, — X and similarly we definé to be a matrix of sizéD x M whosen'® row is
given by the vectot.,, — z. We can then write/ in the form

J=Tr{X-ZW")(X-zZW""}.

Differentiating with respect t& keepingW fixed gives rise to the PCA E-step
(12.58). Similarly setting the derivative of with respect toW to zero with{z,, }
fixed gives rise to the PCA M-step (12.59).

12.18 Analysis of the number of independent parameters follows theedines as for
probabilistic PCA except that the one parameter noise covaiatl is replaced by
a D parameter diagonal covariande Thus the number of parameters is increased
by D — 1 compared to the probabilistic PCA result (12.51) giving a totathber of
independent parameters of

D(M +1) — M(M —1)/2.

12.19 To see this we define a rotated latent space vectomRz whereR is anM x M or-
thogonal matrix, and similarly defining a modified factor loggimatrixW = WR.
Then we note that the latent space distributign) depends only oz™z = 2z,
where we have useR™R = 1. Similarly, the conditional distribution of the ob-
served variable(x|z) depends only o'Wz = Wz. Thus the joint distribution
takes the same form for any choiceRf This is reflected in the predictive distri-
butionp(x) which depends oiW only through the quantitftvw?™ = WW™ and
hence is also invariant to different choicesRf
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Solutions 12.20-12.22

12.20 The log likelihood function is given by

12.21

12.22

N
InL(p, W, ®) = Inp(x,|p, C)
n=1

= Y {-m[C| - (%0 — WTC T xn — p)}

whereC is defined by (12.65). Differentiating with respectd and setting the
derivative to zero we obtain

N
0= ZC_I(xn — ).
n=1

Pre-multiplying byC and re-arranging shows thatis given by the sample mean
defined by (12.1). Taking the second derivative of the log Iii@d we obtain

0*InL
opuTou
SinceC is a positive definite matrix, its inverse will also be positiefinite (see

Appendix C) and hence the stationary point will be a uniqueimar of the log
likelihood.

By making use of (2.113)—(2.117) together with (12.31) and ()2\%é obtain the
posterior distribution of the latent variahte for a given value of the observed vari-
ablex, in the form

—-NC.

p(z|x) = N(z|GWTT ! (x — x).
whereG is defined by (12.68). Since the data points are drawn indepédpdiarh
the distribution, the posterior distribution fey, depends only on the observatigp
(for given values of the parameters). Thus (12.66) follows direéity. the second
order statistic we use the general result

E[z,2,] = cov|z,] + E[z,|E[z,]"
from which we obtain (12.67).
NOTE: In PRML, Equations (12.69) and (12.70) contain minor typogiegdlerrors.
On the Lh.sW*»*¥ and¥"“" should beW ., and¥ ., respectively.

For the M step we first write down the complete-data log likelithéunction, which
takes the form
N
InLe = Z {Inp(z,) + Inp(x,|2,)}

n=1

N | —

N
> {-Mmn@r) - 22, — DIn(27) — In ||
n=1

— (%, =X — Wz,) "o (x, —x — Wzn)}
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Now take the expectation with respect{ta, } to give

N
E,[InLc] = % Z {~In|¥| - Tr (E[z,z W &T'W)
n=1
+2E[z,]" W' ¥ (x, —X)} — NTr (ST ') + const.

whereS is the sample covariance matrix defined by (12.3), and the cdrtstans
are those which are independentWf and ¥. Recall that we are making a joint
optimization with respect t&W and ¥. Setting the derivative with respect W'
equal to zero, making use of the result (C.24), we obtain

N N
0=-20"'"W Y Elz,z,] + 20" [(xn — DE[z,]"].

n=1 n=1

Pre-multiplying by® and re-arranging we then obtain (12.69). Note that this result
is independent of.

Next we maximize the expected complete-data log likeliho@H respect tol. For
convenience we set the derivative with respecPto’ equal to zero, and make use
of (C.28) to give

N N
0=NT -W ZE[znz,Tl]] W' +2 ) (x, —X)E[z,]" | W - NS.
n=1 n=1

This depends oW, and so we can substitute f8 .., in the second term, using
the result (12.69), which simplifies the expression. Finallygsi¥ is constrained to
be diagonal, we take set all of the off-diagonal componentstto giving (12.70) as
required.

12.23 The solution is given in figure 10. The model in which all pareenetare shared
(left) is not particularly useful, since all mixture component have identical pa-
rameters and the resulting density model will not be any diffeterdne offered
by a single PPCA model. Different models would have arisen if @ome of the
parameters, e.g. the meanwould have been shared.

12.24 We can derive an EM algorithm by treatimgin (2.160) as a latent variable. Thus
given a set of i.i.d. data pointX = {x,}, we define the complete-data log likeli-
hood as

Inp(X,n|p, A, v) = Z {InN (x5|p2, (o A) ") + In Gam (n,|v/2,v/2) }

wheren is an N-dimensional vector with elemenigs . The corresponding expected
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Solution 12.24

Figure 10 The left plot shows the ™ (— ) ™
graphical model correspond- Z
ing to the general mixture of
probabilistic PCA. The right s ]
plot shows the correspond-
ing model were the param- |~ W, w

eter of all probabilist PCA
models (u, W and o®) are 4

— M X n
shared across components.
In both plots, s denotes
the K-nomial latent variable ™~ U;% o?
that selects mixture compo- K

nents; it is governed by the
parameter, .

complete-data log likelihood is then given by

N
&, lnp(X, nlps, A, )] = —3 3" {D(n(2r) ~ Bl ,]) - In|A

+Eny) (x"Ax = 2x"Ap + p"Ap) +2InT(v/2)
—v(ny —In2) — (v —2)E[lnn,] + E[n,]} (316)

where we have used results from Appendix B. In order to compute tbessary
expectations, we need the distribution oyegiven by

N
pIX, A v) =[] pOinlxn, 1 A, v)

;1
o [TV (nlpe, (0 A)™1) Gam (fv/2,v/2) .

From Section 2.3.6, we know that the factors in this product atependent Gamma
distributions with parameters

v+ D
a, =
2
b _ V"’“(xn_N)TA(Xn_N)

2
and the necessary expectations are given by

a

3

E[nn] =
Ellnn,] = v

In the M step, we calculate the derivatives of (316) wu.andX, set these equal to

ap) — Inb,.
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zero and solve for the respective parameter, to obtain

S Elnalx,
S Eln,]

N —1
1
AvL = (N ;E[nn](xn — par,) (Xn — NML)T>
Also for v, we calculate the derivative of (316) and set the result equadio, to get

tein(2) - (5)+ ;i {E[lnn,] — Elna]} = 0.

Unfortunately, there is no closed form solution w.r:f.but sincev is scalar, we can
afford to solve this equation numerically.

125Y0

Following the discussion of section 12.2, the log likeliddanction for this model
can be written as

ND N
L(p, W, ®) = ——ln(27r)——ln|WWT+<I>|

N
Z )T(WWT + @) (x, — )},

where we have used (12.43).
If we consider the log likelihood function for the transformed dsgwe obtain

ND N
La(p,W,®) = ——ln(Qﬂ') - —ln|WWT + 9P|
—72{ (Ax, — p)"(WWT + @)~ (Ax, —p)} .

Solving for the maximum likelihood estimator farin the usual way we obtain

N
1 -
Ha = E Ax, = AX = Apyy,.

n=1

Back-substituting into the log likelihood function, and wgithe definition of the
sample covariance matrix (12.3), we obtain
ND N
La(p, W, ®) = ———In(27) — — 5 In (WW?T + &

N
f% > T {(WWT+ @) TASATY .

n=1
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12.26

We can cast the final term into the same form as the correspondingniénenorigi-
nal log likelihood function if we first define

d,=AP AT, Wa = AW.

With these definitions the log likelihood function for the triorened data set takes
the form

ND N
LA([I,A,WA,‘I)A) = —7111(277) — —ln|WAWA + @Al

_72{ T(WAWRL +®a) (% — pa)} — NIn|A[,

This takes the same form as the original log likelihood functiparafrom an addi-
tive constant-In |A|. Thus the maximum likelihood solution in the new variables
for the transformed data set will be identical to that in the oldaldes.

We now ask whether specific constraints®mill be preserved by this re-scaling. In
the case of probabilistic PCA the noise covariafices proportional to the unit ma-
trix and takes the form2I. For this constraint to be preserved we reqirA™ = I

so thatA is an orthogonal matrix. This corresponds to a rotation of the ¢oaiel
system. For factor analys#® is a diagonal matrix, and this property will be pre-
served ifA is also diagonal since the product of diagonal matrices iswatjagonal.
This corresponds to an independent re-scaling of the coordiystiens. Note that in
general probabilistic PCA is not invariant under componenewgsscaling and fac-
tor analysis is not invariant under rotation. These resultsllastrated in Figure 11.

If we multiply (12.80) byK we obtain (12.79) so that any solution of the former will
also be a solution of the latter. Let be a solution of (12.79) with eigenvalug and
let a; be a solution of (12.80) also having eigenvalyelf we writea; = a; +b; we
see thab; must satisfyiKb; = 0 and hence is an eigenvectorléfwith eigenvalue
0. It therefore satisfies

Z bpik (%5, x) = 0

for all values ofx. Now consider the eigenvalue projection. We see that

=

6;F¢(X) = Zd)(x)Tanz(ﬁ(Xn)

n=1

N N
— Zamk Xp,X) + mek Xp,X) = Zamk(xmx)
n=1 n=1

and so both solutions give the same projections. A slighffeidint treatment of the
relationship between (12.79) and (12.80) is given byd8apf (1998).
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Figure 11  Factor analysis is covariant under a componentwise re-scaling of the data variables (top plots), while
PCA and probabilistic PCA are covariant under rotations of the data space coordinates (lower plots).
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Solutions 12.27-12.29

12.27

12.28

12.29

In the case of the linear kernel, we can rewrite the I.h.s. of (2280

N
Ka;, = Z k(Xn, Xm)aim
m

=1
N
§ T
= XnXmQmi
m=1

and substituting this in (12.80), we get

N
E X xami = N\ Na;
namimi — \g -

m=1
Next, we left-multiply both sides by,, and sum over to obtain

N N
NS Z X Qi = N IN anam.

m=1 n=1

Finally, we divide both sides by N and define

N
u; = § XnQijn
n=1

to recover (12.17).

If we assume that the function= f(z) is strictly monotonic, which is necessary to
exclude the possibility for spikes of infinite densityjify), we are guaranteed that
the inverse function = f~!(y) exists. We can then use (1.27) to write

df—t
dy |’

p(y) = o(F ) ‘ (317)

Since the only restriction ofiis that it is monotonic, it can distribute the probability
mass overr arbitrarily overy. This is illustrated in Figure 1 on page 9, as a part of
Solution 1.4. From (317) we see directly that

NOTE: In the 1%* printing of PRML, this exercise contains two mistakes. In the
second half of the exercise, we require tiats symmetrically distributed arourtd
not just that-1 < y; < 1. Moreover,y, = y? (Noty, = y3).
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If z; andz, are independent, then

cov]zi, ze] = //(zl — Z1)(22 — Z2)p(21, 29) dz1 d2o
[ =20t - zpeaptea) as d

= /(z1 — z21)p(21) dz /(z2 — Z9)p(22) dzo
= 0,

where

% =Elx] = / zip(z1) da.

Fory, we have
p(y2lyr) = 6(y2 — 1),

i.e., a spike of probability mass onewgt which is clearly dependent @n. With y;
defined analogously te; above, we get

covlyr, yo] = //(yl = 1) (Y2 — Y2)P(y1, y2) dyr dyo
- // Y1 (y2 — 92)p(y2|y1)p(y1) dys dyz

= /(yf —y192)p(y1) dys

where we have used the fact that all odd momentg,olvill be zero, since it is
symmetric around zero.

Chapter 13 Sequential Data

13.1 Since the arrows on the path fram, to x,,, with m < n — 1, will meet head-to-tail
at x,_1, which is in the conditioning set, all such paths are blockgd:p ; and
hence (13.3) holds.

The same argument applies in the case depicted in Figurevtithahe modification
thatm < n — 2 and that paths are blocked by, or z,,_».
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13.2 We first of all find the joint distributiorp(x, . ..,x,) by marginalizing over the

variablesx,, .1, . .., xxn, to give
p(X1,...,Xy) = Z ---Zp(xl,...,xN)
Xn+1 XN
N
= Z o 'ZP(XI) H P(Xm[Xm—1)
Xn+41 XN m=2

= p(xl) H p(Xm|xm—1)-

=2

Now we evaluate the required conditional distribution

p(X1,.. ., Xp)

N Zp(xl,...,xn)

p(x1) H P(Xm[Xm—1)

_ m=2

= P .
ZP(XI) H P(Xm[Xm—1)
X m=2

We now note that any factors which do not dependkgrwill cancel between nu-
merator and denominator, giving

p(xn|X17 o 7Xn—1)

P(Xn|Xn—1)

Zp(Xn|Xn—1)

= p(Xn|Xn—1)

p(Xp|X1, . Xp_1) =

as required.
For the second order Markov model, the joint distribution isegivy (13.4). The
marginal distribution over the variables, . . ., x,, is given by
Xy, Xy) = Z -~-Zp(x1,...,XN)
Xn+41 XN
N
= > > opexa)p(xalxy) [] 2 |xm -1, %m2)
Xn+1 XN m=3

= p(Xl)p(X2|X1) H p(Xm|Xm—1,Xm—2)-

m=3
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The required conditional distribution is then given by

p(xX1,...,Xp)

E th'- Xn

Xn

p(xn‘xla s 7Xn71) -

n

XQ‘Xl H p Xm‘xmfhxmfZ)
=3
n

Zp(xl)P(X2|X1) H P(Xm |Xm—1, Xm—2)

Again, cancelling factors independent xf between numerator and denominator
we obtain

p(Xn|xn—17 Xn—2)

Zp(xn‘xn—la Xn—2)

Xn

- p(xn‘xn—la Xn—2)-

p(XTL|X17"'7XTL—1) —

Thus the prediction at step depends only on the observations at the two previous
stepsx,,_1 andx,,_, as expected.

From Figure 13.5 we see that for any two variabtgsandx,,, m # n, there is a
path between the corresponding nodes that will only pass throng or more nodes
corresponding ta variables. None of these nodes will be in the conditioning set
and the edges on the path meet head-to-tail. Thus, there wih balalocked path
betweenx,, andx,,, and the model will not satisfy any conditional independence o
finite order Markov properties.

The learning ofw would follow the scheme for maximum learning described in
Section 13.2.1, witkw replacinge. As discussed towards the end of Section 13.2.1,
the precise update formulae would depend on the form of regressidel msed and
how it is being used.

The most obvious situation where this would occur is in a HMMikr to that
depicted in Figure 13.18, where the emmission densities ngtdepends on the
latent variablez, but also on some input variable The regression model could
then be used to mapto x, depending on the state of the latent variable

Note that when a nonlinear regression model, such as a newalnkets used, the
M-step forw may not have closed form.

Consider first the maximization with respects to the compawenof 7. To do this
we must take account of the summation constraint

K
Zﬂ'k =1.
k=1
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We therefore first omit terms fro® (6, 6,,4) which are independent af, and then
add a Lagrange multiplier term to enforce the constraint, giirgfollowing func-
tion to be maximized

~ K K
Q= Z'Y(Zlk)ln'frk + A (Zwk - 1) .
k=1

k=1

Setting the derivative with respectiq equal to zero we obtain
1
0="7(z1)— + A (318)
Tk

We now multiply through byr, and then sum ovér and make use of the summation

constraint to give
K
A=— Z v(#1k)-
k=1

Substituting back into (318) and solving fémwe obtain (13.18).

For the maximization with respect tA we follow the same steps and first omit
terms fromQ(6, 6,4) which are independent ok, and then add appropriate La-
grange multiplier terms to enforce the summation constraintshisncase there are
K constraints to be satisfied since we must have

K
Y Ap=1
k=1

forj =1,..., K. We introduceK Lagrange multipliers\; for j = 1,..., K, and
maximize the following function

N K K K K
Q — §(zn,17j, an) In Ajk + Z )\j (Z Ajk — 1) .
k=1

n=2 j=1 k=1 j=1

Setting the derivative af) with respect tad ;;, to zero we obtain

N
1
0=> &(zn 1, i) 7+ A (319)
n=2

Again we multiply through byA ;. and then sum ovet and make use of the sum-
mation constraint to give

N K
/\j = - Z Zg(znfl,jy an)

n=2 k=1

Substituting for); in (319) and solving ford ;,, we obtain (13.19).
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Suppose that a particular element of = has been initialized to zero. In the first
E-step the quantity(z) is given from (13.37) by

az1r) = mep(X1|Py)

and so will be zero. From (13.33) we see thét;;) will also be zero, and hence in
the next M-step the new value @f;, given by (13.18) will again be zero. Since this
is true for any subsequent EM cycle, this quantity will remairozeroughout.

Similarly, suppose that an elemeat;,, of A has been set initially to zero. From
(13.43) we see that(z,—1,;, znk) Will be zero sincep(zi|zn—1,;) = Aji equals
zero. In the subsequent M-step, the new valud gf is given by (13.19) and hence
will also be zero.

Using the expression (13.17) fQX(0, 6,,14) we see that the parameters of the Gaus-
sian emission densities appear only in the last term, whidstthe form

N K N K
ZZV(ZHK) Inp(x,|¢y) = ZZ'Y Znk) IMN (X |y, 2 i)

n=1 k=1 n=1 k=1
N K
D 1 1
=Zzw<znk>{ D in(2m) = 20 30] 5 00— 1) (0 m}.
n=1 k=1

We now maximize this quantity with respect g, andX;. Setting the derivative
with respect tqu,, to zero and re-arranging we obtain (13.20). Next if we define

N = Z’Y(an)

Sko= D A(zar)(Xn — ) (50 — )"

n=1
then we can rewrite the final term fro@\(6, 6,4) in the form

N D

N 1 ~
In(2m) — S In[Se] - T (zglsk) :
Differentiating this w.r.tz,jl, using results from Appendix C, we obtain (13.21).
Only the final term ofQ(6, 0°'* given by (13.17) depends on the parameters of the

emission model. For the multinomial variablewhoseD components are all zero
except for a single entry of 1,

N K N K D
Z 7 Znk hlp xn|¢k ZZ’Y(an) Zl‘nz lnﬂki-

n=1 k=1 n=1 k=1 =1
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Now when we maximize with respect jg.; we have to take account of the con-
straints that, for each value #fthe components qf;; must sum to one. We there-
fore introduce Lagrange multipliefs\;, } and maximize the modified function given

by
227 Znk anzlnﬂkz+z)\k <Z“’“ — 1)

n=1 k=1

Setting the derivative with respect tq; to zero we obtain

N

xTLZ
0= ZW(an)HM + A

n=1

Multiplying through byu,;, summing over, and making use of the constraint on
(i together with the resuly, z,,; = 1 we have

N

A =— Z V(an)

n=1

Finally, back-substituting fok;, and solving for.; we again obtain (13.23).

Similarly, for the case of a multivariate Bernoulli observed Valgéx whoseD com-
ponents independently take the value O or 1, using the star@ression for the
multivariate Bernoulli distribution we have

N K
ZZ’Y an lnp Xn‘d)k)

n=1 k=1
N K
Z Z Znk Z {xnz In ,ukz ( xni) ln(l - /Mm)} .
n=1 k=1

Maximizing with respect tq.; we obtain

which is equivalent to (13.23).

We can verify all these independence properties using d-sepatatioefering to
Figure 13.5.

(13.24) follows from the fact that arrows on paths from ankgf. . . , x,, to any of
Xni1,-- -, XN Meet head-to-tail or tail-to-tail at,, which is in the conditioning set.
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(13.25) follows from the fact that arrows on paths from ankef. .., x,_; tox,
meet head-to-tail at,,, which is in the conditioning set.

(13.26) follows from the fact that arrows on paths from anykof...,x, 1 t0o z,
meet head-to-tail or tail-to-tail at,_, which is in the conditioning set.

(13.27) follows from the fact that arrows on paths framto any ofx,, 1, ..., Xy
meet head-to-tail at,,, ;, which is in the conditioning set.
(13.28) follows from the fact that arrows on paths frem, ; to any ofx,, o, ..., %N

to meet tail-to-tail ak,, 1, which is in the conditioning set.

(13.29) follows from (13.24) and the fact that arrows on paths from &ny; 0 . .,
x,_1 10 x, meet head-to-tail or tail-to-tail at, _, which is in the conditioning set.

(13.30) follows from the fact that arrows on paths from anxof. .., xy to xy 11
meet head-to-tail atx 1, which is in the conditioning set.

(13.31) follows from the fact that arrows on paths from ankof. .., xy t0zy 11
meet head-to-tail or tail-to-tail aty, which is in the conditioning set.

We begin with the expression (13.10) for the joint distributiéoloserved and latent
variables in the hidden Markov model, reproduced here for conueaie

N
(X Z|0 21 [Hp Zn‘zn 1 ] H p(Xm‘Zm)

where we have omitted the parameters in order to keep the notatuttered. By
marginalizing over all of the latent variables exceptwe obtain the joint distribu-
tion of the remaining variables, which can be factorized in tlfo

W) = T )

Zp—1Zn41 ZN
n n
= Z Z 21 H p Zmlzm 1 Hp(xl|zl)
Zn—1 m=2 =1
N
Z Z H p Zmlzm 1 H p(Xl|Zl)
Zn+1 zy m=n+l l=n+1

The first factor in square brackets on the r.h.s. we recognizésas. . ., x,, z,).
Next we note from the product rule that

(X1, XN, Zn)
p(xla vy Xy Zn)
Thus we can identify the second term in square brackets with theittanal distri-

butionp(x,,41,---,XN|X1,--.,Xn, Z,). HOwever, we note that the second term in
square brackets does not dependckeon . ., x,,. Thus we have the result

p(Xn+17' . 'aXN|X17 s 7Xn7Zn) =

p(xlv .. .,XN,Zn) = P(Xl, cee 7Xnazn)p(xn+17 cee 7XN|Zn>~
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Dividing both sides by(z,,) we obtain
P(X1, ., XN |2Zn) = D(X1y - ooy Xn|Z0)P(Xnt1s - - - s XN |Z0)-

which is the required result (13.24).
Similarly, from (13.10) we have

P(X1s o X, 21500 Z0) = DP(X1, - X1, 215 -+ Zn—1)P(Z0 |20 —1)D(Xn|20)

It follows that

p(Xlu ey Xp—1yZ71, ... 7Z77,71|Xn7 Zn) - p(XI’ X B 7Z7l)
p(Xn|2n)p(2zn)
p(Xl, ey Xp—1,Z1,. .. 7zn71)p(zn|zn71)
B p(zn)

where we see that the right hand side is independert, pand hence the left hand
side must be also. We therefore have the following conditiorddpendence prop-
erty

p(Xb" 9 Xn—1,21,- - 7Zn71‘xnuzn) :p(X1>" 9 Xn—1,21,- - 7Zn71‘zn)~

Marginalizing both sides of this result ovet,. .., z,_; then gives the required
result (13.25).

Again, from the joint distribution we can write
p(Xl? A 7Xn—17 Zl? R 7Z7L) = p(X17 R 7X7L—17 Z17 A 7Zn—1)p(zn|zn—1)~

We therefore have

o p(xlv"wxnflyzlv"wzn)
p(X17"'7XTL—17Z17'"7zn—2|Z7L—17Zn) —
p(zn|Zn—1)p(Zn—1)
_ p(Xla'"7Xn—17Z17"'7Zn—1)
p(znfl)

where we see that the right hand side is independesnt, @nd hence the left hand
side must be also. This implies the conditional indepenemnaoperty

p(Xla s Xp—1,2Z1, ... 7Zn—2|zn—lvzn) = p(X17 e Xn—1,27, ... 7Zn—2|zn—1)-

Marginalizing both sides with respect#g, ..., z,_»> then gives the required result
(13.26).

To prove (13.27) we marginalize the both sides of the expre¢&®a0) for the joint

distribution with respect to the variablgs, . . ., x,, to give
p(XnJrl; vy XNy Zp, Zn+1 Z Z p Zl H p(zm|zm 1 Hp X1 ‘Zl
Zn 1 m=2 =1

N

Pz fnin) | 33 H plmlzn—) [] plxlz)

Znt1 zZNy m=n-+42 l=n+1
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The first factor in square brackets is just
Z Zp(zlv7zn) :p(zn)

and so by the product rule the final factor in square brackets neust b

p(xn+1a cee 7XN|Zna Zn+1)~

However, the second factor in square brackets is itself inudg® ofz, which
proves (13.27).

To prove (13.28) we first note that the decomposition of the gisttibutionp(X, Z)
implies the following factorization

P(X,Z) =p(X1,. .., Xny Z1s - oo Z0)D(Zng1]20) (Xt 1| Zng1)
p(xn+27 e s XN Zp41y 7ZN|Z’n+1)'

Next we make use of

P(Xnits - XN Zng1) = Z"'ZZ"'ZZ"'ZP(X’Z)

Zp Zn42 ZN

= p(zn+1)p(xn+1|Zn+1)p(xn+27 ey XN|zn+1)'

If we now divide both sides by(x,,.1,2z,1) we obtain

p(xn+27 v 7XN‘Z77,+17 Xn+1) = p(Xn+27 B 7XN|zn+1)

as required.
To prove (13.30) we first use the expression for the joint distrdipudf X andZ to
give

PN Xozngn) = Y Y p(X, Z)p(zn i1 |zn)p(Xn 41 |Zn 1)

zy zZN

= p(X,zN1)P(XN41]ZN 1)

from which it follows that

p(xN1X,zZN 1) = p(XNi1|ZN41)

as required.

To prove (13.31) we first use the expression for the joint distrioutif X andZ to
give

pzni,Xozy) = Y > (X, Z)p(zn i |zn)

ZN -1

= p(X,zn)p(zN41l2N)
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13.11

from which it follows that

p(zni1|zn, X) = p(zni1|zN)

as required.
Finally, to prove (13.29) we first marginalize both sides of tbiatj distribution
(13.10) with respect ta, ..., z,_2,2n11, . .- Zzy tO give
[ n—1 n—1
PX 2 1,20) = | DY p(z) [ pzmlzm) [ pxilz)
Z Zn—2 m=2 =1
(2|20 —1)P(Xn|2n)
[ N N
> T T rmlzm—) T pixilz)
| Zn+1 zny m=n-+1 l=n+1
The first factor in square bracketspéxy,...,x,_1,2,—1). The second factor in

square brackets is
Z~--Zp(an,...,xN,zn,...,zN) = P(Xpt1s--y XNy Zn)-
Zn 41 zZN

Thus we have

p(Xv Zn—1, Zn) - p(xla ces Xp—1, anl)
P(Zn|Zn—1)P(Xn‘Zn)p(Xn+1a o XN, Zn)
and dividing both sides by(z,,, z,,—1) = p(zn|2,—1)p(z,—1) We obtain (13.28).

The final conclusion from all of this exhausting algebra is thas imuch easier
simply to draw a graph and apply the d-separation criterion!

From the first line of (13.43), we have

E(anla Zn) = p(znfh anx)

This corresponds to the distribution over the variables aswsatiaith factorf,, in
Figure 13.5, i.ez,,_, andz,,.

From (8.69), (8.72), (13.50) and (13.52), we have
p(znfl, Zn) X fn(znflu Zn, Xn),uzn_1ﬂfn (znfl),uznﬂfn(zn)
p(zn|Zn—1)p(xn‘zn)ﬂfn—l—>zn71 (Zn—l)ﬂfn+1—>zn (Zn)
= p(zn|Zn—1)p(Xn|zn)(Zn-1)B(2n). (320)
In order to normalize this, we use (13.36) and (13.41) to obtain

YN pE1.za) = D BE)p(Xalzn Y p(2a]20 1))

Zn Zn-—1 Zn Zn—1

= Y Blen)olza) = p(X)
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which together with (320) give (13.43).

First of all, note that for every observed variable there is a corretipg latent vari-
able, and so for every sequerké™ of observed variables there is a corresponding
sequenceZ(™) of latent variables. The sequences are assumed to be independe
given the model parameters, and so the joint distribution df&ht and observed
variables will be given by

R
p(X,Z|0) = [[ (X", 2 ]6)
r=1

whereX denotes{X ("} andZ denotes{Z("}. Using the sum and product rules
of probability we then see that posterior distribution for thiemd sequences then
factorizes with respect to those sequences, so that

p(X,Z|0)

> p(X.Z|0)

R
[[px",2")0)

r=1

R
Z H (X, Z1)|6)
R) r=1

{ (X(r) Z(r) 1) }
>z DX, Z]6)

p(Z7 X", 0).

p(Z|X,9) =

(1)

N

’:]:u i =

_g
Il
~

Thus the evaluation of the posterior distribution of the laiemiables, correspond-
ing to the E-step of the EM algorithm, can be done independéotlgach of the
sequences (using the standard alpha-beta recursions).

Now consider the M-step. We use the posterior distribution egetin the E-step
usingf,.4 to evaluate the expectation of the complete-data log likelih From our
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13.13

13.14

expression for the joint distribution we see that this is given b

Q(0,0,4) = Ez[lnp(X,Z|0)]

R
> p(X", z<”|0>]

r=1

M:o

p( \X ,0010) Inp(X,Z|0)

r=1

R N K K

K
27 zgc) lnﬂk—l—ZZZZﬁ z,” 1], fgf )In Ajp

1 k=1 r=1n=2 j=1 k=1
R N K

D IPIPIRICHIN VLT
r=1 n=1 k=1

We now maximize this quantity with respect4oand A in the usual way, with La-
grange multipliers to take account of the summation constésste Solution 13.5),
yielding (13.124) and (13.125). The M-step results for the meam®iGaussian
follow in the usual way also (see Solution 13.7).

M) =

ﬁ
Il

Using (8.64), we can rewrite (13.50) as
a(zn) = Y Fulzn,{z1,...,201}), (321)

whereF, (-) is the product of all factors connected#g via f,,, including f,, itself
(see Figure 13.15), so that

n

Fo(zn,{2Z1,. . 2Zn-1}) = h(z1) H fi(zi,2i-1), (322)

=2

where we have introducddz,) and f;(z;,z;—1) from (13.45) and (13.46), respec-
tively. Using the corresponding r.h.s. definitions and retatepplying the product
rule, we can rewrite (322) as

Fo(Zn, {21, Zn—1}) = D(X1, o, Xy Z1y e -+, Ziy).

Applying the sum rule, summing over,...,z,_; as on the r.h.s. of (321), we
obtain (13.34).

NOTE: In PRML, the reference to (8.67) should refer to (8.64).
This solution largely follows Solution 13.13. Using (8.64), wan rewrite (13.52)

as
B(zn) = Z FnH(zn, {Zns1,---,20 ), (323)

Zn+1;-
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whereF,, . (+) is the product of all factors connected4gvia f,, .1, including f,, 11
itself so that

N
Foi1(zn,{2Zns1,...,28}) = H fi(Zi—1,2:)

1=n-+1
N
= p(ZnJrl‘Zn)p(XnJrl‘ZnJrl) H fi(zi—lazi)
i=n-+2
= P(Zn+1]20)p(Xn+1|Zn11) - p(2n]2N-1)p(XN |2 N) (324)

where we have used (13.46). Repeatedly applying the productwelean rewrite
(324) as

Fn+1(zna {Zn-‘rla e 7ZN}) = p(xn-i-la ey XN Zp4 1, - )ZN|Zn)'
Substituting this into (323) and summing owgY, 1, ...,z N, We obtain (13.35).

NOTE: In the 1% printing of PRML, there are typographic errors in (13.68);
should be,, ! andp(z,|z_,) should ben(z, |z, 1) on the r.h.s.

We can use (13.58), (13.60) and (13.63) to rewrite (13.33) as
g = )
a(zn) (Hm 16m ( 1=n+1 € )B(z">
p(X)
a(z0) (T ) Blz)
p(X)
= Aza)B(zn).

We can rewrite (13.43) in a similar fashion:

_ (Zn)p(Xn|20)P(Z0|Zn—1) B(2Zn)
g(znflazn) - p(X)

a(zn) (Hm 1 m> (Hl nt1 Cl) )P(%n|20)P(Z0 |20 —1)
nX)

= cgla(zn)p(xﬂzn) (Zn|zn 1) (Zn)

NOTE: In the 1** printing of PRML, In p(x|z,) should bén p(z,1|z,) on the
r.h.s. of (13.68) Moreovey(. . .) should ben p(...) on the r.h.s. of (13.70).

We start by rewriting (13.6) as
N
p(X1s-- XN, 21, -, 2N) = p(21)p(X1|21) HP(Xn|Zn)P(Zn|Zn—1)-

n=2
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Taking the logarithm we get

Inp(xy,...,XN,21,...,ZN)
N

=Inp(z) +Inp(xilzn) + ) (p(xalzn) +Inp(zn|z-1))

n=2

where, with the first two terms we have recovered the r.h.s. of (1368 now use
this to maximize oveg, ..., zy,

N
max {w(zl) + Z Inp(xn|2,) + lnp(zn|zn_1)]}

n=2

= max { In p(x2|22) + max {Inp(z2|z1) + w(z1)}
N

+ Z Inp(xn|2,) + Inp(2s,|2,—1)] }

n=3

N
= max {w(zg) + Z [In p(x,|zn) + lnp(zn|zn_1)]} (325)

n=3

where we have exchanged the order of maximization and summiatic., to re-

cover (13.68) fom = 2, and since the first and the last line of (325) have identical

forms, this extends recursively to all> 2.

13.17 The emission probabilities over observed variabdgsare absorbed into the corre-

sponding factorsf,,, analogously to the way in which Figure 13.14 was transformed

into Figure 13.15. The factors then take the form

h(Z1> = p(zl|u1)p(xl|zl, ul) (326)
fn(zn—b Zn) = p(zn|zn—1; un)p(xn|zn7 un)- (327)
13.18 By combining the results from Solution 13.17 with those from Secti3.2.3, the
desired outcome is easily obtained.
By combining (327) with (13.49) and (13.50), we see that

Oé(Zn) = Z p(zn|zn—17 un)p(xnlzna un)a(zn—l)

Zn—1

corresponding to (13.36). The initial condition is given diredty (326) and corre-
sponds to (13.37).

Similarly, from (327), (13.51) and (13.52), we see that

B(zn) = ZP(Zn+1|zmun+1)p(xn+1\zn+1a Wy, 11)5(Zn41)

Zn+1
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which corresponds to (13.38). The presence of the input variab&smbt affect the
initial condition 3(zy) = 1.

Since the joint distribution over all variables, latent andeved, is Gaussian, we
can maximize w.r.t. any chosen set of variables. In particwar,can maximize
w.r.t. all the latent variables jointly or maximize each oé tmarginal distributions
separately. However, from (2.98), we see that the resulting meillievthe same in
both cases and since the mean and the mode coincide for thei@gusaximizing
w.r.t. to latent variables jointly and individually will yie the same result.

Making the following substitions from the I.h.s. of (13.87),
X=>2Z, 1 p=>p, ; A=V,
y=2z, A=A b=0 L '=T,
in (2.113) and (2.114), (2.115) becomes
P(2n) = N (zn|Ap,_y, T + AV, AT),
as desired.
If we substitute the r.h.s. of (13.87) for the integral on thesr.of (13.86), we get
N (Zn |ty Vi) = N (x| Czip, B)N (20| Aty 1, Pria).

The r.h.s. define the joint probability distribution ower andz,, in terms of a con-
ditional distribution over,, givenz, and a distribution ovez,,, corresponding to
(2.114) and (2.113), respectively. What we need to do is to rewnisdrito a con-
ditional distribution over, givenx, and a distribution ovex,,, corresponding to
(2.116) and (2.115), respectively.

If we make the substitutions
Xx=2z, p=Ap, , A '=P,,
y=%x, A=C b=0 L'!'=3

in (2.113) and (2.114), (2.115) directly gives us the r.h.s. ofq1p.
From (2.114), we have that

D(Zn[x0) = N (2|, Vi) = N (2, M(CTS 5, + P Apr,, ), M), (328)
where we have used (2.117) to define
M= (P, ,+C'E7'C)" % (329)
Using (C.7) and (13.92), we can rewrite (329) as follows:
M = (P,,+C'=7'C)!
= P, ,-P,,C'Z+cCP,,CH'CP,_,

- I-P,.,C*'x+cCP,,CHCOP,_,
I-K,C)P,_ i,
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13.22

13.23

which equals the r.h.s. of (13.90).
Using (329), (C.5) and (13.92), we can derive the following equality
Mc's™' = (P, +CTZ'O) Tz
= P, ,C'(CP,_,C"+%)!'=K,.
Using this and (13.90), we can rewrite the expression for the meg2B) as fol-
lows:
M(CTS 'x, + P} Ap, ,) = MC'S 'x, +I-K,C)Apu, ,
K.x,+Ap, , —K,CApn,_,
Al’l’nfl + KTL(XTL - CANTL71)7

which equals the r.h.s. of (13.89).
Using (13.76), (13.77) and (13.84), we can write (13.93), for the nasel, as
N (zi|py, Vi) = N(z1|po, Vo)N (x1/Cz1, B).

The r.h.s. define the joint probability distribution ower andz, in terms of a con-
ditional distribution overx; givenz, and a distribution ovez,, corresponding to
(2.114) and (2.113), respectively. What we need to do is to rewnisarito a con-
ditional distribution overz; givenx; and a distribution ovek;, corresponding to
(2.116) and (2.115), respectively.

If we make the substitutions
X=2z p=>p, A=V,

y=x; A=C b=0 L'!'=3
in (2.113) and (2.114), (2.115) directly gives us the r.h.s. of9@g.

Using (13.76) and (13.77) we can rewrite (13.93) as

c10(z1) = N (z1|pg, Vo) N (x1|Cz1, X) .
Making the same substitutions as in Solution 13.22, (2.148)(43.96) give

p(x1) =N (x1/Cpy, B + CV,CT) = c1.
Hence, from the product rule and (2.116),

a(z1) = p(zifx1) = N (21|, Vi)
where, from (13.97) and (C.7),
v, = (vyl+ctslo)!

Vi~ VoCT (T +CV,CT) ' CV,
(I-K,C)V,
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and
p = Vi(C'Z7'x1 4+ Vi'p)
po + Ko (x1 = Cpy)
where we have used
v.Cc'st = vt K, CV,CTe !
= Vi€ (1= (E+CVic) T eveet) =7

= V,C" (I — (Z+CVv,CT) T av,CT

+(Z+CV,CT) T - (T4 CV,CT) z:) o
= V,CT(Z+CV,CT) ' =K,.

13.24 This extension can be embedded in the existing framework bytmgtpe following
modifications:

r | Mo r Vo O r ' o
Sl I R R

A’:[‘g‘ ﬂ c=[C c].

This will ensure that the constant termsandc are included in the corresponding
Gaussian means far, andx,, forn =1,..., N.

Note that the resulting covariances oy, V,,, will be singular, as will the corre-

sponding prior covariance®,,_;. This will, however, only be a problem where
these matrices need to be inverted, such as in (13.102). The=ernast be handled
separately, using the ‘inversion’ formula

_ Pl 0

/ 1 _ n—1

(Pnfl) - |: 0 0 :| )

nullifying the contribution from the (non-existent) variance & #lement irg,, that

accounts for the constant termsndc.

13.25 NOTE: In PRML, the second half on the third sentence in the exerciselgdhead:
“...inwhichC =1, A = 1 andI" = 0.” Moreover, in the following sentenaa
andV, should be replaced by, andP,; see also the PRML errata.

SinceC = 1, Py = ¢ andX = o2, (13.97) gives

2
99

K, = .
! ol +o
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Substituting this into (13.94) and (13.95), we get

02

1 = po+ 20

ojto
2

(301 - ,UO)

L
o 051 + opo)

2
o
Jf = 1-— 20 0(2)
oy +o

wheres? replacesV,. We note that these agree with (2.141) and (2.142), respec-
tively.

We now assume that (2.141) and (2.142) holdXgrand we rewrite them as

1 N
ny o = o <2uo + 02M§2{)> (330)
0
2 2
2 0o
- 331
oN NoZ+o (331)

where, analogous to (2.143),

N
1
(N) _
Havr = N E_l In- (332)

SinceA = 1 andI’ = 0, (13.88) gives
Py =o0% (333)

substituting this into (13.92), we get
2

o
K= NUJQVN—F o (334)

Using (331), (333), (334) and (13.90), we get
0_2
= (1- 528 ) ok

= (335)

U?\, +o
530 /(03 + )
(02020* 4+ 02Nod)/(c2 + o)
olo?
(N+1)02+0
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Using (330), (332), (334), (335) and (13.89), we get

2

UNt1 = WUN T N (TN+1 — BN)
+ J]2V+O' +
1 9 4 )
= —— (O o
O_JQV+O_ NEN+1 HN
2 02,02 1 1 N
= + — +—§ T
of + A Nt Uguo it '

Thus (330) and (331) must hold for a¥l > 1.

13.26 NOTE: Inthe1®* printing of PRML, equation (12.42) contains a mistake; theaciv
ance on the r.h.s. should b M ~!. Furthermore, the exercise should make explicit
the assumption thai = 0 in (12.42).

From (13.84) and the assumption tiat= 0, we have
P(Zn|X1; - X0) = P(Za]Xn) = N (Znlpty,, Vi) (336)

wherep,, andV,, are given by (13.89) and (13.90), respectively. SiAce- 0 and
I'=1P,_, =Iforall nand thus (13.92) becomes

K, = P, ,CT(CP,_CT+x)"’
= WT(WWT 4 0%1) (337)

where we have substituté® for C ando?I for 3. Using (337), (12.41), (C.6) and
(C.7), (13.89) and (13.90) can be rewritten as

Ky = K.x,
= WT(WWT+0%1) 'x,
= M 'wW'x,
V, = I-K,C)P,_, =1-K,W

= I-WI (WWT 14 ' W

= (0WTW 1)

= o2 (WTW =+ 021)_1 =o*M™!
which makes (336) equivalent with (12.42), assuming 0.

13.27 NOTE: In the 1* printing of PRML, this exercise should have made explicit the
assumption tha = 1in (13.86).
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Solution 13.28

13.28

From (13.86), it is easily seen thatXf goes to0, the posterior ovez,, will become
completely determined hy,,, since the first factor on the r.h.s. of (13.86), and hence
also the I.h.s., will collapse to a spikesat = Cz,,.

NOTE: In PRML, this exercise should also assume th@at= 1., Moreover,V,
should be replaced by, in the text of the exercise; see also the PRML errata.

Starting from (13.75) and (13.77), we can use (2.113)—(2.117) torobtai

p(z1]x1) = N (z1|py, V1)
where

p = Vi(CTZ 7 'x +Pylp) =x (338)

vV, = (P;'+C'27lC) =3 (339)

sinceP, — oo andC = I; note that these results can equally well be obtained from
(13.94), (13.95) and (13.97).

Now we assume that fa¥v

N
_ 1
By = xN—Nzlxn (340)
Vy = 4w (341)
NN

and we note that these assumptions are met by (338) and (339);tresiye From
(13.88) and (341), we then have

1
Py=Vy= 43 (342)

sinceC = I andI’ = 0. Using this together with (13.92), we obtain

Ky = PyCT(CPyCT+3) "
= Py(Py+X)"

-1
1. (1
~ls(lses)
-1
1 (N+1
= —3(——-%
v (55)
1
I
N+1
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Substituting this into (13.89) and (13.90), making use of (34@) @42), we have

1
Byt = BN TNy (XN41— By)

= Xy+ (XN4+1 — XN)

N +1

1 1 1 &
= [ 177 _
N+1XN+1+< N+1>Nz1
N+1

1 _
RSP I

n=1

1 1
Ve = <I - N+11> N
1
N+ 12
Thus, (340) and (341) holds for aW > 1.

13.29 NOTE: In the1®* printing of PRML, iy should bew,, on the r.h.s. of (13.100)
Multiplying both sides of (13.99) b¥(z, ), and then making use of (13.98), we get

e (sl V1) = () / Bt ) (%0112 1 )p(Zn11120) A 11

(343)
Using (2.113)—(2.117), (13.75) and (13.84), we have

~

a(2n)p(Znt1|2n) = N (Zn|tt,, Vo) N (Zn11|AzZ,, T)
= N (zpu1]|Ap,, AV, A +T)N (z,/m,,M,) (344)

where
m, =M, (ATI‘flan + V;lun) (345)

and, using (C.7) and (13.102),

M, = (ATT'A+V,)" (346)
= V,-V,AT (T +AV,AT) " AV,
= V,-V,ATP, 'AV, (347)
= (I- VnATP;lA) V.,
I-J,A)V, (348)

Substituting the r.h.s. of (344) into (343) and then makingai¢#3.85)—(13.88) and
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(13.98), we have

o (walfns V) = [ Bones)pnss s A (21| Ay, P)
N(anmnan) dzn+1

= /E(Zn+1)cn+1a<zn+1)/\/ (zn|mnaMn) dz,, 41
= CnJrl/'Y(ZnJrl)N(znlmnan) dZn+1

= cn+1/N<Zn+1|ﬁn,vn)N(zn|mn,Mn) dz, 1.

Thus, from this, (345) and (2.113)—(2.115), we see that

i, = M, (A"T7'G,,  +V, 'n,) (349)
V, = M,ATT 'V, . T"'AM, + M,,. (350)

Using (347) and (13.102), we see that

M,A'T™" = (V-V,A"P'AV,) AT}
V,A" (I-P,'AV,A")T"!
V,A"(I-P,'AV, A" —-P_'T+P,'T)T'
= V,AT(I-P,'P,+P,'T)T"
= V,ATP =17, (351)

and using (348) together with (351), we can rewrite (349) as (13.18Djilarly,
using (13.102), (347) and (351), we rewrite (350) as

V, = M,A'T 'V, . T"'AM, + M,
= J,VoudJ'+V, - V,A"P; AV,

~

- V.43, <Vn+1 - Pn> T

13.30 NOTE: See note in Solution 13.15.

The first line of (13.103) corresponds exactly to (13.65). We then (48.75),
(13.76), (13.84) and (13.98) to rewritgz,, |z,,—1), p(x,|2x), &(z,—1) and3(z,),
respectively, yielding the second line of (13.103).
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13.31 Substituting the r.h.s. of (13.84) faxz,,) in (13.103) and then using (2.113)—(2.117)
and (13.86), we get
£(zn—1,2n)
N (sl Vi 1) N (A1 TN (0| Ca, DN (2, Vo)
N (2|, Vi) cn
N(zn|Aun_1,Pn_1)N(zn_l\mn_l,Mn_l)N<zn|ﬁn,<\/n)
N (zn|Apty, 1, Prt)
= N(zn,1|mn,1,Mn,1)N(zn|ﬁn,{\7n) (352)

wherem,,_; andM,,_; are given by (345) and (346). Equation (13.104) then fol-
lows from (345), (351) and (352).

13.32 NOTE: In PRML, V, should be replaced bR, in the text of the exercise; see also
the PRML errata.

We can write the expected complete log-likelihood, given by #guation after
(13.109), as a function qf, andP,, as follows:

1
Q(6,0°) = —5 I [Po|
1 _ _ _ _
—iEZ‘aum [lePO Y21 — 2T Py g — pa Ptz + pd P 1u0} (353)
1 _ _
= 3 <1n Pyt —Tr [PO 1EZ|0014 [zlle —Z1 g — MoZ + uopg]} ), (354)

where we have used (C.13) and omitted terms independgnj ahdP,,.
From (353), we can calculate the derivative w.using (C.19), to get

) B _
99 _ optp, — 2P Elzy].

Oty

Setting this to zero and rearranging, we immediately obtain (103.1
Using (354), (C.24) and (C.28), we can evaluate the derivatives Rij",

0 1
O (P~ Elwia]) ~ Elalud — moElel] + pond).
0P, 2
Setting this to zero, rearrangning and making use of (13.110), i@ g§4.11).

13.33 NOTE: In PRML, the first instance aA"*" on the second line of equation (13.114)
should be transposed.
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Expanding the square in the second term of (13.112) and makmgfube trace
operator, we obtain

1
2 Z — Az, 4) F_l (zp, — Azn_l)]

N
%ZTr (T {Az, 1z} AT

n=2

=Eze

~z,2, AT — Azn1z2+znz§})]. (355)

Using results from Appendix C, we can calculate the derivativéhisf w.r.t. A,
yielding
Q

0A
Setting this equal to zero and solving fAr, we obtain (13.113).

Using (355) and results from Appendix C, we can calculate the al@révof (13.112)
w.rt.T~!, to obtain

=T 'AE [zn 1z 1] ~-T'E [znzTTl_l] .

0Q N - 1 &
=3 N-odp o 3 ;2 (AE (2,120 || AT —E[z,2] ] A"

— AE [z,_12,)| + E 2,2 ]).

Setting this equal to zero, substitutidg*™ for A and solving forT", we obtain
(13.114).

13.34 NOTE: In PRML, the first and third instances @™* on the second line of equation
(13.116) should be transposed.

By making use of (C.28), equations (13.115) and (13.116) arerwatan an identi-
cal manner to (13.113) and (13.114), respectively, in Solut®B83.

Chapter 14 Combining Models

14.1 The required predictive distribution is given by
p(tlx, X, T) =
Zp Z /p(t|X7 ehvzhvh)p(0h|X7T7h) doha (356)

Zp



14.2

14.3

Solutions 14.2-14.3 247

where
p(T|X, h)
N
o p(Bh) [ ] p(tnlxn, 6, h)
n=1

p(0x|X, T, h) =

N
= p0n) [] (Z P(tn, 2 X0, 6, h)) (357)

n=1 Znh

The integrals and summations in (356) are examples of Bayegaaging, account-
ing for the uncertainty about which modél, is the correct one, the value of the cor-
responding parameter8;,, and the state of the latent variabig, The summation
in (357), on the other hand, is an example of the use of laterdhlas, where dif-
ferent data points correspond to different latent variable stalémugh all the data
are assumed to have been generated by a single ntodel,

Using (14.13), we can rewrite (14.11) as

LM 2
Ecom = Ex {MZEm(X)}

m=1

1 - :
- W]Ex { €m (X) }
m=1

M M

— # Z ZEX [em (x)€r(x)]

m=1 [=1
1 & ;1
= W Z Ex [Em(x) :| = MEAV
m=1

where we have used (14.10) in the last step.

We start by rearranging the r.h.s. of (14.10), by moving the fattdr inside the
sum and the expectation operator outside the sum, yielding

E, [Z ]\14€m(x)2] .

If we then identifye,, (x) and1/M with z; and; in (1.115), respectively, and take
f(z) = x?%, we see from (1.115) that

Mo 2 Mo
(Z Mem(x)) < Zﬂem(x)z.
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Since this holds for all values of, it must also hold for the expectation over
proving (14.54).

14.4 If E(y(x)) is convex, we can apply (1.115) as follows:

14.5

14.6

Eaxy = %ZEX[E

M
1
—FE(y
M ]
m=1
M

(m_l )

where); = 1/M for¢ = 1,..., M in (1.115) and we have implicitly defined ver-
sions of Eay and Eqom corresponding tde (y(x)).

To prove that (14.57) is a sufficient condition for (14.56) we havghow that (14.56)
follows from (14.57). To do this, consider a fixed setpf(x) and imagine varying
the a,,, over all possible values allowed by (14.57) and consider &éhees taken by
ycom(x) as a result. The maximum value @fon (x) occurs wheny, = 1 where
Yk (X) = ym(x) for m # k, and hence alv,,, = 0 for m # k. An analogous result
holds for the minimum value. For other settingsoaf

WV

= FEcom

ymin(x) < Yycom (X) < Ymax (X)a

sinceycom(x) is a convex combination of pointg,, (x), such that

Vm : ymin<x) < ym(x) < ymax<x)-
Thus, (14.57) is a sufficient condition for (14.56).

Showing that (14.57) is a necessary condition for (14.56) isvetgrt to show-
ing that (14.56) is a sufficient condition for (14.57). The imation here is that
if (14.56) holds for any choice of values of the committee memmkg,,(x)} then
(14.57) will be satisfied. Suppose, without loss of generalitgt o, is the smallest
of theaw values, i.e.o, < vy, for k # m. Then considey;(x) = 1, together with
ym(x) = 0 for all m # k. Thenyu,(x) = 0 while ycom(x) = af and hence
from (14.56) we obtaimy, > 0. Sinceqy is the smallest of ther values it follows
that all of the coefficients must satisfy, > 0. Similarly, consider the case in which

ym(X) = 1 for all m. Thenymin(X) = ymax( ) =1, while yCOM Z Q-
From (14.56) it then follows tha}t = «,,, = 1, as required.

If we differentiate (14.23) w.r.k,,, we obtain

oF 1 m /2 —a /2 al (m) e /2 (m)
o =3 (em/% 4 e7m Zw I(ym(xp) # tn) m Zw

n=1
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14.8
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Setting this equal to zero and rearranging, we get

S W (Yo (%) # ) e=m/2 1

Zn w;m) - em/2 _|_e*0¢m/2 - edm 1’

Using (14.16), we can rewrite this as
1
eom +1
which can be further rewritten as

Emv

o 1-— em7
€m

from which (14.17) follows directly.
Taking the functional derivative of (14.27) w.nt(x), we get

(;;(SX)Exvt lexp {—ty(x)}] = - zt: texp {—ty(x)} p(tlx)p(x)

= A{exp{y(x)} p(t = —1[x) —exp {—y(x)} p(t = +1|x)} p(x).
Setting this equal to zero and rearranging, we obtain (14.28).
Assume that (14.20) is a negative log likelihood function. Mhiee corresponding
likelihood function is given by

N

exp(—FE) = H exp (—exp {—tn fm(xn)})

n=1
and thus
p(tn|Xn) X €xp (_ €Xp {_tnfm(xn)}) .

We can normalize this probability distribution by computing tiormalization con-
stant

Z = exp (= exp {fm(xn)}) + exp (= exp {— i (xn)})

but sinceZ involves f,,(x), the log of the resulting normalized probability distribu-
tion no longer corresponds to (14.20) as a functiorf,pfx).

The sum-of-squares error for the additive model of (14.21) is defined a
1 N
_ 2
E = 5 § (tn - fm(xn>> .

n=1

Using (14.21), we can rewrite this as

1w 1 2
5 Z(tn - fm—l(xn) - §a7nym(x)) ’
n=1
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Solutions 14.10-14.11

where we recognize the two first terms inside the square as the ak&idmn the
(m — 1)-th model. Minimizing this error w.r.ty,, (x) will be equivalent to fitting
ym(x) to the (scaled) residuals.

14.10 The error function that we need to minimize is

Bty =5 3 (tn— 1.
{tn}

Taking the derivative of this w.r.t.and setting it equal to zero we get

dE
{tn}

1
t= >t
{tn}
, i.e. the number of values ift,, }.

Solving fort yields

whereN’ = [{t,,}

14.11 NOTE: In PRML, the text of this exercise contains mistakes; pleats te the
PRML Errata for relevant corrections.

The misclassification rates for the two tree models are given by

R. _ 1004100 1
400 + 400 ~ 4
R, _ 0F200 1
400 +400 ~ 4

From (14.31) and (14.32) we see that the pruning criterion for thes@ngopy case
evaluates to

100. 100 300. 300
Cxent(Ty) = —2( —in— 4+ 2222} Lon~ 112422
et (Th) (400 " 300 " 100 n400) * *
400 400 200, 200 0 . O  200. 200
COxent(Ts) = ——nm = 20 20 2 gy 0 2 20 oy
xent (T53) 200 200 200 400 400 400 400 “00
~ 0.69+ 2\

Finally, from (14.31) and (14.33) we see that the pruning criteriothfe Gini index
case become
300 300 100 100 3
400 400 200 200
mi(Ip) = ——|1—-= — | 1-——
Ceni(Th) 400 < 400) T 100 ( 400)

0 0\ 200/ 200 1
S (L B - VI G Y
100 ( 400> T 100 ( 400) TeATg T
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Thus we see that, while both trees have the same misclagsificate, B performs
better in terms of cross-entropy as well as Gini index.

14.12 Drawing on (3.32), we redefine (14.34) as

K
p(t]6) = > mN (¢WT¢,37'T)

k=1

and then make the corresponding changes to (14.35)-(14.370Q) éﬁdﬂ‘)ld); also
t will be replaced byT to align with the notation used in Section 3.1.5. Equation
(14.39) will now take the form

Q (6,67 Z%k{—“t WT¢nH2}+const.

n=1

Following the same steps as in the single target case, we atreorresponding
version of (14.42):

W, = (#"R;®) TR, T
For 3, (14.43) becomes

Q0.0 =35 3 { D oo~}
2 2 1 "

n=1 k=1

and consequently (14.44) becomes

1 N E 2
= 5D > vk |[tn — W, ||
n=1 k=1

14.13 Starting from the mixture distribution in (14.34), we follow the sasteps as for
mixtures of Gaussians, presented in Section 9.2. We introdu€enamial latent
variable,z, such that the joint distribution overandt¢ equals

Q\'—‘

p(t,z) = p(t|z)p H (twie, 87) m)™

Given a set of observation$(t,,, ¢,,)}_,, we can write the complete likelihood
over these observations and the corresponding. . , zy, as

N K
HH Wth |wk¢n’ﬂ ))an

Taking the logarithm, we obtain (14.36).
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14.14 SinceQ(6,6°'Y) (defined by the unnumbered equation preceeding (14.38)) has ex-
actly the same dependency aras (9.40), (14.38) can be derived just like the corre-
sponding result in Solution 9.9.

14.15 The predictive distribution from the mixture of linear regressioodels for a new

input feature vectorqAS, is obtained from (14.34), witk replaced bﬁ). Calculating
the expectation of under this distribution, we obtain

t|¢7 Zﬂ-k‘E t|¢7wk‘> ]

Depending on the parameters, this expectation is potentigliyjodal, with one
mode for each mixture component. However, the weighted caatibim of these
modes output by the mixture model may not be close to any singtée. For exam-
ple, the combination of the two modes in the left panel of Fidi#® will end up in
between the two modes, a region with no signicant probabilégsn

14.16 This solution is analogous to Solution 14.12. It makes use silte from Section
4.3.4 in the same way that Solution 14.12 made use of results $ection 3.1.5.
Note, however, that Section 4.3.4 useas class index anfl” to denote the number
of classes, whereas here we will usandC, respectively, for these purposes. This
leavest and K for mixture component indexing and number of mixture compasent
as used elsewhere in Chapter 14.

Using 1-ofC coding for the targets, we can look to (4.107) to rewrite (14.45) as

(t|¢> - Zﬂ-knykc

k=1 c=1

and making the corresponding changes to (14.46)—(14.48), whidhdean expected
complete-data log likelihood function,

Q (0 GOId = Zzynk {lnﬂ'k + Ztnc lnynkc}

n=1 k=1

corresponding to (14.49).

As in the case of the mixture of logistic regression models, thetéy fors is the
same as for other mixture models, given by (14.50). In the M stefMoy. .., W,
where

Wi = [Wii,. .., Wi

we can again deal with each mixture component separately asiiierative method
such as IRLS, to solve

N
vwch = Z Ynk (ynkc - tnc) (bn =0
n=1



14.17

Solution 14.17 253

where we have used (4.109) and (14.51). We obtain the correspdidgsian from
(4.110) NOTE: In the 1%* printing of PRML, the leading minus sign on the r.h.s.
should be removed.) and (14.52) as

N
Hk - kaCkaéQ - Z YnkYnkec (ICE - ynké) ¢n¢z

n=1

If we defineyy (t|x) in (14.58) as
i (t]x) = Z A i (]%),
we can rewrite (14.58) as

M
Tk Z )\mk(bmk t|X

1 m=1

M=

p(tlx) =

B
Il

M
Z Tl Ak Pk (E]X).

1m=1

Mw

=~
Il

By changing the indexation, we can write this as

p(t|x) = Z maoi(t]x),

whereL = KM, 1 = (k — 1)M +m, g, = m i and (1) = dmi(-). B
constructiony; > 0 and Y m; = 1.

Note that this would work just as well i, and\,,,,. were to be dependent on as
long as they both respect the constraints of being non-negatdysumming td for
every possible value of.

Finally, consider a tree-structured, hierarchical mixture moael/lustrated in the
left panel of Figure 12. On the top (root) level, this is a mixturénivo components.
The mixing coefficients are given by a linear logistic regressimdel and hence are
input dependent. The left sub-tree correspond to a local conditiensity model,
1(t]x). In the right sub-tree, the structure from the root is replicated, viiéh t
difference that both sub-trees contain local conditional demsodels,i, (¢|x) and
1/13<t|X).

We can write the resulting mixture model on the form (14.58) withingxcoeffi-
cients

m(x) = o(vix)
m(x) = (1-o(vix))o(vyx)
m(x) = (1-o(vix))(l-o(vyx)),
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Solution 14.17

Figure 12

Left: an illustration of a
hierarchical mixture model,
where the input depen-
dent mixing coefficients
are determined by linear
logistic models associated
with interior nodes; the
leaf nodes correspond to
local (conditional) density
models. Right: a possi-
ble division of the input Ya(t|x)  s(tx)
space into regions where

different mixing coefficients

dominate, under the model

illustrated left.

2

1

whereos (-) is defined in (4.59) and, andv, are the parameter vectors of the logistic
regression models. Note that(x) is independent of the value of,. This would
not be the case if the mixing coefficients were modelled usisiggle level softmax
model,

T
eukx

= 23 eu?x’
J

where the parametets,, corresponding ta(x), will also affect the other mixing
coeffiecientsyr; .., (x), through the denominator. This gives the hierarchical model
different properties in the modelling of the mixture coefficiemtsr the input space,
as compared to a linear softmax model. An example is shown imighé panel
of Figure 12, where the red lines represent borders of equal mixieffigents in
the input space. These borders are formed from two straight linessporrding to
the two logistic units in the left panel of 12. A correspondingiglbn of the input
space by a softmax model would involve three straight lineefbet a single point,
looking, e.g., something like the red lines in Figure 4.3 in RRMote that a linear
three-class softmax model could not implement the borders shoighihpanel of
Figure 12.

Wk(x)
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