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Chapter 1 Introduction

1.1 Substituting (1.1) into (1.2) and then differentiating with respect towi we obtain

N∑

n=1

(
M∑

j=0

wjx
j
n − tn

)
xi

n = 0. (1)

Re-arranging terms then gives the required result.

1.2 For the regularized sum-of-squares error function given by (1.4) the corresponding
linear equations are again obtained by differentiation, and take the same form as
(1.122), but withAij replaced bỹAij , given by

Ãij = Aij + λIij . (2)

1.3 Let us denote apples, oranges and limes bya, o and l respectively. The marginal
probability of selecting an apple is given by

p(a) = p(a|r)p(r) + p(a|b)p(b) + p(a|g)p(g)

=
3

10
× 0.2 +

1

2
× 0.2 +

3

10
× 0.6 = 0.34 (3)

where the conditional probabilities are obtained from the proportions of apples in
each box.

To find the probability that the box was green, given that the fruitwe selected was
an orange, we can use Bayes’ theorem

p(g|o) =
p(o|g)p(g)
p(o)

. (4)

The denominator in (4) is given by

p(o) = p(o|r)p(r) + p(o|b)p(b) + p(o|g)p(g)

=
4

10
× 0.2 +

1

2
× 0.2 +

3

10
× 0.6 = 0.36 (5)

from which we obtain

p(g|o) =
3

10
× 0.6

0.36
=

1

2
. (6)

1.4 We are often interested in finding the most probable value for some quantity. In
the case of probability distributions over discrete variables this poses little problem.
However, for continuous variables there is a subtlety arising fromthe nature of prob-
ability densities and the way they transform under non-linear changes of variable.
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Consider first the way a functionf(x) behaves when we change to a new variabley
where the two variables are related byx = g(y). This defines a new function ofy
given by

f̃(y) = f(g(y)). (7)

Supposef(x) has a mode (i.e. a maximum) atx̂ so thatf ′(x̂) = 0. The correspond-
ing mode off̃(y) will occur for a valuêy obtained by differentiating both sides of
(7) with respect toy

f̃ ′(ŷ) = f ′(g(ŷ))g′(ŷ) = 0. (8)

Assumingg′(ŷ) 6= 0 at the mode, thenf ′(g(ŷ)) = 0. However, we know that
f ′(x̂) = 0, and so we see that the locations of the mode expressed in terms of each
of the variablesx andy are related bŷx = g(ŷ), as one would expect. Thus, finding
a mode with respect to the variablex is completely equivalent to first transforming
to the variabley, then finding a mode with respect toy, and then transforming back
to x.

Now consider the behaviour of a probability densitypx(x) under the change of vari-
ablesx = g(y), where the density with respect to the new variable ispy(y) and is
given by ((1.27)). Let us writeg′(y) = s|g′(y)| wheres ∈ {−1,+1}. Then ((1.27))
can be written

py(y) = px(g(y))sg′(y).

Differentiating both sides with respect toy then gives

p′y(y) = sp′x(g(y)){g′(y)}2 + spx(g(y))g′′(y). (9)

Due to the presence of the second term on the right hand side of (9) the relationship
x̂ = g(ŷ) no longer holds. Thus the value ofx obtained by maximizingpx(x) will
not be the value obtained by transforming topy(y) then maximizing with respect to
y and then transforming back tox. This causes modes of densities to be dependent
on the choice of variables. In the case of linear transformation, the second term on
the right hand side of (9) vanishes, and so the location of the maximum transforms
according tôx = g(ŷ).

This effect can be illustrated with a simple example, as shown in Figure 1. We
begin by considering a Gaussian distributionpx(x) over x with meanµ = 6 and
standard deviationσ = 1, shown by the red curve in Figure 1. Next we draw a
sample ofN = 50, 000 points from this distribution and plot a histogram of their
values, which as expected agrees with the distributionpx(x).

Now consider a non-linear change of variables fromx to y given by

x = g(y) = ln(y) − ln(1 − y) + 5. (10)

The inverse of this function is given by

y = g−1(x) =
1

1 + exp(−x+ 5)
(11)
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Figure 1 Example of the transformation of
the mode of a density under a non-
linear change of variables, illus-
trating the different behaviour com-
pared to a simple function. See the
text for details.

0 5 10
0

0.5

1

g−1(x)

px(x)

py(y)

y

x

which is alogistic sigmoid function, and is shown in Figure 1 by the blue curve.

If we simply transformpx(x) as a function ofx we obtain the green curvepx(g(y))
shown in Figure 1, and we see that the mode of the densitypx(x) is transformed
via the sigmoid function to the mode of this curve. However, thedensity overy
transforms instead according to (1.27) and is shown by the magentacurve on the left
side of the diagram. Note that this has its mode shifted relativeto the mode of the
green curve.

To confirm this result we take our sample of50, 000 values ofx, evaluate the corre-
sponding values ofy using (11), and then plot a histogram of their values. We see
that this histogram matches the magenta curve in Figure 1 and notthe green curve!

1.5 Expanding the square we have

E[(f(x) − E[f(x)])2] = E[f(x)2 − 2f(x)E[f(x)] + E[f(x)]2]

= E[f(x)2] − 2E[f(x)]E[f(x)] + E[f(x)]2

= E[f(x)2] − E[f(x)]2

as required.

1.6 The definition of covariance is given by (1.41) as

cov[x, y] = E[xy] − E[x]E[y].

Using (1.33) and the fact thatp(x, y) = p(x)p(y) whenx andy are independent, we
obtain

E[xy] =
∑

x

∑

y

p(x, y)xy

=
∑

x

p(x)x
∑

y

p(y)y

= E[x]E[y]



10 Solutions 1.7–1.8

and hencecov[x, y] = 0. The case wherex andy are continuous variables is analo-
gous, with (1.33) replaced by (1.34) and the sums replaced by integrals.

1.7 The transformation from Cartesian to polar coordinates is defined by

x = r cos θ (12)

y = r sin θ (13)

and hence we havex2 + y2 = r2 where we have used the well-known trigonometric
result (2.177). Also the Jacobian of the change of variables is easily seen to be

∂(x, y)

∂(r, θ)
=

∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣

=

∣∣∣∣
cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r

where again we have used (2.177). Thus the double integral in (1.125) becomes

I2 =

∫ 2π

0

∫ ∞

0

exp

(
− r2

2σ2

)
r dr dθ (14)

= 2π

∫ ∞

0

exp
(
− u

2σ2

) 1

2
du (15)

= π
[
exp

(
− u

2σ2

) (
−2σ2

)]∞
0

(16)

= 2πσ2 (17)

where we have used the change of variablesr2 = u. Thus

I =
(
2πσ2

)1/2
.

Finally, using the transformationy = x−µ, the integral of the Gaussian distribution
becomes

∫ ∞

−∞
N
(
x|µ, σ2

)
dx =

1

(2πσ2)
1/2

∫ ∞

−∞
exp

(
− y2

2σ2

)
dy

=
I

(2πσ2)
1/2

= 1

as required.

1.8 From the definition (1.46) of the univariate Gaussian distribution, we have

E[x] =

∫ ∞

−∞

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
(x− µ)2

}
xdx. (18)
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Now change variables usingy = x− µ to give

E[x] =

∫ ∞

−∞

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
y2

}
(y + µ) dy. (19)

We now note that in the factor(y + µ) the first term iny corresponds to an odd
integrand and so this integral must vanish (to show this explicitly, write the integral
as the sum of two integrals, one from−∞ to 0 and the other from0 to ∞ and then
show that these two integrals cancel). In the second term,µ is a constant and pulls
outside the integral, leaving a normalized Gaussian distribution which integrates to
1, and so we obtain (1.49).

To derive (1.50) we first substitute the expression (1.46) for the normal distribution
into the normalization result (1.48) and re-arrange to obtain

∫ ∞

−∞
exp

{
− 1

2σ2
(x− µ)2

}
dx =

(
2πσ2

)1/2
. (20)

We now differentiate both sides of (20) with respect toσ2 and then re-arrange to
obtain (

1

2πσ2

)1/2 ∫ ∞

−∞
exp

{
− 1

2σ2
(x− µ)2

}
(x− µ)2 dx = σ2 (21)

which directly shows that

E[(x− µ)2] = var[x] = σ2. (22)

Now we expand the square on the left-hand side giving

E[x2] − 2µE[x] + µ2 = σ2.

Making use of (1.49) then gives (1.50) as required.

Finally, (1.51) follows directly from (1.49) and (1.50)

E[x2] − E[x]2 =
(
µ2 + σ2

)
− µ2 = σ2.

1.9 For the univariate case, we simply differentiate (1.46) with respect tox to obtain

d

dx
N
(
x|µ, σ2

)
= −N

(
x|µ, σ2

) x− µ

σ2
.

Setting this to zero we obtainx = µ.

Similarly, for the multivariate case we differentiate (1.52) withrespect tox to obtain

∂

∂x
N (x|µ,Σ) = −1

2
N (x|µ,Σ)∇x

{
(x − µ)TΣ−1(x − µ)

}

= −N (x|µ,Σ)Σ−1(x − µ),

where we have used (C.19), (C.20)1 and the fact thatΣ−1 is symmetric. Setting this
derivative equal to0, and left-multiplying byΣ, leads to the solutionx = µ.

1NOTE: In the1st printing of PRML, there are mistakes in (C.20); all instances ofx (vector)
in the denominators should bex (scalar).
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1.10 Sincex andz are independent, their joint distribution factorizesp(x, z) = p(x)p(z),
and so

E[x+ z] =

∫∫
(x+ z)p(x)p(z) dxdz (23)

=

∫
xp(x) dx+

∫
zp(z) dz (24)

= E[x] + E[z]. (25)

Similarly for the variances, we first note that

(x+ z − E[x+ z])2 = (x− E[x])2 + (z − E[z])2 + 2(x− E[x])(z − E[z]) (26)

where the final term will integrate to zero with respect to the factorized distribution
p(x)p(z). Hence

var[x+ z] =

∫∫
(x+ z − E[x+ z])2p(x)p(z) dxdz

=

∫
(x− E[x])2p(x) dx+

∫
(z − E[z])2p(z) dz

= var(x) + var(z). (27)

For discrete variables the integrals are replaced by summations,and the same results
are again obtained.

1.11 We use` to denoteln p(X|µ, σ2) from (1.54). By standard rules of differentiation
we obtain

∂`

∂µ
=

1

σ2

N∑

n=1

(xn − µ).

Setting this equal to zero and moving the terms involvingµ to the other side of the
equation we get

1

σ2

N∑

n=1

xn =
1

σ2
Nµ

and by multiplying ing both sides byσ2/N we get (1.55).

Similarly we have

∂`

∂σ2
=

1

2(σ2)2

N∑

n=1

(xn − µ)2 − N

2

1

σ2

and setting this to zero we obtain

N

2

1

σ2
=

1

2(σ2)2

N∑

n=1

(xn − µ)2.

Multiplying both sides by2(σ2)2/N and substitutingµML for µ we get (1.56).
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1.12 If m = n thenxnxm = x2
n and using (1.50) we obtainE[x2

n] = µ2 + σ2, whereas if
n 6= m then the two data pointsxn andxm are independent and henceE[xnxm] =
E[xn]E[xm] = µ2 where we have used (1.49). Combining these two results we
obtain (1.130).

Next we have

E[µML] =
1

N

N∑

n=1

E[xn] = µ (28)

using (1.49).

Finally, considerE[σ2
ML]. From (1.55) and (1.56), and making use of (1.130), we

have

E[σ2
ML] = E


 1

N

N∑

n=1

(
xn − 1

N

N∑

m=1

xm

)2



=
1

N

N∑

n=1

E

[
x2

n − 2

N
xn

N∑

m=1

xm +
1

N2

N∑

m=1

N∑

l=1

xmxl

]

=

{
µ2 + σ2 − 2

(
µ2 +

1

N
σ2

)
+ µ2 +

1

N
σ2

}

=

(
N − 1

N

)
σ2 (29)

as required.

1.13 In a similar fashion to solution 1.12, substitutingµ for µML in (1.56) and using (1.49)
and (1.50) we have

E{xn}

[
1

N

N∑

n=1

(xn − µ)
2

]
=

1

N

N∑

n=1

Exn

[
x2

n − 2xnµ+ µ2
]

=
1

N

N∑

n=1

(
µ2 + σ2 − 2µµ+ µ2

)

= σ2

1.14 Define

wS
ij =

1

2
(wij + wji) wA

ij =
1

2
(wij − wji). (30)

from which the (anti)symmetry properties follow directly, as does therelationwij =
wS

ij + wA
ij . We now note that

D∑

i=1

D∑

j=1

wA
ijxixj =

1

2

D∑

i=1

D∑

j=1

wijxixj −
1

2

D∑

i=1

D∑

j=1

wjixixj = 0 (31)
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from which we obtain (1.132). The number of independent components inwS
ij can be

found by noting that there areD2 parameters in total in this matrix, and that entries
off the leading diagonal occur in constrained pairswij = wji for j 6= i. Thus we
start withD2 parameters in the matrixwS

ij , subtractD for the number of parameters
on the leading diagonal, divide by two, and then add backD for the leading diagonal
and we obtain(D2 −D)/2 +D = D(D + 1)/2.

1.15 The redundancy in the coefficients in (1.133) arises from interchange symmetries
between the indicesik. Such symmetries can therefore be removed by enforcing an
ordering on the indices, as in (1.134), so that only one member in each group of
equivalent configurations occurs in the summation.

To derive (1.135) we note that the number of independent parameters n(D,M)
which appear at orderM can be written as

n(D,M) =

D∑

i1=1

i1∑

i2=1

· · ·
iM−1∑

iM=1

1 (32)

which hasM terms. This can clearly also be written as

n(D,M) =

D∑

i1=1

{
i1∑

i2=1

· · ·
iM−1∑

iM=1

1

}
(33)

where the term in braces hasM−1 terms which, from (32), must equaln(i1,M−1).
Thus we can write

n(D,M) =

D∑

i1=1

n(i1,M − 1) (34)

which is equivalent to (1.135).

To prove (1.136) we first setD = 1 on both sides of the equation, and make use of
0! = 1, which gives the value1 on both sides, thus showing the equation is valid for
D = 1. Now we assume that it is true for a specific value of dimensionality D and
then show that it must be true for dimensionalityD+ 1. Thus consider the left-hand
side of (1.136) evaluated forD + 1 which gives

D+1∑

i=1

(i+M − 2)!

(i− 1)!(M − 1)!
=

(D +M − 1)!

(D − 1)!M !
+

(D +M − 1)!

D!(M − 1)!

=
(D +M − 1)!D + (D +M − 1)!M

D!M !

=
(D +M)!

D!M !
(35)

which equals the right hand side of (1.136) for dimensionalityD + 1. Thus, by
induction, (1.136) must hold true for all values ofD.
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Finally we use induction to prove (1.137). ForM = 2 we find obtain the standard
resultn(D, 2) = 1

2
D(D + 1), which is also proved in Exercise 1.14. Now assume

that (1.137) is correct for a specific orderM − 1 so that

n(D,M − 1) =
(D +M − 2)!

(D − 1)! (M − 1)!
. (36)

Substituting this into the right hand side of (1.135) we obtain

n(D,M) =

D∑

i=1

(i+M − 2)!

(i− 1)! (M − 1)!
(37)

which, making use of (1.136), gives

n(D,M) =
(D +M − 1)!

(D − 1)!M !
(38)

and hence shows that (1.137) is true for polynomials of orderM . Thus by induction
(1.137) must be true for all values ofM .

1.16 NOTE: In the1st printing of PRML, this exercise contains two typographical errors.
On line 4,M6th should beM th and on the l.h.s. of (1.139),N(d,M) should be
N(D,M).

The result (1.138) follows simply from summing up the coefficientsat all order up
to and including orderM . To prove (1.139), we first note that whenM = 0 the right
hand side of (1.139) equals 1, which we know to be correct since this is the number
of parameters at zeroth order which is just the constant offset in the polynomial.
Assuming that (1.139) is correct at orderM , we obtain the following result at order
M + 1

N(D,M + 1) =

M+1∑

m=0

n(D,m)

=

M∑

m=0

n(D,m) + n(D,M + 1)

=
(D +M)!

D!M !
+

(D +M)!

(D − 1)!(M + 1)!

=
(D +M)!(M + 1) + (D +M)!D

D!(M + 1)!

=
(D +M + 1)!

D!(M + 1)!

which is the required result at orderM + 1.
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Now assumeM � D. Using Stirling’s formula we have

n(D,M) ' (D +M)D+Me−D−M

D!MMe−M

=
MD+Me−D

D!MM

(
1 +

D

M

)D+M

' MDe−D

D!

(
1 +

D(D +M)

M

)

' (1 +D)e−D

D!
MD

which grows likeMD with M . The case whereD � M is identical, with the roles
of D andM exchanged. By numerical evaluation we obtainN(10, 3) = 286 and
N(100, 3) = 176,851.

1.17 Using integration by parts we have

Γ(x+ 1) =

∫ ∞

0

uxe−u du

=
[
−e−uux

]∞
0

+

∫ ∞

0

xux−1e−u du = 0 + xΓ(x). (39)

Forx = 1 we have

Γ(1) =

∫ ∞

0

e−u du =
[
−e−u

]∞
0

= 1. (40)

If x is an integer we can apply proof by induction to relate the gammafunction to
the factorial function. Suppose thatΓ(x+ 1) = x! holds. Then from the result (39)
we haveΓ(x + 2) = (x + 1)Γ(x + 1) = (x + 1)!. Finally, Γ(1) = 1 = 0!, which
completes the proof by induction.

1.18 On the right-hand side of (1.142) we make the change of variablesu = r2 to give

1

2
SD

∫ ∞

0

e−uuD/2−1 du =
1

2
SDΓ(D/2) (41)

where we have used the definition (1.141) of the Gamma function. On the left hand
side of (1.142) we can use (1.126) to obtainπD/2. Equating these we obtain the
desired result (1.143).

The volume of a sphere of radius1 in D-dimensions is obtained by integration

VD = SD

∫ 1

0

rD−1 dr =
SD

D
. (42)

ForD = 2 andD = 3 we obtain the following results

S2 = 2π, S3 = 4π, V2 = πa2, V3 =
4

3
πa3. (43)
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1.19 The volume of the cube is(2a)D. Combining this with (1.143) and (1.144) we obtain
(1.145). Using Stirling’s formula (1.146) in (1.145) the ratio becomes, for largeD,

volume of sphere
volume of cube

=
( πe

2D

)D/2 1

D
(44)

which goes to0 asD → ∞. The distance from the center of the cube to the mid
point of one of the sides isa, since this is where it makes contact with the sphere.
Similarly the distance to one of the corners isa

√
D from Pythagoras’ theorem. Thus

the ratio is
√
D.

1.20 Sincep(x) is radially symmetric it will be roughly constant over the shellof radius
r and thicknessε. This shell has volumeSDr

D−1ε and since‖x‖2 = r2 we have
∫

shell

p(x) dx ' p(r)SDr
D−1ε (45)

from which we obtain (1.148). We can find the stationary points ofp(r) by differen-
tiation

d

dr
p(r) ∝

[
(D − 1)rD−2 + rD−1

(
− r

σ2

)]
exp

(
− r2

2σ2

)
= 0. (46)

Solving forr, and usingD � 1, we obtain̂r '
√
Dσ.

Next we note that

p(r̂ + ε) ∝ (r̂ + ε)D−1 exp

[
−(r̂ + ε)2

2σ2

]

= exp

[
−(r̂ + ε)2

2σ2
+ (D − 1) ln(r̂ + ε)

]
. (47)

We now expandp(r) around the point̂r. Since this is a stationary point ofp(r)
we must keep terms up to second order. Making use of the expansion ln(1 + x) =
x− x2/2 +O(x3), together withD � 1, we obtain (1.149).

Finally, from (1.147) we see that the probability density at the origin is given by

p(x = 0) =
1

(2πσ2)1/2

while the density at‖x‖ = r̂ is given from (1.147) by

p(‖x‖ = r̂) =
1

(2πσ2)1/2
exp

(
− r̂2

2σ2

)
=

1

(2πσ2)1/2
exp

(
−D

2

)

where we have used̂r '
√
Dσ. Thus the ratio of densities is given byexp(D/2).
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1.21 Since the square root function is monotonic for non-negative numbers, we can take
the square root of the relationa 6 b to obtaina1/2 6 b1/2. Then we multiply both
sides by the non-negative quantitya1/2 to obtaina 6 (ab)1/2.

The probability of a misclassification is given, from (1.78), by

p(mistake) =

∫

R1

p(x, C2) dx +

∫

R2

p(x, C1) dx

=

∫

R1

p(C2|x)p(x) dx +

∫

R2

p(C1|x)p(x) dx. (48)

Since we have chosen the decision regions to minimize the probability of misclassi-
fication we must havep(C2|x) 6 p(C1|x) in regionR1, andp(C1|x) 6 p(C2|x) in
regionR2. We now apply the resulta 6 b⇒ a1/2 6 b1/2 to give

p(mistake) 6

∫

R1

{p(C1|x)p(C2|x)}1/2p(x) dx

+

∫

R2

{p(C1|x)p(C2|x)}1/2p(x) dx

=

∫
{p(C1|x)p(x)p(C2|x)p(x)}1/2 dx (49)

since the two integrals have the same integrand. The final integral is taken over the
whole of the domain ofx.

1.22 SubstitutingLkj = 1 − δkj into (1.81), and using the fact that the posterior proba-
bilities sum to one, we find that, for eachx we should choose the classj for which
1 − p(Cj |x) is a minimum, which is equivalent to choosing thej for which the pos-
terior probabilityp(Cj |x) is a maximum. This loss matrix assigns a loss of one if
the example is misclassified, and a loss of zero if it is correctlyclassified, and hence
minimizing the expected loss will minimize the misclassification rate.

1.23 From (1.81) we see that for a general loss matrix and arbitrary class priors, the ex-
pected loss is minimized by assigning an inputx to class thej which minimizes

∑

k

Lkjp(Ck|x) =
1

p(x)

∑

k

Lkjp(x|Ck)p(Ck)

and so there is a direct trade-off between the priorsp(Ck) and the loss matrixLkj .

1.24 A vectorx belongs to classCk with probabilityp(Ck|x). If we decide to assignx to
classCj we will incur an expected loss of

∑
k Lkjp(Ck|x), whereas if we select the

reject option we will incur a loss ofλ. Thus, if

j = arg min
l

∑

k

Lklp(Ck|x) (50)
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then we minimize the expected loss if we take the following action

choose

{
class j, if minl

∑
k Lklp(Ck|x) < λ;

reject, otherwise. (51)

For a loss matrixLkj = 1 − Ikj we have
∑

k Lklp(Ck|x) = 1 − p(Cl|x) and so we
reject unless the smallest value of1 − p(Cl|x) is less thanλ, or equivalently if the
largest value ofp(Cl|x) is less than1 − λ. In the standard reject criterion we reject
if the largest posterior probability is less thanθ. Thus these two criteria for rejection
are equivalent providedθ = 1 − λ.

1.25 The expected squared loss for a vectorial target variable is given by

E[L] =

∫∫
‖y(x) − t‖2p(t,x) dxdt.

Our goal is to choosey(x) so as to minimizeE[L]. We can do this formally using
the calculus of variations to give

δE[L]

δy(x)
=

∫
2(y(x) − t)p(t,x) dt = 0.

Solving fory(x), and using the sum and product rules of probability, we obtain

y(x) =

∫
tp(t,x) dt

∫
p(t,x) dt

=

∫
tp(t|x) dt

which is the conditional average oft conditioned onx. For the case of a scalar target
variable we have

y(x) =

∫
tp(t|x) dt

which is equivalent to (1.89).

1.26 NOTE: In the1st printing of PRML, there is an error in equation (1.90); the inte-
grand of the second integral should be replaced byvar[t|x]p(x).

We start by expanding the square in (1.151), in a similar fashion to the univariate
case in the equation preceding (1.90),

‖y(x) − t‖2 = ‖y(x) − E[t|x] + E[t|x] − t‖2

= ‖y(x) − E[t|x]‖2 + (y(x) − E[t|x])T(E[t|x] − t)

+(E[t|x] − t)T(y(x) − E[t|x]) + ‖E[t|x] − t‖2.

Following the treatment of the univariate case, we now substitute this into (1.151)
and perform the integral overt. Again the cross-term vanishes and we are left with

E[L] =

∫
‖y(x) − E[t|x]‖2p(x) dx +

∫
var[t|x]p(x) dx
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from which we see directly that the functiony(x) that minimizesE[L] is given by
E[t|x].

1.27 Since we can choosey(x) independently for each value ofx, the minimum of the
expectedLq loss can be found by minimizing the integrand given by

∫
|y(x) − t|qp(t|x) dt (52)

for each value ofx. Setting the derivative of (52) with respect toy(x) to zero gives
the stationarity condition
∫
q|y(x) − t|q−1sign(y(x) − t)p(t|x) dt

= q

∫ y(x)

−∞
|y(x) − t|q−1p(t|x) dt− q

∫ ∞

y(x)

|y(x) − t|q−1p(t|x) dt = 0

which can also be obtained directly by setting the functional derivative of (1.91) with
respect toy(x) equal to zero. It follows thaty(x) must satisfy

∫ y(x)

−∞
|y(x) − t|q−1p(t|x) dt =

∫ ∞

y(x)

|y(x) − t|q−1p(t|x) dt. (53)

For the case ofq = 1 this reduces to

∫ y(x)

−∞
p(t|x) dt =

∫ ∞

y(x)

p(t|x) dt. (54)

which says thaty(x) must be the conditional median oft.

For q → 0 we note that, as a function oft, the quantity|y(x) − t|q is close to 1
everywhere except in a small neighbourhood aroundt = y(x) where it falls to zero.
The value of (52) will therefore be close to 1, since the densityp(t) is normalized, but
reduced slightly by the ‘notch’ close tot = y(x). We obtain the biggest reduction in
(52) by choosing the location of the notch to coincide with thelargest value ofp(t),
i.e. with the (conditional) mode.

1.28 From the discussion of the introduction of Section 1.6, we have

h(p2) = h(p) + h(p) = 2h(p).

We then assume that for allk 6 K, h(pk) = k h(p). Fork = K + 1 we have

h(pK+1) = h(pKp) = h(pK) + h(p) = K h(p) + h(p) = (K + 1)h(p).

Moreover,

h(pn/m) = nh(p1/m) =
n

m
mh(p1/m) =

n

m
h(pm/m) =

n

m
h(p)
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and so, by continuity, we have thath(px) = xh(p) for any real numberx.

Now consider the positive real numbersp and q and the real numberx such that
p = qx. From the above discussion, we see that

h(p)

ln(p)
=
h(qx)

ln(qx)
=

xh(q)

x ln(q)
=
h(q)

ln(q)

and henceh(p) ∝ ln(p).

1.29 The entropy of anM -state discrete variablex can be written in the form

H(x) = −
M∑

i=1

p(xi) ln p(xi) =

M∑

i=1

p(xi) ln
1

p(xi)
. (55)

The functionln(x) is concave_ and so we can apply Jensen’s inequality in the form
(1.115) but with the inequality reversed, so that

H(x) 6 ln

(
M∑

i=1

p(xi)
1

p(xi)

)
= lnM. (56)

1.30 NOTE: In PRML, there is a minus sign (’−’) missing on the l.h.s. of (1.103).

From (1.113) we have

KL(p‖q) = −
∫
p(x) ln q(x) dx+

∫
p(x) ln p(x) dx. (57)

Using (1.46) and (1.48)– (1.50), we can rewrite the first integral on ther.h.s. of (57)
as

−
∫
p(x) ln q(x) dx =

∫
N (x|µ, σ2)

1

2

(
ln(2πs2) +

(x−m)2

s2

)
dx

=
1

2

(
ln(2πs2) +

1

s2

∫
N (x|µ, σ2)(x2 − 2xm+m2) dx

)

=
1

2

(
ln(2πs2) +

σ2 + µ2 − 2µm+m2

s2

)
. (58)

The second integral on the r.h.s. of (57) we recognize from (1.103) as the negative
differential entropy of a Gaussian. Thus, from (57), (58) and (1.110), we have

KL(p‖q) =
1

2

(
ln(2πs2) +

σ2 + µ2 − 2µm+m2

s2
− 1 − ln(2πσ2)

)

=
1

2

(
ln

(
s2

σ2

)
+
σ2 + µ2 − 2µm+m2

s2
− 1

)
.
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1.31 We first make use of the relationI(x;y) = H(y) − H(y|x) which we obtained in
(1.121), and note that the mutual information satisfiesI(x;y) > 0 since it is a form
of Kullback-Leibler divergence. Finally we make use of the relation (1.112) to obtain
the desired result (1.152).

To show that statistical independence is a sufficient condition for the equality to be
satisfied, we substitutep(x,y) = p(x)p(y) into the definition of the entropy, giving

H(x,y) =

∫∫
p(x,y) ln p(x,y) dxdy

=

∫∫
p(x)p(y) {ln p(x) + ln p(y)} dxdy

=

∫
p(x) ln p(x) dx +

∫
p(y) ln p(y) dy

= H(x) + H(y).

To show that statistical independence is a necessary condition, we combine the equal-
ity condition

H(x,y) = H(x) + H(y)

with the result (1.112) to give

H(y|x) = H(y).

We now note that the right-hand side is independent ofx and hence the left-hand side
must also be constant with respect tox. Using (1.121) it then follows that the mutual
informationI[x,y] = 0. Finally, using (1.120) we see that the mutual information is
a form of KL divergence, and this vanishes only if the two distributions are equal, so
thatp(x,y) = p(x)p(y) as required.

1.32 When we make a change of variables, the probability density is transformed by the
Jacobian of the change of variables. Thus we have

p(x) = p(y)

∣∣∣∣
∂yi

∂xj

∣∣∣∣ = p(y)|A| (59)

where| · | denotes the determinant. Then the entropy ofy can be written

H(y) = −
∫
p(y) ln p(y) dy = −

∫
p(x) ln

{
p(x)|A|−1

}
dx = H(x) + ln |A|

(60)
as required.

1.33 The conditional entropyH(y|x) can be written

H(y|x) = −
∑

i

∑

j

p(yi|xj)p(xj) ln p(yi|xj) (61)
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which equals 0 by assumption. Since the quantity−p(yi|xj) ln p(yi|xj) is non-
negative each of these terms must vanish for any valuexj such thatp(xj) 6= 0.
However, the quantityp ln p only vanishes forp = 0 or p = 1. Thus the quantities
p(yi|xj) are all either 0 or 1. However, they must also sum to 1, since this is a
normalized probability distribution, and so precisely one of the p(yi|xj) is 1, and
the rest are 0. Thus, for each valuexj there is a unique valueyi with non-zero
probability.

1.34 Obtaining the required functional derivative can be done simplyby inspection. How-
ever, if a more formal approach is required we can proceed as follows using the
techniques set out in Appendix D. Consider first the functional

I[p(x)] =

∫
p(x)f(x) dx.

Under a small variationp(x) → p(x) + εη(x) we have

I[p(x) + εη(x)] =

∫
p(x)f(x) dx+ ε

∫
η(x)f(x) dx

and hence from (D.3) we deduce that the functional derivative is given by

δI

δp(x)
= f(x).

Similarly, if we define

J [p(x)] =

∫
p(x) ln p(x) dx

then under a small variationp(x) → p(x) + εη(x) we have

J [p(x) + εη(x)] =

∫
p(x) ln p(x) dx

+ε

{∫
η(x) ln p(x) dx+

∫
p(x)

1

p(x)
η(x) dx

}
+O(ε2)

and hence
δJ

δp(x)
= p(x) + 1.

Using these two results we obtain the following result for the functional derivative

− ln p(x) − 1 + λ1 + λ2x+ λ3(x− µ)2.

Re-arranging then gives (1.108).

To eliminate the Lagrange multipliers we substitute (1.108) into each of the three
constraints (1.105), (1.106) and (1.107) in turn. The solution is most easily obtained
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by comparison with the standard form of the Gaussian, and noting that the results

λ1 = 1 − 1

2
ln
(
2πσ2

)
(62)

λ2 = 0 (63)

λ3 =
1

2σ2
(64)

do indeed satisfy the three constraints.

Note that there is a typographical error in the question, which should read ”Use
calculus of variations to show that the stationary point of thefunctional shown just
before (1.108) is given by (1.108)”.

For the multivariate version of this derivation, see Exercise 2.14.

1.35 NOTE: In PRML, there is a minus sign (’−’) missing on the l.h.s. of (1.103).

Substituting the right hand side of (1.109) in the argument of the logarithm on the
right hand side of (1.103), we obtain

H[x] = −
∫
p(x) ln p(x) dx

= −
∫
p(x)

(
−1

2
ln(2πσ2) − (x− µ)2

2σ2

)
dx

=
1

2

(
ln(2πσ2) +

1

σ2

∫
p(x)(x− µ)2 dx

)

=
1

2

(
ln(2πσ2) + 1

)
,

where in the last step we used (1.107).

1.36 Consider (1.114) withλ = 0.5 andb = a+ 2ε (and hencea = b− 2ε),

0.5f(a) + 0.5f(b) > f(0.5a+ 0.5b)

= 0.5f(0.5a+ 0.5(a+ 2ε)) + 0.5f(0.5(b− 2ε) + 0.5b)

= 0.5f(a+ ε) + 0.5f(b− ε)

We can rewrite this as

f(b) − f(b− ε) > f(a+ ε) − f(a)

We then divide both sides byε and letε→ 0, giving

f ′(b) > f ′(a).

Since this holds at all points, it follows thatf ′′(x) > 0 everywhere.



Solutions 1.37–1.38 25

To show the implication in the other direction, we make use of Taylor’s theorem
(with the remainder in Lagrange form), according to which there existanx? such
that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x?)(x− x0)

2.

Since we assume thatf ′′(x) > 0 everywhere, the third term on the r.h.s. will always
be positive and therefore

f(x) > f(x0) + f ′(x0)(x− x0)

Now letx0 = λa+ (1 − λ)b and consider settingx = a, which gives

f(a) > f(x0) + f ′(x0)(a− x0)

= f(x0) + f ′(x0) ((1 − λ)(a− b)) . (65)

Similarly, settingx = b gives

f(b) > f(x0) + f ′(x0)(λ(b− a)). (66)

Multiplying (65) byλ and (66) by1 − λ and adding up the results on both sides, we
obtain

λf(a) + (1 − λ)f(b) > f(x0) = f(λa+ (1 − λ)b)

as required.

1.37 From (1.104), making use of (1.111), we have

H[x,y] = −
∫∫

p(x,y) ln p(x,y) dxdy

= −
∫∫

p(x,y) ln (p(y|x)p(x)) dxdy

= −
∫∫

p(x,y) (ln p(y|x) + ln p(x)) dxdy

= −
∫∫

p(x,y) ln p(y|x) dxdy −
∫∫

p(x,y) ln p(x) dxdy

= −
∫∫

p(x,y) ln p(y|x) dxdy −
∫
p(x) ln p(x) dx

= H[y|x] + H[x].

1.38 From (1.114) we know that the result (1.115) holds forM = 1. We now suppose that
it holds for some general valueM and show that it must therefore hold forM + 1.
Consider the left hand side of (1.115)

f

(
M+1∑

i=1

λixi

)
= f

(
λM+1xM+1 +

M∑

i=1

λixi

)
(67)

= f

(
λM+1xM+1 + (1 − λM+1)

M∑

i=1

ηixi

)
(68)
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where we have defined

ηi =
λi

1 − λM+1

. (69)

We now apply (1.114) to give

f

(
M+1∑

i=1

λixi

)
6 λM+1f(xM+1) + (1 − λM+1)f

(
M∑

i=1

ηixi

)
. (70)

We now note that the quantitiesλi by definition satisfy

M+1∑

i=1

λi = 1 (71)

and hence we have
M∑

i=1

λi = 1 − λM+1 (72)

Then using (69) we see that the quantitiesηi satisfy the property

M∑

i=1

ηi =
1

1 − λM+1

M∑

i=1

λi = 1. (73)

Thus we can apply the result (1.115) at orderM and so (70) becomes

f

(
M+1∑

i=1

λixi

)
6 λM+1f(xM+1)+(1−λM+1)

M∑

i=1

ηif(xi) =

M+1∑

i=1

λif(xi) (74)

where we have made use of (69).

1.39 From Table 1.3 we obtain the marginal probabilities by summation and the condi-
tional probabilities by normalization, to give

x 0 2/3
1 1/3

p(x)

y
0 1

1/3 2/3

p(y)

y
0 1

x 0 1 1/2
1 0 1/2
p(x|y)

y
0 1

x 0 1/2 1/2
1 0 1

p(y|x)
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Figure 2 Diagram showing the relationship be-
tween marginal, conditional and joint en-
tropies and the mutual information.

H[x, y]

H[x|y] H[y|x]I[x, y]

H[x] H[x]

From these tables, together with the definitions

H(x) = −
∑

i

p(xi) ln p(xi) (75)

H(x|y) = −
∑

i

∑

j

p(xi, yj) ln p(xi|yj) (76)

and similar definitions forH(y) andH(y|x), we obtain the following results

(a) H(x) = ln 3 − 2
3
ln 2

(b) H(y) = ln 3 − 2
3
ln 2

(c) H(y|x) = 2
3
ln 2

(d) H(x|y) = 2
3
ln 2

(e) H(x, y) = ln 3

(f) I(x; y) = ln 3 − 4
3
ln 2

where we have used (1.121) to evaluate the mutual information. The corresponding
diagram is shown in Figure 2.

1.40 The arithmetic and geometric means are defined as

x̄A =
1

K

K∑

k

xk and x̄G =

(
K∏

k

xk

)1/K

,

respectively. Taking the logarithm ofx̄A andx̄G, we see that

ln x̄A = ln

(
1

K

K∑

k

xk

)
and ln x̄G =

1

K

K∑

k

lnxk.

By matchingf with ln andλi with 1/K in (1.115), taking into account that the
logarithm is concave rather than convex and the inequality therefore goes the other
way, we obtain the desired result.
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1.41 From the product rule we havep(x,y) = p(y|x)p(x), and so (1.120) can be written
as

I(x;y) = −
∫∫

p(x,y) ln p(y) dxdy +

∫∫
p(x,y) ln p(y|x) dxdy

= −
∫
p(y) ln p(y) dy +

∫∫
p(x,y) ln p(y|x) dxdy

= H(y) −H(y|x). (77)

Chapter 2 Probability Distributions

2.1 From the definition (2.2) of the Bernoulli distribution we have
∑

x∈{0,1}
p(x|µ) = p(x = 0|µ) + p(x = 1|µ)

= (1 − µ) + µ = 1∑

x∈{0,1}
xp(x|µ) = 0.p(x = 0|µ) + 1.p(x = 1|µ) = µ

∑

x∈{0,1}
(x− µ)2p(x|µ) = µ2p(x = 0|µ) + (1 − µ)2p(x = 1|µ)

= µ2(1 − µ) + (1 − µ)2µ = µ(1 − µ).

The entropy is given by

H[x] = −
∑

x∈{0,1}
p(x|µ) ln p(x|µ)

= −
∑

x∈{0,1}
µx(1 − µ)1−x {x lnµ+ (1 − x) ln(1 − µ)}

= −(1 − µ) ln(1 − µ) − µ lnµ.

2.2 The normalization of (2.261) follows from

p(x = +1|µ) + p(x = −1|µ) =

(
1 + µ

2

)
+

(
1 − µ

2

)
= 1.

The mean is given by

E[x] =

(
1 + µ

2

)
−
(

1 − µ

2

)
= µ.
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To evaluate the variance we use

E[x2] =

(
1 − µ

2

)
+

(
1 + µ

2

)
= 1

from which we have

var[x] = E[x2] − E[x]2 = 1 − µ2.

Finally the entropy is given by

H[x] = −
x=+1∑

x=−1

p(x|µ) ln p(x|µ)

= −
(

1 − µ

2

)
ln

(
1 − µ

2

)
−
(

1 + µ

2

)
ln

(
1 + µ

2

)
.

2.3 Using the definition (2.10) we have
(
N

n

)
+

(
N

n− 1

)
=

N !

n!(N − n)!
+

N !

(n− 1)!(N + 1 − n)!

=
(N + 1 − n)N ! + nN !

n!(N + 1 − n)!
=

(N + 1)!

n!(N + 1 − n)!

=

(
N + 1

n

)
. (78)

To prove the binomial theorem (2.263) we note that the theorem is trivially true
for N = 0. We now assume that it holds for some general valueN and prove its
correctness forN + 1, which can be done as follows

(1 + x)N+1 = (1 + x)

N∑

n=0

(
N

n

)
xn

=

N∑

n=0

(
N

n

)
xn +

N+1∑

n=1

(
N

n− 1

)
xn

=

(
N

0

)
x0 +

N∑

n=1

{(
N

n

)
+

(
N

n− 1

)}
xn +

(
N

N

)
xN+1

=

(
N + 1

0

)
x0 +

N∑

n=1

(
N + 1

n

)
xn +

(
N + 1

N + 1

)
xN+1

=

N+1∑

n=0

(
N + 1

n

)
xn (79)
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which completes the inductive proof. Finally, using the binomial theorem, the nor-
malization condition (2.264) for the binomial distribution gives

N∑

n=0

(
N

n

)
µn(1 − µ)N−n = (1 − µ)N

N∑

n=0

(
N

n

)(
µ

1 − µ

)n

= (1 − µ)N

(
1 +

µ

1 − µ

)N

= 1 (80)

as required.

2.4 Differentiating (2.264) with respect toµ we obtain

N∑

n=1

(
N

n

)
µn(1 − µ)N−n

[
n

µ
− (N − n)

(1 − µ)

]
= 0.

Multiplying through byµ(1 − µ) and re-arranging we obtain (2.11).

If we differentiate (2.264) twice with respect toµ we obtain

N∑

n=1

(
N

n

)
µn(1 − µ)N−n

{[
n

µ
− (N − n)

(1 − µ)

]2

− n

µ2
− (N − n)

(1 − µ)2

}
= 0.

We now multiply through byµ2(1 − µ)2 and re-arrange, making use of the result
(2.11) for the mean of the binomial distribution, to obtain

E[n2] = Nµ(1 − µ) +N2µ2.

Finally, we use (1.40) to obtain the result (2.12) for the variance.

2.5 Making the change of variablet = y + x in (2.266) we obtain

Γ(a)Γ(b) =

∫ ∞

0

xa−1

{∫ ∞

x

exp(−t)(t− x)b−1 dt

}
dx. (81)

We now exchange the order of integration, taking care over the limits of integration

Γ(a)Γ(b) =

∫ ∞

0

∫ t

0

xa−1 exp(−t)(t− x)b−1 dxdt. (82)

The change in the limits of integration in going from (81) to (82) can be understood
by reference to Figure 3. Finally we change variables in thex integral usingx = tµ
to give

Γ(a)Γ(b) =

∫ ∞

0

exp(−t)ta−1tb−1t dt

∫ 1

0

µa−1(1 − µ)b−1 dµ

= Γ(a+ b)

∫ 1

0

µa−1(1 − µ)b−1 dµ. (83)
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Figure 3 Plot of the region of integration of (81)
in (x, t) space.

t

x

t = x

2.6 From (2.13) the mean of the beta distribution is given by

E[µ] =

∫ 1

0

Γ(a+ b)

Γ(a)Γ(b)
µ(a+1)−1(1 − µ)b−1 dµ.

Using the result (2.265), which follows directly from the normalization condition for
the Beta distribution, we have

E[µ] =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1 + b)

Γ(a+ 1)Γ(b)
=

a

a+ b

where we have used the propertyΓ(x+1) = xΓ(x). We can find the variance in the
same way, by first showing that

E[µ2] =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

Γ(a+ 2 + b)

Γ(a+ 2)Γ(b)
µ(a+2)−1(1 − µ)b−1 dµ

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 2 + b)

Γ(a+ 2)Γ(b)
=

a

(a+ b)

a+ 1

(a+ 1 + b)
. (84)

Now we use the result (1.40), together with the result (2.15) to derive the result (2.16)
for var[µ]. Finally, we obtain the result (2.269) for the mode of the beta distribution
simply by setting the derivative of the right hand side of (2.13)with respect toµ to
zero and re-arranging.

2.7 NOTE: In PRML, the exercise text contains a typographical error. On thethird line,
“mean value ofx” should be “mean value ofµ”.

Using the result (2.15) for the mean of a Beta distribution we see that the prior mean
is a/(a + b) while the posterior mean is(a + n)/(a + b + n +m). The maximum
likelihood estimate forµ is given by the relative frequencyn/(n+m) of observations
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of x = 1. Thus the posterior mean will lie between the prior mean and themaximum
likelihood solution provided the following equation is satisfied for λ in the interval
(0, 1)

λ
a

a+ b
+ (1 − λ)

n

n+m
=

a+ n

a+ b+ n+m
.

which represents a convex combination of the prior mean and the maximum likeli-
hood estimator. This is a linear equation forλ which is easily solved by re-arranging
terms to give

λ =
1

1 + (n+m)/(a+ b)
.

Sincea > 0, b > 0, n > 0, andm > 0, it follows that the term(n+m)/(a+ b) lies
in the range(0,∞) and henceλ must lie in the range(0, 1).

2.8 To prove the result (2.270) we use the product rule of probability

Ey [Ex[x|y]] =

∫ {∫
xp(x|y) dx

}
p(y) dy

=

∫∫
xp(x, y) dxdy =

∫
xp(x) dx = Ex[x]. (85)

For the result (2.271) for the conditional variance we make use ofthe result (1.40),
as well as the relation (85), to give

Ey [varx[x|y]] + vary [Ex[x|y]] = Ey

[
Ex[x2|y] − Ex[x|y]2

]

+Ey

[
Ex[x|y]2

]
− Ey [Ex[x|y]]2

= Ex[x2] − Ex[x]2 = varx[x]

where we have made use ofEy [Ex[x2|y]] = Ex[x2] which can be proved by analogy
with (85).

2.9 When we integrate overµM−1 the lower limit of integration is0, while the upper
limit is 1 −∑M−2

j=1 µj since the remaining probabilities must sum to one (see Fig-
ure 2.4). Thus we have

pM−1(µ1, . . . , µM−2) =

∫ 1−∑M−2
j=1 µj

0

pM (µ1, . . . , µM−1) dµM−1

= CM

[
M−2∏

k=1

µαk−1
k

]∫ 1−∑M−2
j=1 µj

0

µ
αM−1−1
M−1

(
1 −

M−1∑

j=1

µj

)αM−1

dµM−1.

In order to make the limits of integration equal to0 and1 we change integration
variable fromµM−1 to t using

µM−1 = t

(
1 −

M−2∑

j=1

µj

)
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which gives

pM−1(µ1, . . . , µM−2)

= CM

[
M−2∏

k=1

µαk−1
k

](
1 −

M−2∑

j=1

µj

)αM−1+αM−1 ∫ 1

0

tαM−1−1(1 − t)αM−1 dt

= CM

[
M−2∏

k=1

µαk−1
k

](
1 −

M−2∑

j=1

µj

)αM−1+αM−1

Γ(αM−1)Γ(αM )

Γ(αM−1 + αM )
(86)

where we have used (2.265). The right hand side of (86) is seen to be anormalized
Dirichlet distribution overM−1 variables, with coefficientsα1, . . . , αM−2, αM−1+
αM , (note that we have effectively combined the final two categories) and we can
identify its normalization coefficient using (2.38). Thus

CM =
Γ(α1 + . . .+ αM )

Γ(α1) . . .Γ(αM−2)Γ(αM−1 + αM )
· Γ(αM−1 + αM )

Γ(αM−1)Γ(αM )

=
Γ(α1 + . . .+ αM )

Γ(α1) . . .Γ(αM )
(87)

as required.

2.10 Using the fact that the Dirichlet distribution (2.38) is normalized we have

∫ M∏

k=1

µαk−1
k dµ =

Γ(α1) · · ·Γ(αM )

Γ(α0)
(88)

where
∫

dµ denotes the integral over the(M − 1)-dimensional simplex defined by
0 6 µk 6 1 and

∑
k µk = 1. Now consider the expectation ofµj which can be

written

E[µj ] =
Γ(α0)

Γ(α1) · · ·Γ(αM )

∫
µj

M∏

k=1

µαk−1
k dµ

=
Γ(α0)

Γ(α1) · · ·Γ(αM )
· Γ(α1) · · ·Γ(αj + 1) · · ·Γ(αM )

Γ(α0 + 1)
=
αj

α0

where we have made use of (88), noting that the effect of the extra factor ofµj is to
increase the coefficientαj by 1, and then made use ofΓ(x+1) = xΓ(x). By similar
reasoning we have

var[µj ] = E[µ2
j ] − E[µj ]

2 =
αj(αj + 1)

α0(α0 + 1)
−
α2

j

α2
0

=
αj(α0 − αj)

α2
0(α0 + 1)

.
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Likewise, forj 6= l we have

cov[µjµl] = E[µjµl] − E[µj ]E[µl] =
αjαl

α0(α0 + 1)
− αj

α0

αl

α0

= − αjαl

α2
0(α0 + 1)

.

2.11 We first of all write the Dirichlet distribution (2.38) in the form

Dir(µ|α) = K(α)

M∏

k=1

µαk−1
k

where

K(α) =
Γ(α0)

Γ(α1) · · ·Γ(αM )
.

Next we note the following relation

∂

∂αj

M∏

k=1

µαk−1
k =

∂

∂αj

M∏

k=1

exp ((αk − 1) lnµk)

=

M∏

k=1

lnµj exp {(αk − 1) lnµk}

= lnµj

M∏

k=1

µαk−1
k

from which we obtain

E[lnµj ] = K(α)

∫ 1

0

· · ·
∫ 1

0

lnµj

M∏

k=1

µαk−1
k dµ1 . . . dµM

= K(α)
∂

∂αj

∫ 1

0

· · ·
∫ 1

0

M∏

k=1

µαk−1
k dµ1 . . . dµM

= K(α)
∂

∂µj

1

K(α)

= − ∂

∂µj
lnK(α).

Finally, using the expression forK(α), together with the definition of the digamma
functionψ(·), we have

E[lnµj ] = ψ(αj) − ψ(α0).
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2.12 The normalization of the uniform distribution is proved trivially

∫ b

a

1

b− a
dx =

b− a

b− a
= 1.

For the mean of the distribution we have

E[x] =

∫ b

a

1

b− a
xdx =

[
x2

2(b− a)

]b

a

=
b2 − a2

2(b− a)
=
a+ b

2
.

The variance can be found by first evaluating

E[x2] =

∫ b

a

1

b− a
x2 dx =

[
x3

3(b− a)

]b

a

=
b3 − a3

3(b− a)
=
a2 + ab+ b2

3

and then using (1.40) to give

var[x] = E[x2] − E[x]2 =
a2 + ab+ b2

3
− (a+ b)2

4
=

(b− a)2

12
.

2.13 Note that this solution is the multivariate version of Solution 1.30.

From (1.113) we have

KL(p‖q) = −
∫
p(x) ln q(x) dx +

∫
p(x) ln p(x) dx.

Using (2.43), (2.57), (2.59) and (2.62), we can rewrite the first integralon the r.h.s.
of () as

−
∫
p(x) ln q(x) dx

=

∫
N (x|µ,Σ2)

1

2

(
D ln(2π) + ln |L| + (x − m)TL−1(x − m)

)
dx

=
1

2

(
D ln(2π) + ln |L| + Tr[L−1(µµT + Σ)]

−µL−1m − mTL−1µ+ mTL−1m
)
. (89)

The second integral on the r.h.s. of () we recognize from (1.104) as the negative
differential entropy of a multivariate Gaussian. Thus, from (), (89) and (B.41), we
have

KL(p‖q) =
1

2

(
ln

|L|
|Σ| + Tr[L−1(µµT + Σ)]

− µTL−1m − mTL−1µ+ mTL−1m −D

)
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2.14 As for the univariate Gaussian considered in Section 1.6, we canmake use of La-
grange multipliers to enforce the constraints on the maximum entropy solution. Note
that we need a single Lagrange multiplier for the normalizationconstraint (2.280),
aD-dimensional vectorm of Lagrange multipliers for theD constraints given by
(2.281), and aD×D matrixL of Lagrange multipliers to enforce theD2 constraints
represented by (2.282). Thus we maximize

H̃[p] = −
∫
p(x) ln p(x) dx + λ

(∫
p(x) dx − 1

)

+mT

(∫
p(x)xdx − µ

)

+Tr

{
L

(∫
p(x)(x − µ)(x − µ)T dx − Σ

)}
. (90)

By functional differentiation (Appendix D) the maximum of this functional with
respect top(x) occurs when

0 = −1 − ln p(x) + λ+ mTx + Tr{L(x − µ)(x − µ)T}.

Solving forp(x) we obtain

p(x) = exp
{
λ− 1 + mTx + (x − µ)TL(x − µ)

}
. (91)

We now find the values of the Lagrange multipliers by applying the constraints. First
we complete the square inside the exponential, which becomes

λ− 1 +

(
x − µ+

1

2
L−1m

)T

L

(
x − µ+

1

2
L−1m

)
+ µTm − 1

4
mTL−1m.

We now make the change of variable

y = x − µ+
1

2
L−1m.

The constraint (2.281) then becomes
∫

exp

{
λ− 1 + yTLy + µTm − 1

4
mTL−1m

}(
y + µ− 1

2
L−1m

)
dy = µ.

In the final parentheses, the term iny vanishes by symmetry, while the term inµ
simply integrates toµ by virtue of the normalization constraint (2.280) which now
takes the form

∫
exp

{
λ− 1 + yTLy + µTm − 1

4
mTL−1m

}
dy = 1.

and hence we have

−1

2
L−1m = 0
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where again we have made use of the constraint (2.280). Thusm = 0 and so the
density becomes

p(x) = exp
{
λ− 1 + (x − µ)TL(x − µ)

}
.

Substituting this into the final constraint (2.282), and makingthe change of variable
x − µ = z we obtain

∫
exp

{
λ− 1 + zTLz

}
zzT dx = Σ.

Applying an analogous argument to that used to derive (2.64) weobtainL = − 1
2
Σ.

Finally, the value ofλ is simply that value needed to ensure that the Gaussian distri-
bution is correctly normalized, as derived in Section 2.3, and hence is given by

λ− 1 = ln

{
1

(2π)D/2

1

|Σ|1/2

}
.

2.15 From the definitions of the multivariate differential entropy (1.104) and the multi-
variate Gaussian distribution (2.43), we get

H[x] = −
∫

N (x|µ,Σ) lnN (x|µ,Σ) dx

=

∫
N (x|µ,Σ)

1

2

(
D ln(2π) + ln |Σ| + (x − µ)TΣ−1(x − µ)

)
dx

=
1

2

(
D ln(2π) + ln |Σ| + Tr

[
Σ−1Σ

])

=
1

2
(D ln(2π) + ln |Σ| +D)

2.16 We havep(x1) = N (x1|µ1, τ
−1
1 ) andp(x2) = N (x2|µ2, τ

−1
2 ). Sincex = x1 + x2

we also havep(x|x2) = N (x|µ1 + x2, τ
−1
1 ). We now evaluate the convolution

integral given by (2.284) which takes the form

p(x) =
( τ1

2π

)1/2 ( τ2
2π

)1/2
∫ ∞

−∞
exp

{
−τ1

2
(x− µ1 − x2)

2 − τ2
2

(x2 − µ2)
2
}

dx2.

(92)
Since the final result will be a Gaussian distribution forp(x) we need only evaluate
its precision, since, from (1.110), the entropy is determined by thevariance or equiv-
alently the precision, and is independent of the mean. This allows us to simplify the
calculation by ignoring such things as normalization constants.

We begin by considering the terms in the exponent of (92) which depend onx2 which
are given by

−1

2
x2

2(τ1 + τ2) + x2 {τ1(x− µ1) + τ2µ2}

= −1

2
(τ1 + τ2)

{
x2 −

τ1(x− µ1) + τ2µ2

τ1 + τ2

}2

+
{τ1(x− µ1) + τ2µ2}2

2(τ1 + τ2)
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where we have completed the square overx2. When we integrate outx2, the first
term on the right hand side will simply give rise to a constant factor independent
of x. The second term, when expanded out, will involve a term inx2. Since the
precision ofx is given directly in terms of the coefficient ofx2 in the exponent, it is
only such terms that we need to consider. There is one other term in x2 arising from
the original exponent in (92). Combining these we have

−τ1
2
x2 +

τ2
1

2(τ1 + τ2)
x2 = −1

2

τ1τ2
τ1 + τ2

x2

from which we see thatx has precisionτ1τ2/(τ1 + τ2).

We can also obtain this result for the precision directly by appealing to the general
result (2.115) for the convolution of two linear-Gaussian distributions.

The entropy ofx is then given, from (1.110), by

H[x] =
1

2
ln

{
2π(τ1 + τ2)

τ1τ2

}
.

2.17 We can use an analogous argument to that used in the solution of Exercise 1.14.
Consider a general square matrixΛ with elementsΛij . Then we can always write
Λ = ΛA + ΛS where

ΛS
ij =

Λij + Λji

2
, ΛA

ij =
Λij − Λji

2
(93)

and it is easily verified thatΛS is symmetric so thatΛS
ij = ΛS

ji, andΛA is antisym-
metric so thatΛA

ij = −ΛS
ji. The quadratic form in the exponent of aD-dimensional

multivariate Gaussian distribution can be written

1

2

D∑

i=1

D∑

j=1

(xi − µi)Λij(xj − µj) (94)

whereΛ = Σ−1 is the precision matrix. When we substituteΛ = ΛA + ΛS into
(94) we see that the term involvingΛA vanishes since for every positive term there
is an equal and opposite negative term. Thus we can always takeΛ to be symmetric.

2.18 We start by pre-multiplying both sides of (2.45) byu
†
i , the conjugate transpose of

ui. This gives us
u
†
iΣui = λiu

†
iui. (95)

Next consider the conjugate transpose of (2.45) and post-multiply it by ui, which
gives us

u
†
iΣ

†ui = λ∗i u
†
iui. (96)

whereλ∗i is the complex conjugate ofλi. We now subtract (95) from (96) and use
the fact theΣ is real and symmetric and henceΣ = Σ†, to get

0 = (λ∗i − λi)u
†
iui.
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Henceλ∗i = λi and soλi must be real.

Now consider

uT
i ujλj = uT

i Σuj

= uT
i ΣTuj

= (Σui)
T
uj

= λiu
T
i uj ,

where we have used (2.45) and the fact thatΣ is symmetric. If we assume that
0 6= λi 6= λj 6= 0, the only solution to this equation is thatuT

i uj = 0, i.e., thatui

anduj are orthogonal.

If 0 6= λi = λj 6= 0, any linear combination ofui anduj will be an eigenvector
with eigenvalueλ = λi = λj , since, from (2.45),

Σ(aui + buj) = aλiui + bλjuj

= λ(aui + buj).

Assuming thatui 6= uj , we can construct

uα = aui + buj

uβ = cui + duj

such thatuα anduβ are mutually orthogonal and of unit length. Sinceui anduj are
orthogonal touk (k 6= i, k 6= j), so areuα anduβ. Thus,uα anduβ satisfy (2.46).

Finally, if λi = 0, Σ must be singular, withui lying in the nullspace ofΣ. In this
case,ui will be orthogonal to the eigenvectors projecting onto the rowspace ofΣ
and we can chose‖ui‖ = 1, so that (2.46) is satisfied. If more than one eigenvalue
equals zero, we can chose the corresponding eigenvectors arbitrily, as long as they
remain in the nullspace ofΣ, and so we can chose them to satisfy (2.46).

2.19 We can write the r.h.s. of (2.48) in matrix form as

D∑

i=1

λiuiu
T
i = UΛUT = M,

whereU is aD ×D matrix with the eigenvectorsu1, . . . ,uD as its columns andΛ
is a diagonal matrix with the eigenvaluesλ1, . . . , λD along its diagonal.

Thus we have
UTMU = UTUΛUTU = Λ.

However, from (2.45)–(2.47), we also have that

UTΣU = UTΛU = UTUΛ = Λ,
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and soM = Σ and (2.48) holds.

Moreover, sinceU is orthonormal,U−1 = UT and so

Σ−1 =
(
UΛUT

)−1
=
(
UT
)−1

Λ−1U−1 = UΛ−1UT =

D∑

i=1

λiuiu
T
i .

2.20 Sinceu1, . . . ,uD constitute a basis forRD, we can write

a = â1u1 + â2u2 + . . .+ âDuD,

whereâ1, . . . , âD are coefficients obtained by projectinga onu1, . . . ,uD. Note that
they typically donot equal the elements ofa.

Using this we can write

aTΣa =
(
â1u

T
1 + . . .+ âDuT

D

)
Σ (â1u1 + . . .+ âDuD)

and combining this result with (2.45) we get
(
â1u

T
1 + . . .+ âDuT

D

)
(â1λ1u1 + . . .+ âDλDuD) .

Now, sinceuT
i uj = 1 only if i = j, and0 otherwise, this becomes

â2
1λ1 + . . .+ â2

DλD

and sincea is real, we see that this expression will be strictly positive forany non-
zeroa, if all eigenvalues are strictly positive. It is also clear thatif an eigenvalue,
λi, is zero or negative, there exist a vectora (e.g.a = ui), for which this expression
will be less than or equal to zero. Thus, that a matrix has eigenvectors which are all
strictly positive is a sufficient and necessary condition for the matrix to be positive
definite.

2.21 A D × D matrix hasD2 elements. If it is symmetric then the elements not on the
leading diagonal form pairs of equal value. There areD elements on the diagonal
so the number of elements not on the diagonal isD2 −D and only half of these are
independent giving

D2 −D

2
.

If we now add back theD elements on the diagonal we get

D2 −D

2
+D =

D(D + 1)

2
.

2.22 Consider a matrixM which is symmetric, so thatMT = M. The inverse matrix
M−1 satisfies

MM−1 = I.
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Taking the transpose of both sides of this equation, and usingthe relation (C.1), we
obtain (

M−1
)T

MT = IT = I

since the identity matrix is symmetric. Making use of the symmetry condition for
M we then have (

M−1
)T

M = I

and hence, from the definition of the matrix inverse,

(
M−1

)T
= M−1

and soM−1 is also a symmetric matrix.

2.23 Recall that the transformation (2.51) diagonalizes the coordinate system and that
the quadratic form (2.44), corresponding to the square of the Mahalanobis distance,
is then given by (2.50). This corresponds to a shift in the origin of the coordinate
system and a rotation so that the hyper-ellipsoidal contours along which the Maha-
lanobis distance is constant become axis aligned. The volume contained within any
one such contour is unchanged by shifts and rotations. We now make the further
transformationzi = λ

1/2
i yi for i = 1, . . . , D. The volume within the hyper-ellipsoid

then becomes

∫ D∏

i=1

dyi =

D∏

i=1

λ
1/2
i

∫ D∏

i=1

dzi = |Σ|1/2VD∆D

where we have used the property that the determinant ofΣ is given by the product
of its eigenvalues, together with the fact that in thez coordinates the volume has
become a sphere of radius∆ whose volume isVD∆D.

2.24 Multiplying the left hand side of (2.76) by the matrix (2.287) trivially gives the iden-
tity matrix. On the right hand side consider the four blocks of the resulting parti-
tioned matrix:

upper left

AM − BD−1CM = (A − BD−1C)(A − BD−1C)−1 = I

upper right

−AMBD−1 + BD−1 + BD−1CMBD−1

= −(A − BD−1C)(A − BD−1C)−1BD−1 + BD−1

= −BD−1 + BD−1 = 0

lower left
CM − DD−1CM = CM − CM = 0
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lower right

−CMBD−1 + DD−1 + DD−1CMBD−1 = DD−1 = I.

Thus the right hand side also equals the identity matrix.

2.25 We first of all take the joint distributionp(xa,xb,xc) and marginalize to obtain the
distributionp(xa,xb). Using the results of Section 2.3.2 this is again a Gaussian
distribution with mean and covariance given by

µ =

(
µa

µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
.

From Section 2.3.1 the distributionp(xa,xb) is then Gaussian with mean and co-
variance given by (2.81) and (2.82) respectively.

2.26 Multiplying the left hand side of (2.289) by(A + BCD) trivially gives the identity
matrix I. On the right hand side we obtain

(A + BCD)(A−1 − A−1B(C−1 + DA−1B)−1DA−1)

= I + BCDA−1 − B(C−1 + DA−1B)−1DA−1

−BCDA−1B(C−1 + DA−1B)−1DA−1

= I + BCDA−1 − BC(C−1 + DA−1B)(C−1 + DA−1B)−1DA−1

= I + BCDA−1 − BCDA−1 = I

2.27 Fromy = x + z we have trivially thatE[y] = E[x] + E[z]. For the covariance we
have

cov[y] = E
[
(x − E[x] + y − E[y])(x − E[x] + y − E[y])T

]

= E
[
(x − E[x])(x − E[x])T

]
+ E

[
(y − E[y])(y − E[y])T

]

+ E
[
(x − E[x])(y − E[y])T

]
︸ ︷︷ ︸

=0

+ E
[
(y − E[y])(x − E[x])T

]
︸ ︷︷ ︸

=0

= cov[x] + cov[z]

where we have used the independence ofx andz, together withE [(x − E[x])] =
E [(z − E[z])] = 0, to set the third and fourth terms in the expansion to zero. For
1-dimensional variables the covariances become variances and we obtain the result
of Exercise 1.10 as a special case.

2.28 For the marginal distributionp(x) we see from (2.92) that the mean is given by the
upper partition of (2.108) which is simplyµ. Similarly from (2.93) we see that the
covariance is given by the top left partition of (2.105) and is therefore given byΛ−1.

Now consider the conditional distributionp(y|x). Applying the result (2.81) for the
conditional mean we obtain

µy|x = Aµ+ b + AΛ−1Λ(x − µ) = Ax + b.
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Similarly applying the result (2.82) for the covariance of the conditional distribution
we have

cov[y|x] = L−1 + AΛ−1AT − AΛ−1ΛΛ−1AT = L−1

as required.

2.29 We first define
X = Λ + ATLA (97)

and
W = −LA, and thusWT = −ATLT = −ATL, (98)

sinceL is symmetric. We can use (97) and (98) to re-write (2.104) as

R =

(
X WT

W L

)

and using (2.76) we get
(

X WT

W L

)−1

=

(
M −MWTL−1

−L−1WM L−1 + L−1WMWTL−1

)

where now
M =

(
X − WTL−1W

)−1
.

SubstitutingX andW using (97) and (98), respectively, we get

M =
(
Λ + ATLA − ATLL−1LA

)−1
= Λ−1,

−MWTL−1 = Λ−1ATLL−1 = Λ−1AT

and

L−1 + L−1WMWTL−1 = L−1 + L−1LAΛ−1ATLL−1

= L−1 + AΛ−1AT,

as required.

2.30 Substituting the leftmost expression of (2.105) forR−1 in (2.107), we get
(

Λ−1 Λ−1AT

AΛ−1 S−1 + AΛ−1AT

)(
Λµ− ATSb

Sb

)

=

(
Λ−1

(
Λµ− ATSb

)
+ Λ−1ATSb

AΛ−1
(
Λµ− ATSb

)
+
(
S−1 + AΛ−1AT

)
Sb

)

=

(
µ− Λ−1ATSb + Λ−1ATSb

Aµ− AΛ−1ATSb + b + AΛ−1ATSb

)

=

(
µ

Aµ− b

)
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2.31 Sincey = x + z we can write the conditional distribution ofy givenx in the form
p(y|x) = N (y|µz + x,Σz). This gives a decomposition of the joint distribution
of x andy in the formp(x,y) = p(y|x)p(x) wherep(x) = N (x|µx,Σx). This
therefore takes the form of (2.99) and (2.100) in which we can identifyµ → µx,
Λ−1 → Σx, A → I, b → µz andL−1 → Σz. We can now obtain the marginal
distributionp(y) by making use of the result (2.115) from which we obtainp(y) =
N (y|µx +µz,Σz + Σx). Thus both the means and the covariances are additive, in
agreement with the results of Exercise 2.27.

2.32 The quadratic form in the exponential of the joint distribution is given by

−1

2
(x − µ)TΛ(x − µ) − 1

2
(y − Ax − b)TL(y − Ax − b). (99)

We now extract all of those terms involvingx and assemble them into a standard
Gaussian quadratic form by completing the square

= −1

2
xT(Λ + ATLA)x + xT

[
Λµ+ ATL(y − b)

]
+ const

= −1

2
(x − m)T(Λ + ATLA)(x − m)

+
1

2
mT(Λ + ATLA)m + const (100)

where
m = (Λ + ATLA)−1

[
Λµ+ ATL(y − b)

]
.

We can now perform the integration overx which eliminates the first term in (100).
Then we extract the terms iny from the final term in (100) and combine these with
the remaining terms from the quadratic form (99) which depend ony to give

= −1

2
yT
{
L − LA(Λ + ATLA)−1ATL

}
y

+yT
[{

L − LA(Λ + ATLA)−1ATL
}

b

+LA(Λ + ATLA)−1Λµ
]
. (101)

We can identify the precision of the marginal distributionp(y) from the second order
term iny. To find the corresponding covariance, we take the inverse of the precision
and apply the Woodbury inversion formula (2.289) to give

{
L − LA(Λ + ATLA)−1ATL

}−1
= L−1 + AΛ−1AT (102)

which corresponds to (2.110).

Next we identify the meanν of the marginal distribution. To do this we make use of
(102) in (101) and then complete the square to give

−1

2
(y − ν)T

(
L−1 + AΛ−1AT

)−1
(y − ν) + const



Solutions 2.33–2.34 45

where

ν =
(
L−1 + AΛ−1AT

) [
(L−1 + AΛ−1AT)−1b + LA(Λ + ATLA)−1Λµ

]
.

Now consider the two terms in the square brackets, the first one involving b and the
second involvingµ. The first of these contribution simply givesb, while the term in
µ can be written

=
(
L−1 + AΛ−1AT

)
LA(Λ + ATLA)−1Λµ

= A(I + Λ−1ATLA)(I + Λ−1ATLA)−1Λ−1Λµ = Aµ

where we have used the general result(BC)−1 = C−1B−1. Hence we obtain
(2.109).

2.33 To find the conditional distributionp(x|y) we start from the quadratic form (99) cor-
responding to the joint distributionp(x,y). Now, however, we treaty as a constant
and simply complete the square overx to give

−1

2
(x − µ)TΛ(x − µ) − 1

2
(y − Ax − b)TL(y − Ax − b)

= −1

2
xT(Λ + ATLA)x + xT {Λµ+ AL(y − b)} + const

= −1

2
(x − m)T(Λ + ATLA)(x − m)

where, as in the solution to Exercise 2.32, we have defined

m = (Λ + ATLA)−1
{
Λµ+ ATL(y − b)

}

from which we obtain directly the mean and covariance of the conditional distribu-
tion in the form (2.111) and (2.112).

2.34 Differentiating (2.118) with respect toΣ we obtain two terms:

−N
2

∂

∂Σ
ln |Σ| − 1

2

∂

∂Σ

N∑

n=1

(xn − µ)TΣ−1(xn − µ).

For the first term, we can apply (C.28) directly to get

−N
2

∂

∂Σ
ln |Σ| = −N

2

(
Σ−1

)T
= −N

2
Σ−1.

For the second term, we first re-write the sum

N∑

n=1

(xn − µ)TΣ−1(xn − µ) = NTr
[
Σ−1S

]
,



46 Solution 2.35

where

S =
1

N

N∑

n=1

(xn − µ)(xn − µ)T.

Using this together with (C.21), in whichx = Σij (element(i, j) in Σ), and proper-
ties of the trace we get

∂

∂Σij

N∑

n=1

(xn − µ)TΣ−1(xn − µ) = N
∂

∂Σij
Tr
[
Σ−1S

]

= NTr

[
∂

∂Σij
Σ−1S

]

= −NTr

[
Σ−1 ∂Σ

∂Σij
Σ−1S

]

= −NTr

[
∂Σ

∂Σij
Σ−1SΣ−1

]

= −N
(
Σ−1SΣ−1

)
ij

where we have used (C.26). Note that in the last step we have ignored the fact that
Σij = Σji, so that∂Σ/∂Σij has a1 in position(i, j) only and0 everywhere else.
Treating this result as valid nevertheless, we get

−1

2

∂

∂Σ

N∑

n=1

(xn − µ)TΣ−1(xn − µ) =
N

2
Σ−1SΣ−1.

Combining the derivatives of the two terms and setting the result to zero, we obtain

N

2
Σ−1 =

N

2
Σ−1SΣ−1.

Re-arrangement then yields

Σ = S

as required.

2.35 NOTE: In PRML, this exercise contains a typographical error;E [xnxm] should be
E
[
xnxT

m

]
on the l.h.s. of (2.291).

The derivation of (2.62) is detailed in the text between (2.59) (page 82) and (2.62)
(page 83).

If m = n then, using (2.62) we haveE[xnxT
n ] = µµT + Σ, whereas ifn 6= m then

the two data pointsxn andxm are independent and henceE[xnxm] = µµT where
we have used (2.59). Combining these results we obtain (2.291). From (2.59) and
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(2.62) we then have

E [ΣML] =
1

N

N∑

n=1

E

[(
xn − 1

N

N∑

m=1

xm

)(
xT

n − 1

N

N∑

l=1

xT
l

)]

=
1

N

N∑

n=1

E

[
xnxT

n − 2

N
xn

N∑

m=1

xT
m +

1

N2

N∑

m=1

N∑

l=1

xmxT
l

]

=

{
µµT + Σ − 2

(
µµT +

1

N
Σ

)
+ µµT +

1

N
Σ

}

=

(
N − 1

N

)
Σ (103)

as required.

2.36 NOTE: In the1st printing of PRML, there are mistakes that affect this solution. The
sign in (2.129) is incorrect, and this equation should read

θ(N) = θ(N−1) − aN−1z(θ
(N−1)).

Then, in order to be consistent with the assumption thatf(θ) > 0 for θ > θ? and
f(θ) < 0 for θ < θ? in Figure 2.10, we should find the root of the expectednegative
log likelihood. This lead to sign changes in (2.133) and (2.134), but in (2.135), these
are cancelled against the change of sign in (2.129), so in effect,(2.135) remains
unchanged. Also,xn should bexn on the l.h.s. of (2.133). Finally, the labelsµ and
µML in Figure 2.11 should be interchanged and there are corresponding changes to
the caption (see errata on the PRML web site for details).

Consider the expression forσ2
(N) and separate out the contribution from observation

xN to give

σ2
(N) =

1

N

N∑

n=1

(xn − µ)2

=
1

N

N−1∑

n=1

(xn − µ)2 +
(xN − µ)2

N

=
N − 1

N
σ2

(N−1) +
(xN − µ)2

N

= σ2
(N−1) −

1

N
σ2

(N−1) +
(xN − µ)2

N

= σ2
(N−1) +

1

N

{
(xN − µ)2 − σ2

(N−1)

}
. (104)

If we substitute the expression for a Gaussian distribution intothe result (2.135) for
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the Robbins-Monro procedure applied to maximizing likelihood,we obtain

σ2
(N) = σ2

(N−1) + aN−1
∂

∂σ2
(N−1)

{
−1

2
lnσ2

(N−1) −
(xN − µ)2

2σ2
(N−1)

}

= σ2
(N−1) + aN−1

{
− 1

2σ2
(N−1)

+
(xN − µ)2

2σ4
(N−1)

}

= σ2
(N−1) +

aN−1

2σ4
(N−1)

{
(xN − µ)2 − σ2

(N−1)

}
. (105)

Comparison of (105) with (104) allows us to identify

aN−1 =
2σ4

(N−1)

N
.

2.37 NOTE: In PRML, this exercise requires the additional assumption thatwe can use
the known true mean,µ, in (2.122). Furthermore, for the derivation of the Robbins-
Monro sequential estimation formula, we assume that the covariance matrix is re-
stricted to be diagonal. Starting from (2.122), we have

Σ
(N)
ML =

1

N

N∑

n=1

(xn − µ) (xn − µ)
T

=
1

N

N−1∑

n=1

(xn − µ) (xn − µ)
T

+
1

N
(xN − µ) (xN − µ)

T

=
N − 1

N
Σ

(N−1)
ML +

1

N
(xN − µ) (xN − µ)

T

= Σ
(N−1)
ML +

1

N

(
(xN − µ) (xN − µ)

T − Σ
(N−1)
ML

)
. (106)

From Solution 2.34, we know that

∂

∂Σ
(N−1)
ML

ln p(xN |µ,Σ(N−1)
ML )

=
1

2

(
Σ

(N−1)
ML

)−1 (
(xN − µ) (xN − µ)

T − Σ
(N−1)
ML

)(
Σ

(N−1)
ML

)−1

=
1

2

(
Σ

(N−1)
ML

)−2 (
(xN − µ) (xN − µ)

T − Σ
(N−1)
ML

)

where we have used the assumption thatΣ
(N−1)
ML , and hence

(
Σ

(N−1)
ML

)−1

, is diag-
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onal. If we substitute this into the multivariate form of (2.135), we get

Σ
(N)
ML = Σ

(N−1)
ML

+ AN−1
1

2

(
Σ

(N−1)
ML

)−2 (
(xN − µ) (xN − µ)

T − Σ
(N−1)
ML

)
(107)

whereAN−1 is a matrix of coefficients corresponding toaN−1 in (2.135). By com-
paring (106) with (107), we see that if we choose

AN−1 =
2

N

(
Σ

(N−1)
ML

)2

.

we recover (106). Note that if the covariance matrix was restricted further, to the
form σ2I, i.e. a spherical Gaussian, the coefficient in (107) would again become a
scalar.

2.38 The exponent in the posterior distribution of (2.140) takes theform

− 1

2σ2
0

(µ− µ0)
2 − 1

2σ2

N∑

n=1

(xn − µ)2

= −µ
2

2

(
1

σ2
0

+
N

σ2

)
+ µ

(
µ0

σ2
0

+
1

σ2

N∑

n=1

xn

)
+ const.

where ‘const.’ denotes terms independent ofµ. Following the discussion of (2.71)
we see that the variance of the posterior distribution is given by

1

σ2
N

=
N

σ2
+

1

σ2
0

.

Similarly the mean is given by

µN =

(
N

σ2
+

1

σ2
0

)−1
(
µ0

σ2
0

+
1

σ2

N∑

n=1

xn

)

=
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML. (108)

(109)

2.39 From (2.142), we see directly that

1

σ2
N

=
1

σ2
0

+
N

σ2
=

1

σ2
0

+
N − 1

σ2
+

1

σ2
=

1

σ2
N−1

+
1

σ2
. (110)

We also note for later use, that

1

σ2
N

=
σ2 +Nσ2

0

σ2
0σ

2
=
σ2 + σ2

N−1

σ2
N−1σ

2
(111)
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and similarly
1

σ2
N−1

=
σ2 + (N − 1)σ2

0

σ2
0σ

2
. (112)

Using (2.143), we can rewrite (2.141) as

µN =
σ2

Nσ2
0 + σ2

µ0 +
σ2

0

∑N
n=1 xn

Nσ2
0 + σ2

=
σ2µ0 + σ2

0

∑N−1

n=1 xn

Nσ2
0 + σ2

+
σ2

0xN

Nσ2
0 + σ2

.

Using (2.141), (111) and (112), we can rewrite the first term of this expression as

σ2
N

σ2
N−1

σ2µ0 + σ2
0

∑N−1

n=1 xn

(N − 1)σ2
0 + σ2

=
σ2

N

σ2
N−1

µN−1.

Similarly, using (111), the second term can be rewritten as

σ2
N

σ2
xN

and so

µN =
σ2

N

σ2
N−1

µN−1 +
σ2

N

σ2
xN . (113)

Now consider

p(µ|µN , σ
2
N ) = p(µ|µN−1, σ

2
N−1)p(xN |µ, σ2)

= N (µ|µN−1, σ
2
N−1)N (xN |µ, σ2)

∝ exp

{
−1

2

(
µ2

N−1 − 2µµN−1 + µ2

σ2
N−1

+
x2

N − 2xNµ+ µ2

σ2

)}

= exp

{
−1

2

(
σ2(µ2

N−1 − 2µµN−1 + µ2)

σ2
N−1σ

2

+
σ2

N−1(x
2
N − 2xNµ+ µ2)

σ2
N−1σ

2

)}

= exp

{
−1

2

(σ2
N−1 + σ2)µ2 − 2(σ2µN−1 + σ2

N−1xN )µ

σ2
N−1σ

2

}
+ C,

whereC accounts for all the remaining terms that are independent ofµ. From this,
we can directly read off

1

σ2
N

=
σ2 + σ2

N−1

σ2
N−1σ

2
=

1

σ2
N−1

+
1

σ2
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and

µN =
σ2µN−1 + σ2

N−1xN

σ2
N−1 + σ2

=
σ2

σ2
N−1 + σ2

µN−1 +
σ2

N−1

σ2
N−1 + σ2

xN

=
σ2

N

σ2
N−1

µN−1 +
σ2

N

σ2
xN

and so we have recovered (110) and (113).

2.40 The posterior distribution is proportional to the product of the prior and the likelihood
function

p(µ|X) ∝ p(µ)

N∏

n=1

p(xn|µ,Σ).

Thus the posterior is proportional to an exponential of a quadratic form in µ given
by

−1

2
(µ− µ0)

TΣ−1
0 (µ− µ0) −

1

2

N∑

n=1

(xn − µ)TΣ−1(xn − µ)

= −1

2
µT
(
Σ−1

0 +NΣ−1
)
µ+ µT

(
Σ−1

0 µ0 + Σ−1

N∑

n=1

xn

)
+ const

where ‘const.’ denotes terms independent ofµ. Using the discussion following
(2.71) we see that the mean and covariance of the posterior distribution are given by

µN =
(
Σ−1

0 +NΣ−1
)−1 (

Σ−1
0 µ0 + Σ−1NµML

)
(114)

Σ−1
N = Σ−1

0 +NΣ−1 (115)

whereµML is the maximum likelihood solution for the mean given by

µML =
1

N

N∑

n=1

xn.

2.41 If we consider the integral of the Gamma distribution overτ and make the change of
variablebτ = u we have

∫ ∞

0

Gam(τ |a, b) dτ =
1

Γ(a)

∫ ∞

0

baτa−1 exp(−bτ) dτ

=
1

Γ(a)

∫ ∞

0

baua−1 exp(−u)b1−ab−1 du

= 1

where we have used the definition (1.141) of the Gamma function.
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2.42 We can use the same change of variable as in the previous exerciseto evaluate the
mean of the Gamma distribution

E[τ ] =
1

Γ(a)

∫ ∞

0

baτa−1τ exp(−bτ) dτ

=
1

Γ(a)

∫ ∞

0

baua exp(−u)b−ab−1 du

=
Γ(a+ 1)

bΓ(a)
=
a

b

where we have used the recurrence relationΓ(a + 1) = aΓ(a) for the Gamma
function. Similarly we can find the variance by first evaluating

E[τ2] =
1

Γ(a)

∫ ∞

0

baτa−1τ2 exp(−bτ) dτ

=
1

Γ(a)

∫ ∞

0

baua+1 exp(−u)b−a−1b−1 du

=
Γ(a+ 2)

b2Γ(a)
=

(a+ 1)Γ(a+ 1)

b2Γ(a)
=
a(a+ 1)

b2

and then using

var[τ ] = E[τ2] − E[τ ]2 =
a(a+ 1)

b2
− a2

b2
=

a

b2
.

Finally, the mode of the Gamma distribution is obtained simply by differentiation

d

dτ

{
τa−1 exp(−bτ)

}
=

[
a− 1

τ
− b

]
τa−1 exp(−bτ) = 0

from which we obtain

mode[τ ] =
a− 1

b
.

Notice that the mode only exists ifa > 1, sinceτ must be a non-negative quantity.
This is also apparent in the plot of Figure 2.13.

2.43 To prove the normalization of the distribution (2.293) considerthe integral

I =

∫ ∞

−∞
exp

(
−|x|q

2σ2

)
dx = 2

∫ ∞

0

exp

(
− xq

2σ2

)
dx

and make the change of variable

u =
xq

2σ2
.
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Using the definition (1.141) of the Gamma function, this gives

I = 2

∫ ∞

0

2σ2

q
(2σ2u)(1−q)/q exp(−u) du =

2(2σ2)1/qΓ(1/q)

q

from which the normalization of (2.293) follows.

For the given noise distribution, the conditional distribution of the target variable
given the input variable is

p(t|x,w, σ2) =
q

2(2σ2)1/qΓ(1/q)
exp

(
−|t− y(x,w)|q

2σ2

)
.

The likelihood function is obtained by taking products of factors of this form, over
all pairs{xn, tn}. Taking the logarithm, and discarding additive constants, weobtain
the desired result.

2.44 From Bayes’ theorem we have

p(µ, λ|X) ∝ p(X|µ, λ)p(µ, λ),

where the factors on the r.h.s. are given by (2.152) and (2.154), respectively. Writing
this out in full, we get

p(µ, λ) ∝
[
λ1/2 exp

(
−λµ

2

2

)]N

exp

{
λµ

N∑

n=1

xn − λ

2

N∑

n=1

x2
n

}

(βλ)1/2 exp

[
−βλ

2

(
µ2 − 2µµ0 + µ2

0

)]
λa−1 exp (−bλ) ,

where we have used the defintions of the Gaussian and Gamma distributions and we
have ommitted terms independent ofµ andλ. We can rearrange this to obtain

λN/2λa−1 exp

{
−
(
b+

1

2

N∑

n=1

x2
n +

β

2
µ2

0

)
λ

}

(λ(N + β))
1/2

exp

[
−λ(N + β)

2

(
µ2 − 2

N + β

{
βµ0 +

N∑

n=1

xn

}
µ

)]

and by completing the square in the argument of the second exponential,

λN/2λa−1 exp




−


b+

1

2

N∑

n=1

x2
n +

β

2
µ2

0 −

(
βµ0 +

∑N
n=1 xn

)2

2(N + β)


λ





(λ(N + β))
1/2

exp

[
−λ(N + β)

2

(
µ− βµ0 +

∑N
n=1 xn

N + β

)]
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we arrive at an (unnormalised) Gaussian-Gamma distribution,

N
(
µ|µN , ((N + β)λ)

−1)
Gam (λ|aN , bN ) ,

with parameters

µN =
βµ0 +

∑N
n=1 xn

N + β

aN = a+
N

2

bN = b+
1

2

N∑

n=1

x2
n +

β

2
µ2

0 −
N + β

2
µ2

N .

2.45 We do this, as in the univariate case, by considering the likelihood function ofΛ for
a given data set{x1, . . . ,xN}:

N∏

n=1

N (xn|µ,Λ−1) ∝ |Λ|N/2 exp

(
−1

2

N∑

n=1

(xn − µ)TΛ(xn − µ)

)

= |Λ|N/2 exp

(
−1

2
Tr [ΛS]

)
,

whereS =
∑

n(xn − µ)(xn − µ)T. By simply comparing with (2.155), we see
that the functional dependence onΛ is indeed the same and thus a product of this
likelihood and a Wishart prior will result in a Wishart posterior.

2.46 From (2.158), we have

∫ ∞

0

bae(−bτ)τa−1

Γ(a)

( τ
2π

)1/2

exp
{
−τ

2
(x− µ)2

}
dτ

=
ba

Γ(a)

(
1

2π

)1/2 ∫ ∞

0

τa−1/2 exp

{
−τ
(
b+

(x− µ)2

2

)}
dτ .

We now make the proposed change of variablez = τ∆, where∆ = b+(x−µ)2/2,
yielding

ba

Γ(a)

(
1

2π

)1/2

∆−a−1/2

∫ ∞

0

za−1/2 exp(−z) dz

=
ba

Γ(a)

(
1

2π

)1/2

∆−a−1/2Γ(a+ 1/2)
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where we have used the definition of the Gamma function (1.141). Finally, we sub-
stituteb+ (x− µ)2/2 for ∆, ν/2 for a andν/2λ for b:

Γ(−a+ 1/2)

Γ(a)
ba
(

1

2π

)1/2

∆a−1/2

=
Γ ((ν + 1)/2)

Γ(ν/2)

( ν
2λ

)ν/2
(

1

2π

)1/2(
ν

2λ
+

(x− µ)2

2

)−(ν+1)/2

=
Γ ((ν + 1)/2)

Γ(ν/2)

( ν
2λ

)ν/2
(

1

2π

)1/2 ( ν
2λ

)−(ν+1)/2
(

1 +
λ(x− µ)2

ν

)−(ν+1)/2

=
Γ ((ν + 1)/2)

Γ(ν/2)

(
λ

νπ

)1/2(
1 +

λ(x− µ)2

ν

)−(ν+1)/2

2.47 Ignoring the normalization constant, we write (2.159) as

St(x|µ, λ, ν) ∝
[
1 +

λ(x− µ)2

ν

]−(ν−1)/2

= exp

(
−ν − 1

2
ln

[
1 +

λ(x− µ)2

ν

])
. (116)

For largeν, we make use of the Taylor expansion for the logarithm in the form

ln(1 + ε) = ε+O(ε2) (117)

to re-write (116) as

exp

(
−ν − 1

2
ln

[
1 +

λ(x− µ)2

ν

])

= exp

(
−ν − 1

2

[
λ(x− µ)2

ν
+O(ν−2)

])

= exp

(
−λ(x− µ)2

2
+O(ν−1)

)
.

We see that in the limitν → ∞ this becomes, up to an overall constant, the same as
a Gaussian distribution with meanµ and precisionλ. Since the Student distribution
is normalized to unity for all values ofν it follows that it must remain normalized in
this limit. The normalization coefficient is given by the standard expression (2.42)
for a univariate Gaussian.
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2.48 Substituting expressions for the Gaussian and Gamma distributions into (2.161), we
have

St(x|µ,Λ, ν) =

∫ ∞

0

N
(
x|µ, (ηΛ)

−1)
Gam(η|ν/2, ν/2) dη

=
(ν/2)ν/2

Γ(ν/2)

|Λ|1/2

(2π)D/2

∫ ∞

0

ηD/2ην/2−1e−νη/2e−η∆2/2 dη.

Now we make the change of variable

τ = η

[
ν

2
+

1

2
∆2

]−1

which gives

St(x|µ,Λ, ν) =
(ν/2)ν/2

Γ(ν/2)

|Λ|1/2

(2π)D/2

[
ν

2
+

1

2
∆2

]−D/2−ν/2

∫ ∞

0

τD/2+ν/2−1e−τ dτ

=
Γ(ν/2 + d/2)

Γ(ν/2)

|Λ|1/2

(πν)D/2

[
1 +

∆2

ν

]−D/2−ν/2

as required.

The correct normalization of the multivariate Student’s t-distribution follows directly
from the fact that the Gaussian and Gamma distributions are normalized. From
(2.161) we have
∫

St (x|µ,Λ, ν) dx =

∫∫
N
(
x|µ, (ηΛ)−1

)
Gam (η|ν/2, ν/2) dη dx

=

∫∫
N
(
x|µ, (ηΛ)−1

)
dx Gam (η|ν/2, ν/2) dη

=

∫
Gam (η|ν/2, ν/2) dη = 1.

2.49 If we make the change of variablez = x − µ, we can write

E[x] =

∫
St(x|µ,Λ, ν)xdx =

∫
St(z|0,Λ, ν)(z + µ) dz.

In the factor(z + µ) the first term vanishes as a consequence of the fact that the
zero-mean Student distribution is an even function ofz that isSt(−z|0,Λ, ν) =
St(−z|0,Λ, ν). This leaves the second term, which equalsµ since the Student dis-
tribution is normalized.
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The covariance of the multivariate Student can be re-expressed byusing the expres-
sion for the multivariate Student distribution as a convolution of a Gaussian with a
Gamma distribution given by (2.161) which gives

cov[x] =

∫
St(x|µ,Λ, ν)(x − µ)(x − µ)T dx

=

∫ ∞

0

∫
N (x|µ, ηΛ)(x − µ)(x − µ)T dx Gam(η|ν/2, ν/2) dη

=

∫ ∞

0

η−1Λ−1Gam(η|ν/2, ν/2) dη

where we have used the standard result for the covariance of a multivariate Gaussian.
We now substitute for the Gamma distribution using (2.146) to give

cov[x] =
1

Γ(ν/2)

(ν
2

)ν/2
∫ ∞

0

e−νη/2ην/2−2 dηΛ−1

=
ν

2

Γ(ν/2 − 2)

Γ(ν/2)
Λ−1

=
ν

ν − 2
Λ−1

where we have used the integral representation for the Gamma function, together
with the standard resultΓ(1 + x) = xΓ(x).

The mode of the Student distribution is obtained by differentiation

∇xSt(x|µ,Λ, ν) =
Γ(ν/2 +D/2)

Γ(ν/2)

|Λ|1/2

(πν)D/2

[
1 +

∆2

ν

]−D/2−ν/2−1
1

ν
Λ(x − µ).

ProvidedΛ is non-singular we therefore obtain

mode[x] = µ.

2.50 Just like in univariate case (Exercise 2.47), we ignore the normalization coefficient,
which leaves us with

[
1 +

∆2

ν

]−ν/2−D/2

= exp

{
−
(
ν

2
+
D

2

)
ln

[
1 +

∆2

ν

]}

where∆2 is the squared Mahalanobis distance given by

∆2 = (x − µ)TΛ(x − µ).

Again we make use of (117) to give

exp

{
−
(
ν

2
+
D

2

)
ln

[
1 +

∆2

ν

]}
= exp

{
−∆2

2
+O(1/ν)

}
.

As in the univariate case, in the limitν → ∞ this becomes, up to an overall constant,
the same as a Gaussian distribution, here with meanµ and precisionΛ; the univariate
normalization argument also applies in the multivariate case.
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2.51 Using the relation (2.296) we have

1 = exp(iA) exp(−iA) = (cosA+ i sinA)(cosA− i sinA) = cos2A+ sin2A.

Similarly, we have

cos(A−B) = < exp{i(A−B)}
= < exp(iA) exp(−iB)

= <(cosA+ i sinA)(cosB − i sinB)

= cosA cosB + sinA sinB.

Finally

sin(A−B) = = exp{i(A−B)}
= = exp(iA) exp(−iB)

= =(cosA+ i sinA)(cosB − i sinB)

= sinA cosB − cosA sinB.

2.52 Expressed in terms ofξ the von Mises distribution becomes

p(ξ) ∝ exp
{
m cos(m−1/2ξ)

}
.

For largem we havecos(m−1/2ξ) = 1 −m−1ξ2/2 +O(m−2) and so

p(ξ) ∝ exp
{
−ξ2/2

}

and hencep(θ) ∝ exp{−m(θ − θ0)
2/2}.

2.53 Using (2.183), we can write (2.182) as

N∑

n=1

(cos θ0 sin θn − cos θn sin θ0) = cos θ0

N∑

n=1

sin θn − sin

N∑

n=1

cos θn = 0.

Rearranging this, we get
∑

n sin θn∑
n cos θn

=
sin θ0
cos θ0

= tan θ0,

which we can solve w.r.t.θ0 to obtain (2.184).

2.54 Differentiating the von Mises distribution (2.179) we have

p′(θ) = − 1

2πI0(m)
exp {m cos(θ − θ0)} sin(θ − θ0)

which vanishes whenθ = θ0 or whenθ = θ0 + π (mod2π). Differentiating again
we have

p′′(θ) = − 1

2πI0(m)
exp {m cos(θ − θ0)}

[
sin2(θ − θ0) + cos(θ − θ0)

]
.
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SinceI0(m) > 0 we see thatp′′(θ) < 0 whenθ = θ0, which therefore represents
a maximum of the density, whilep′′(θ) > 0 whenθ = θ0 + π (mod2π), which is
therefore a minimum.

2.55 NOTE: In the 1st printing of PRML, equation (2.187), which will be the starting
point for this solution, contains a typo. The “−” on the r.h.s. should be a “+”, as is
easily seen from (2.178) and (2.185).

From (2.169) and (2.184), we see thatθ̄ = θML
0 . Using this together with (2.168)

and (2.177), we can rewrite (2.187) as follows:

A(mML) =

(
1

N

N∑

n=1

cos θn

)
cos θML

0 +

(
1

N

N∑

n=1

sin θn

)
sin θML

0

= r̄ cos θ̄ cos θML
0 + r̄ sin θ̄ sin θML

0

= r̄
(
cos2 θML

0 + sin2 θML
0

)

= r̄.

2.56 We can most conveniently cast distributions into standard exponential family form by
taking the exponential of the logarithm of the distribution. For the Beta distribution
(2.13) we have

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
exp {(a− 1) lnµ+ (b− 1) ln(1 − µ)}

which we can identify as being in standard exponential form (2.194) with

h(µ) = 1 (118)

g(a, b) =
Γ(a+ b)

Γ(a)Γ(b)
(119)

u(µ) =

(
lnµ

ln(1 − µ)

)
(120)

η(a, b) =

(
a− 1
b− 1

)
. (121)

Applying the same approach to the gamma distribution (2.146) weobtain

Gam(λ|a, b) =
ba

Γ(a)
exp {(a− 1) lnλ− bλ} .
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from which it follows that

h(λ) = 1 (122)

g(a, b) =
ba

Γ(a)
(123)

u(λ) =

(
λ

lnλ

)
(124)

η(a, b) =

(
−b
a− 1

)
. (125)

Finally, for the von Mises distribution (2.179) we make use of the identity (2.178) to
give

p(θ|θ0,m) =
1

2πI0(m)
exp {m cos θ cos θ0 +m sin θ sin θ0}

from which we find

h(θ) = 1 (126)

g(θ0,m) =
1

2πI0(m)
(127)

u(θ) =

(
cos θ
sin θ

)
(128)

η(θ0,m) =

(
m cos θ0
m sin θ0

)
. (129)

2.57 Starting from (2.43), we can rewrite the argument of the exponentialas

−1

2
Tr
[
Σ−1xxT

]
+ µTΣ−1x − 1

2
µTΣ−1µ.

The last term is indepedent ofx but depends onµ andΣ and so should go intog(η).
The second term is already an inner product and can be kept as is. To deal with
the first term, we define theD2-dimensional vectorsz andλ, which consist of the
columns ofxxT andΣ−1, respectively, stacked on top of each other. Now we can
write the multivariate Gaussian distribution on the form (2.194), with

η =

[
Σ−1µ

− 1
2
λ

]

u(x) =

[
x

z

]

h(x) = (2π)−D/2

g(η) = |Σ|−1/2 exp

(
−1

2
µTΣ−1µ

)
.



Solutions 2.58–2.60 61

2.58 Taking the first derivative of (2.226) we obtain, as in the text,

−∇ ln g(η) = g(η)

∫
h(x) exp

{
ηTu(x)

}
u(x) dx

Taking the gradient again gives

−∇∇ ln g(η) = g(η)

∫
h(x) exp

{
ηTu(x)

}
u(x)u(x)T dx

+∇g(η)

∫
h(x) exp

{
ηTu(x)

}
u(x) dx

= E[u(x)u(x)T] − E[u(x)]E[u(x)T]

= cov[u(x)]

where we have used the result (2.226).

2.59
∫

1

σ
f
(x
σ

)
dx =

1

σ

∫
f(y)

dx

dy
dy

=
1

σ

∫
f(y)σ dy

=
σ

σ

∫
f(y) dy = 1,

sincef(x) integrates to1.

2.60 The value of the densityp(x) at a pointxn is given byhj(n), where the notationj(n)
denotes that data pointxn falls within regionj. Thus the log likelihood function
takes the form

N∑

n=1

ln p(xn) =

N∑

n=1

lnhj(n).

We now need to take account of the constraint thatp(x) must integrate to unity. Since
p(x) has the constant valuehi over regioni, which has volume∆i, the normalization
constraint becomes

∑
i hi∆i = 1. Introducing a Lagrange multiplierλ we then

minimize the function

N∑

n=1

lnhj(n) + λ

(
∑

i

hi∆i − 1

)

with respect tohk to give

0 =
nk

hk
+ λ∆k

wherenk denotes the total number of data points falling within regionk. Multiplying
both sides byhk, summing overk and making use of the normalization constraint,
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we obtainλ = −N . Eliminatingλ then gives our final result for the maximum
likelihood solution forhk in the form

hk =
nk

N

1

∆k
.

Note that, for equal sized bins∆k = ∆ we obtain a bin heighthk which is propor-
tional to the fraction of points falling within that bin, as expected.

2.61 From (2.246) we have

p(x) =
K

NV (ρ)

whereV (ρ) is the volume of aD-dimensional hypersphere with radiusρ, where in
turn ρ is the distance fromx to itsKth nearest neighbour in the data set. Thus, in
polar coordinates, if we consider sufficiently large values for the radial coordinater,
we have

p(x) ∝ r−D.

If we consider the integral ofp(x) and note that the volume elementdx can be
written asrD−1 dr, we get

∫
p(x) dx ∝

∫
r−DrD−1 dr =

∫
r−1 dr

which diverges logarithmically.

Chapter 3 Linear Models for Regression

3.1 NOTE: In the1st printing of PRML, there is a2 missing in the denominator of the
argument to the ‘tanh’ function in equation (3.102).

Using (3.6), we have

2σ(2a) − 1 =
2

1 + e−2a
− 1

=
2

1 + e−2a
− 1 + e−2a

1 + e−2a

=
1 − e−2a

1 + e−2a

=
ea − e−a

ea + e−a

= tanh(a)
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If we now takeaj = (x− µj)/2s, we can rewrite (3.101) as

y(x,w) = w0 +

M∑

j=1

wjσ(2aj)

= w0 +

M∑

j=1

wj

2
(2σ(2aj) − 1 + 1)

= u0 +

M∑

j=1

uj tanh(aj),

whereuj = wj/2, for j = 1, . . . ,M , andu0 = w0 +
∑M

j=1wj/2.

3.2 We first write

Φ(ΦTΦ)−1ΦTv = Φṽ

= ϕ1ṽ
(1) +ϕ2ṽ

(2) + . . .+ϕM ṽ(M)

whereϕm is them-th column ofΦ and ṽ = (ΦTΦ)−1ΦTv. By comparing this
with the least squares solution in (3.15), we see that

y = ΦwML = Φ(ΦTΦ)−1ΦTt

corresponds to a projection oft onto the space spanned by the columns ofΦ. To see
that this is indeed an orthogonal projection, we first note that for any column ofΦ,
ϕj ,

Φ(ΦTΦ)−1ΦTϕj =
[
Φ(ΦTΦ)−1ΦTΦ

]
j

= ϕj

and therefore

(y − t)Tϕj = (ΦwML − t)Tϕj = tT
(
Φ(ΦTΦ)−1ΦT − I

)T
ϕj = 0

and thus(y − t) is ortogonal to every column ofΦ and hence is orthogonal toS.

3.3 If we defineR = diag(r1, . . . , rN ) to be a diagonal matrix containing the weighting
coefficients, then we can write the weighted sum-of-squares cost function in the form

ED(w) =
1

2
(t − Φw)TR(t − Φw).

Setting the derivative with respect tow to zero, and re-arranging, then gives

w? =
(
ΦTRΦ

)−1
ΦTRt

which reduces to the standard solution (3.15) for the caseR = I.

If we compare (3.104) with (3.10)–(3.12), we see thatrn can be regarded as a pre-
cision (inverse variance) parameter, particular to the data point (xn, tn), that either
replaces or scalesβ.
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Alternatively,rn can be regarded as aneffective number of replicated observations
of data point(xn, tn); this becomes particularly clear if we consider (3.104) withrn
taking positive integer values, although it is valid for anyrn > 0.

3.4 Let

ỹn = w0 +

D∑

i=1

wi(xni + εni)

= yn +

D∑

i=1

wiεni

whereyn = y(xn,w) andεni ∼ N (0, σ2) and we have used (3.105). From (3.106)
we then define

Ẽ =
1

2

N∑

n=1

{ỹn − tn}2

=
1

2

N∑

n=1

{
ỹ2

n − 2ỹntn + t2n
}

=
1

2

N∑

n=1



y

2
n + 2yn

D∑

i=1

wiεni +

(
D∑

i=1

wiεni

)2

−2tnyn − 2tn

D∑

i=1

wiεni + t2n



 .

If we take the expectation of̃E under the distribution ofεni, we see that the second
and fifth terms disappear, sinceE[εni] = 0, while for the third term we get

E



(

D∑

i=1

wiεni

)2

 =

D∑

i=1

w2
i σ

2

since theεni are all independent with varianceσ2.

From this and (3.106) we see that

E

[
Ẽ
]

= ED +
1

2

D∑

i=1

w2
i σ

2,

as required.
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3.5 We can rewrite (3.30) as

1

2

(
M∑

j=1

|wj |q − η

)
6 0

where we have incorporated the1/2 scaling factor for convenience. Clearly this does
not affect the constraint.

Employing the technique described in Appendix E, we can combine this with (3.12)
to obtain the Lagrangian function

L(w, λ) =
1

2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

(
M∑

j=1

|wj |q − η

)

and by comparing this with (3.29) we see immediately that they are identical in their
dependence onw.

Now suppose we choose a specific value ofλ > 0 and minimize (3.29). Denoting
the resulting value ofw by w?(λ), and using the KKT condition (E.11), we see that
the value ofη is given by

η =

M∑

j=1

|w?
j (λ)|q.

3.6 We first write down the log likelihood function which is given by

lnL(W,Σ) = −N
2

ln |Σ| − 1

2

N∑

n=1

(tn − WTφ(xn))TΣ−1(tn − WTφ(xn)).

First of all we set the derivative with respect toW equal to zero, giving

0 = −
N∑

n=1

Σ−1(tn − WTφ(xn))φ(xn)T.

Multiplying through byΣ and introducing the design matrixΦ and the target data
matrixT we have

ΦTΦW = ΦTT

Solving forW then gives (3.15) as required.

The maximum likelihood solution forΣ is easily found by appealing to the standard
result from Chapter 2 giving

Σ =
1

N

N∑

n=1

(tn − WT
MLφ(xn))(tn − WT

MLφ(xn))T.

as required. Since we are finding a joint maximum with respect to both W andΣ

we see that it isWML which appears in this expression, as in the standard result for
an unconditional Gaussian distribution.
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3.7 From Bayes’ theorem we have

p(w|t) ∝ p(t|w)p(w),

where the factors on the r.h.s. are given by (3.10) and (3.48), respectively. Writing
this out in full, we get

p(w|t) ∝
[

N∏

n=1

N
(
tn|wTφ(xn), β−1

)
]
N (w|m0,S0)

∝ exp

(
−β

2
(t − Φw)T(t − Φw)

)

exp

(
−1

2
(w − m0)

TS−1
0 (w − m0)

)

= exp

(
−1

2

(
wT
(
S−1

0 + βΦTΦ
)
w − βtTΦw − βwTΦTt + βtTt

mT
0 S−1

0 w − wTS−1
0 m0 + mT

0 S−1
0 m0

))

= exp

(
−1

2

(
wT
(
S−1

0 + βΦTΦ
)
w −

(
S−1

0 m0 + βΦTt
)T

w

−wT
(
S−1

0 m0 + βΦTt
)

+ βtTt + mT
0 S−1

0 m0

))

= exp

(
−1

2
(w − mN )

T
S−1

N (w − mN )

)

exp

(
−1

2

(
βtTt + mT

0 S−1
0 m0 − mT

NS−1
N mN

))

where we have used (3.50) and (3.51) when completing the square inthe last step.
The first exponential corrsponds to the posterior, unnormalized Gaussian distribution
overw, while the second exponential is independent ofw and hence can be absorbed
into the normalization factor.

3.8 Combining the prior
p(w) = N (w|mN ,SN )

and the likelihood

p(tN+1|xN+1,w) =

(
β

2π

)1/2

exp

(
−β

2
(tN+1 − wTφN+1)

2

)
(130)

whereφN+1 = φ(xN+1), we obtain a posterior of the form

p(w|tN+1,xN+1,mN ,SN )

∝ exp

(
−1

2
(w − mN )TS−1

N (w − mN ) − 1

2
β(tN+1 − wTφN+1)

2

)
.
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We can expand the argument of the exponential, omitting the−1/2 factors, as fol-
lows

(w − mN )TS−1
N (w − mN ) + β(tN+1 − wTφN+1)

2

= wTS−1
N w − 2wTS−1

N mN

+ βwTφT
N+1φN+1w − 2βwTφN+1tN+1 + const

= wT(S−1
N + βφN+1φ

T
N+1)w − 2wT(S−1

N mN + βφN+1tN+1) + const,

whereconst denotes remaining terms independent ofw. From this we can read off
the desired result directly,

p(w|tN+1,xN+1,mN ,SN ) = N (w|mN+1,SN+1),

with
S−1

N+1 = S−1
N + βφN+1φ

T
N+1. (131)

and
mN+1 = SN+1(S

−1
N mN + βφN+1tN+1). (132)

3.9 Identifying (2.113) with (3.49) and (2.114) with (130), such that

x ⇒ w µ⇒ mN Λ−1 ⇒ SN

y ⇒ tN+1 A ⇒ φ(xN+1)
T = φT

N+1 b ⇒ 0 L−1 ⇒ βI,

(2.116) and (2.117) directly give

p(w|tN+1,xN+1) = N (w|mN+1,SN+1)

whereSN+1 andmN+1 are given by (131) and (132), respectively.

3.10 Using (3.3), (3.8) and (3.49), we can re-write (3.57) as

p(t|x, t, α, β) =

∫
N (t|φ(x)Tw, β−1)N (w|mN ,SN ) dw.

By matching the first factor of the integrand with (2.114) and thesecond factor with
(2.113), we obtain the desired result directly from (2.115).

3.11 From (3.59) we have

σ2
N+1(x) =

1

β
+ φ(x)TSN+1φ(x) (133)

whereSN+1 is given by (131). From (131) and (3.110) we get

SN+1 =
(
S−1

N + βφN+1φ
T
N+1

)−1

= SN −
(
SNφN+1β

1/2
) (
β1/2φT

N+1SN

)

1 + βφT
N+1SNφN+1

= SN − βSNφN+1φ
T
N+1SN

1 + βφT
N+1SNφN+1

.
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Using this and (3.59), we can rewrite (133) as

σ2
N+1(x) =

1

β
+ φ(x)T

(
SN − βSNφN+1φ

T
N+1SN

1 + βφT
N+1SNφN+1

)
φ(x)

= σ2
N (x) − βφ(x)TSNφN+1φ

T
N+1SNφ(x)

1 + βφT
N+1SNφN+1

. (134)

SinceSN is positive definite, the numerator and denominator of the second term in
(134) will be non-negative and positive, respectively, and henceσ2

N+1(x) 6 σ2
N (x).

3.12 It is easiest to work in log space. The log of the posterior distribution is given by

ln p(w, β|t) = ln p(w, β) +

N∑

n=1

ln p(tn|wTφ(xn), β−1)

=
M

2
lnβ − 1

2
ln |S0| −

β

2
(w − m0)

TS−1
0 (w − m0)

−b0β + (a0 − 1) lnβ

+
N

2
lnβ − β

2

N∑

n=1

{wTφ(xn) − tn}2 + const.

Using the product rule, the posterior distribution can be writtenas p(w, β|t) =
p(w|β, t)p(β|t). Consider first the dependence onw. We have

ln p(w|β, t) = −β
2
wT
[
ΦTΦ + S−1

0

]
w + wT

[
βS−1

0 m0 + βΦTt
]
+ const.

Thus we see thatp(w|β, t) is a Gaussian distribution with mean and covariance given
by

mN = SN

[
S−1

0 m0 + ΦTt
]

(135)

βS−1
N = β

(
S−1

0 + ΦTΦ
)
. (136)

To find p(β|t) we first need to complete the square overw to ensure that we pick
up all terms involvingβ (any terms independent ofβ may be discarded since these
will be absorbed into the normalization coefficient which itself will be found by
inspection at the end). We also need to remember that a factor of(M/2) lnβ will be
absorbed by the normalisation factor ofp(w|β, t). Thus

ln p(β|t) = −β
2
mT

0 S−1
0 m0 +

β

2
mT

NS−1
N mN

+
N

2
lnβ − b0β + (a0 − 1) lnβ − β

2

N∑

n=1

t2n + const.
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We recognize this as the log of a Gamma distribution. Reading off the coefficients
of β andlnβ we then have

aN = a0 +
N

2
(137)

bN = b0 +
1

2

(
mT

0 S−1
0 m0 − mT

NS−1
N mN +

N∑

n=1

t2n

)
. (138)

3.13 Following the line of presentation from Section 3.3.2, the predictive distribution is
now given by

p(t|x, t) =

∫∫
N
(
t|φ(x)Tw, β−1

)
N
(
w|mN , β

−1SN

)
dw

Gam (β|aN , bN ) dβ (139)

We begin by performing the integral overw. Identifying (2.113) with (3.49) and
(2.114) with (3.8), using (3.3), such that

x ⇒ w µ⇒ mN Λ−1 ⇒ SN

y ⇒ t A ⇒ φ(x)T = φT b ⇒ 0 L−1 ⇒ β−1,

(2.115) and (136) give

p(t|β) = N
(
t|φTmN , β

−1 + φTSNφ
)

= N
(
t|φTmN , β

−1
(
1 + φT(S0 + φTφ)−1φ

))
.

Substituting this back into (139) we get

p(t|x,X, t) =

∫
N
(
t|φTmN , β

−1s
)
Gam (β|aN , bN ) dβ,

where we have defined

s = 1 + φT(S0 + φTφ)−1φ.

We can now use (2.158)– (2.160) to obtain the final result:

p(t|x,X, t) = St (t|µ, λ, ν)

where
µ = φTmN λ =

aN

bN
s−1 ν = 2aN .

3.14 Forα = 0 the covariance matrixSN becomes

SN = (βΦTΦ)−1. (140)
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Let us define a new set of orthonormal basis functions given by linear combinations
of the original basis functions so that

ψ(x) = Vφ(x) (141)

whereV is anM ×M matrix. Since both the original and the new basis functions
are linearly independent and span the same space, this matrix must be invertible and
hence

φ(x) = V−1ψ(x).

For the data set{xn}, (141) and (3.16) give

Ψ = ΦVT

and consequently
Φ = ΨV−T

whereV−T denotes(V−1)T. Orthonormality implies

ΨTΨ = I.

Note that(V−1)T = (VT)−1 as is easily verified. From (140), the covariance matrix
then becomes

SN = β−1(ΦTΦ)−1 = β−1(V−TΨTΨV−1)−1 = β−1VTV.

Here we have used the orthonormality of theψi(x). Hence the equivalent kernel
becomes

k(x,x′) = βφ(x)TSNφ(x′) = φ(x)TVTVφ(x′) = ψ(x)Tψ(x′)

as required. From the orthonormality condition, and settingj = 1, it follows that

N∑

n=1

ψi(xn)ψ1(xn) =

N∑

n=1

ψi(xn) = δi1

where we have usedψ1(x) = 1. Now consider the sum

N∑

n=1

k(x,xn) =

N∑

n=1

ψ(x)Tψ(xn) =

N∑

n=1

M∑

i=1

ψi(x)ψi(xn)

=

M∑

i=1

ψi(x)δi1 = ψ1(x) = 1

which proves the summation constraint as required.
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3.15 This is easily shown by substituting the re-estimation formulae(3.92) and (3.95) into
(3.82), giving

E(mN ) =
β

2
‖t − ΦmN‖2

+
α

2
mT

NmN

=
N − γ

2
+
γ

2
=
N

2
.

3.16 The likelihood function is a product of independent univariateGaussians and so can
be written as a joint Gaussian distribution overt with diagonal covariance matrix in
the form

p(t|w, β) = N (t|Φw, β−1IN ). (142)

Identifying (2.113) with the prior distributionp(w) = N (w|0, α−1I) and (2.114)
with (142), such that

x ⇒ w µ⇒ 0 Λ−1 ⇒ α−1IM

y ⇒ t A ⇒ Φ b ⇒ 0 L−1 ⇒ β−1IN ,

(2.115) gives
p(t|α, β) = N (t|0, β−1IN + α−1ΦΦT).

Taking the log we obtain

ln p(t|α, β) = −N
2

ln(2π) − 1

2
ln
∣∣β−1IN + α−1ΦΦT

∣∣

− 1

2
tT
(
β−1IN + α−1ΦΦT

)
t. (143)

Using the result (C.14) for the determinant we have
∣∣β−1IN + α−1ΦΦT

∣∣ = β−N
∣∣IN + βα−1ΦΦT

∣∣
= β−N

∣∣IM + βα−1ΦTΦ
∣∣

= β−Nα−M
∣∣αIM + βΦTΦ

∣∣
= β−Nα−M |A|

where we have used (3.81). Next consider the quadratic term int and make use of
the identity (C.7) together with (3.81) and (3.84) to give

−1

2
t
(
β−1IN + α−1ΦΦT

)−1
t

= −1

2
tT
[
βIN − βΦ

(
αIM + βΦTΦ

)−1
ΦTβ

]
t

= −β
2

tTt +
β2

2
tTΦA−1ΦTt

= −β
2

tTt +
1

2
mT

NAmN

= −β
2
‖t − ΦmN‖2 − α

2
mT

NmN
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where in the last step, we have exploited results from Solution 3.18. Substituting for
the determinant and the quadratic term in (143) we obtain (3.86).

3.17 Using (3.11), (3.12) and (3.52) together with the definition for the Gaussian, (2.43),
we can rewrite (3.77) as follows:

p(t|α, β) =

∫
p(t|w, β)p(w|α) dw

=

(
β

2π

)N/2 ( α
2π

)M/2
∫

exp (−βED(w)) exp
(
−α

2
wTw

)
dw

=

(
β

2π

)N/2 ( α
2π

)M/2
∫

exp (−E(w)) dw,

whereE(w) is defined by (3.79).

3.18 We can rewrite (3.79)

β

2
‖t − Φw‖2

+
α

2
wTw

=
β

2

(
tTt − 2tTΦw + wTΦTΦw

)
+
α

2
wTw

=
1

2

(
βtTt − 2βtTΦw + wTAw

)

where, in the last line, we have used (3.81). We now use the tricks of adding0 =
mT

NAmN − mT
NAmN and usingI = A−1A, combined with (3.84), as follows:

1

2

(
βtTt − 2βtTΦw + wTAw

)

=
1

2

(
βtTt − 2βtTΦA−1Aw + wTAw

)

=
1

2

(
βtTt − 2mT

NAw + wTAw + mT
NAmN − mT

NAmN

)

=
1

2

(
βtTt − mT

NAmN

)
+

1

2
(w − mN )TA(w − mN ).

Here the last term equals term the last term of (3.80) and so it remains to show that
the first term equals the r.h.s. of (3.82). To do this, we use the same tricks again:

1

2

(
βtTt − mT

NAmN

)
=

1

2

(
βtTt − 2mT

NAmN + mT
NAmN

)

=
1

2

(
βtTt − 2mT

NAA−1ΦTtβ + mT
N

(
αI + βΦTΦ

)
mN

)

=
1

2

(
βtTt − 2mT

NΦTtβ + βmT
NΦTΦmN + αmT

NmN

)

=
1

2

(
β(t − ΦmN )T(t − ΦmN ) + αmT

NmN

)

=
β

2
‖t − ΦmN‖2

+
α

2
mT

NmN
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as required.

3.19 From (3.80) we see that the integrand of (3.85) is an unnormalized Gaussian and
hence integrates to the inverse of the corresponding normalizingconstant, which can
be read off from the r.h.s. of (2.43) as

(2π)
M/2 |A−1|1/2.

Using (3.78), (3.85) and the properties of the logarithm, we get

ln p(t|α, β) =
M

2
(lnα− ln(2π)) +

N

2
(lnβ − ln(2π)) + ln

∫
exp{−E(w)}dw

=
M

2
(lnα− ln(2π)) +

N

2
(lnβ − ln(2π)) − E(mN ) − 1

2
ln |A| + M

2
ln(2π)

which equals (3.86).

3.20 We only need to consider the terms of (3.86) that depend onα, which are the first,
third and fourth terms.

Following the sequence of steps in Section 3.5.2, we start with the last of these terms,

−1

2
ln |A|.

From (3.81), (3.87) and the fact that that eigenvectorsui are orthonormal (see also
Appendix C), we find that the eigenvectors ofA to beα+λi. We can then use (C.47)
and the properties of the logarithm to take us from the left to the right side of (3.88).

The derivatives for the first and third term of (3.86) are more easily obtained using
standard derivatives and (3.82), yielding

1

2

(
M

α
+ mT

NmN

)
.

We combine these results into (3.89), from which we get (3.92) via (3.90). The
expression forγ in (3.91) is obtained from (3.90) by substituting

M∑

i

λi + α

λi + α

for M and re-arranging.

3.21 The eigenvector equation for theM ×M real, symmetric matrixA can be written
as

Aui = ηiui
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where{ui} are a set ofM orthonormal vectors, and theM eigenvalues{ηi} are all
real. We first express the left hand side of (3.117) in terms of the eigenvalues ofA.
The log of the determinant ofA can be written as

ln |A| = ln

M∏

i=1

ηi =

M∑

i=1

ln ηi.

Taking the derivative with respect to some scalarα we obtain

d

dα
ln |A| =

M∑

i=1

1

ηi

d

dα
ηi.

We now express the right hand side of (3.117) in terms of the eigenvector expansion
and show that it takes the same form. First we note thatA can be expanded in terms
of its own eigenvectors to give

A =

M∑

i=1

ηiuiu
T
i

and similarly the inverse can be written as

A−1 =

M∑

i=1

1

ηi
uiu

T
i .

Thus we have

Tr

(
A−1 d

dα
A

)
= Tr

(
M∑

i=1

1

ηi
uiu

T
i

d

dα

M∑

j=1

ηjuju
T
j

)

= Tr

(
M∑

i=1

1

ηi
uiu

T
i

{
M∑

j=1

dηj

dα
uju

T
j + ηj

(
bju

T
j + ujb

T
j

)
})

= Tr

(
M∑

i=1

1

ηi
uiu

T
i

M∑

j=1

dηj

dα
uju

T
j

)

+Tr

(
M∑

i=1

1

ηi
uiu

T
i

M∑

j=1

ηj

(
bju

T
j + ujb

T
j

)
)

(144)

wherebj = duj/dα. Using the properties of the trace and the orthognality of
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eigenvectors, we can rewrite the second term as

Tr

(
M∑

i=1

1

ηi
uiu

T
i

M∑

j=1

ηj

(
bju

T
j + ujb

T
j

)
)

= Tr

(
M∑

i=1

1

ηi
uiu

T
i

M∑

j=1

2ηjujb
T
j

)

= Tr

(
M∑

i=1

M∑

j=1

2ηj

ηi
uiu

T
i ujb

T
j

)

= Tr

(
M∑

i=1

(
bju

T
j + ujb

T
j

)
)

= Tr

(
d

dα

M∑

i

uiu
T
i

)
.

However,
M∑

i

uiu
T
i = I

which is constant and thus its derivative w.r.t.α will be zero and the second term in
(144) vanishes.

For the first term in (144), we again use the properties of the trace andthe orthognal-
ity of eigenvectors to obtain

Tr

(
A−1 d

dα
A

)
=

M∑

i=1

1

ηi

dηi

dα
.

We have now shown that both the left and right hand sides of (3.117) take the same
form when expressed in terms of the eigenvector expansion. Next,we use (3.117) to
differentiate (3.86) w.r.t.α, yielding

d

dα
ln p(t|αβ) =

M

2

1

α
− 1

2
mT

NmN − 1

2
Tr

(
A−1 d

dα
A

)

=
1

2

(
M

α
− mT

NmN − Tr
(
A−1

))

=
1

2

(
M

α
− mT

NmN −
∑

i

1

λi + α

)

which we recognize as the r.h.s. of (3.89), from which (3.92) can be derived as de-
tailed in Section 3.5.2, immediately following (3.89).
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3.22 Using (3.82) and (3.93)—the derivation of latter is detailed in Section 3.5.2—we get
the derivative of (3.86) w.r.t.β as the r.h.s. of (3.94). Rearranging this, collecting the
β-dependent terms on one side of the equation and the remaining term on the other,
we obtain (3.95).

3.23 From (3.10), (3.112) and the properties of the Gaussian and Gamma distributions
(see Appendix B), we get

p(t) =

∫∫
p(t|w, β)p(w|β) dwp(β) dβ

=

∫∫ (
β

2π

)N/2

exp

{
−β

2
(t − Φw)T(t − Φw)

}

(
β

2π

)M/2

|S0|−1/2 exp

{
−β

2
(w − m0)

TS−1
0 (w − m0)

}
dw

Γ(a0)
−1ba0

0 β
a0−1 exp(−b0β) dβ

=
ba0

0

((2π)M+N |S0|)1/2

∫∫
exp

{
−β

2
(t − Φw)T(t − Φw)

}

exp

{
−β

2
(w − m0)

TS−1
0 (w − m0)

}
dw

βa0−1βN/2βM/2 exp(−b0β) dβ

=
ba0

0

((2π)M+N |S0|)1/2

∫∫
exp

{
−β

2
(w − mN )TS−1

N (w − mN )

}
dw

exp

{
−β

2

(
tTt + mT

0 S−1
0 m0 − mT

NS−1
N mN

)}

βaN−1βM/2 exp(−b0β) dβ

where we have completed the square for the quadratic form inw, using

mN = SN

[
S−1

0 m0 + ΦTt
]

S−1
N = β

(
S−1

0 + ΦTΦ
)

aN = a0 +
N

2

bN = b0 +
1

2

(
mT

0 S−1
0 m0 − mT

NS−1
N mN +

N∑

n=1

t2n

)
.

Now we are ready to do the integration, first overw and thenβ, and re-arrange the
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terms to obtain the desired result

p(t) =
ba0

0

((2π)M+N |S0|)1/2
(2π)M/2|SN |1/2

∫
βaN−1 exp(−bNβ) dβ

=
1

(2π)N/2

|SN |1/2

|S0|1/2

ba0

0

baN

N

Γ(aN )

Γ(a0)
.

3.24 Substituting the r.h.s. of (3.10), (3.112) and (3.113) into (3.119), we get

p(t) =
N (t|Φw, β−1I)N (w|m0, β

−1S0) Gam (β|a0, b0)

N (w|mN , β−1SN ) Gam (β|aN , bN )
. (145)

Using the definitions of the Gaussian and Gamma distributions, we can write this as

(
β

2π

)N/2

exp

(
−β

2
‖t − Φw‖2

)

(
β

2π

)M/2

|S0|1/2 exp

(
−β

2
(w − m0)

TS−1
0 (w − m0)

)

Γ(a0)
−1ba0

0 β
a0−1 exp(−b0β)

{(
β

2π

)M/2

|SN |1/2 exp

(
−β

2
(w − mN )TS−1

N (w − mN )

)

Γ(aN )−1baN

N βaN−1 exp(−bNβ)

}−1

. (146)

Concentrating on the factors corresponding to the denominator in (145), i.e. the fac-
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tors inside{. . .})−1 in (146), we can use (135)–(138) to get

N
(
w|mN , β

−1SN

)
Gam (β|aN , bN )

=

(
β

2π

)M/2

|SN |1/2 exp

(
− β

2

(
wTS−1

N w − wTS−1
N mN − mT

NS−1
N w

+mT
NS−1

N mN

))
Γ(aN )−1baN

N βaN−1 exp(−bNβ)

=

(
β

2π

)M/2

|SN |1/2 exp

(
−β

2

(
wTS−1

0 w + wTΦTΦw − wTS−1
0 m0

−wTΦTt − mT
0 S−1

N w − tTΦw + mT
NS−1

N mN

))

Γ(aN )−1baN

N βa0+N/2−1

exp

(
−
(
b0 +

1

2

(
mT

0 S−1
0 m0 − mT

NS−1
N mN + tTt

))
β

)

=

(
β

2π

)M/2

|SN |1/2 exp

(
−β

2

(
(w − m0)

TS0(w − m0) + ‖t − Φw‖2
))

Γ(aN )−1baN

N βaN+N/2−1 exp(−b0β).

Substituting this into (146), the exponential factors along withβa0+N/2−1(β/2π)M/2

cancel and we are left with (3.118).

Chapter 4 Linear Models for Classification

4.1 Assume that the convex hulls of{xn} and{ym} intersect. Then there exist a point
z such that

z =
∑

n

αnxn =
∑

m

βmym

whereβm > 0 for all m and
∑

m βm = 1. If {xn} and{ym} also were to be
linearly separable, we would have that

ŵTz + w0 =
∑

n

αnŵTxn + w0 =
∑

n

αn(

sinceŵTxn + w0 > 0 and the{αn} are all non-negative and sum to 1, but by the
corresponding argument

ŵTz + w0 =
∑

m

βmŵTym + w0 =
∑

m

βm(ŵTym + w0) < 0,
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which is a contradiction and hence{xn} and{ym} cannot be linearly separable if
their convex hulls intersect.

If we instead assume that{xn} and{ym} are linearly separable and consider a point
z in the intersection of their convex hulls, the same contradiction arise. Thus no such
point can exist and the intersection of the convex hulls of{xn} and{ym} must be
empty.

4.2 For the purpose of this exercise, we make the contribution of thebias weights explicit
in (4.15), giving

ED(W̃) =
1

2
Tr
{
(XW + 1wT

0 − T)T(XW + 1wT
0 − T)

}
, (147)

wherew0 is the column vector of bias weights (the top row of̃W transposed) and1
is a column vector of N ones.

We can take the derivative of (147) w.r.t.w0, giving

2Nw0 + 2(XW − T)T1.

Setting this to zero, and solving forw0, we obtain

w0 = t̄ − WTx̄ (148)

where

t̄ =
1

N
TT1 and x̄ =

1

N
XT1.

If we subsitute (148) into (147), we get

ED(W) =
1

2
Tr
{
(XW + T − XW − T)T(XW + T − XW − T)

}
,

where
T = 1t̄T and X = 1x̄T.

Setting the derivative of this w.r.t.W to zero we get

W = (X̂TX̂)−1X̂TT̂ = X̂†T̂,

where we have defined̂X = X − X andT̂ = T − T.

Now consider the prediction for a new input vectorx?,

y(x?) = WTx? + w0

= WTx? + t̄ − WTx̄

= t̄ − T̂T
(
X̂†
)T

(x? − x̄). (149)

If we apply (4.157) tōt, we get

aTt̄ =
1

N
aTTT1 = −b.
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Therefore, applying (4.157) to (149), we obtain

aTy(x?) = aTt̄ + aTT̂T
(
X̂†
)T

(x? − x̄)

= aTt̄ = −b,

sinceaTT̂T = aT(T − T)T = b(1 − 1)T = 0T.

4.3 When we consider several simultaneous constraints, (4.157) becomes

Atn + b = 0, (150)

whereA is a matrix andb is a column vector such that each row ofA and element
of b correspond to one linear constraint.

If we apply (150) to (149), we obtain

Ay(x?) = At̄ − AT̂T
(
X̂†
)T

(x? − x̄)

= At̄ = −b,

sinceAT̂T = A(T − T)T = b1T − b1T = 0T. ThusAy(x?) + b = 0.

4.4 NOTE: In the1st printing of PRML, the text of the exercise refers equation (4.23)
where it should refer to (4.22).

From (4.22) we can construct the Lagrangian function

L = wT(m2 − m1) + λ
(
wTw − 1

)
.

Taking the gradient ofL we obtain

∇L = m2 − m1 + 2λw (151)

and setting this gradient to zero gives

w = − 1

2λ
(m2 − m1)

form which it follows thatw ∝ m2 − m1.

4.5 Starting with the numerator on the r.h.s. of (4.25), we can use (4.23) and (4.27) to
rewrite it as follows:

(m2 −m1)
2 =

(
wT(m2 − m1)

)2

= wT(m2 − m1)(m2 − m1)
Tw

= wTSBw. (152)
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Similarly, we can use (4.20), (4.23), (4.24), and (4.28) to rewrite the denominator of
the r.h.s. of (4.25):

s21 + s22 =
∑

n∈C1

(yn −m1)
2 +

∑

k∈C2

(yk −m2)
2

=
∑

n∈C1

(
wT(xn − m1)

)2
+
∑

k∈C2

(
wT(xk − m2)

)2

=
∑

n∈C1

wT(xn − m1)(xn − m1)
Tw

+
∑

k∈C2

wT(xk − m2)(xk − m2)
Tw

= wTSWw. (153)

Substituting (152) and (153) in (4.25) we obtain (4.26).

4.6 Using (4.21) and (4.34) along with the chosen target coding scheme, we can re-write
the l.h.s. of (4.33) as follows:

N∑

n=1

(
wTxn − w0 − tn

)
xn =

N∑

n=1

(
wTxn − wTm − tn

)
xn

=

N∑

n=1

{(
xnxT

n − xnmT
)
w − xntn

}

=
∑

n∈C1

{(
xnxT

n − xnmT
)
w − xntn

}

∑

m∈C2

{(
xmxT

m − xmmT
)
w − xmtm

}

=

(
∑

n∈C1

xnxT
n −N1m1m

T

)
w −N1m1

N

N1

(
∑

m∈C2

xmxT
m −N2m2m

T

)
w +N2m2

N

N2

=

(
∑

n∈C1

xnxT
n +

∑

m∈C2

xmxT
m − (N1m1 +N2m2)m

T

)
w

−N(m1 − m2). (154)
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We then use the identity

∑

i∈Ck

(xi − mk) (xi − mk)
T

=
∑

i∈Ck

(
xix

T
i − xim

T
k − mkx

T
i + mkm

T
k

)

=
∑

i∈Ck

xix
T
i −Nkmkm

T
k

together with (4.28) and (4.36) to rewrite (154) as

(
SW +N1m1m

T
1 +N2m2m

T
2

−(N1m1 +N2m2)
1

N
(N1m1 +N2m2)

)
w −N(m1 − m2)

=

(
SW +

(
N1 −

N2
1

N

)
m1m

T
1 − N1N2

N
(m1m

T
2 + m2m1)

+

(
N2 −

N2
2

N

)
m2m

T
2

)
w −N(m1 − m2)

=

(
SW +

(N1 +N2)N1 −N2
1

N
m1m

T
1 − N1N2

N
(m1m

T
2 + m2m1)

+
(N1 +N2)N2 −N2

2

N
m2m

T
2

)
w −N(m1 − m2)

=

(
SW +

N2N1

N

(
m1m

T
1 − m1m

T
2 − m2m1 + m2m

T
2

))
w

−N(m1 − m2)

=

(
SW +

N2N1

N
SB

)
w −N(m1 − m2),

where in the last line we also made use of (4.27). From (4.33), this must equal zero,
and hence we obtain (4.37).

4.7 From (4.59) we have

1 − σ(a) = 1 − 1

1 + e−a
=

1 + e−a − 1

1 + e−a

=
e−a

1 + e−a
=

1

ea + 1
= σ(−a).
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The inverse of the logistic sigmoid is easily found as follows

y = σ(a) =
1

1 + e−a

⇒ 1

y
− 1 = e−a

⇒ ln

{
1 − y

y

}
= −a

⇒ ln

{
y

1 − y

}
= a = σ−1(y).

4.8 Substituting (4.64) into (4.58), we see that the normalizing constants cancel and we
are left with

a = ln
exp

(
− 1

2
(x − µ1)

T
Σ−1 (x − µ1)

)
p(C1)

exp
(
− 1

2
(x − µ2)

T
Σ−1 (x − µ2)

)
p(C2)

= −1

2

(
xΣTx − xΣµ1 − µT

1 Σx + µT
1 Σµ1

−xΣTx + xΣµ2 + µT
2 Σx − µT

2 Σµ2

)
+ ln

p(C1)

p(C2)

= (µ1 − µ2)
T
Σ−1x − 1

2

(
µT

1 Σ−1µ1 − µT
2 Σµ2

)
+ ln

p(C1)

p(C2)
.

Substituting this into the rightmost form of (4.57) we obtain (4.65), with w andw0

given by (4.66) and (4.67), respectively.

4.9 The likelihood function is given by

p ({φn, tn}|{πk}) =

N∏

n=1

K∏

k=1

{p(φn|Ck)πk}tnk

and taking the logarithm, we obtain

ln p ({φn, tn}|{πk}) =

N∑

n=1

K∑

k=1

tnk {ln p(φn|Ck) + lnπk} . (155)

In order to maximize the log likelihood with respect toπk we need to preserve the
constraint

∑
k πk = 1. This can be done by introducing a Lagrange multiplierλ and

maximizing

ln p ({φn, tn}|{πk}) + λ

(
K∑

k=1

πk − 1

)
.
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Setting the derivative with respect toπk equal to zero, we obtain

N∑

n=1

tnk

πk
+ λ = 0.

Re-arranging then gives

−πkλ =

N∑

n=1

tnk = Nk. (156)

Summing both sides overk we find thatλ = −N , and using this to eliminateλ we
obtain (4.159).

4.10 If we substitute (4.160) into (155) and then use the definition ofthe multivariate
Gaussian, (2.43), we obtain

ln p ({φn, tn}|{πk}) =

− 1

2

N∑

n=1

K∑

k=1

tnk

{
ln |Σ| + (φn − µk)TΣ−1(φ− µ)

}
, (157)

where we have dropped terms independent of{µk} andΣ.

Setting the derivative of the r.h.s. of (157) w.r.t.µk, obtained by using (C.19), to
zero, we get

N∑

n=1

K∑

k=1

tnkΣ
−1(φn − µk) = 0.

Making use of (156), we can re-arrange this to obtain (4.161).

Rewriting the r.h.s. of (157) as

−1

2
b

N∑

n=1

K∑

k=1

tnk

{
ln |Σ| + Tr

[
Σ−1(φn − µk)(φ− µk)T

]}
,

we can use (C.24) and (C.28) to calculate the derivative w.r.t.Σ−1. Setting this to
zero we obtain

1

2

N∑

n=1

T∑

k

tnk

{
Σ − (φn − µn)(φn − µk)T

}
= 0.

Again making use of (156), we can re-arrange this to obtain (4.162), with Sk given
by (4.163).

Note that, as in Exercise 2.34, we do not enforce thatΣ should be symmetric, but
simply note that the solution is automatically symmetric.
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4.11 The generative model forφ corresponding to the chosen coding scheme is given by

p (φ | Ck) =

M∏

m=1

p (φm | Ck)

where

p (φm | Ck) =

L∏

l=1

µφml

kml,

where in turn{µkml} are the parameters of the multinomial models forφ.

Substituting this into (4.63) we see that

ak = ln p (φ | Ck) p (Ck)

= ln p (Ck) +

M∑

m=1

ln p (φm | Ck)

= ln p (Ck) +

M∑

m=1

L∑

l=1

φml lnµkml,

which is linear inφml.

4.12 Differentiating (4.59) we obtain

dσ

da
=

e−a

(1 + e−a)
2

= σ(a)

{
e−a

1 + e−a

}

= σ(a)

{
1 + e−a

1 + e−a
− 1

1 + e−a

}

= σ(a)(1 − σ(a)).

4.13 We start by computing the derivative of (4.90) w.r.t.yn

∂E

∂yn
=

1 − tn
1 − yn

− tn
yn

(158)

=
yn(1 − tn) − tn(1 − yn)

yn(1 − yn)

=
yn − yntn − tn + yntn

yn(1 − yn)
(159)

=
yn − tn

yn(1 − yn)
. (160)
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From (4.88), we see that

∂yn

∂an
=
∂σ(an)

∂an
= σ(an) (1 − σ(an)) = yn(1 − yn). (161)

Finally, we have
∇an = φn (162)

where∇ denotes the gradient with respect tow. Combining (160), (161) and (162)
using the chain rule, we obtain

∇E =

N∑

n=1

∂E

∂yn

∂yn

∂an
∇an

=

N∑

n=1

(yn − tn)φn

as required.

4.14 If the data set is linearly separable, any decision boundary separating the two classes
will have the property

wTφn

{
> 0 if tn = 1,
< 0 otherwise.

Moreover, from (4.90) we see that the negative log-likelihood will be minimized
(i.e., the likelihood maximized) whenyn = σ (wTφn) = tn for all n. This will be
the case when the sigmoid function is saturated, which occurs when its argument,
wTφ, goes to±∞, i.e., when the magnitude ofw goes to infinity.

4.15 NOTE: In PRML, “concave” should be “convex” on the last line of the exercise.

Assuming that the argument to the sigmoid function (4.87) is finite, the diagonal
elements ofR will be strictly positive. Then

vTΦTRΦv =
(
vTΦTR1/2

) (
R1/2Φv

)
=
∥∥R1/2Φv

∥∥2
> 0

whereR1/2 is a diagonal matrix with elements(yn(1 − yn))
1/2, and thusΦTRΦ is

positive definite.

Now consider a Taylor expansion ofE(w) around a minima,w?,

E(w) = E(w?) +
1

2
(w − w?)

T
H (w − w?)

where the linear term has vanished sincew? is a minimum. Now let

w = w? + λv
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wherev is an arbitrary, non-zero vector in the weight space and consider

∂2E

∂λ2
= vTHv > 0.

This shows thatE(w) is convex. Moreover, at the minimum ofE(w),

H (w − w?) = 0

and sinceH is positive definite,H−1 exists andw = w? must be the unique mini-
mum.

4.16 If the values of the{tn} were known then each data point for whichtn = 1 would
contributep(tn = 1|φ(xn)) to the log likelihood, and each point for whichtn = 0
would contribute1 − p(tn = 1|φ(xn)) to the log likelihood. A data point whose
probability of havingtn = 1 is given byπn will therefore contribute

πnp(tn = 1|φ(xn)) + (1 − πn)(1 − p(tn = 1|φ(xn)))

and so the overall log likelihood for the data set is given by

N∑

n=1

πn ln p (tn = 1 | φ(xn)) + (1 − πn) ln (1 − p (tn = 1 | φ(xn))) . (163)

This can also be viewed from a sampling perspective by imaginingsampling the
value of eachtn some numberM times, with probability oftn = 1 given byπn, and
then constructing the likelihood function for this expanded data set, and dividing by
M . In the limitM → ∞ we recover (163).

4.17 From (4.104) we have

∂yk

∂ak
=

eak

∑
i e

ai
−
(

eak

∑
i e

ai

)2

= yk(1 − yk),

∂yk

∂aj
= − eakeaj

(∑
i e

ai

)2 = −ykyj , j 6= k.

Combining these results we obtain (4.106).

4.18 NOTE: In the1st printing of PRML, the text of the exercise refers equation (4.91)
where it should refer to (4.106).

From (4.108) we have
∂E

∂ynk
= − tnk

ynk
.
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If we combine this with (4.106) using the chain rule, we get

∂E

∂anj
=

K∑

k=1

∂E

∂ynk

∂ynk

∂anj

= −
K∑

k=1

tnk

ynk
ynk (Ikj − ynj)

= ynj − tnj ,

where we have used that∀n :
∑

k tnk = 1.

If we combine this with (162), again using the chain rule, we obtain (4.109).

4.19 Using the cross-entropy error function (4.90), and following Exercise4.13, we have

∂E

∂yn
=

yn − tn
yn(1 − yn)

. (164)

Also
∇an = φn. (165)

From (4.115) and (4.116) we have

∂yn

∂an
=
∂Φ(an)

∂an
=

1√
2π
e−a2

n . (166)

Combining (164), (165) and (166), we get

∇E =

N∑

n=1

∂E

∂yn

∂yn

∂an
∇an =

N∑

n=1

yn − tn
yn(1 − yn)

1√
2π
e−a2

nφn. (167)

In order to find the expression for the Hessian, it is is convenientto first determine

∂

∂yn

yn − tn
yn(1 − yn)

=
yn(1 − yn)

y2
n(1 − yn)2

− (yn − tn)(1 − 2yn)

y2
n(1 − yn)2

=
y2

n + tn − 2yntn
y2

n(1 − yn)2
. (168)

Then using (165)–(168) we have

∇∇E =

N∑

n=1

{
∂

∂yn

[
yn − tn

yn(1 − yn)

]
1√
2π
e−a2

nφn∇yn

+
yn − tn

yn(1 − yn)

1√
2π
e−a2

n(−2an)φn∇an

}

=

N∑

n=1

(
y2

n + tn − 2yntn
yn(1 − yn)

1√
2π
e−a2

n − 2an(yn − tn)

)
e−2a2

nφnφ
T
n√

2πyn(1 − yn)
.
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4.20 NOTE: In the1st printing of PRML, equation (4.110) contains an incorrect leading
minus sign (‘−’) on the right hand side.

We first write out the components of theMK ×MK Hessian matrix in the form

∂2E

∂wki∂wjl
=

N∑

n=1

ynk(Ikj − ynj)φniφnl.

To keep the notation uncluttered, consider just one term in thesummation overn and
show that this is positive semi-definite. The sum overn will then also be positive
semi-definite. Consider an arbitrary vector of dimensionMK with elementsuki.
Then

uTHu =
∑

i,j,k,l

ukiyk(Ikj − yj)φiφlujl

=
∑

j,k

bjyk(Ikj − yj)bk

=
∑

k

ykb
2
k −

(
∑

k

bkyk

)2

where
bk =

∑

i

ukiφni.

We now note that the quantitiesyk satisfy0 6 yk 6 1 and
∑

k yk = 1. Furthermore,
the functionf(b) = b2 is a concave function. We can therefore apply Jensen’s
inequality to give

∑

k

ykb
2
k =

∑

k

ykf(bk) > f

(
∑

k

ykbk

)
=

(
∑

k

ykbk

)2

and hence
uTHu > 0.

Note that the equality will never arise for finite values ofak whereak is the set
of arguments to the softmax function. However, the Hessian canbe positivesemi-
definite since the basis vectorsφni could be such as to have zero dot product for a
linear subspace of vectorsuki. In this case the minimum of the error function would
comprise a continuum of solutions all having the same value ofthe error function.

4.21 NOTE: In PRML, (4.116) should read

Φ(a) =
1

2

{
1 + erf

(
a√
2

)}
.

Note thatΦ should beΦ (i.e. not bold) on the l.h.s.



90 Solutions 4.22–4.23

We consider the two cases wherea > 0 anda < 0 separately. In the first case, we
can use (2.42) to rewrite (4.114) as

Φ(a) =

∫ 0

−∞
N (θ|0, 1) dθ +

∫ a

0

1√
2π

exp

(
−θ

2

2

)
dθ

=
1

2
+

1√
2π

∫ a/
√

2

0

exp
(
−u2

)√
2 du

=
1

2

{
1 + erf

(
a√
2

)}
,

where, in the last line, we have used (4.115).

Whena < 0, the symmetry of the Gaussian distribution gives

Φ(a) = 1 − Φ(−a).
Combining this with the above result, we get

Φ(a) = 1 − 1

2

{
1 + erf

(
− a√

2

)}

=
1

2

{
1 + erf

(
a√
2

)}
,

where we have used the fact that theerf function is is anti-symmetric, i.e.,erf(−a) =
−erf(a).

4.22 Starting from (4.136), using (4.135), we have

p (D) =

∫
p (D | θ) p (θ) dθ

' p (D | θMAP) p (θMAP)∫
exp

(
−1

2
(θ − θMAP)A−1(θ − θMAP)

)
dθ

= p (D | θMAP) p (θMAP)
(2π)M/2

|A|1/2
,

whereA is given by (4.138). Taking the logarithm of this yields (4.137).

4.23 NOTE: In the1st printing of PRML, the text of the exercise contains a typographical
error. Following the equation, it should say thatH is the matrix of second derivatives
of thenegative log likelihood.

The BIC approximation can be viewed as a largeN approximation to the log model
evidence. From (4.138), we have

A = −∇∇ ln p(D|θMAP)p(θMAP)

= H −∇∇ ln p(θMAP)
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and ifp(θ) = N (θ|m,V0), this becomes

A = H + V−1
0 .

If we assume that the prior is broad, or equivalently that the number of data points
is large, we can neglect the termV−1

0 compared toH. Using this result, (4.137) can
be rewritten in the form

ln p(D) ' ln p(D|θMAP) − 1

2
(θMAP − m)V−1

0 (θMAP − m) − 1

2
ln |H| + const

(169)
as required. Note that the phrasing of the question is misleading, since the assump-
tion of a broad prior, or of largeN , is required in order to derive this form, as well
as in the subsequent simplification.

We now again invoke the broad prior assumption, allowing us to neglect the second
term on the right hand side of (169) relative to the first term.

Since we assume i.i.d. data,H = −∇∇ ln p(D|θMAP) consists of a sum of terms,
one term for each datum, and we can consider the following approximation:

H =

N∑

n=1

Hn = NĤ

whereHn is the contribution from thenth data point and

Ĥ =
1

N

N∑

n=1

Hn.

Combining this with the properties of the determinant, we have

ln |H| = ln |NĤ| = ln
(
NM |Ĥ|

)
= M lnN + ln |Ĥ|

whereM is the dimensionality ofθ. Note that we are assuming thatĤ has full rank
M . Finally, using this result together (169), we obtain (4.139) bydropping theln |Ĥ|
since thisO(1) compared tolnN .

4.24 Consider a rotation of the coordinate axes of theM -dimensional vectorw such that
w = (w‖,w⊥) wherewTφ = w‖‖φ‖, andw⊥ is a vector of lengthM − 1. We
then have

∫
σ(wTφ)q(w) dw =

∫∫
σ
(
w‖‖φ‖

)
q(w⊥|w‖)q(w‖) dw‖ dw⊥

=

∫
σ(w‖‖φ‖)q(w‖) dw‖.

Note that the joint distributionq(w⊥, w‖) is Gaussian. Hence the marginal distribu-
tion q(w‖) is also Gaussian and can be found using the standard results presented in
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Section 2.3.2. Denoting the unit vector

e =
1

‖φ‖φ

we have
q(w‖) = N (w‖|eTmN , e

TSNe).

Defininga = w‖‖φ‖ we see that the distribution ofa is given by a simple re-scaling
of the Gaussian, so that

q(a) = N (a|φTmN ,φ
TSNφ)

where we have used‖φ‖e = φ. Thus we obtain (4.151) withµa given by (4.149)
andσ2

a given by (4.150).

4.25 From (4.88) we have that

dσ

da

∣∣∣∣
a=0

= σ(0)(1 − σ(0))

=
1

2

(
1 − 1

2

)
=

1

4
. (170)

Since the derivative of a cumulative distribution function is simply the corresponding
density function, (4.114) gives

dΦ(λa)

da

∣∣∣∣
a=0

= λN (0|0, 1)

= λ
1√
2π
.

Setting this equal to (170), we see that

λ =

√
2π

4
or equivalently λ2 =

π

8
.

This is illustrated in Figure 4.9.

4.26 First of all consider the derivative of the right hand side with respect toµ, making
use of the definition of the probit function, giving

(
1

2π

)1/2

exp

{
− µ2

2(λ−2 + σ2)

}
1

(λ−2 + σ2)1/2
.

Now make the change of variablea = µ + σz, so that the left hand side of (4.152)
becomes ∫ ∞

−∞
Φ(λµ+ λσz)

1

(2πσ2)1/2
exp

{
−1

2
z2

}
σ dz
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where we have substituted for the Gaussian distribution. Now differentiate with
respect toµ, making use of the definition of the probit function, giving

1

2π

∫ ∞

−∞
exp

{
−1

2
z2 − λ2

2
(µ+ σz)2

}
σ dz.

The integral overz takes the standard Gaussian form and can be evaluated analyt-
ically by making use of the standard result for the normalizationcoefficient of a
Gaussian distribution. To do this we first complete the square inthe exponent

−1

2
z2 − λ2

2
(µ+ σz)2

= −1

2
z2(1 + λ2σ2) − zλ2µσ − 1

2
λ2µ2

= −1

2

[
z + λ2µσ(1 + λ2σ2)−1

]2
(1 + λ2σ2) +

1

2

λ4µ2σ2

(1 + λ2σ2)
− 1

2
λ2µ2.

Integrating overz then gives the following result for the derivative of the left hand
side

1

(2π)1/2

1

(1 + λ2σ2)1/2
exp

{
−1

2
λ2µ2 +

1

2

λ4µ2σ2

(1 + λ2σ2)

}

=
1

(2π)1/2

1

(1 + λ2σ2)1/2
exp

{
−1

2

λ2µ2

(1 + λ2σ2)

}
.

Thus the derivatives of the left and right hand sides of (4.152) with respect toµ are
equal. It follows that the left and right hand sides are equal up to afunction ofσ2 and
λ. Taking the limitµ → −∞ the left and right hand sides both go to zero, showing
that the constant of integration must also be zero.

Chapter 5 Neural Networks

5.1 NOTE: In the1st printing of PRML, the text of this exercise contains a typographical
error. On line 2,g(·) should be replaced byh(·).
See Solution 3.1.

5.2 The likelihood function for an i.i.d. data set,{(x1, t1), . . . , (xN , tN )}, under the
conditional distribution (5.16) is given by

N∏

n=1

N
(
tn|y(xn,w), β−1I

)
.
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If we take the logarithm of this, using (2.43), we get

N∑

n=1

lnN
(
tn|y(xn,w), β−1I

)

= −1

2

N∑

n=1

(tn − y(xn,w))
T

(βI) (tn − y(xn,w)) + const

= −β
2

N∑

n=1

‖tn − y(xn,w)‖2 + const,

where ‘const’ comprises terms which are independent ofw. The first term on the
right hand side is proportional to the negative of (5.11) and hence maximizing the
log-likelihood is equivalent to minimizing the sum-of-squares error.

5.3 In this case, the likelihood function becomes

p(T|X,w,Σ) =

N∏

n=1

N (tn|y(xn,w),Σ) ,

with the corresponding log-likelihood function

ln p(T|X,w,Σ)

= −N
2

(ln |Σ| +K ln(2π)) − 1

2

N∑

n=1

(tn − yn)TΣ−1(tn − yn), (171)

whereyn = y(xn,w) andK is the dimensionality ofy andt.

If we first treatΣ as fixed and known, we can drop terms that are independent ofw

from (171), and by changing the sign we get the error function

E(w) =
1

2

N∑

n=1

(tn − yn)TΣ−1(tn − yn).

If we consider maximizing (171) w.r.t.Σ, the terms that need to be kept are

−N
2

ln |Σ| − 1

2

N∑

n=1

(tn − yn)TΣ−1(tn − yn).

By rewriting the second term we get

−N
2

ln |Σ| − 1

2
Tr

[
Σ−1

N∑

n=1

(tn − yn)(tn − yn)T

]
.
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Using results from Appendix C, we can maximize this by setting the derivative w.r.t.
Σ−1 to zero, yielding

Σ =
1

N

N∑

n=1

(tn − yn)(tn − yn)T.

Thus the optimal value forΣ depends onw throughyn.

A possible way to address this mutual dependency betweenw andΣ when it comes
to optimization, is to adopt an iterative scheme, alternatingbetween updates ofw
andΣ until some convergence criterion is reached.

5.4 Let t ∈ {0, 1} denote the data set label and letk ∈ {0, 1} denote the true class label.
We want the network output to have the interpretationy(x,w) = p(k = 1|x). From
the rules of probability we have

p(t = 1|x) =

1∑

k=0

p(t = 1|k)p(k|x) = (1 − ε)y(x,w) + ε(1 − y(x,w)).

The conditional probability of the data label is then

p(t|x) = p(t = 1|x)t(1 − p(t = 1|x)1−t.

Forming the likelihood and taking the negative logarithm we then obtain the error
function in the form

E(w) = −
N∑

n=1

{tn ln [(1 − ε)y(xn,w) + ε(1 − y(xn,w))]

+(1 − tn) ln [1 − (1 − ε)y(xn,w) − ε(1 − y(xn,w))]} .

See also Solution 4.16.

5.5 For the given interpretation ofyk(x,w), the conditional distribution of the target
vector for a multiclass neural network is

p(t|w1, . . . ,wK) =

K∏

k=1

ytk

k .

Thus, for a data set ofN points, the likelihood function will be

p(T|w1, . . . ,wK) =

N∏

n=1

K∏

k=1

ytnk

nk .

Taking the negative logarithm in order to derive an error function we obtain (5.24)
as required. Note that this is the same result as for the multiclass logistic regression
model, given by (4.108) .
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5.6 Differentiating (5.21) with respect to the activationan corresponding to a particular
data pointn, we obtain

∂E

∂an
= −tn

1

yn

∂yn

∂an
+ (1 − tn)

1

1 − yn

∂yn

∂an
. (172)

From (4.88), we have
∂yn

∂an
= yn(1 − yn). (173)

Substituting (173) into (172), we get

∂E

∂an
= −tn

yn(1 − yn)

yn
+ (1 − tn)

yn(1 − yn)

(1 − yn)
= yn − tn

as required.

5.7 See Solution 4.17.

5.8 From (5.59), using standard derivatives, we get

d tanh

da
=

ea

ea + e−a
− ea(ea − e−a)

(ea + e−a)
2 +

e−a

ea + e−a
+
e−a(ea − e−a)

(ea + e−a)
2

=
ea + e−a

ea + e−a
+

1 − e2a − e−2a + 1

(ea + e−a)
2

= 1 − e2a − 2 + e−2a

(ea + e−a)
2

= 1 − (ea − e−a)(ea − e−a)

(ea + e−a) (ea + e−a)

= 1 − tanh2(a)

5.9 This simply corresponds to a scaling and shifting of the binary outputs, which di-
rectly gives the activation function, using the notation from (5.19), in the form

y = 2σ(a) − 1.

The corresponding error function can be constructed from (5.21) by applying the
inverse transform toyn andtn, yielding

E(w) = −
N∑

n=1

1 + tn
2

ln
1 + yn

2
+

(
1 − 1 + tn

2

)
ln

(
1 − 1 + yn

2

)

= −1

2

N∑

n=1

{(1 + tn) ln(1 + yn) + (1 − tn) ln(1 − yn)} +N ln 2
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where the last term can be dropped, since it is independent ofw.

To find the corresponding activation function we simply apply the linear transforma-
tion to the logistic sigmoid given by (5.19), which gives

y(a) = 2σ(a) − 1 =
2

1 + e−a
− 1

=
1 − e−a

1 + e−a
=
ea/2 − e−a/2

ea/2 + e−a/2

= tanh(a/2).

5.10 From (5.33) and (5.35) we have

uT
i Hui = uT

i λiui = λi.

Assume thatH is positive definite, so that (5.37) holds. Then by settingv = ui it
follows that

λi = uT
i Hui > 0 (174)

for all values ofi. Thus, if H is positive definite, all of its eigenvalues will be
positive.

Conversely, assume that (174) holds. Then, for any vector,v, we can make use of
(5.38) to give

vTHv =

(
∑

i

ciui

)T

H

(
∑

j

cjuj

)

=

(
∑

i

ciui

)T(∑

j

λjcjuj

)

=
∑

i

λic
2
i > 0

where we have used (5.33) and (5.34) along with (174). Thus, if all of the eigenvalues
are positive, the Hessian matrix will be positive definite.

5.11 NOTE: In PRML, Equation (5.32) contains a typographical error:= should be'.

We start by making the change of variable given by (5.35) which allows the error
function to be written in the form (5.36). Setting the value of the error function
E(w) to a constant valueC we obtain

E(w?) +
1

2

∑

i

λiα
2
i = C.

Re-arranging gives ∑

i

λiα
2
i = 2C − 2E(w?) = C̃
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whereC̃ is also a constant. This is the equation for an ellipse whose axes are aligned
with the coordinates described by the variables{αi}. The length of axisj is found
by settingαi = 0 for all i 6= j, and solving forαj giving

αj =

(
C̃

λj

)1/2

which is inversely proportional to the square root of the corresponding eigenvalue.

5.12 NOTE: See note in Solution 5.11.

From (5.37) we see that, ifH is positive definite, then the second term in (5.32) will
be positive whenever(w − w?) is non-zero. Thus the smallest value whichE(w)
can take isE(w?), and sow? is the minimum ofE(w).

Conversely, ifw? is the minimum ofE(w), then, for any vectorw 6= w?, E(w) >
E(w?). This will only be the case if the second term of (5.32) is positive for all
values ofw 6= w? (since the first term is independent ofw). Sincew − w? can be
set to any vector of real numbers, it follows from the definition (5.37) thatH must
be positive definite.

5.13 From exercise 2.21 we know that aW ×W matrix hasW (W + 1)/2 independent
elements. Add to that theW elements of the gradient vectorb and we get

W (W + 1)

2
+W =

W (W + 1) + 2W

2
=
W 2 + 3W

2
=
W (W + 3)

2
.

5.14 We are interested in determining how the correction term

δ = E′(wij) −
E(wij + ε) − E(wij − ε)

2ε
(175)

depend onε.

Using Taylor expansions, we can rewrite the numerator of the firstterm of (175) as

E(wij) + εE′(wij) +
ε2

2
E′′(wij) +O(ε3)

− E(wij) + εE′(wij) −
ε2

2
E′′(wij) +O(ε3) = 2εE′(wij) +O(ε3).

Note that theε2-terms cancel. Substituting this into (175) we get,

δ =
2εE′(wij) +O(ε3)

2ε
− E′(wij) = O(ε2).

5.15 The alternative forward propagation scheme takes the first line of (5.73) as its starting
point. However, rather than proceeding with a ‘recursive’ definition of ∂yk/∂aj , we
instead make use of a corresponding definition for∂aj/∂xi. More formally

Jki =
∂yk

∂xi
=
∑

j

∂yk

∂aj

∂aj

∂xi
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where∂yk/∂aj is defined by (5.75), (5.76) or simply asδkj , for the case of linear
output units. We define∂aj/∂xi = wji if aj is in the first hidden layer and otherwise

∂aj

∂xi
=
∑

l

∂aj

∂al

∂al

∂xi
(176)

where
∂aj

∂al
= wjlh

′(al). (177)

Thus we can evaluateJki by forward propagating∂aj/∂xi, with initial valuewij ,
alongsideaj , using (176) and (177).

5.16 The multivariate form of (5.82) is

E =
1

2

N∑

n=1

(yn − tn)T(yn − tn).

The elements of the first and second derivatives then become

∂E

∂wi
=

N∑

n=1

(yn − tn)T
∂yn

∂wi

and
∂2E

∂wi∂wj
=

N∑

n=1

{
∂yn

∂wj

T ∂yn

∂wi
+ (yn − tn)T

∂2yn

∂wj ∂wi

}
.

As for the univariate case, we again assume that the second term of the second deriva-
tive vanishes and we are left with

H =

N∑

n=1

BnBT
n ,

whereBn is aW ×K matrix,K being the dimensionality ofyn, with elements

(Bn)lk =
∂ynk

∂wl
.

5.17 Taking the second derivatives of (5.193) with respect to two weightswr andws we
obtain

∂2E

∂wr∂ws
=

∑

k

∫ {
∂yk

∂wr

∂yk

∂ws

}
p(x) dx

+
∑

k

∫ {
∂2yk

∂wr∂ws
(yk(x) − Etk

[tk|x])

}
p(x) dx. (178)
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Using the result (1.89) that the outputsyk(x) of the trained network represent the
conditional averages of the target data, we see that the second term in (178) vanishes.
The Hessian is therefore given by an integral of terms involving only the products of
first derivatives. For a finite data set, we can write this result inthe form

∂2E

∂wr∂ws
=

1

N

N∑

n=1

∑

k

∂yn
k

∂wr

∂yn
k

∂ws

which is identical with (5.84) up to a scaling factor.

5.18 If we introduce skip layer weights,U, into the model described in Section 5.3.2, this
will only affect the last of the forward propagation equations, (5.64), which becomes

yk =

M∑

j=0

w
(2)
kj zj +

D∑

i=1

ukixi.

Note that there is no need to include the input bias. The derivative w.r.t.uki can be
expressed using the output{δk} of (5.65),

∂E

∂uki
= δkxi.

5.19 If we take the gradient of (5.21) with respect tow, we obtain

∇E(w) =

N∑

n=1

∂E

∂an
∇an =

N∑

n=1

(yn − tn)∇an,

where we have used the result proved earlier in the solution to Exercise 5.6. Taking
the second derivatives we have

∇∇E(w) =

N∑

n=1

{
∂yn

∂an
∇an∇an + (yn − tn)∇∇an

}
.

Dropping the last term and using the result (4.88) for the derivative of the logistic
sigmoid function, proved in the solution to Exercise 4.12, we finally get

∇∇E(w) '
N∑

n=1

yn(1 − yn)∇an∇an =

N∑

n=1

yn(1 − yn)bnbT
n

wherebn ≡ ∇an.

5.20 Using the chain rule, we can write the first derivative of (5.24) as

∂E

∂wi
=

N∑

n=1

K∑

k=1

∂E

∂ank

∂ank

∂wi
. (179)
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From Exercise 5.7, we know that

∂E

∂ank
= ynk − tnk.

Using this and (4.106), we can get the derivative of (179) w.r.t.wj as

∂2E

∂wi ∂wj
=

N∑

n=1

K∑

k=1

(
K∑

l=1

ynk(Ikl − ynl)
∂ank

∂wi

∂anl

∂wj
+ (ynk − tnk)

∂2ank

∂wi ∂wj

)
.

For a trained model, the network outputs will approximate the conditional class prob-
abilities and so the last term inside the parenthesis will vanish in the limit of a large
data set, leaving us with

(H)ij '
N∑

n=1

K∑

k=1

K∑

l=1

ynk(Ikl − ynl)
∂ank

∂wi

∂anl

∂wj
.

5.21 NOTE: In PRML, the text in the exercise could be misunderstood; a clearer formu-
lation is: “Extend the expression (5.86) for the outer product approximation of the
Hessian matrix to the case ofK > 1 output units. Hence, derive a form that allows
(5.87) to be used to incorporate sequentially contributions from individual outputs
as well as individual patterns. This, together with the identity (5.88), will allow the
use of (5.89) for finding the inverse of the Hessian by sequentially incorporating
contributions from individual outputs and patterns.”

From (5.44) and (5.46), we see that the multivariate form of (5.82) is

E =
1

2

N∑

n=1

K∑

k=1

(ynk − tnk)
2
.

Consequently, the multivariate form of (5.86) is given by

HNK =

N∑

n=1

K∑

k=1

bnkb
T
nk (180)

wherebnk ≡ ∇ank = ∇ynk. The double index indicate that we will now iterate
over outputs as well as patterns in the sequential build-up of the Hessian. However,
in terms of the end result, there is no real need to attribute terms inthis sum to
specific outputs or specific patterns. Thus, by changing the indexation in (180), we
can write it

HJ =

J∑

j=1

cjc
T
j (181)

whereJ = NK and

cj = bn(j)k(j)

n(j) = (j − 1) �K + 1

k(j) = (j − 1) �K + 1
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with � and� denoting integer division and remainder, respectively. The advantage
of the indextion in (181) is that now we have a single indexed sum and so we can use
(5.87)–(5.89) as they stand, just replacingbL with cL, lettingL run from0 to J − 1.

5.22 NOTE: The first printing of PRML contained typographical errors in equation (5.95).
On the r.h.s.,Hkk′ should beMkk′ . Moreover, the indicesj and j′ should be
swapped on the r.h.s.

Using the chain rule together with (5.48) and (5.92), we have

∂En

∂w
(2)
kj

=
∂En

∂ak

∂ak

∂w
(2)
kj

= δkzj (182)

Thus,
∂2En

∂w
(2)
kj ∂w

(2)
k′j′

=
∂δkzj

∂w
(2)
k′j′

and sincezj is independent of the second layer weights,

∂2En

∂w
(2)
kj ∂w

(2)
k′j′

= zj
∂δk

∂w
(2)
k′j′

= zj
∂2En

∂ak ∂ak′

∂ak

∂w
(2)
k′j′

= zjzj′Mkk′ ,

where we again have used the chain rule together with (5.48) and (5.92).

If both weights are in the first layer, we again used the chain rule,this time together
with (5.48), (5.55) and (5.56), to get

∂En

∂w
(1)
ji

=
∂En

∂aj

∂aj

∂w
(1)
ji

= xi

∑

k

∂En

∂ak

∂ak

∂aj

= xi h
′(aj)

∑

k

w
(2)
kj δk.

Thus we have

∂2En

∂w
(1)
ji ∂w

(1)
j′i′

=
∂

∂wj′i′

(
xi h

′(aj)
∑

k

w
(2)
kj δk

)
.

Now we note thatxi andw(2)
kj do not depend onw(1)

j′i′ , while h′(aj) is only affected
in the case wherej = j′. Using these observations together with (5.48), we get

∂2En

∂w
(1)
ji ∂w

(1)
j′i′

= xixi′h
′′(aj)Ijj′

∑

k

w
(2)
kj δk + xih

′(aj)
∑

k

w
(2)
kj

∂δk

∂w
(1)
j′i′

. (183)
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From (5.48), (5.55), (5.56), (5.92) and the chain rule, we have

∂δk

∂w
(1)
j′i′

=
∑

k′

∂2En

∂ak ∂ak′

∂ak′

∂aj′

∂aj′

∂w
(1)
j′i′

= xi′h
′(aj)

∑

k′

w
(2)
k′j′Mkk′ . (184)

Substituting this back into (183), we obtain (5.94).

Finally, from (182) we have

∂2En

∂w
(1)
ji ∂w

(2)
kj′

=
∂δkzj′

∂w
(1)
ji

.

Using (184), we get

∂2En

∂w
(1)
ij ∂w

(2)
kj′

= zj′xih
′(aj)

∑

k′

w
(2)
k′jMkk′ + δkIjj′h′(aj)xi

= xih
′(aj)

(
δkIjj′ +

∑

k′

w
(2)
k′jMkk′

)
.

5.23 If we introduce skip layer weights into the model discussed in Section 5.4.5, three
new cases are added to three already covered in Exercise 5.22.

The first derivative w.r.t. skip layer weightuki can be written

∂En

∂uki
=
∂En

∂ak

∂ak

∂uki
=
∂En

∂ak
xi. (185)

Using this, we can consider the first new case, where both weights are in the skip
layer,

∂2En

∂uki ∂uk′i′
=

∂2En

∂ak ∂ak′

∂ak′

∂uk′i′
xi

= Mkk′xixi′ ,

where we have also used (5.92).

When one weight is in the skip layer and the other weight is in the hidden-to-output
layer, we can use (185), (5.48) and (5.92) to get

∂2En

∂uki ∂w
(2)
k′j

=
∂2En

∂ak ∂ak′

∂ak′

∂w
(2)
k′j

xi

= Mkk′zjxi.
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Finally, if one weight is a skip layer weight and the other is in the input-to-hidden
layer, (185), (5.48), (5.55), (5.56) and (5.92) together give

∂2En

∂uki ∂w
(1)
ji′

=
∂

∂w
(1)
ji′

(
∂En

∂ak
xi

)

=
∑

k′

∂2En

∂ak ∂ak′

∂ak′

∂w
(1)
ji′

xi

= xixi′h
′(aj)

∑

k′

Mkk′w
(2)
k′j .

5.24 With the transformed inputs, weights and biases, (5.113) becomes

zj = h

(
∑

i

w̃jix̃i + w̃j0

)
.

Using (5.115)–(5.117), we can rewrite the argument ofh(·) on the r.h.s. as

∑

i

1

a
wji(axi + b) + wj0 −

b

a

∑

i

wji

=
∑

i

wjixi +
b

a

∑

i

wji + wj0 −
b

a

∑

i

wji

=
∑

i

wjixi + wj0.

Similarly, with the transformed outputs, weights and biases, (5.114) becomes

ỹk =
∑

i

w̃kjzj + w̃k0.

Using (5.118)–(5.120), we can rewrite this as

cyk + d =
∑

k

cwkjzj + cwk0 + d

= c

(
∑

i

wkjzj + wk0

)
+ d.

By subtractingd and subsequently dividing byc on both sides, we recover (5.114)
in its original form.

5.25 The gradient of (5.195) is given

∇E = H(w − w?)
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and hence update formula (5.196) becomes

w(τ) = w(τ−1) − ρH(w(τ−1) − w?).

Pre-multiplying both sides withuT
j we get

w
(τ)
j = uT

j w(τ) (186)

= uT
j w(τ−1) − ρuT

j H(w(τ−1) − w?)

= w
(τ−1)
j − ρηju

T
j (w − w?)

= w
(τ−1)
j − ρηj(w

(τ−1)
j − w?

j ), (187)

where we have used (5.198). To show that

w
(τ)
j = {1 − (1 − ρηj)

τ}w?
j

for τ = 1, 2, . . ., we can use proof by induction. Forτ = 1, we recall thatw(0) = 0

and insert this into (187), giving

w
(1)
j = w

(0)
j − ρηj(w

(0)
j − w?

j )

= ρηjw
?
j

= {1 − (1 − ρηj)}w?
j .

Now we assume that the result holds forτ = N − 1 and then make use of (187)

w
(N)
j = w

(N−1)
j − ρηj(w

(N−1)
j − w?

j )

= w
(N−1)
j (1 − ρηj) + ρηjw

?
j

=
{
1 − (1 − ρηj)

N−1
}
w?

j (1 − ρηj) + ρηjw
?
j

=
{
(1 − ρηj) − (1 − ρηj)

N
}
w?

j + ρηjw
?
j

=
{
1 − (1 − ρηj)

N
}
w?

j

as required.

Provided that|1 − ρηj | < 1 then we have(1 − ρηj)
τ → 0 asτ → ∞, and hence{

1 − (1 − ρηj)
N
}
→ 1 andw(τ) → w?.

If τ is finite butηj � (ρτ)−1, τ must still be large, sinceηjρτ � 1, even though
|1 − ρηj | < 1. If τ is large, it follows from the argument above thatw

(τ)
j ' w?

j .

If, on the other hand,ηj � (ρτ)−1, this means thatρηj must be small, sinceρηjτ �
1 andτ is an integer greater than or equal to one. If we expand,

(1 − ρηj)
τ = 1 − τρηj +O(ρη2

j )
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and insert this into (5.197), we get

|w(τ)
j | = | {1 − (1 − ρηj)

τ}w?
j |

= |
{
1 − (1 − τρηj +O(ρη2

j ))
}
w?

j |
' τρηj |w?

j | � |w?
j |

Recall that in Section 3.5.3 we showed that when the regularization parameter (called
α in that section) is much larger than one of the eigenvalues (calledλj in that section)
then the corresponding parameter valuewi will be close to zero. Conversely, when
α is much smaller thanλi thenwi will be close to its maximum likelihood value.
Thusα is playing an analogous role toρτ .

5.26 NOTE: In PRML, equation (5.201) should read

Ωn =
1

2

∑

k

(Gyk)
2

∣∣∣∣∣
xn

.

In this solution, we will indicate dependency onxn with a subscriptn on relevant
symbols.

Substituting the r.h.s. of (5.202) into (5.201) and then using(5.70), we get

Ωn =
1

2

∑

k

(
∑

i

τni
∂ynk

∂xni

)2

(188)

=
1

2

∑

k

(
∑

i

τniJnki

)2

(189)

whereJnki denotedJki evaluated atxn. Summing (189) overn, we get (5.128).

By applyingG from (5.202) to the equations in (5.203) and making use of (5.205)
we obtain (5.204). From this, we see thatβnl can be written in terms ofαni, which
in turn can be written as functions ofβni from the previous layer. For the input layer,
using (5.204) and (5.205), we get

βnj =
∑

i

wjiαni

=
∑

i

wjiGxni

=
∑

i

wji

∑

i′

τni′
∂xni

∂xni′

=
∑

i

wjiτni. (190)
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Thus we see that, starting from (190),τn is propagated forward by subsequent appli-
cation of the equations in (5.204), yielding theβnl for the output layer, from which
Ωn can be computed using (5.201),

Ωn =
1

2

∑

k

(Gynk)
2

=
1

2

∑

k

α2
nk.

Considering∂Ωn/∂wrs, we start from (5.201) and make use of the chain rule, to-
gether with (5.52), (5.205) and (5.207), to obtain

∂Ωn

∂wrs
=

∑

k

(Gynk)G (δnkrzns)

=
∑

k

αnk (φnkrzns + δnkrαns) .

The backpropagation formula for computingδnkr follows from (5.74), which is used
in computing the Jacobian matrix, and is given by

δnkr = h′(anr)
∑

l

wlrδnkl.

Using this together with (5.205) and (5.207), we can obtain backpropagation equa-
tions forφnkr,

φnkr = Gδnkr

= G
(
h′(anr)

∑

l

wlrδnkl

)

= h′′(anr)βnr

∑

l

wlrδnkl + h′(anr)
∑

l

wlrφnkl.

5.27 If s(x, ξ) = x + ξ, then
∂sk

∂ξi
= Iki, i.e.,

∂s

∂ξ
= I,

and since the first order derivative is constant, there are no higher order derivatives.
We now make use of this result to obtain the derivatives ofy w.r.t. ξi:

∂y

∂ξi
=
∑

k

∂y

∂sk

∂sk

∂ξi
=

∂y

∂si
= bi

∂y

∂ξi∂ξj
=
∂bi
∂ξj

=
∑

k

∂bi
∂sk

∂sk

∂ξj
=
∂bi
∂sj

= Bij
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Using these results, we can write the expansion ofẼ as follows:

Ẽ =
1

2

∫∫∫
{y(x) − t}2p(t|x)p(x)p(ξ) dξ dxdt

+

∫∫∫
{y(x) − t}bTξp(ξ)p(t|x)p(x) dξ dxdt

+
1

2

∫∫∫
ξT
(
{y(x) − t}B + bbT

)
ξp(ξ)p(t|x)p(x) dξ dxdt.

The middle term will again disappear, sinceE[ξ] = 0 and thus we can writẽE on
the form of (5.131) with

Ω =
1

2

∫∫∫
ξT
(
{y(x) − t}B + bbT

)
ξp(ξ)p(t|x)p(x) dξ dxdt.

Again the first term within the parenthesis vanishes to leading order inξ and we are
left with

Ω ' 1

2

∫∫
ξT
(
bbT

)
ξp(ξ)p(x) dξ dx

=
1

2

∫∫
Trace

[(
ξξT

) (
bbT

)]
p(ξ)p(x) dξ dx

=
1

2

∫
Trace

[
I
(
bbT

)]
p(x) dx

=
1

2

∫
bTbp(x) dx =

1

2

∫
‖∇y(x)‖2p(x) dx,

where we used the fact thatE[ξξT] = I.

5.28 The modifications only affect derivatives with respect to weights in the convolutional
layer. The units within a feature map (indexedm) have different inputs, but all share
a common weight vector,w(m). Thus, errorsδ(m) from all units within a feature
map will contribute to the derivatives of the corresponding weight vector. In this
situation, (5.50) becomes

∂En

∂w
(m)
i

=
∑

j

∂En

∂a
(m)
j

∂a
(m)
j

∂w
(m)
i

=
∑

j

δ
(m)
j z

(m)
ji .

Herea(m)
j denotes the activation of thejth unit in themth feature map, whereas

w
(m)
i denotes theith element of the corresponding feature vector and, finally,z

(m)
ji

denotes theith input for thejth unit in themth feature map; the latter may be an
actual input or the output of a preceding layer.

Note thatδ(m)
j = ∂En/∂a

(m)
j will typically be computed recursively from theδs

of the units in the following layer, using (5.55). If there are layer(s) preceding the
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convolutional layer, the standard backward propagation equations will apply; the
weights in the convolutional layer can be treated as if they were independent param-
eters, for the purpose of computing theδs for the preceding layer’s units.

5.29 This is easily verified by taking the derivative of (5.138), using(1.46) and standard
derivatives, yielding

∂Ω

∂wi
=

1∑
k πkN (wi|µk, σ2

k)

∑

j

πjN (wi|µj , σ
2
j )

(wi − µj)

σ2
.

Combining this with (5.139) and (5.140), we immediately obtainthe second term of
(5.141).

5.30 Since theµjs only appear in the regularization term,Ω(w), from (5.139) we have

∂Ẽ

∂µj
= λ

∂Ω

∂µj
. (191)

Using (2.42), (5.138) and (5.140) and standard rules for differentiation, we can cal-
culate the derivative ofΩ(w) as follows:

∂Ω

∂µj
= −

∑

i

1∑
j′ πj′N

(
wi|µj′ , σ2

j′

)πjN
(
wi|µj , σ

2
j

) wi − µj

σ2
j

= −
∑

i

γj(wi)
wi − µj

σ2
j

.

Combining this with (191), we get (5.142).

5.31 Following the same line of argument as in Solution 5.30, we need the derivative
of Ω(w) w.r.t. σj . Again using (2.42), (5.138) and (5.140) and standard rules for
differentiation, we find this to be

∂Ω

∂σj
= −

∑

i

1∑
j′ πj′N

(
wi|µj′ , σ2

j′

)πj
1

(2π)1/2

{
− 1

σ2
j

exp

(
−(wi − µj)

2

2σ2
j

)

+
1

σj
exp

(
−(wi − µj)

2

2σ2
j

)
(wi − µj)

2

σ3
j

}

=
∑

i

γj(wi)

{
1

σj
− (wi − µj)

2

σ3
j

}
.

Combining this with (191), we get (5.143).

5.32 NOTE: In the first printing of PRML, there is a leadingλ missing on the r.h.s. of
equation (5.147). Moreover, in the text of the exercise (last line), the equation of the
constraint to be used should read “

∑
k γk(wi) = 1 for all i”.

Equation (5.208) follows from (5.146) in exactly the same way that(4.106) follows
from (4.104) in Solution 4.17.
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Just as in Solutions 5.30 and 5.31,ηj only affectẼ throughΩ(w). However,ηj will
affectπk for all values ofk (not justj = k). Thus we have

∂Ω

∂ηj
=
∑

k

∂Ω

∂πk

∂πk

∂ηj
. (192)

From (5.138) and (5.140), we get

∂Ω

∂πk
= −

∑

i

γk(wi)

πk
.

Substituting this and (5.208) into (192) yields

∂Ω

∂ηj
=

∂Ẽ

∂ηj
= −

∑

k

∑

i

γk(wi)

πk
{δjkπj − πjπk}

=
∑

i

{πj − γj(wi)} ,

where we have used the fact that
∑

k γk(wi) = 1 for all i.

5.33 From standard trigometric rules we get the position of the end of the first arm,
(
x

(1)
1 , x

(1)
2

)
= (L1 cos(θ1), L1 sin(θ1)) .

Similarly, the position of the end of the second arm relative to the end of the first arm
is given by the corresponding equation, with an angle offset ofπ (see Figure 5.18),
which equals a change of sign

(
x

(2)
1 , x

(2)
2

)
= (L2 cos(θ1 + θ2 − π), L1 sin(θ1 + θ2 − π))

= − (L2 cos(θ1 + θ2), L2 sin(θ1 + θ2)) .

Putting this together, we must also taken into account thatθ2 is measured relative to
the first arm and so we get the position of the end of the second arm relative to the
attachment point of the first arm as

(x1, x2) = (L1 cos(θ1) − L2 cos(θ1 + θ2), L1 sin(θ1) − L2 sin(θ1 + θ2)) .

5.34 NOTE: In the 1st printing of PRML, the l.h.s. of (5.154) should be replaced with
γnk = γk(tn|xn). Accordingly, in (5.155) and (5.156),γk should be replaced by
γnk and in (5.156),tl should betnl.

We start by using the chain rule to write

∂En

∂aπ
k

=

K∑

j=1

∂En

∂πj

∂πj

∂aπ
k

. (193)
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Note that because of the coupling between outputs caused by the softmax activation
function, the dependence on the activation of a single outputunit involves all the
output units.

For the first factor inside the sum on the r.h.s. of (193), standardderivatives applied
to thenth term of (5.153) gives

∂En

∂πj
= − Nnj∑K

l=1 πlNnl

= −γnj

πj
. (194)

For the for the second factor, we have from (4.106) that

∂πj

∂aπ
k

= πj(Ijk − πk). (195)

Combining (193), (194) and (195), we get

∂En

∂aπ
k

= −
K∑

j=1

γnj

πj
πj(Ijk − πk)

= −
K∑

j=1

γnj(Ijk − πk) = −γnk +

K∑

j=1

γnjπk = πk − γnk,

where we have used the fact that, by (5.154),
∑K

j=1 γnj = 1 for all n.

5.35 NOTE: See Solution 5.34.

From (5.152) we have
aµ

kl = µkl

and thus
∂En

∂aµ
kl

=
∂En

∂µkl
.

From (2.43), (5.153) and (5.154), we get

∂En

∂µkl
= − πkNnk∑

k′ πk′Nnk′

tnl − µkl

σ2
k(xn)

= γnk (tn|xn)
µkl − tnl

σ2
k(xn)

.

5.36 NOTE: In the 1st printing of PRML, equation (5.157) is incorrect and the correct
equation appears at the end of this solution ; see also Solution 5.34.

From (5.151) and (5.153), we see that

∂En

∂aσ
k

=
∂En

∂σk

∂σk

∂aσ
k

, (196)
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where, from (5.151),

∂σk

∂aσ
k

= σk. (197)

From (2.43), (5.153) and (5.154), we get

∂En

∂σk
= − 1∑

k′ Nnk′

(
L

2π

)L/2{
− L

σL+1
exp

(
−‖tn − µk‖2

2σ2
k

)

+
1

σL
exp

(
−‖tn − µk‖2

2σ2
k

)
‖tn − µk‖2

σ3
k

}

= γnk

(
L

σk
− ‖tn − µk‖2

σ3
k

)
.

Combining this with (196) and (197), we get

∂En

∂aσ
k

= γnk

(
L− ‖tn − µk‖2

σ2
k

)
.

5.37 From (2.59) and (5.148) we have

E [t|x] =

∫
tp (t|x) dt

=

∫
t

K∑

k=1

πk(x)N
(
t|µk(x), σ2

k(x)
)

dt

=

K∑

k=1

πk(x)

∫
tN
(
t|µk(x), σ2

k(x)
)

dt

=

K∑

k=1

πk(x)µk(x).

We now introduce the shorthand notation

tk = µk(x) and t =

K∑

k=1

πk(x)tk.



Solutions 5.38–5.39 113

Using this together with (2.59), (2.62), (5.148) and (5.158), we get

s2(x) = E
[
‖t − E [t|x] ‖2|x

]
=

∫
‖t − t‖2p (t|x) dt

=

∫ (
tTt − tTt − t

T
t + t

T
t

) K∑

k=1

πkN
(
t|µk(x), σ2

k(x)
)

dt

=

K∑

k=1

πk(x)
{
σ2

k + t
T

k tk − t
T

k t − t
T
tk + t

T
t

}

=

K∑

k=1

πk(x)
{
σ2

k + ‖tk − t‖2
}

=

K∑

k=1

πk(x)



σ

2
k +

∥∥∥∥∥µk(x) −
K∑

l

πlµl(x)

∥∥∥∥∥

2


 .

5.38 Making the following substitions from the r.h.s. of (5.167) and (5.171),

x ⇒ w µ⇒ wMAP Λ−1 ⇒ A−1

y ⇒ t A ⇒ gT b ⇒ y(x,wMAP) − gTwMAP L−1 ⇒ β−1,

in (2.113) and (2.114), (2.115) becomes

p(t) = N
(
t|gTwMAP + y(x,wMAP) − gTwMAP, β

−1 + gTA−1g
)

= N
(
t|y(x,wMAP), σ2

)
,

whereσ2 is defined by (5.173).

5.39 Using (4.135), we can approximate (5.174) as

p(D|α, β) ' p(D|wMAP, β)p(wMAP|α)∫
exp

{
−1

2
(w − wMAP)

T
A (w − wMAP)

}
dw,

whereA is given by (5.166), asp(D|w, β)p(w|α) is proportional top(w|D, α, β).

Using (4.135), (5.162) and (5.163), we can rewrite this as

p(D|α, β) '
N∏

n

N (tn|y(xn,wMAP), β−1)N (wMAP|0, α−1I)
(2π)W/2

|A|1/2
.

Taking the logarithm of both sides and then using (2.42) and (2.43), we obtain the
desired result.
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5.40 For aK-class neural network, the likelihood function is given by

N∏

n

K∏

k

yk(xn,w)tnk

and the corresponding error function is given by (5.24).

Again we would use a Laplace approximation for the posterior distribution over the
weights, but the corresponding Hessian matrix,H, in (5.166), would now be derived
from (5.24). Similarly, (5.24), would replace the binary cross entropy error term in
the regularized error function (5.184).

The predictive distribution for a new pattern would again have tobe approximated,
since the resulting marginalization cannot be done analytically. However, in con-
trast to the two-class problem, there is no obvious candidate for this approximation,
although Gibbs (1997) discusses various alternatives.

5.41 NOTE: In PRML, the final “const” term in Equation (5.183) should be ommitted.

This solutions is similar to Solution 5.39, with the difference that the log-likelihood
term is now given by (5.181). Again using (4.135), the correspondingapproximation
of the marginal likelihood becomes

p(D|α) ' p(D|wMAP)p(wMAP|α)
∫

exp

(
−1

2
(w − wMAP)TA(w − wMAP)

)
dw, (198)

where now
A = −∇∇ ln p(D|w) = H + αI.

Performing the integral in (198) using (4.135) and then taking the logarithm on, we
get (5.183).

Chapter 6 Kernel Methods

6.1 We first of all note thatJ(a) depends ona only through the formKa. Since typically
the numberN of data points is greater than the numberM of basis functions, the
matrix K = ΦΦT will be rank deficient. There will then beM eigenvectors ofK
having non-zero eigenvalues, andN−M eigenvectors with eigenvalue zero. We can
then decomposea = a‖ + a⊥ whereaT

‖ a⊥ = 0 andKa⊥ = 0. Thus the value of
a⊥ is not determined byJ(a). We can remove the ambiguity by settinga⊥ = 0, or
equivalently by adding a regularizer term

ε

2
aT
⊥a⊥
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to J(a) whereε is a small positive constant. Thena = a‖ wherea‖ lies in the span
of K = ΦΦT and hence can be written as a linear combination of the columnsof
Φ, so that in component notation

an =

M∑

i=1

uiφi(xn)

or equivalently in vector notation

a = Φu. (199)

Substituting (199) into (6.7) we obtain

J(u) =
1

2
(KΦu − t)

T
(KΦu − t) +

λ

2
uTΦTKΦu

=
1

2

(
ΦΦTΦu − t

)T (
ΦΦTΦu − t

)
+
λ

2
uTΦTΦΦTΦu (200)

Since the matrixΦTΦ has full rank we can define an equivalent parametrization
given by

w = ΦTΦu

and substituting this into (200) we recover the original regularized error function
(6.2).

6.2 Starting with an initial weight vectorw = 0 the Perceptron learning algorithm in-
crementsw with vectorstnφ(xn) wheren indexes a pattern which is misclassified
by the current model. The resulting weight vector therefore comprises a linear com-
bination of vectors of the formtnφ(xn) which we can represent in the form

w =

N∑

n=1

αntnφ(xn) (201)

whereαn is an integer specifying the number of times that patternn was used to
updatew during training. The corresponding predictions made by the trained Per-
ceptron are therefore given by

y(x) = sign
(
wTφ(x)

)

= sign

(
N∑

n=1

αntnφ(xn)Tφ(x)

)

= sign

(
N∑

n=1

αntnk(xn,x)

)
.

Thus the predictive function of the Perceptron has been expressedpurely in terms
of the kernel function. The learning algorithm of the Perceptron can similarly be
written as

αn → αn + 1
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for patterns which are misclassified, in other words patterns which satisfy

tn
(
wTφ(xn)

)
> 0.

Using (201) together withαn > 0, this can be written in terms of the kernel function
in the form

tn

(
N∑

m=1

k(xm,xn)

)
> 0

and so the learning algorithm depends only on the elements of the Gram matrix.

6.3 The distance criterion for the nearest neighbour classifier can be expressed in terms
of the kernel as follows

D(x,xn) = ‖x − xn‖2

= xTx + xT
nxn − 2xTxn

= k(x,x) + k(xn,xn) − 2k(x,xn)

wherek(x,xn) = xTxn. We then obtain a non-linear kernel classifier by replacing
the linear kernel with some other choice of kernel function.

6.4 An example of such a matrix is
(

2 −2
−3 4

)
.

We can verify this by calculating the determinant of
(

2 − λ −2
−3 4 − λ

)
,

setting the resulting expression equal to zero and solve for the eigenvaluesλ, yielding

λ1 ' 5.65 and λ2 ' 0.35,

which are both positive.

6.5 The results (6.13) and (6.14) are easily proved by using (6.1) whichdefines the kernel
in terms of the scalar product between the feature vectors for two input vectors. If
k1(x,x

′) is a valid kernel then there must exist a feature vectorφ(x) such that

k1(x,x
′) = φ(x)Tφ(x′).

It follows that
ck1(x,x

′) = u(x)Tu(x′)

where
u(x) = c1/2φ(x)



Solutions 6.6–6.7 117

and sock1(x,x
′) can be expressed as the scalar product of feature vectors, and hence

is a valid kernel.

Similarly, for (6.14) we can write

f(x)k1(x,x
′)f(x′) = v(x)Tv(x′)

where we have defined
v(x) = f(x)φ(x).

Again, we see thatf(x)k1(x,x
′)f(x′) can be expressed as the scalar product of

feature vectors, and hence is a valid kernel.

Alternatively, these results can be proved be appealing to the general result that
the Gram matrix,K, whose elements are given byk(xn,xm), should be positive
semidefinite for all possible choices of the set{xn}, by following a similar argu-
ment to Solution 6.7 below.

6.6 Equation (6.15) follows from (6.13), (6.17) and (6.18).

For (6.16), we express the exponential as a power series, yielding

k (x,x′) = exp (k1 (x,x′))

=

∞∑

m=0

(k1 (x,x′))m

m!
.

Since this is a polynomial ink1 (x,x′) with positive coefficients, (6.16) follows from
(6.15).

6.7 (6.17) is most easily proved by making use of the result, discussed on page 295, that
a necessary and sufficient condition for a functionk(x,x′) to be a valid kernel is
that the Gram matrixK, whose elements are given byk(xn,xm), should be positive
semidefinite for all possible choices of the set{xn}. A matrix K is positive semi-
definite if, and only if,

aTKa > 0

for any choice of the vectora. Let K1 be the Gram matrix fork1(x,x
′) and letK2

be the Gram matrix fork2(x,x
′). Then

aT(K1 + K2)a = aTK1a + aTK2a > 0

where we have used the fact thatK1 andK2 are positive semi-definite matrices,
together with the fact that the sum of two non-negative numberswill itself be non-
negative. Thus, (6.17) defines a valid kernel.

To prove (6.18), we take the approach adopted in Solution 6.5. Since we know that
k1(x,x

′) andk2(x,x
′) are valid kernels, we know that there exist mappingsφ(x)

andψ(x) such that

k1(x,x
′) = φ(x)Tφ(x′) and k2(x,x

′) = ψ(x)Tψ(x′).
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Hence

k(x,x′) = k1(x,x
′)k2(x,x

′)

= φ(x)Tφ(x′)ψ(x)Tψ(x′)

=

M∑

m=1

φm(x)φm(x′)
N∑

n=1

ψn(x)ψn(x′)

=

M∑

m=1

N∑

n=1

φm(x)φm(x′)ψn(x)ψn(x′)

=

K∑

k=1

ϕk(x)ϕk(x′)

= ϕ(x)Tϕ(x′),

whereK = MN and

ϕk(x) = φ((k−1)�N)+1(x)ψ((k−1)�N)+1(x),

where in turn� and� denote integer division and remainder, respectively.

6.8 If we consider the Gram matrix,K, corresponding to the l.h.s. of (6.19), we have

(K)ij = k(xi,xj) = k3 (φ(xi),φ(xj)) = (K3)ij

whereK3 is the Gram matrix corresponding tok3(·, ·). Sincek3(·, ·) is a valid
kernel,

uTKu = uTK3u > 0.

For (6.20), letK = XTAX, so that(K)ij = xT
i Axj , and consider

uTKu = uTXTAXu

= vTAv > 0

where ,v = Xu and we have used thatA is positive semidefinite.

6.9 Equations (6.21) and (6.22) are special cases of (6.17) and (6.18),respectively, where
ka(·, ·) andkb(·, ·) only depend on particular elements in their argument vectors.
Thus (6.21) and (6.22) follow from the more general results.

6.10 Any solution of a linear learning machine based on this kernel must take the form

y(x) =

N∑

n=1

αnk(xn,x) =

(
N∑

n=1

αnf(xn)

)
f(x) = Cf(x).



Solutions 6.11–6.13 119

6.11 As discussed in Solution 6.6, the exponential kernel (6.16) can be written as an
infinite sum of terms, each of which can itself be written as an inner product of
feature vectors, according to (6.15). Thus, by concatenating the feature vectors of
the indvidual terms in that sum, we can write this as an inner product of infinite
dimension feature vectors. More formally,

exp
(
xTx′/σ2

)
=

∞∑

m=0

φm(x)Tφ0(x
′)

= ψ(x)Tψ(x′)

whereψ(x)T =
[
φ0(x)T,φ1(x)T, . . .

]
. Hence, we can write (6.23) as

k(x,x′) = ϕ(x)Tϕ(x′)

where

ϕ(x) = exp

(
xTx

σ2

)
ψ(x).

6.12 NOTE: In the 1st printing of PRML, there is an error in the text relating to this
exercise. Immediately following (6.27), it says:|A| denotes the number ofsubsets
in A; it should have said:|A| denotes the number ofelements in A.

SinceA may be equal toD (the subset relation was not defined to be strict),φ(D)
must be defined. This will map to a vector of2|D| 1s, one for each possible subset
of D, includingD itself as well as the empty set. ForA ⊂ D, φ(A) will have 1s in
all positions that correspond to subsets ofA and 0s in all other positions. Therefore,
φ(A1)

Tφ(A2) will count the number of subsets shared byA1 andA2. However, this
can just as well be obtained by counting the number of elements in the intersection
of A1 andA2, and then raising 2 to this number, which is exactly what (6.27)does.

6.13 In the case of the transformed parameterψ(θ), we have

g(θ,x) = Mgψ (202)

whereM is a matrix with elements

Mij =
∂ψi

∂θj

(recall thatψ(θ) is assumed to be differentiable) and

gψ = ∇ψ ln p (x|ψ(θ)) .

The Fisher information matrix then becomes

F = Ex

[
Mgψg

T
ψM

T
]

= MEx

[
gψg

T
ψ

]
MT. (203)
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Substituting (202) and (203) into (6.33), we get

k(x,x′) = gT
ψM

T
(
MEx

[
gψg

T
ψ

]
MT

)−1
Mgψ

= gT
ψM

T
(
MT

)−1
Ex

[
gψg

T
ψ

]−1
M−1Mgψ

= gT
ψEx

[
gψg

T
ψ

]−1
gψ, (204)

where we have used (C.3) and the fact thatψ(θ) is assumed to be invertible. Since
θ was simply replaced byψ(θ), (204) corresponds to the original form of (6.33).

6.14 In order to evaluate the Fisher kernel for the Gaussian we first notethat the covari-
ance is assumed to be fixed, and hence the parameters comprise only the elements of
the meanµ. The first step is to evaluate the Fisher score defined by (6.32). From the
definition (2.43) of the Gaussian we have

g(µ,x) = ∇µ lnN (x|µ,S) = S−1(x − µ).

Next we evaluate the Fisher information matrix using the definition (6.34), giving

F = Ex

[
g(µ,x)g(µ,x)T

]
= S−1

Ex

[
(x − µ)(x − µ)T

]
S−1.

Here the expectation is with respect to the original Gaussian distribution, and so we
can use the standard result

Ex

[
(x − µ)(x − µ)T

]
= S

from which we obtain
F = S−1.

Thus the Fisher kernel is given by

k(x,x′) = (x − µ)TS−1(x′ − µ),

which we note is just the squared Mahalanobis distance.

6.15 The determinant for the2 × 2 Gram matrix
(
k(x1, x1) k(x1, x2)
k(x2, x1) k(x2, x2)

)

equals
k(x1, x1)k(x2, x2) − k(x1, x2)

2,

where we have used the fact thatk(x1, x2) = k(x2, x1). Then (6.96) follows directly
from the fact that this determinant must be non-negative for a positive semidefinite
matrix.

6.16 NOTE: In the 1st printing of PRML, a detail is missing in this exercise; the text
“where wT

⊥φ(xn) = 0 for all n,” should be inserted at the beginning of the line
immediately following equation (6.98).
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We start by rewriting (6.98) as

w = w‖ + w⊥ (205)

where

w‖ =

N∑

n=1

αnφ(xn).

Note that sincewT
⊥φ(xn) = 0 for all n,

wT
⊥w‖ = 0. (206)

Using (205) and (206) together with the fact thatwT
⊥φ(xn) = 0 for all n, we can

rewrite (6.97) as

J(w) = f
(
(w‖ + w⊥)Tφ(x1), . . . , (w‖ + w⊥)Tφ(xN )

)

+g
(
(w‖ + w⊥)T(w‖ + w⊥)

)

= f
(
wT

‖φ(x1), . . . ,w
T
‖φ(xN )

)
+ g

(
wT

‖ w‖ + wT
⊥w⊥

)
.

Sinceg(·) is monotonically increasing, it will have its minimum w.r.t.w⊥ atw⊥ =
0, in which case

w = w‖ =

N∑

n=1

αnφ(xn)

as desired.

6.17 NOTE: In the1st printing of PRML, there are typographical errors in the text relating
to this exercise. In the sentence following immediately after (6.39),f(x) should be
replaced byy(x). Also, on the l.h.s. of (6.40),y(xn) should be replaced byy(x).
There were also errors in Appendix D, which might cause confusion; please consult
the errata on the PRML website.

Following the discussion in Appendix D we give a first-principles derivation of the
solution. First consider a variation in the functiony(x) of the form

y(x) → y(x) + εη(x).

Substituting into (6.39) we obtain

E[y + εη] =
1

2

N∑

n=1

∫
{y(xn + ξ) + εη(xn + ξ) − tn}2

ν(ξ) dξ.

Now we expand in powers ofε and set the coefficient ofε, which corresponds to the
functional first derivative, equal to zero, giving

N∑

n=1

∫
{y(xn + ξ) − tn} η(xn + ξ)ν(ξ) dξ = 0. (207)
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This must hold for every choice of the variation functionη(x). Thus we can choose

η(x) = δ(x − z)

whereδ( · ) is the Dirac delta function. This allows us to evaluate the integral overξ
giving

N∑

n=1

∫
{y(xn + ξ) − tn} δ(xn + ξ − z)ν(ξ) dξ =

N∑

n=1

{y(z) − tn} ν(z − xn).

Substituting this back into (207) and rearranging we then obtainthe required result
(6.40).

6.18 From the product rule we have

p(t|x) =
p(t, x)

p(x)
.

With p(t, x) given by (6.42) and

f(x− xn, t− tn) = N
(
[x− xn, t− tn]T|0, σ2I

)

this becomes

p(t|x) =

∑N
n=1 N

(
[x− xn, t− tn]T|0, σ2I

)
∫ ∑N

m=1 N ([x− xm, t− tm]T|0, σ2I) dt

=

∑N
n=1 N (x− xn|0, σ2)N (t− tn|0, σ2)

∑N
m=1 N (x− xm|0, σ2)

.

From (6.46), (6.47), the definition off(x, t) and the properties of the Gaussian dis-
tribution, we can rewrite this as

p(t|x) =

N∑

n=1

k(x, xn)N
(
t− tn|0, σ2

)

=

N∑

n=1

k(x, xn)N
(
t|tn, σ2

)
(208)

where

k(x, xn) =
N (x− xn|0, σ2)

∑N
m=1 N (x− xm|0, σ2)

.

We see that this a Gaussian mixture model wherek(x, xn) play the role of input
dependent mixing coefficients.
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Using (208) it is straightforward to calculate various expectations:

E[t|x] =

∫
t p(t|x) dt

=

∫
t

N∑

n=1

k(x, xn)N
(
t|tn, σ2

)
dt

=

N∑

n=1

k(x, xn)

∫
tN

(
t|tn, σ2

)
dt

=

N∑

n=1

k(x, xn) tn

and

var[t|x] = E
[
(t− E[t|x])2

]

=

∫
(t− E[t|x])2 p(t|x) dt

=

N∑

n=1

k(x, xn)

∫
(t− E[t|x])2 N

(
t|tn, σ2

)
dt

=

N∑

n=1

k(x, xn)
(
σ2 + t2n − 2tnE[t|x] + E[t|x]2

)

= σ2 − E[t|x]2 +

N∑

n=1

k(x, xn) t2n.

6.19 Changing variables tozn = xn − ξn we obtain

E =
1

2

N∑

n=1

∫
[y(zn) − tn]

2
g(xn − zn) dzn.

If we set the functional derivative ofE with respect to the functiony(x), for some
general value ofx, to zero using the calculus of variations (see Appendix D) we have

δE

δy(x)
=

N∑

n=1

∫
[y(zn) − tn] g(xn − zn)δ(x − zn) dzn

=

N∑

n=1

[y(x) − tn] g(xn − x) = 0.

Solving fory(x) we obtain

y(x) =

N∑

n=1

k(x,xn)tn (209)
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where we have defined

k(x,xn) =
g(xn − x)∑
n g(xn − x)

.

This an expansion in kernel functions, where the kernels satisfy the summation con-
straint

∑
n k(x,xn) = 1.

6.20 Given the joint distribution (6.64), we can identifytN+1 with xa and t with xb in
(2.65). Note that this means that we are prepending rather than appendingtN+1 to t
andCN+1 therefore gets redefined as

CN+1 =

(
c kT

k CN

)
.

It then follows that

µa = 0 µb = 0 xb = t

Σaa = c Σbb = CN Σab =ΣT
ba = kT

in (2.81) and (2.82), from which (6.66) and (6.67) follows directly.

6.21 Both the Gaussian process and the linear regression model give rise to Gaussian
predictive distributionsp(tN+1|xN+1) so we simply need to show that these have
the same mean and variance. To do this we make use of the expression (6.54) for the
kernel function defined in terms of the basis functions. Using (6.62) the covariance
matrixCN then takes the form

CN =
1

α
ΦΦT + β−1IN (210)

whereΦ is the design matrix with elementsΦnk = φk(xn), andIN denotes the
N × N unit matrix. Consider first the mean of the Gaussian process predictive
distribution, which from (210), (6.54), (6.66) and the definitions inthe text preceding
(6.66) is given by

mN+1 = α−1φ(xN+1)
TΦT

(
α−1ΦΦT + β−1IN

)−1
t.

We now make use of the matrix identity (C.6) to give

ΦT
(
α−1ΦΦT + β−1IN

)−1
= αβ

(
βΦTΦ + αIM

)−1
ΦT = αβSNΦT.

Thus the mean becomes

mN+1 = βφ(xN+1)
TSNΦTt

which we recognize as the mean of the predictive distribution forthe linear regression
model given by (3.58) withmN defined by (3.53) andSN defined by (3.54).
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For the variance we similarly substitute the expression (210) forthe kernel func-
tion into the Gaussian process variance given by (6.67) and thenuse (6.54) and the
definitions in the text preceding (6.66) to obtain

σ2
N+1(xN+1) = α−1φ(xN+1)

Tφ(xN+1) + β−1

−α−2φ(xN+1)
TΦT

(
α−1ΦΦT + β−1IN

)−1
Φφ(xN+1)

= β−1 + φ(xN+1)
T
(
α−1IM

−α−2ΦT
(
α−1ΦΦT + β−1IN

)−1
Φ
)
φ(xN+1). (211)

We now make use of the matrix identity (C.7) to give

α−1IM − α−1IMΦT
(
Φ(α−1IM )ΦT + β−1IN

)−1
Φα−1IM

=
(
αI + βΦTΦ

)−1
= SN ,

where we have also used (3.54). Substituting this in (211), we obtain

σ2
N (xN+1) =

1

β
+ φ(xN+1)

TSNφ(xN+1)

as derived for the linear regression model in Section 3.3.2.

6.22 From (6.61) we have

p

([
t1...N

tN+1...N+L

])
= N

([
t1...N

tN+1...N+L

] ∣∣∣∣ 0,C
)

with C specified by (6.62).

For our purposes, it is useful to consider the following partition2 of C:

C =

(
Cbb Cba

Cab Caa

)
,

whereCaa corresponds totN+1...N+L andCbb corresponds tot1...N . We can use
this together with (2.94)–(2.97) and (6.61) to obtain the conditional distribution

p(tN+1...N+L|t1...N ) = N
(
tN+1...N+L|µa|b,Λ

−1
)

(212)

where, from (2.78)–(2.80),

Λ−1
aa = Caa − CabC

−1
bb Cba (213)

Λab = −ΛaaCabC
−1
bb

2The indexing and ordering of this partition have been chosen to match the indexing used in
(2.94)–(2.97) as well as the ordering of elements used in the single variate case, as seen in (6.64)–
(6.65).
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and
µa|b = −Λ−1

aa Λabt1...N = CabC
−1
bb t1...N . (214)

Restricting (212) to a single test target, we obtain the corresponding marginal distri-
bution, whereCaa, Cba andCbb correspond toc, k andCN in (6.65), respectively.
Making the matching substitutions in (213) and (214), we see that they equal (6.67)
and (6.66), respectively.

6.23 NOTE: In the 1st printing of PRML, a typographical mistake appears in the text
of the exercise at line three, where it should say “. . . a training set of input vectors
x1, . . . ,xN ”.

If we assume that the target variables,t1, . . . , tD, are independent given the input
vector,x, this extension is straightforward.

Using analogous notation to the univariate case,

p(tN+1|T) = N (tN+1|m(xN+1), σ(xN+1)I),

whereT is aN ×D matrix with the vectorstT
1 , . . . , t

T
N as its rows,

m(xN+1)
T = kTCNT

andσ(xN+1) is given by (6.67). Note thatCN , which only depend on the input
vectors, is the same in the uni- and multivariate models.

6.24 Since the diagonal elements of a diagonal matrix are also the eigenvalues of the
matrix,W is positive definite (see Appendix C). Alternatively, for an arbitrary, non-
zero vectorx,

xTWx =
∑

i

x2
iWii > 0.

If xTWx > 0 andxTVx > 0 for an arbitrary, non-zero vectorx, then

xT(W + V)x = xTWx + xTVx > 0.

6.25 Substituting the gradient and the Hessian into the Newton-Raphson formula we ob-
tain

anew
N = aN + (C−1

N + WN )−1
[
tN − σN − C−1

N aN

]

= (C−1
N + WN )−1 [tN − σN + WNaN ]

= CN (I + WNCN )−1 [tN − σN + WNaN ]

6.26 Using (2.115) the mean of the posterior distributionp(aN+1|tN ) is given by

kTC−1
N a∗

N .

Combining this with the condition

C−1
N a∗

N = tN − σN
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satisfied bya∗
N we obtain (6.87).

Similarly, from (2.115) the variance of the posterior distributionp(aN+1|tN ) is given
by

var[aN+1|tN ] = c− kTC−1
N k + kTC−1

N CN (I + WNCN )−1C−1
N k

= c− kTC−1
N

[
I − (C−1

N + WN )−1C−1
N

]
k

= c− kTC−1
N (C−1

N + WN )−1WNk

= c− kT(W−1
N + CN )−1k

as required.

6.27 Using (4.135), (6.80) and (6.85), we can approximate (6.89) as follows:

p(tN |θ) =

∫
p(tN |aN )p(aN |θ) daN

' p(tN |a?
N )p(a?

N |θ)∫
exp

{
−1

2
(aN − a?

N )
T
H (aN − a?

N )

}
daN

= exp (Ψ(a?
N ))

(2π)N/2

|H|1/2
.

Taking the logarithm, we obtain (6.90).

To derive (6.91), we gather the terms from (6.90) that involveCN , yielding

− 1

2

(
a?T

N C−1
N a?

N + ln |CN | + ln |WN + C−1
N |
)

= −1

2
a?T

N C−1
N a?

N − 1

2
ln |CNWN + I|.

Applying (C.21) and (C.22) to the first and second terms, respectively, we get (6.91).

Applying (C.22) to the l.h.s. of (6.92), we get

−1

2

N∑

n=1

∂ ln |WN + C−1
N |

∂a?
n

∂a?
n

∂θj
= −1

2

N∑

n=1

Tr

((
WN + C−1

N

)−1 ∂W

∂a?
n

)
∂a?

n

∂θj

= −1

2

N∑

n=1

Tr

(
(CNWN + I)

−1
CN

∂W

∂a?
n

)
∂a?

n

∂θj
. (215)

Using the definition ofW together with (4.88), we have

dWnn

da?
n

=
dσ?

n(1 − σ?
n)

da?
n

= σ?
n(1 − σ?

n)2 − σ?2
n (1 − σ?

n)

= σ?
n(1 − σ?

n)(1 − 2σ?
n)
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and substituting this into (215) we the the r.h.s. of (6.92).

Gathering all the terms in (6.93) involving∂a?
n /∂θj on one side, we get

(I + CNWN )
∂a?

n

∂θj
=
∂CN

∂θj
(tN − σN ).

Left-multiplying both sides with(I + CNWN )−1, we obtain (6.94).

Chapter 7 Sparse Kernel Machines

7.1 From Bayes’ theorem we have

p(t|x) ∝ p(x|t)p(t)

where, from (2.249),

p(x|t) =
1

Nt

N∑

n=1

1

Zk
k(x,xn)δ(t, tn).

HereNt is the number of input vectors with labelt (+1 or−1) andN = N+1+N−1.
δ(t, tn) equals1 if t = tn and0 otherwise.Zk is the normalisation constant for
the kernel. The minimum misclassification-rate is achieved if, for each new input
vector,x̃, we chosẽt to maximisep(̃t|x̃). With equal class priors, this is equivalent
to maximizingp(x̃|̃t) and thus

t̃ =





+1 iff
1

N+1

∑

i:ti=+1

k(x̃,xi) >
1

N−1

∑

j:tj=−1

k(x̃,xj)

−1 otherwise.

Here we have dropped the factor1/Zk since it only acts as a common scaling factor.
Using the encoding scheme for the label, this classification rule can be written in the
more compact form

t̃ = sign

(
N∑

n=1

tn
Ntn

k(x̃,xn)

)
.

Now we takek(x,xn) = xTxn, which results in the kernel density

p(x|t = +1) =
1

N+1

∑

n:tn=+1

xTxn = xTx̄+.

Here, the sum in the middle experssion runs over all vectorsxn for which tn = +1
andx̄+ denotes the mean of these vectors, with the corresponding definition for the
negative class. Note that this density is improper, since it cannot be normalized.
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However, we can still compare likelihoods under this density, resulting in the classi-
fication rule

t̃ =

{
+1 if x̃Tx̄+ > x̃Tx̄−,
−1 otherwise.

The same argument would of course also apply in the feature spaceφ(x).

7.2 Consider multiplying both sides of (7.5) byγ > 0. Accordingly, we would then
replace all occurences ofw andb in (7.3) withγw andγb, respectively. However,
as discussed in the text following (7.3), its solution w.r.t.w andb is invariant to a
common scaling factor and hence would remain unchanged.

7.3 Given a data set of two data points,x1 ∈ C+ (t1 = +1) and x2 ∈ C− (t2 =
−1), the maximum margin hyperplane is determined by solving (7.6) subject to the
constraints

wTx1 + b = +1 (216)

wTx2 + b = −1. (217)

We do this by introducing Lagrange multipliersλ andη, and solving

arg min
w,b

{
1

2
‖w‖2 + λ

(
wTx1 + b− 1

)
+ η

(
wTx2 + b+ 1

)}
.

Taking the derivative of this w.r.t.w andb and setting the results to zero, we obtain

0 = w + λx1 + ηx2 (218)

0 = λ+ η. (219)

Equation (219) immediately givesλ = −η, which together with (218) give

w = λ (x1 − x2) . (220)

For b, we first rearrange and sum (216) and (217) to obtain

2b = −wT (x1 + x2) .

Using (220), we can rewrite this as

b = −λ
2

(x1 − x2)
T

(x1 + x2)

= −λ
2

(
xT

1 x1 − xT
2 x2

)
.

Note that the Lagrange multiplierλ remains undetermined, which reflects the inher-
ent indeterminacy in the magnitude ofw andb.
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7.4 From Figure 4.1 and (7.4), we see that the value of the margin

ρ =
1

‖w‖ and so
1

ρ2
= ‖w‖2.

From (7.16) we see that, for the maximum margin solution, the second term of (7.7)
vanishes and so we have

L(w, b,a) =
1

2
‖w‖2.

Using this together with (7.8), the dual (7.10) can be written as

1

2
‖w‖2 =

N∑

n

an − 1

2
‖w‖2,

from which the desired result follows.

7.5 These properties follow directly from the results obtained in the solution to the pre-
vious exercise, 7.4.

7.6 If p(t = 1|y) = σ(y), then

p(t = −1|y) = 1 − p(t = 1|y) = 1 − σ(y) = σ(−y),

where we have used (4.60). Thus, given i.i.d. dataD = {(t1,xn), . . . , (tN ,xN )},
we can write the corresponding likelihood as

p(D) =
∏

tn=1

σ(yn)
∏

tn′=−1

σ(−yn′) =

N∏

n=1

σ(tnyn),

whereyn = y(xn), as given by (7.1). Taking the negative logarithm of this, we get

− ln p(D) = − ln

N∏

n=1

σ(tnyn)

=

N∑

n=1

lnσ(tnyn)

=

N∑

n=1

ln(1 + exp(−tnyn)),

where we have used (4.59). Combining this with the regularizationtermλ‖w‖2, we
obtain (7.47).
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7.7 We start by rewriting (7.56) as

L =

N∑

n=1

Cξn +

N∑

n=1

Cξ̂n +
1

2
wTw −

N∑

n=1

(µnξn + µ̂nξ̂n)

−
N∑

n=1

an(ε+ ξn + wTφ(xn) + b− tn)

−
N∑

n=1

ân(ε+ ξ̂n − wTφ(xn) − b+ tn),

where we have used (7.1). We now use (7.1), (7.57), (7.59) and (7.60) to rewrite this
as

L =

N∑

n=1

(an + µn)ξn +

N∑

n=1

(ân + µ̂n)ξ̂n

+
1

2

N∑

n=1

N∑

m=1

(an − ân)(am − âm)φ(xn)Tφ(xm) −
N∑

n=1

(µnξn + µ̂nξ̂n)

−
N∑

n=1

(anξn + ânξ̂n) − ε

N∑

n=1

(an + ân) +

N∑

n=1

(an − ân)tn

−
N∑

n=1

N∑

m=1

(an − ân)(am − âm)φ(xn)Tφ(xm) − b

N∑

n=1

(an − ân).

If we now eliminate terms that cancel out and use (7.58) to eliminate the last term,
what we are left with equals the r.h.s. of (7.61).

7.8 This follows from (7.67) and (7.68), which in turn follow from the KKT conditions,
(E.9)–(E.11), forµn, ξn, µ̂n andξ̂n, and the results obtained in (7.59) and (7.60).

For example, forµn andξn, the KKT conditions are

ξn > 0

µn > 0

µnξn = 0 (221)

and from (7.59) we have that
µn = C − an. (222)

Combining (221) and (222), we get (7.67); similar reasoning forµ̂n and ξ̂n lead to
(7.68).

7.9 From (7.76), (7.79) and (7.80), we make the substitutions

x ⇒ w µ⇒ 0 Λ ⇒ diag(α)
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y ⇒ t A ⇒ Φ b ⇒ 0 L ⇒ βI,

in (2.113) and (2.114), upon which the desired result follows from (2.116) and
(2.117).

7.10 We first note that this result is given immediately from (2.113)–(2.115), but the task
set in the exercise was to practice the technique of completingthe square. In this
solution and that of Exercise 7.12, we broadly follow the presentation in Section
3.5.1. Using (7.79) and (7.80), we can write (7.84) in a form similar to (3.78)

p(t|X,α, β) =

(
β

2π

)N/2
1

(2π)N/2

M∏

i=1

αi

∫
exp {−E(w)} dw (223)

where

E(w) =
β

2
‖t − Φw‖2 +

1

2
wTAw

andA = diag(α).

Completing the square overw, we get

E(w) =
1

2
(w − m)TΣ−1(w − m) + E(t) (224)

wherem andΣ are given by (7.82) and (7.83), respectively, and

E(t) =
1

2

(
βtTt − mTΣ−1m

)
. (225)

Using (224), we can evaluate the integral in (223) to obtain
∫

exp {−E(w)} dw = exp {−E(t)} (2π)M/2|Σ|1/2. (226)

Considering this as a function oft we see from (7.83), that we only need to deal
with the factorexp {−E(t)}. Using (7.82), (7.83), (C.7) and (7.86), we can re-write
(225) as follows

E(t) =
1

2

(
βtTt − mTΣ−1m

)

=
1

2

(
βtTt − βtTΦΣΣ−1ΣΦTtβ

)

=
1

2
tT
(
βI − βΦΣΦTβ

)
t

=
1

2
tT
(
βI − βΦ(A + βΦTΦ)−1ΦTβ

)
t

=
1

2
tT
(
β−1I + ΦA−1ΦT

)−1
t

=
1

2
tTC−1t.
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This gives us the last term on the r.h.s. of (7.85); the two preceding terms are given
implicitly, as they form the normalization constant for the posterior Gaussian distri-
butionp(t|X,α, β).

7.11 If we make the same substitutions as in Exercise 7.9, the desiredresult follows from
(2.115).

7.12 Using the results (223)–(226) from Solution 7.10, we can write (7.85)in the form of
(3.86):

ln p(t|X,α, β) =
N

2
lnβ +

1

2

N∑

i

lnαi − E(t) − 1

2
ln |Σ| − N

2
ln(2π). (227)

By making use of (225) and (7.83) together with (C.22), we can takethe derivatives
of this w.r.tαi, yielding

∂

∂αi
ln p(t|X,α, β) =

1

2αi
− 1

2
Σii −

1

2
m2

i . (228)

Setting this to zero and re-arranging, we obtain

αi =
1 − αiΣii

m2
i

=
γi

m2
i

,

where we have used (7.89). Similarly, forβ we see that

∂

∂β
ln p(t|X,α, β) =

1

2

(
N

β
− ‖t − Φm‖2 − Tr

[
ΣΦTΦ

])
. (229)

Using (7.83), we can rewrite the argument of the trace operator as

ΣΦTΦ = ΣΦTΦ + β−1ΣA − β−1ΣA

= Σ(ΦTΦβ + A)β−1 − β−1ΣA

= (A + βΦTΦ)−1(ΦTΦβ + A)β−1 − β−1ΣA

= (I − AΣ)β−1. (230)

Here the first factor on the r.h.s. of the last line equals (7.89) written in matrix form.
We can use this to set (229) equal to zero and then re-arrange to obtain (7.88).

7.13 We start by introducing prior distributions overα andβ,

p(αi) = Gam (αi|aα0, bβ0) , i = 1, . . . , N,

p(β) = Gam (β|aβ0, bβ0) .

Note that we use an independent, common prior for allαi. We can then combine this
with (7.84) to obtain

p(α, β, t|X) = p(t|X,α, β)p(α)p(β).
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Rather than maximizing the r.h.s. directly, we first take the logarithm, which enables
us to use results from Solution 7.12. Using (227) and (B.26), we get

ln p(α, β, t|X) =
N

2
lnβ +

1

2

N∑

i

lnαi − E(t) − 1

2
ln |Σ| − N

2
ln(2π)

−N ln Γ(aα0)
−1 +Naα0 ln bα0 +

N∑

i=1

((aα0 − 1) lnαi − bα0αi)

− ln Γ(aβ0)
−1 + aβ0 ln bβ0 + (aβ0 − 1) lnβ − bβ0β.

Using (228), we obtain the derivative of this w.r.t.αi as

∂

∂αi
ln p(α, β, t|X) =

1

2αi
− 1

2
Σii −

1

2
m2

i +
aα0 − 1

αi
− bα0.

Setting this to zero and rearranging (cf. Solution 7.12) we obtain

αnew
i =

γi + 2aα0 − 2

m2
i − 2bα0

,

where we have used (7.89).

Forβ, we can use (229) together with (B.26) to get

∂

∂β
ln p(α, β, t|X) =

1

2

(
N

β
− ‖t − Φm‖2 − Tr

[
ΣΦTΦ

])
+
aβ0 − 1

β
− bβ0.

Setting this equal to zero and using (7.89) and (230), we get

1

βnew
=

‖t − Φm‖2 + 2bβ0

aβ0 + 2 +N −∑i γi
.

7.14 If we make the following substitions from (7.81) into (2.113),

x ⇒ w µ⇒ m Λ−1 ⇒ Σ,

and from (7.76) and (7.77) into (2.114)

y ⇒ t A ⇒ φ(x)T b ⇒ 0 L ⇒ β?I,

(7.90) and (7.91) can be read off directly from (2.115).
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7.15 Using (7.94), (7.95) and (7.97)–(7.99), we can rewrite (7.85) as follows

ln p(t|X,α, β) = −1

2

{
N ln(2π) + ln |C−i||1 + α−1

i ϕT
i C−1

−iϕi|

+tT
(

C−1
−i −

C−1
−iϕiϕ

T
i C−1

−i

αi +ϕT
i C−1

−iϕi

)
t
}

= −1

2

{
N ln(2π) + ln |C−i| + tTC−1

−i t
}

+
1

2

[
− ln |1 + α−1

i ϕT
i C−1

−iϕi| + tT
C−1

−iϕiϕ
T
i C−1

−i

αi +ϕT
i C−1

−iϕi

t
]

= L(α−i) +
1

2

[
lnαi − ln(αi + si) +

q2i
αi + si

]

= L(α−i) + λ(αi)

7.16 If we differentiate (7.97) twice w.r.t.αi, we get

d2λ

dα2
i

= −1

2

(
1

α2
i

+
1

(αi + si)2

)
.

This second derivative must be negative and thus the solutiongiven by (7.101) cor-
responds to a maximum.

7.17 Using (7.83), (7.86) and (C.7), we have

C−1 = βI − β2Φ
(
A + βΦTΦ

)−1
ΦT = βI − β2ΦΣΦT.

Substituting this into (7.102) and (7.103), we immediately obtain (7.106) and (7.107),
respectively.

7.18 As the RVM can be regarded as a regularized logistic regression model, we can
follow the sequence of steps used to derive (4.91) in Exercise 4.13 to derive the first
term of the r.h.s. of (7.110), whereas the second term follows from standard matrix
derivatives (see Appendix C). Note however, that in Exercise 4.13 we are dealing
with thenegative log-likelhood.

To derive (7.111), we make use of (161) and (162) from Exercise 4.13. If we write
the first term of the r.h.s. of (7.110) in component form we get

∂

∂wj

N∑

n=1

(tn − yn)φni = −
N∑

n=1

∂yn

∂an

∂an

∂wj
φni

= −
N∑

n=1

yn(1 − yn)φnjφni,

which, written in matrix form, equals the first term inside the parenthesis on the r.h.s.
of (7.111). The second term again follows from standard matrix derivatives.
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7.19 NOTE: In the1st printing of PRML, on line 1 of the text of this exercise, “approxi-
mate log marginal” should be “approximate marginal”.

We start by taking the logarithm of (7.114), which, omitting termsthat do not depend
onα, leaves us with

ln p(w?|α) +
1

2
ln |Σ| = −1

2

(
ln |Σ−1| +

∑

i

(w?
i )

2
αi − lnαi

)
,

where we have used (7.80). Making use of (7.113) and (C.22), we can differentiate
this to obtain (7.115), from which we get (7.116) by usingγi = 1 − αiΣii.

Chapter 8 Graphical Models

8.1 We want to show that, for (8.5),

∑

x1

. . .
∑

xK

p(x) =
∑

x1

. . .
∑

xK

K∏

k=1

p(xk|pak) = 1.

We assume that the nodes in the graph has been numbered such thatx1 is the root
node and no arrows lead from a higher numbered node to a lower numbered node.
We can then marginalize over the nodes in reverse order, startingwith xK

∑

x1

. . .
∑

xK

p(x) =
∑

x1

. . .
∑

xK

p(xK |paK)

K−1∏

k=1

p(xk|pak)

=
∑

x1

. . .
∑

xK−1

K−1∏

k=1

p(xk|pak),

since each of the conditional distributions is assumed to be correctly normalized and
none of the other variables depend onxK . Repeating this processK − 2 times we
are left with ∑

x1

p(x1|∅) = 1.

8.2 Consider a directed graph in which the nodes of the graph are numbered such that
are no edges going from a node to a lower numbered node. If there exists a directed
cycle in the graph then the subset of nodes belonging to this directed cycle must also
satisfy the same numbering property. If we traverse the cycle in the direction of the
edges the node numbers cannot be monotonically increasing since we must end up
back at the starting node. It follows that the cycle cannot be a directed cycle.
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Table 1 Comparison of the distribu-
tion p(a, b) with the product of
marginals p(a)p(b) showing that
these are not equal for the given
joint distribution p(a, b, c).

a b p(a, b)

0 0 336.000
0 1 264.000
1 0 256.000
1 1 144.000

a b p(a)p(b)

0 0 355200.000
0 1 244800.000
1 0 236800.000
1 1 163200.000

8.3 The distributionp(a, b) is found by summing the complete joint distributionp(a, b, c)
over the states ofc so that

p(a, b) =
∑

c∈{0,1}
p(a, b, c)

and similarly the marginal distributionsp(a) andp(b) are given by

p(a) =
∑

b∈{0,1}

∑

c∈{0,1}
p(a, b, c) and p(b) =

∑

a∈{0,1}

∑

c∈{0,1}
p(a, b, c). (231)

Table 1 shows the joint distributionp(a, b) as well as the product of marginals
p(a)p(b), demonstrating that these are not equal for the specified distribution.

The conditional distributionp(a, b|c) is obtained by conditioning on the value ofc
and normalizing

p(a, b|c) =
p(a, b, c)∑

a∈{0,1}
∑

b∈{0,1} p(a, b, c)
.

Similarly for the conditionalsp(a|c) andp(b|c) we have

p(a|c) =

∑
b∈{0,1} p(a, b, c)∑

a∈{0,1}
∑

b∈{0,1} p(a, b, c)

and

p(b|c) =

∑
a∈{0,1} p(a, b, c)∑

a∈{0,1}
∑

b∈{0,1} p(a, b, c)
. (232)

Table 2 compares the conditional distributionp(a, b|c) with the product of marginals
p(a|c)p(b|c), showing that these are equal for the given joint distributionp(a, b, c)
for bothc = 0 andc = 1.

8.4 In the previous exercise we have already computedp(a) in (231) andp(b|c) in (232).
There remains to computep(c|a) which is done using

p(c|a) =

∑
b∈{0,1} p(a, b, c)∑

b∈{0,1}
∑

c∈{0,1} p(a, b, c)
.



138 Solutions 8.5–8.6

Table 2 Comparison of the condi-
tional distribution p(a, b|c) with the
product of marginals p(a|c)p(b|c) show-
ing that these are equal for the given
distribution.

a b c p(a, b|c)
0 0 0 0.400
0 1 0 0.100
1 0 0 0.400
1 1 0 0.100
0 0 1 0.277
0 1 1 0.415
1 0 1 0.123
1 1 1 0.185

a b c p(a|c)p(b|c)
0 0 0 0.400
0 1 0 0.100
1 0 0 0.400
1 1 0 0.100
0 0 1 0.277
0 1 1 0.415
1 0 1 0.123
1 1 1 0.185

The required distributions are given in Table 3.

Table 3 Tables of p(a), p(c|a) and
p(b|c) evaluated by marginalizing and
conditioning the joint distribution of
Table 8.2.

a p(a)

0 600.000
1 400.000

c a p(c|a)
0 0 0.400
1 0 0.600
0 1 0.600
1 1 0.400

b c p(b|c)
0 0 0.800
1 0 0.200
0 1 0.400
1 1 0.600

Multiplying the three distributions together we recover the joint distributionp(a, b, c)
given in Table 8.2, thereby allowing us to verify the validity ofthe decomposition
p(a, b, c) = p(a)p(c|a)p(b|c) for this particular joint distribution. We can express
this decomposition using the graph shown in Figure 4.

Figure 4 Directed graph representing the joint distribution
given in Table 8.2.

a c b

8.5 NOTE: In PRML, Equation (7.79) contains a typographical error:p(tn|xn,w, β
−1)

should bep(tn|xn,w, β). This correction is provided for completeness only; it does
not affect this solution.

The solution is given in Figure 5.

8.6 NOTE: In PRML, the text of the exercise should be slightly altered; please consult
the PRML errata.

In order to interpret (8.104) suppose initially thatµ0 = 0 and thatµi = 1 − ε
whereε � 1 for i = 1, . . . ,K. We see that, if all of thexi = 0 then p(y =
1|x1, . . . , xK) = 0 while if L of thexi = 1 thenp(y = 1|x1, . . . , xK) = 1 − εL

which is close to1. Forε→ 0 this represents the logical OR function in whichy = 1
if one or more of thexi = 1, andy = 0 otherwise. More generally, if just one of
thexi = 1 with all remainingxj 6=i = 0 thenp(y = 1|x1, . . . , xK) = µi and so
we can interpretµi as the probability ofy = 1 given that only this onexi = 1. We
can similarly interpretµ0 as the probability ofy = 1 when all of thexi = 0. An
example of the application of this model would be in medical diagnosis in whichy
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Figure 5 The graphical representation of the relevance
vector machine (RVM); Solution 8.5.

tn

xn

N

wiβ

αi

M

represents the presence or absence of a symptom, and each of thexi represents the
presence or absence of some disease. For theith disease there is a probabilityµi

that it will give rise to the symptom. There is also a background probabilityµ0 that
the symptom will be observed even in the absence of disease. In practice we might
observe that the symptom is indeed present (so thaty = 1) and we wish to infer the
posterior probability for each disease. We can do this using Bayes’ theorem once we
have defined prior probabilitiesp(xi) for the diseases.

8.7 Starting withµ, (8.11) and (8.15) directly gives

µ1 =
∑

j∈∅
w1jE[xj ] + b1 = b1,

µ2 =
∑

j∈{x1}
w2jE[xj ] + b2 = w21b1 + b2

and
µ3 =

∑

j∈{x2}
w3jE[xj ] + b3 = w32(w21b1 + b2) + b3.

Similarly for Σ, using (8.11) and (8.16), we get

cov[x1, x1] =
∑

k∈∅
w1jcov[x1, xk] + I11v1 = v1,

cov[x1, x2] =
∑

k∈{x1}
w2jcov[x1, xk] + I12v2 = w21v1,

cov[x1, x3] =
∑

k∈{x2}
w3jcov[x1, xk] + I13v3 = w32w21v1,

cov[x2, x2] =
∑

k∈{x1}
w2jcov[x2, xk] + I22v2 = w2

21v1 + v2,

cov[x2, x3] =
∑

k∈{x2}
w3jcov[x2, xk] + I23v3 = w32(w

2
21v1 + v2)
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and

cov[x3, x3] =
∑

k∈{x2}
w3jcov[x3, xk] + I33v3 = w2

32(w
2
21v1 + v2) + v3,

where the symmetry ofΣ gives the below diagonal elements.

8.8 a ⊥⊥ b, c | d can be written as

p(a, b, c|d) = p(a|d)p(b, c|d).

Summing (or integrating) both sides with respect toc, we obtain

p(a, b|d) = p(a|d)p(b|d) or a ⊥⊥ b | d,

as desired.

8.9 Consider Figure 8.26. In order to apply the d-separation criterion we need to con-
sider all possible paths from the central nodexi to all possible nodes external to the
Markov blanket. There are three possible categories of such paths. First, consider
paths via the parent nodes. Since the link from the parent node to the nodexi has its
tail connected to the parent node, it follows that for any such path the parent node
must be either tail-to-tail or head-to-tail with respect to the path. Thus the observa-
tion of the parent node will block any such path. Second consider paths via one of
the child nodes of nodexi which do not pass directly through any of the co-parents.
By definition such paths must pass to a child of the child node and hence will be
head-to-tail with respect to the child node and so will be blocked. The third and
final category of path passes via a child node ofxi and then a co-parent node. This
path will be head-to-head with respect to the observed child nodeand hence will
not be blocked by the observed child node. However, this path will either tail-to-
tail or head-to-tail with respect to the co-parent node and hence observation of the
co-parent will block this path. We therefore see that all possiblepaths leaving node
xi will be blocked and so the distribution ofxi, conditioned on the variables in the
Markov blanket, will be independent of all of the remaining variables in the graph.

8.10 From Figure 8.54, we see that

p(a, b, c, d) = p(a)p(b)p(c|a, b)p(d|c).

Following the examples in Section 8.2.1, we see that

p(a, b) =
∑

c

∑

d

p(a, b, c, d)

= p(a)p(b)
∑

c

p(c|a, b)
∑

d

p(d|c)

= p(a)p(b).
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Similarly,

p(a, b|d) =

∑
c p(a, b, c, d)∑

a

∑
b

∑
c p(a, b, c, d)

=
p(d|a, b)p(a)p(b)

p(d)

6= p(a|d)p(b|d)

in general. Note that this result could also be obtained directly from the graph in
Figure 8.54 by using d-separation, discussed in Section 8.2.2.

8.11 The described situation correspond to the graph shown in Figure 8.54 with a = B,
b = F , c = G andd = D (cf. Figure 8.21). To evaulate the probability that the tank
is empty given the driver’s report that the gauge reads zero, we use Bayes’ theorem

p(F = 0|D = 0) =
p(D = 0|F = 0)p(F = 0)

p(D = 0)
.

To evaluatep(D = 0|F = 0), we marginalize overB andG,

p(D = 0|F = 0) =
∑

B,G

p(D = 0|G)p(G|B,F = 0)p(B) = 0.748 (233)

and to evaluatep(D = 0), we marginalize also overF ,

p(D = 0) =
∑

B,G,F

p(D = 0|G)p(G|B,F )p(B)p(F ) = 0.352. (234)

Combining these results withp(F = 0), we get

p(F = 0|D = 0) = 0.213.

Note that this is slightly lower than the probability obtained in (8.32), reflecting the
fact that the driver is not completely reliable.

If we now also observeB = 0, we longer marginalize overB in (233) and (234), but
instead keep it fixed at its observed value, yielding

p(F = 0|D = 0, B = 0) = 0.110

which is again lower than what we obtained with a direct observation of the fuel
gauge in (8.33). More importantly, in both cases the value is lower than before we
observedB = 0, since this observation provides an alternative explanation why the
gauge should read zero; see also discussion following (8.33).

8.12 In an undirected graph ofM nodes there could potentially be a link between each
pair of nodes. The number of distinct graphs is then 2 raised to the power of the
number of potential links. To evaluate the number of distinct links, note that there
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areM nodes each of which could have a link to any of the otherM − 1 nodes,
making a total ofM(M − 1) links. However, each link is counted twice since, in
an undirected graph, a link from nodea to nodeb is equivalent to a link from node
b to nodea. The number of distinct potential links is thereforeM(M − 1)/2 and so
the number of distinct graphs is2M(M−1)/2. The set of 8 possible graphs over three
nodes is shown in Figure 6.

Figure 6 The set of 8 distinct undirected graphs which can be constructed over M = 3 nodes.

8.13 The change in energy is

E(xj = +1) − E(xj = −1) = 2h− 2β
∑

i∈ne(j)

xi − 2ηyj

wherene(j) denotes the nodes which are neighbours ofxj .

8.14 The most probable configuration corresponds to the configuration with the lowest
energy. Sinceη is a positive constant (andh = β = 0) andxi, yi ∈ {−1,+1}, this
will be obtained whenxi = yi for all i = 1, . . . , D.

8.15 The marginal distributionp(xn−1, xn) is obtained by marginalizing the joint distri-
butionp(x) over all variables exceptxn−1 andxn,

p(xn−1, xn) =
∑

x1

. . .
∑

xn−2

∑

xn+1

. . .
∑

xN

p(x).

This is analogous to the marginal distribution for a single variable, given by (8.50).

Following the same steps as in the single variable case described in Section 8.4.1,
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we arrive at a modified form of (8.52),

p(xn) =
1

Z
∑

xn−2

ψn−2,n−1(xn−2, xn−1) · · ·
[
∑

x1

ψ1,2(x1, x2)

]
· · ·




︸ ︷︷ ︸
µα(xn−1)

ψn−1,n(xn−1, xn)


∑

xn+1

ψn,n+1(xn, xn+1) · · ·
[
∑

xN

ψN−1,N (xN−1, xN )

]
· · ·




︸ ︷︷ ︸
µβ(xn)

,

from which (8.58) immediately follows.

8.16 ObservingxN = x̂N will only change the initial expression (message) for theβ-
recursion, which now becomes

µβ(xN−1) = ψN−1,N (xN−1, x̂N ).

Note that there is no summation overxN . p(xn) can then be evaluated using (8.54)–
(8.57) for alln = 1, . . . , N − 1.

8.17 With N = 5 andx3 andx5 observed, the graph from Figure 8.38 will look like in
Figure 7. This graph is undirected, but from Figure 8.32 we see that the equivalent

Figure 7 The graph discussed in Solu-
tion 8.17.

x1 x2 x3 x4 x5

directed graph can be obtained by simply directing all the edgesfrom left to right.
(NOTE: In PRML, the labels of the two rightmost nodes in Figure 8.32b should be
interchanged to be the same as in Figure 8.32a.) In this directed graph, the edges
on the path fromx2 to x5 meet head-to-tail atx3 and sincex3 is observed, by d-
separationx2⊥⊥x5|x3; note that we would have obtained the same result if we had
chosen to direct the arrows from right to left. Alternatively, we could have obtained
this result using graph separation in undirected graphs, illustrated in Figure 8.27.

From (8.54), we have

p(x2) =
1

Z
µα(x2)µβ(x2). (235)

µα(x2) is given by (8.56), while forµβ(x2), (8.57) gives

µβ(x2) =
∑

x3

ψ2,3(x2, x3)µβ(x3)

= ψ2,3(x2, x̂3)µβ(x̂3)
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Figure 8 The graph on the left is an
undirected tree. If we pick
x4 to be the root node and
direct all the edges in the
graph to point from the root
to the leaf nodes (x1, x2 and
x5), we obtain the directed
tree shown on the right.

x1 x2

x3

x4 x5

x1 x2

x3

x4 x5

sincex3 is observed and we denote the observed valuex̂3. Thus, any influence that
x5 might have onµβ(x̂3) will be in terms of a scaling factor that is indepedent ofx2

and which will be absorbed into the normalization constantZ in (235) and so

p(x2|x3, x5) = p(x2|x3).

8.18 The joint probability distribution over the variables in a general directed graphical
model is given by (8.5). In the particular case of a tree, each node has a single parent,
sopak will be a singleton for each node,k, except for the root node for which it will
empty. Thus, the joint probability distribution for a tree will be similar to the joint
probability distribution over a chain, (8.44), with the difference that the same vari-
able may occur to the right of the conditioning bar in several conditional probability
distributions, rather than just one (in other words, although each node can only have
one parent, it can have several children). Hence, the argument inSection 8.3.4, by
which (8.44) is re-written as (8.45), can also be applied to probability distributions
over trees. The result is a Markov random field model where each potential function
corresponds to one conditional probability distribution in thedirected tree. The prior
for the root node, e.g.p(x1) in (8.44), can again be incorporated in one of the poten-
tial functions associated with the root node or, alternatively, can be incorporated as a
single node potential.

This transformation can also be applied in the other direction. Given an undirected
tree, we pick a node arbitrarily as the root. Since the graph is a tree,there is a
unique path between every pair of nodes, so, starting at root andworking outwards,
we can direct all the edges in the graph to point from the root to the leaf nodes.
An example is given in Figure 8. Since every edge in the tree correspond to a two-
node potential function, by normalizing this appropriately, weobtain a conditional
probability distribution for the child given the parent.

Since there is a unique path beween every pair of nodes in an undirected tree, once
we have chosen the root node, the remainder of the resulting directed tree is given.
Hence, from an undirected tree withN nodes, we can constructN different directed
trees, one for each choice of root node.

8.19 If we convert the chain model discussed in Section 8.4.1 into a factor graph, each
potential function in (8.49) will become a factor. Under this factor graph model,
p(xn) is given by (8.63) as

p(xn) = µfn−1,n→xn
(xn)µfn,n+1→xn

(xn) (236)
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where we have adopted the indexing of potential functions from (8.49) to index the
factors. From (8.64)–(8.66), we see that

µfn−1,n→xn
(xn) =

∑

xn−1

ψn−1,n(xn−1, xn)µxn−1→fn−1,n
(xn−1) (237)

and

µfn,n+1→xn
(xn) =

∑

xn+1

ψn,n+1(xn, xn+1)µxn+1→fn,n+1
(xn+1). (238)

From (8.69), we further see that

µxn−1→fn−1,n
(xn−1) = µfn−2,n−1→xn−1

(xn−1)

and
µxn+1→fn,n+1

(xn+1) = µfn+1,n+2→xn+1
(xn+1).

Substituting these into (237) and (238), respectively, we get

µfn−1,n→xn
(xn) =

∑

xn−1

ψn−1,n(xn−1, xn)µfn−2,n−1→xn−1
(xn−1) (239)

and

µfn,n+1→xn
(xn) =

∑

xn+1

ψn,n+1(xn, xn+1)µfn+1,n+2→xn+1
(xn+1). (240)

Since the messages are uniquely identified by the index of their arguments and
whether the corresponding factor comes before or after the argument node in the
chain, we can rename the messages as

µfn−2,n−1→xn−1
(xn−1) = µα(xn−1)

and
µfn+1,n+2→xn+1

(xn+1) = µβ(xn+1).

Applying these name changes to both sides of (239) and (240), respectively, we re-
cover (8.55) and (8.57), and from these and (236) we obtain (8.54); thenormalization
constant1/Z can be easily computed by summing the (unnormalized) r.h.s. of(8.54).
Note that the end nodes of the chain are variable nodes which send unit messages to
their respective neigbouring factors (cf. (8.56)).

8.20 We do the induction over the size of the tree and we grow the tree one node at a time
while, at the same time, we update the message passing schedule. Note that we can
build up any tree this way.

For a single root node, the required condition holds trivially true, since there are no
messages to be passed. We then assume that it holds for a tree withN nodes. In the
induction step we add a new leaf node to such a tree. This new leaf node need not
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to wait for any messages from other nodes in order to send its outgoing message and
so it can be scheduled to send it first, before any other messages are sent. Its parent
node will receive this message, whereafter the message propagation will follow the
schedule for the original tree withN nodes, for which the condition is assumed to
hold.

For the propagation of the outward messages from the root back to the leaves, we
first follow the propagation schedule for the original tree withN nodes, for which
the condition is assumed to hold. When this has completed, the parent of the new
leaf node will be ready to send its outgoing message to the new leaf node, thereby
completing the propagation for the tree withN + 1 nodes.

8.21 NOTE: In the1st printing of PRML, this exercise contains a typographical error. On
line 2,fx(xs) should befs(xs).

To computep(xs), we marginalizep(x) over all other variables, analogously to
(8.61),

p(xs) =
∑

x\xs

p(x).

Using (8.59) and the defintion ofFs(x,Xs) that followed (8.62), we can write this
as

p(xs) =
∑

x\xs

fs(xs)
∏

i∈ne(fs)

∏

j∈ne(xi)\fs

Fj(xi, Xij)

= fs(xs)
∏

i∈ne(fs)

∑

x\xs

∏

j∈ne(xi)\fs

Fj(xi, Xij)

= fs(xs)
∏

i∈ne(fs)

µxi→fs
(xi),

where in the last step, we used (8.67) and (8.68). Note that the marginalization over
the different sub-trees rooted in the neighbours offs would only run over variables
in the respective sub-trees.

8.22 Let Xa denote the set of variable nodes in the connected subgraph of interest and
Xb the remaining variable nodes in the full graph. To compute the joint distribution
over the variables inXa, we need to marginalizep(x) overXb,

p(Xa) =
∑

Xb

p(x).

We can use the sum-product algorithm to perform this marginalization efficiently, in
the same way that we used it to marginalize over all variables butxn when computing
p(xn). Following the same steps as in the single variable case (see Section 8.4.4),
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we can write can writep(Xa) in a form corresponding to (8.63),

p(Xa) =
∏

sa

fsa
(Xsa

)
∏

s∈neXa

∑

Xs

Fs(xs, Xs)

=
∏

sa

fsa
(Xsa

)
∏

s∈neXa

µfs→xs
(xs). (241)

Here,sa indexes factors that only depend on variables inXa and soXsa
⊆ Xa

for all values ofsa; s indexes factors that connectXa andXb and hence also the
corresponding nodes,xs ∈ Xa. Xs ⊆ Xb denotes the variable nodes connected to
xs via factorfs. The messagesµfs→xs

(xs) can be computed using the sum-product
algorithm, starting from the leaf nodes in, or connected to nodesin,Xb. Note that the
density in (241) may require normalization, which will involve summing the r.h.s. of
(241) over all possible combination of values forXa.

8.23 This follows from the fact that the message that a node,xi, will send to a factorfs,
consists of the product of all other messages received byxi. From (8.63) and (8.69),
we have

p(xi) =
∏

s∈ne(xi)

µfs→xi
(xi)

= µfs→xi
(xi)

∏

t∈ne(xi)\fs

µft→xi
(xi)

= µfs→xi
(xi)µxi→fs

(xi).

8.24 NOTE: In PRML, this exercise contains a typographical error. On the last line,
f(xs) should befs(xs).

See Solution 8.21.

8.25 NOTE: In the1st printing of PRML, equation (8.86) contains a typographical error.
On the third line, the second summation should sum overx3, notx2. Furthermore,
in equation (8.79), “µx2→fb

” (no argument) should be “µx2→fb
(x2)”.
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Starting from (8.63), using (8.73), (8.77) and (8.81)–(8.83), we get

p̃(x1) = µfa→x1
(x1)

=
∑

x2

fa(x1, x2)µx2→fa
(x2)

=
∑

x2

fa(x1, x2)µfb→x2
(x2)µfc→x2

(x2)

=
∑

x2

fa(x1, x2)
∑

x3

fb(x2, x3)
∑

x4

fc(x2, x4)

=
∑

x2

∑

x3

∑

x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
∑

x2

∑

x3

∑

x4

p̃(x).

Similarly, starting from (8.63), using (8.73), (8.75) and (8.77)–(8.79),we get

p̃(x3) = µfb→x3
(x3)

=
∑

x2

fb(x2, x3)µx2→fb
(x2)

=
∑

x2

fb(x2, x3)µfa→x2
(x2)µfc→x2

(x2)

=
∑

x2

fb(x2, x3)
∑

x1

fa(x1, x2)
∑

x4

fc(x2, x4)

=
∑

x1

∑

x2

∑

x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
∑

x1

∑

x2

∑

x4

p̃(x).

Finally, starting from (8.72), using (8.73), (8.74), (8.77), (8.81) and (8.82), we get

p̃(x1, x2) = fa(x1, x2)µx1→fa
(x1)µx2→fa

(x2)

= fa(x1, x2)µfb→x2
(x2)µfc→x2

(x2)

= fa(x1, x2)
∑

x3

fb(x2, x3)
∑

x4

fb(x2, x4)

=
∑

x3

∑

x4

fa(x1, x2)fb(x2, x3)fb(x2, x4)

=
∑

x3

∑

x4

p̃(x).
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8.26 We start by using the product and sum rules to write

p(xa, xb) = p(xb|xa)p(xa) =
∑

x\ab

p(x) (242)

wherex\ab denote the set of all all variables in the graph exceptxa andxb.

We can use the sum-product algorithm from Section 8.4.4 to first evaluatep(xa), by
marginalizing over all other variables (includingxb). Next we successively fixxa

at all its allowed values and for each value, we use the sum-product algorithm to
evaluatep(xb|xa), by marginalizing over all variables exceptxb andxa, the latter
of which will only appear in the formulae at its current, fixed value. Finally, we use
(242) to evaluate the joint distributionp(xa, xb).

8.27 An example is given by

x = 0 x = 1 x = 2
y = 0 0.0 0.1 0.2
y = 1 0.0 0.1 0.2
y = 2 0.3 0.1 0.0

for which x̂ = 2 andŷ = 2.

8.28 If a graph has one or more cycles, there exists at least one set of nodes and edges
such that, starting from an arbitrary node in the set, we can visit all the nodes in the
set and return to the starting node, without traversing any edge more than once.

Consider one particular such cycle. When one of the nodesn1 in the cycle sends a
message to one of its neighboursn2 in the cycle, this causes a pending messages on
the edge to the next noden3 in that cycle. Thus sending a pending message along an
edge in the cycle always generates a pending message on the next edge in that cycle.
Since this is true for every node in the cycle it follows that there will always exist at
least one pending message in the graph.

8.29 We show this by induction over the number of nodes in the tree-structured factor
graph.

First consider a graph with two nodes, in which case only two messages will be sent
across the single edge, one in each direction. None of these messages will induce
any pending messages and so the algorithm terminates.

We then assume that for a factor graph withN nodes, there will be no pending
messages after a finite number of messages have been sent. Given such a graph, we
can construct a new graph withN + 1 nodes by adding a new node. This new node
will have a single edge to the original graph (since the graph mustremain a tree)
and so if this new node receives a message on this edge, it will induce no pending
messages. A message sent from the new node will trigger propagation of messages
in the original graph withN nodes, but by assumption, after a finite number of
messages have been sent, there will be no pending messages andthe algorithm will
terminate.
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Chapter 9 Mixture Models and EM

9.1 Since both the E- and the M-step minimise the distortion measure(9.1), the algorithm
will never change from a particular assignment of data points toprototypes, unless
the new assignment has a lower value for (9.1).

Since there is a finite number of possible assignments, each with a corresponding
unique minimum of (9.1) w.r.t. the prototypes,{µk}, the K-means algorithm will
converge after a finite number of steps, when no re-assignment ofdata points to
prototypes will result in a decrease of (9.1). When no-reassignmenttakes place,
there also will not be any change in{µk}.

9.2 Taking the derivative of (9.1), which in this case only involvesxn, w.r.t.µk, we get

∂J

∂µk
= −2rnk(xn − µk) = z(µk).

Substituting this into (2.129), withµk replacingθ, we get

µnew
k = µold

k + ηn(xn − µold
k )

where by (9.2),µold
k will be the prototype nearest toxn and the factor of 2 has been

absorbed intoηn.

9.3 From (9.10) and (9.11), we have

p (x) =
∑

z

p(x|z)p(z) =
∑

z

K∏

k=1

(πkN (x|µk,Σk))
zk .

Exploiting the 1-of-K representation forz, we can re-write the r.h.s. as

K∑

j=1

K∏

k=1

(πkN (x|µk,Σk))
Ikj =

K∑

j=1

πjN (x|µj ,Σj)

whereIkj = 1 if k = j and 0 otherwise.

9.4 From Bayes’ theorem we have

p(θ|X) =
p(X|θ)p(θ)

p(X
.

To maximize this w.r.t.θ, we only need to consider the numerator on the r.h.s. and
we shall find it more convenient to operate with the logarithm of this expression,

ln p(X|θ) + ln p(θ) (243)

where we recognize the first term as the l.h.s. of (9.29). Thus we follow the steps
in Section 9.3 in dealing with the latent variables,Z. Note that the second term in
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(243) does not involveZ and will not affect the corresponding E-step, which hence
gives (9.30). In the M-step, however, we are maximizing overθ and so we need to
include the second term of (243), yielding

Q(θ|θold) + ln p(θ).

9.5 Consider any two of the latent variable nodes, which we denotezl andzm. We wish
to determine whether these variables are independent, conditioned on the observed
datax1, . . . ,xN and on the parametersµ, Σ andπ. To do this we consider every
possible path fromzl to zm. The plate denotes that there areN separate copies of
the noteszn andxn. Thus the only paths which connectzl andzm are those which
go via one of the parameter nodesµ, Σ or π. Since we are conditioning on these
parameters they represent observed nodes. Furthermore, any path through one of
these parameter nodes must be tail-to-tail at the parameter node, and hence all such
paths are blocked. Thuszl andzm are independent, and since this is true for any pair
of such nodes it follows that the posterior distribution factorizes over the data set.

9.6 In this case, the expected complete-data log likelihood function becomes

EZ [ln p(X,Z|µ,Σ,π)] =

N∑

n=1

K∑

k=1

γ(znk) {lnπk + lnN (xn|µk,Σ)}

whereγ(znk) is defined in (9.16). Differentiating this w.r.t.Σ−1, using (C.24) and
(C.28), we get

N

2
Σ − 1

2

N∑

n=1

K∑

k=1

γ(znk) (xn − µk) (xn − µk)
T

where we have also used that
∑K

k=1 γ(znk) = 1 for all n. Setting this equal to zero
and rearranging, we obtain

Σ =
1

N

N∑

n=1

K∑

k=1

γ(znk)(xn − µk)(xn − µk)T.

9.7 Consider first the optimization with respect to the parameters{µk,Σk}. For this we
can ignore the terms in (9.36) which depend onlnπk. We note that, for each data
pointn, the quantitiesznk are all zero except for a particular element which equals
one. We can therefore partition the data set intoK groups, denotedXk, such that all
the data pointsxn assigned to componentk are in groupXk. The complete-data log
likelihood function can then be written

ln p (X,Z | µ,Σ,π) =

K∑

k=1

{
∑

n∈Xk

lnN (xn|µk,Σk)

}
.
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This represents the sum ofK independent terms, one for each component in the
mixture. When we maximize this term with respect toµk andΣk we will simply
be fitting thekth component to the data setXk, for which we will obtain the usual
maximum likelihood results for a single Gaussian, as discussed in Chapter 2.

For the mixing coefficients we need only consider the terms inlnπk in (9.36), but
we must introduce a Lagrange multiplier to handle the constraint

∑
k πk = 1. Thus

we maximize
N∑

n=1

K∑

k=1

znk lnπk + λ

(
K∑

k=1

πk − 1

)

which gives

0 =

N∑

n=1

znk

πk
+ λ.

Multiplying through byπk and summing overk we obtainλ = −N , from which we
have

πk =
1

N

N∑

n=1

znk =
Nk

N

whereNk is the number of data points in groupXk.

9.8 Using (2.43), we can write the r.h.s. of (9.40) as

−1

2

N∑

n=1

K∑

j=1

γ(znj)(xn − µj)
TΣ−1(xn − µj) + const.,

where ‘const.’ summarizes terms independent ofµj (for all j). Taking the derivative
of this w.r.t.µk, we get

−
N∑

n=1

γ(znk)
(
Σ−1µk − Σ−1xn

)
,

and setting this to zero and rearranging, we obtain (9.17).

9.9 If we differentiate (9.40) w.r.t.Σ−1
k , while keeping theγ(znk) fixed, we get

∂

∂Σ−1 EZ [ln p(X,Z|µ,Σ,π)] =

N∑

n=1

K∑

k=1

γ(znk)
1

2

(
Σk − (xn − µk)(xn − µk)T

)

where we have used (C.28). Setting this equal to zero and rearranging, we obtain
(9.19).

Forπk, we add a Lagrange multiplier term to (9.40) to enforce the constraintAppendix E

K∑

k=1

πk = 1
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yielding

EZ [ln p(X,Z|µ,Σ,π)] + λ

(
K∑

k=1

πk − 1

)
.

Differentiating this w.r.t.πk, we get

N∑

n=1

γ(znk)
1

πk
+ λ =

Nk

πk
+ λ

where we have used (9.18). Setting this equal to zero and rearranging, we get

Nk = −πkλ.

Summing both sides overk, making use of (9.9), we see that−λ = N and thus

πk =
Nk

N
.

9.10 For the mixture model the joint distribution can be written

p(xa,xb) =

K∑

k=1

πkp(xa,xb|k).

We can find the conditional densityp(xb|xa) by making use of the relation

p(xb|xa) =
p(xa,xb)

p(xa)
.

For mixture model the marginal density ofxa is given by

p(xa) =

K∑

k=1

πkp(xa|k)

where

p(xa|k) =

∫
p(xa,xb|k) dxb.

Thus we can write the conditional density in the form

p(xb|xa) =

K∑

k=1

πkp(xa,xb|k)

K∑

j=1

πjp(xa|j)
.
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Now we decompose the numerator using

p(xa,xb|k) = p(xb|xa, k)p(xa|k)
which allows us finally to write the conditional density as a mixture model of the
form

p(xb|xa) =

K∑

k=1

λkp(xb|xa, k) (244)

where the mixture coefficients are given by

λk ≡ p(k|xa) =
πkp(xa|k)∑

j

πjp(xa|j)
(245)

andp(xb|xa, k) is the conditional for componentk.

9.11 As discussed in Section 9.3.2,γ(znk) → rnk as ε → 0. Σk = εI for all k and
are no longer free parameters.πk will equal the proportion of data points assigned
to clusterk and assuming reasonable initialization ofπ and{µk}, πk will remain
strictly positive. In this situation, we can maximize (9.40) w.r.t. {µk} independently
of π, leaving us with

N∑

n=1

K∑

k=1

rnk lnN (xn|µk, εI) =

N∑

n=1

K∑

k=1

rnk

(
− 1

2ε
‖xn − µk‖2

)
+ const.

which equal the negative of (9.1) upto a scaling factor (which is independent of
{µk}).

9.12 Since the expectation of a sum is the sum of the expectations we have

E[x] =

K∑

k=1

πkEk[x] =

K∑

k=1

πkµk

whereEk[x] denotes the expectation ofx under the distributionp(x|k). To find the
covariance we use the general relation

cov[x] = E[xxT] − E[x]E[x]T

to give

cov[x] = E[xxT] − E[x]E[x]T

=

K∑

k=1

πkEk[xxT] − E[x]E[x]T

=

K∑

k=1

πk

{
Σk + µkµ

T
k

}
− E[x]E[x]T.
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9.13 The expectation ofx under the mixture distribution is given by

E[x] =

K∑

k=1

πkEk[x] =

K∑

k=1

πkµk.

Now we make use of (9.58) and (9.59) to give

E[x] =

K∑

k=1

πk
1

Nk

N∑

n=1

γ(znk)xn

=

N∑

n=1

xn
1

N

K∑

k=1

γ(znk)

=
1

N

N∑

n=1

xn

= x

where we have usedπk = Nk/N , and the fact thatγ(znk) are posterior probabilities
and hence

∑
k γ(znk) = 1.

Now suppose we initialize a mixture of Bernoulli distributionsby setting the means
to a common valueµk = µ̂ for k = 1, . . . ,K and then run the EM algorithm. In the
E-step we first compute the responsibilities which will be givenby

γ(znk) =
πkp(xn|µk)

K∑

j=1

πjp(xn|µj)

=
πk

K∑

j=1

πj

= πk

and are therefore independent ofn. In the subsequent M-step the revised means are
given by

µk =
1

Nk

N∑

n=1

γ(znk)xn

=
1

Nk
πk

N∑

n=1

xn

=
1

N

N∑

n=1

xn

= x

where again we have made use ofπk = Nk/N . Note that since these are again the
same for allk it follows from the previous discussion that the responsibilities on the
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next E-step will again be given byγ(znk) = πk and hence will be unchanged. The
revised mixing coefficients are given by

1

N

N∑

n=1

γ(znk) = πk

and so are also unchanged. Thus the EM algorithm has converged and no further
changes will take place with subsequent E and M steps. Note that this is a degenerate
solution in which all of the components of the mixture are identical, and so this
distribution is equivalent to a single multivariate Bernoullidistribution.

9.14 Forming the product of (9.52) and (9.53), we get

K∏

k=1

p(x|µk)zk

K∏

j=1

π
zj

j =

K∏

k=1

(p(x|µk)πk)
zk .

If we marginalize this overz, we get

∑

z

K∏

k=1

(p(x|µk)πk)
zk =

K∑

j=1

K∏

k=1

(p(x|µk)πk)
Ijk

=

K∑

j=1

πjp(x|µj)

where we have exploited the 1-of-K coding scheme used forz.

9.15 This is easily shown by calculating the derivatives of (9.55), setting them to zero and
solve forµki. Using standard derivatives, we get

∂

∂µki
EZ[ln p(X,Z|µ,π)] =

N∑

n=1

γ(znk)

(
xni

µki
− 1 − xni

1 − µki

)

=

∑
n γ(znk)xni −

∑
n γ(znk)µki

µki(1 − µki)
.

Setting this to zero and solving forµki, we get

µki =

∑
n γ(znk)xni∑

n γ(znk)
,

which equals (9.59) when written in vector form.

9.16 This is identical with the maximization w.r.t.πk in the Gaussian mixture model,
detailed in the second half of Solution 9.9.
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9.17 This follows directly from the equation for the incomplete log-likelihood, (9.51).
The largest value that the argument to the logarithm on the r.h.s. of (9.51) can have
is 1, since∀n, k : 0 6 p(xn|µk) 6 1, 0 6 πk 6 1 and

∑K
k πk = 1. Therefore, the

maximum value forln p(X|µ,π) equals 0.

9.18 From Solution 9.4, which dealt with MAP estimation for a generalmixture model,
we know that the E-step will remain unchanged. In the M-step we maximize

Q
(
θ,θold

)
+ ln p(θ)

which in the case of the given model becomes,

N∑

n=1

K∑

k=1

γ(znk)

{
lnπk +

D∑

i=1

[xni lnµki + (1 − xni) ln(1 − µki)]

}

+

K∑

j=1

D∑

i′=1

{(aj − 1) lnµji′ + (bj − 1) ln(1 − µji′)} +

K∑

l=1

(αl − 1) lnπl (246)

where we have used (9.55), (2.13) and (2.38), and we have dropped termsindepen-
dent of{µk} andπ. Note that we have assumed that each parameterµki has the
same prior for eachi, but this can differ for different componentsk.

Differentiating (246) w.r.t.µki yields

N∑

n=1

γ(znk)

{
xni

µki
− 1 − xni

1 − µki

}
+
ak

µki
− 1 − bk

1 − µki

=
Nkxki + a− 1

µki
− Nk −Nkxki + b− 1

1 − µki

whereNk is given by (9.57) andxki is theith element ofx defined in (9.58). Setting
this equal to zero and rearranging, we get

µki =
Nkxki + a− 1

Nk + a− 1 + b− 1
. (247)

Note that ifak = bk = 1 for all k, this reduces to the standard maximum likelihood
result. Also, asN becomes large, (247) will approach the maximum likelihood
result.

When maximizing w.r.t.πk, we need to enforce the constraint
∑

k πk = 1, which
we do by adding a Lagrange multiplier term to (246). Dropping terms independentAppendix E
of π we are left with

N∑

n=1

K∑

k=1

γ(znk) lnπk +

K∑

l=1

(αl − 1) lnπl + λ

(
K∑

j=1

πj − 1

)
.
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Differentiating this w.r.t.πk, we get

Nk + αk − 1

πk
+ λ

and setting this equal to zero and rearranging, we have

Nk + αk − 1 = −λπk.

Summing both sides overk, using
∑

k πk = 1, we see that−λ = N + α0 − K,
whereα0 is given by (2.39), and thus

πk =
Nk + αk − 1

N + α0 −K
. (248)

Also in this case, ifαk = 1 for all k, we recover the maximum likelihood result
exactly. Similarly, asN gets large, (248) will approach the maximum likelihood
result.

9.19 As usual we introduce a latent variablezn corresponding to each observation. The
conditional distribution of the observed data set, given the latent variables, is then

p(X|Z,µ) =

N∏

n=1

p(xn|µk)znk .

Similarly, the distribution of the latent variables is given by

p(Z|π) =

N∏

n=1

πznk

k .

The expected value of the complete-data log likelihood function is given by

N∑

n=1

k∑

k=1

γ(znk)

{
lnπk +

D∑

i=1

M∑

j=1

xnij lnµkij

}

where as usual we have defined responsibilities given by

γ(znk) = E[znk] =
πkp(xn|µk)

M∑

j=1

πjp(xn|µj)

.

These represent the E-step equations.

To derive the M-step equations we add to the expected complete-data log likelihood
function a set of Lagrange multiplier terms given by

λ

(
K∑

k=1

πk − 1

)
+

K∑

k=1

D∑

i=1

ηki

(
M∑

j=1

µkij − 1

)
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to enforce the constraint
∑

k πk = 1 as well as the set of constraints

M∑

j=1

µkij = 1

for all values ofi andk. Maximizing with respect to the mixing coefficientsπk, and
eliminating the Lagrange multiplierλ in the usual way, we obtain

πk =
Nk

N

where we have defined

Nk =

N∑

n=1

γ(znk).

Similarly maximizing with respect to the parametersµkij , and again eliminating the
Lagrange multipliers, we obtain

µkij =
1

Nk

N∑

n=1

γ(znk)xnij .

This is an intuitively reasonable result which says that the value ofµkij for compo-
nentk is given by the fraction of those counts assigned to componentk which have
non-zero values of the corresponding elementsi andj.

9.20 If we take the derivatives of (9.62) w.r.t.α, we get

∂

∂α
E [ln p(t,w|α, β)] =

M

2

1

α
− 1

2
E
[
wTw

]
.

Setting this equal to zero and re-arranging, we obtain (9.63).

9.21 Taking the derivative of (9.62) w.r.t.β, we obtain

∂

∂β
E [ln p(t,w|α, β)] =

N

2

1

β
− 1

2

N∑

n=1

E
[
(tn − wTφn)2

]
. (249)

From (3.49)–(3.51), we see that

E
[
(tn − wTφn)2

]
= E

[
t2n − 2tnwTφn + Tr[φnφ

T
nwwT]

]

= t2n − 2tnmT
Nφn + Tr

[
φnφ

T
n(mNmT

N + SN )
]

= (tn − mT
Nφn)2 + Tr

[
φnφ

T
nSN

]
.

Substituting this into (249) and rearranging, we obtain

1

β
=

1

N

(
‖t − ΦmN‖2 + Tr

[
ΦTΦSN

])
.
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9.22 NOTE: In PRML, a pair of braces is missing from (9.66), which should read

Ew [ln {p(t|X,w, β)p(w|α)}] .

MoreovermN should bem in the numerator on the r.h.s. of (9.68).

Using (7.76)–(7.83) and associated definitions, we can rewrite (9.66) as

Ew

[
lnN

(
t|Φw, β−1I

)
+ lnN

(
w|0,A−1

)]

=
1

2
Ew

[
N lnβ − β‖t − Φw‖2 +

M∑

i=1

lnαi − Tr
[
AwwT

]
]

+ const

=
1

2

(
N lnβ − β

(
‖t − Φm‖2 + Tr[ΦTΦΣ]

)

+

M∑

i=1

lnαi − Tr[A(mmT + Σ)]

)
+ const. (250)

Differentiating this w.r.t.αi, using (C.23), and setting the result equal to zero, we get

1

2

1

αi
− 1

2

(
m2

i + Σii

)
= 0

which we can rearrange to obtain (9.67).

Differentiating (250) w.r.t.β and setting the result equal to zero we get

N

2

1

β
− 1

2

(
‖t − Φm‖2 + Tr

[
ΦTΦΣ

])
= 0. (251)

Using (7.83), (C.6) and (C.7) together with the fact thatA is diagonal, we can rewrite
ΦTΦΣ as follows:

ΦTΦΣ = ΦTΦA−1
(
I + βΦTΦA−1

)−1

= ΦT
(
I + βΦA−1ΦT

)−1
ΦA−1

= β
(
I − I + ΦT

(
β−1I + ΦA−1ΦT

)−1
ΦA−1

)

= β
(
I − A

(
A−1 + A−1ΦT

(
β−1I + ΦA−1ΦT

)−1
ΦA−1

))

= β
(
I − A

(
A + βΦTΦ

)−1
)

= β (I − AΣ) .

Using this together with (7.89), we obtain (9.68) from (251).

9.23 NOTE: In the1st printing of PRML, the task set in this exercise is to show that the
two sets of re-estimation equations are formally equivalent, without any restriction.
However, it really should be restricted to stationary points of the objective function.
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Considering the case when the optimization has converged, wecan start withαi, as
defined by (7.87), and use (7.89) to re-write this as

α?
i =

1 − α?
i Σii

m2
N

,

whereα?
i = αnew

i = αi is the value reached at convergence. We can re-write this as

α?
i (m

2
i + Σii) = 1

which is easily re-written as (9.67).

Forβ, we start from (9.68), which we re-write as

1

β?
=

‖t − ΦmN‖2

N
+

∑
i γi

β?N
.

As in theα-case,β? = βnew = β is the value reached at convergence. We can
re-write this as

1

β?

(
N −

∑

i

γi

)
= ‖t − ΦmN‖2,

which can easily be re-written as (7.88).

9.24 This is analogous to Solution 10.1, with the integrals replaced by sums.

9.25 This follows from the fact that the Kullback-Leibler divergence, KL(q‖p), is at its
minimum, 0, whenq andp are identical. This means that

∂

∂θ
KL(q‖p) = 0,

sincep(Z|X,θ) depends onθ. Therefore, if we compute the gradient of both sides
of (9.70) w.r.t.θ, the contribution from the second term on the r.h.s. will be0, and
so the gradient of the first term must equal that of the l.h.s.

9.26 From (9.18) we get

Nold
k =

∑

n

γold(znk). (252)

We getNnew
k by recomputing the responsibilities,γ(zmk), for a specific data point,

xm, yielding

Nnew
k =

∑

n 6=m

γold(znk) + γnew(zmk). (253)

Combining this with (252), we get (9.79).

Similarly, from (9.17) we have

µold
k =

1

Nold
k

∑

n

γold(znk)xn
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and recomputing the responsibilities,γ(zmk), we get

µnew
k =

1

Nnew
k

(
∑

n 6=m

γold(znk)xn + γnew(zmk)xm

)

=
1

Nnew
k

(
Nold

k µold
k − γold(zmk)xm + γnew(zmk)xm

)

=
1

Nnew
k

((
Nnew

k − γnew(zmk) + γold(zmk)
)
µold

k

−γold(zmk)xm + γnew(zmk)xm

)

= µold
k +

(
γnew(zmk) − γold(zmk)

Nnew
k

)
(xm − µold

k ),

where we have used (9.79).

9.27 Following the treatment ofµk in Solution 9.26, (9.19) gives

Σold
k =

1

Nold
k

N∑

n=1

γ(znk)(xn − µold
k )(xn − µold

k )T

whereNold
k is given by (252). Recomputing the responsibilitiesγ(zmk), and using

(253), we get

Σnew
k =

1

Nnew
k

(
∑

n 6=m

γold(znk)
(
xn − µold

k

) (
xn − µold

k

)T

+γnew(zmk) (xm − µnew
k ) (xm − µnew

k )
T

)

=
1

Nnew
k

(
Nold

k Σold
k − γold(zmk)

(
xm − µold

k

) (
xm − µold

k

)T

+γnew(zmk) (xm − µnew
k ) (xm − µnew

k )
T
)

= Σold
k − γold(zmk)

Nnew
k

((
xm − µold

k

) (
xm − µold

k

)T − Σold
k

)

+
γnew(zmk)

Nnew
k

(
(xm − µnew

k ) (xm − µnew
k )

T − Σold
k

)

where we have also used (9.79).

Forπk, (9.22) gives

πold
k =

Nold
k

N
=

1

N

N∑

n=1

γold(znk)
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and thus recomputingγ(znk) we get

πnew
k =

1

N

(
N∑

n 6=m

γold(znk) + γnew(zmk)

)

=
1

N

(
Nπold

k − γold(zmk) + γnew(zmk)
)

= πold
k − γold(zmk)

N
+
γnew(zmk)

N
.

Chapter 10 Approximate Inference

10.1 Starting from (10.3), we use the product rule together with (10.4) to get

L(q) =

∫
q (Z) ln

{
p (X,Z)

q (Z)

}
dZ

=

∫
q (Z) ln

{
p (X | Z) p (X)

q (Z)

}
dZ

=

∫
q (Z)

(
ln

{
p (X | Z)

q (Z)

}
+ ln p (X)

)
dZ

= −KL( q ‖ p ) + ln p (X) .

Rearranging this, we immediately get (10.2).

10.2 By substitutingE[z1] = m1 = µ1 andE[z2] = m2 = µ2 in (10.13) and (10.15),
respectively, we see that both equations are satisfied and so this is a solution.

To show that it is indeed the only solution whenp(z) is non-singular, we first sub-
stituteE[z1] = m1 andE[z2] = m2 in (10.13) and (10.15), respectively. Next, we
substitute the r.h.s. of (10.13) form1 in (10.15), yielding

m2 = µ2 − Λ−1
22 Λ21

(
µ1 − Λ−1

11 Λ12 (m2 − µ2) − µ1

)

= µ2 − Λ−1
22 Λ21Λ

−1
11 Λ12(m2 − µ2)

which we can rewrite as

m2

(
1 − Λ−1

22 Λ21Λ
−1
11 Λ12

)
= µ2

(
1 − Λ−1

22 Λ21Λ
−1
11 Λ12

)
.

Thus, unlessΛ−1
22 Λ21Λ

−1
11 Λ12 = 1, the solutionµ2 = m2 is unique. Ifp(z) is non-

singular,
|Λ| = Λ11Λ22 − Λ21Λ12 6= 0

which we can rewrite as
Λ−1

11 Λ−1
22 Λ21Λ12 6= 1

as desired. Sinceµ2 = m2 is the unique solution to (10.15),µ1 = m1 is the unique
solution to (10.13).
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10.3 Starting from (10.16) and optimizing w.r.t.qj (Zj), we get

KL( p ‖ q ) = −
∫
p (Z)

[
M∑

i=1

ln qi (Zi)

]
dZ + const.

= −
∫ (

p (Z) ln qj (Zj) + p (Z)
∑

i 6=j

ln qi (Zi)

)
dZ + const.

= −
∫
p (Z) ln qj (Zj) dZ + const.

= −
∫

ln qj (Zj)

[∫
p (Z)

∏

i 6=j

dZi

]
dZj + const.

= −
∫
Fj(Zj) ln qj (Zj) dZj + const.,

where terms independent ofqj (Zj) have been absorbed into the constant term and
we have defined

Fj(Zj) =

∫
p (Z)

∏

i 6=j

dZi.

We use a Lagrange multiplier to ensure thatqj (Zj) integrates to one, yielding

−
∫
Fj(Zj) ln qj (Zj) dZj + λ

(∫
qj (Zj) dZj − 1

)
.

Using the results from Appendix D, we then take the functional derivative of this
w.r.t. qj and set this to zero, to obtain

−Fj(Zj)

qj (Zj)
+ λ = 0.

From this, we see that
λqj (Zj) = Fj(Zj).

Integrating both sides overZj , we see that, sinceqj (Zj) must intgrate to one,

λ =

∫
Fj(Zj) dZj =

∫ [∫
p (Z)

∏

i 6=j

dZi

]
dZj = 1,

and thus

qj (Zj) = Fj(Zj) =

∫
p (Z)

∏

i 6=j

dZi.
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10.4 The Kullback-Leibler divergence takes the form

KL(p‖q) = −
∫
p(x) ln q(x) dx +

∫
p(x) ln p(x) dx.

Substituting the Gaussian forq(x)we obtain

KL(p‖q) = −
∫
p(x)

{
−1

2
ln |Σ| − 1

2
(x − µ)TΣ−1(x − µ)

}
dx + const.

=
1

2

{
ln |Σ| + Tr

(
Σ−1

E
[
(x − µ)(x − µ)T

])}
+ const.

=
1

2

{
ln |Σ| + µTΣ−1µ− 2µTΣ−1

E[x] + Tr
(
Σ−1

E
[
xxT

])}

+const. (254)

Differentiating this w.r.t.µ, using results from Appendix C, and setting the result to
zero, we see that

µ = E[x]. (255)

Similarly, differentiating (254) w.r.t.Σ−1, again using results from Appendix C and
also making use of (255) and (1.42), we see that

Σ = E
[
xxT

]
− µµT = cov[x].

10.5 We assume thatq(Z) = q(z)q(θ) and so we can optimize w.r.t.q(z) andq(θ) inde-
pendently.

For q(z), this is equivalent to minimizing the Kullback-Leibler divergence, (10.4),
which here becomes

KL( q ‖ p ) = −
∫∫

q (θ) q (z) ln
p (z,θ | X)

q (z) q (θ)
dz dθ.

For the particular chosen form ofq(θ), this is equivalent to

KL( q ‖ p ) = −
∫
q (z) ln

p (z,θ0 | X)

q (z)
dz + const.

= −
∫
q (z) ln

p (z | θ0,X) p (θ0 | X)

q (z)
dz + const.

= −
∫
q (z) ln

p (z | θ0,X)

q (z)
dz + const.,

where const accumulates all terms independent ofq(z). This KL divergence is min-
imized whenq(z) = p(z|θ0,X), which corresponds exactly to the E-step of the EM
algorithm.
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To determineq(θ), we consider

∫
q (θ)

∫
q (z) ln

p (X,θ, z)

q (θ) q (z)
dz dθ

=

∫
q (θ) Eq(z) [ln p (X,θ, z)] dθ −

∫
q (θ) ln q (θ) dθ + const.

where the last term summarizes terms independent ofq (θ). Sinceq(θ) is con-
strained to be a point density, the contribution from the entropy term (which formally
diverges) will be constant and independent ofθ0. Thus, the optimization problem is
reduced to maximizing expected complete log posterior distribution

Eq(z) [ln p (X,θ0, z)] ,

w.r.t.θ0, which is equivalent to the M-step of the EM algorithm.

10.6 We start by rewriting (10.19) as

D(p‖q) =
4

1 − α2

(
1 −

∫
p(x)γpq(x)γq dx

)
(256)

so that

γp =
1 + α

2
and γq =

1 − α

2
. (257)

We note that

lim
α→1

γq = 0 (258)

lim
α→1

γp = 1 (259)

1 − γp = γq. (260)

Based on observation (258), we make a Maclaurin expansion ofq(x)γq in γq as
follows

qγq = exp (γq ln q) = 1 + γq ln q +O
(
γ2

q

)
(261)

whereq is a shorthand notation forq(x). Similarly, based on (259), we make a Taylor
expansion ofp(x)γp in γp around1,

pγp = exp (γp ln p)

= p− (1 − γp)p ln p+O
(
(γp − 1)2

)

= p− γqp ln p+O
(
γ2

q

)
(262)

where we have used (260) and we have adopted corresponding shorthand notation
for p(x).
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Using (261) and (262), we can rewrite (256) as

D(p‖q)

=
4

1 − α2

(
1 −

∫ [
p− γqp ln p+O

(
γ2

q

)] [
1 + γq ln q +O

(
γ2

q

)]
dx

)

=
4

1 − α2

(
1 −

∫
p+ γq (p ln q − p ln p) dx+O

(
γ2

q

))
(263)

whereO
(
γ2

q

)
account for all higher order terms. From (257) we have

4

1 − α2
γq =

2(1 − α)

1 − α2
=

2

(1 + α)

4

1 − α2
γ2

q =
(1 − α)2

1 − α2
=

1 − α

(1 + α)

and thus

lim
α→1

4

1 − α2
γq = 1

lim
α→1

4

1 − α2
γ2

q = 0.

Using these results together with (259), and (263), we see that

lim
α→1

D(p‖q) = −
∫
p(ln q − ln p) dx = KL(p‖q).

The proof thatα→ −1 yieldsKL(q‖p) is analogous.

10.7 NOTE: See note in Solution 10.9.

We take theµ-dependent term from the last line of (10.25) as our starting point.We
can rewrite this as follows

−E[τ ]

2

{
λ0 (µ− µ0)

2
+

N∑

n=1

(xn − µ)
2

}

= −E[τ ]

2

{
(λ0 +N)µ2 +

N∑

n=1

x2
n − 2µ (λ0µ0 +Nx)

}

= −E[τ ]

2

{
(λ0 +N)

(
µ− λ0µ0 +Nx

λ0 +N

)2

+

N∑

n=1

x2
n − (λ0mu0 +Nx)

2

λ0 +N

}

where in the last step we have completed the square overµ. The last two terms
are indepenedent ofµ and hence can be dropped. Taking the exponential of the
remainder, we obtain an unnormalized Gaussian with mean and precision given by
(10.26) and (10.27), respectively.
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For the posterior overτ , we take the last two lines of (10.28) as our starting point.
Gathering terms that multiplyτ andln τ into two groups, we can rewrite this as

(
a0 +

N + 1

2
− 1

)
ln τ −

(
b0 +

1

2
E

[
N∑

n=1

(x− µ)2 + λ0 (µ− µ0)

])
τ + const.

Taking the exponential of this we get an unnormalized Gamma distribution with
shape and inverse scale parameters given by (10.29) and (10.30), respectively.

10.8 NOTE: See note in Solution 10.9.

If we substitute the r.h.s. of (10.29) and (10.30) fora andb, respectively, in (B.27)
and (B.28), we get

E[τ ] =
2a0 +N + 1

2b0 + E

[
λ0(µ− µ0) +

∑N
n=1(xn − µ)2

]

var[τ ] =
2a0 +N + 1

2
(
b0 + 1

2
E

[
λ0(µ− µ0) +

∑N
n=1(xn − µ)2

])2

=
E[τ ]

b0 + 1
2
E

[
λ0(µ− µ0) +

∑N
n=1(xn − µ)2

]

From this we see directly that

lim
N→∞

E[τ ] =
N

E

[∑N
n=1(xn − µ)2

]

lim
N→∞

var[τ ] = 0

as long as the data set is not singular.

10.9 NOTE: In the 1st printing of PRML, an extra term of1/2 should be added to the
r.h.s. of (10.29), with consequential changes to (10.31) and (10.33), which should
read

1

E[τ ]
= E

[
1

N + 1

N∑

n=1

(xn − µ)2

]
=

N

N + 1

(
x2 − 2xE[µ] + E[µ2]

)

and

1

E[τ ]
= (x2 − x2) =

1

N

N∑

n=1

(xn − x)2

respectively.
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Assuminga0 = b0 = λ0 = 0, (10.29), (10.30) and (B.27) give

1

E[τ ]
=

1

N + 1

N∑

n=1

(xn − µ)2

=
1

N + 1

N∑

n=1

(
x2

n − 2xnµ+ µ2
)

Taking the expectation of this underq(µ), making use of (10.32), we get

1

E[τ ]
=

1

N + 1

N∑

n=1

(
x2

n − 2xnx+ x2 +
1

NE[τ ]

)

=
N

N + 1

(
1

NE[τ ]
− x2 +

1

N

N∑

n=1

x2
n

)

which we can rearrange to obtain (10.33).

10.10 NOTE: In the1st printing of PRML, there are errors that affect this exercise.Lm

used in (10.34) and (10.35) should really beL, whereasLm used in (10.36) is given
in Solution 10.11 below.

This completely analogous to Solution 10.1. Starting from (10.35), we can use the
product rule to get,

L =
∑

m

∑

Z

q(Z|m)q(m) ln

{
p(Z,X,m)

q(Z|m) q(m)

}

=
∑

m

∑

Z

q(Z|m)q(m) ln

{
p(Z,m|X) p(X)

q(Z|m) q(m)

}

=
∑

m

∑

Z

q(Z|m)q(m) ln

{
p(Z,m|X)

q(Z|m) q(m)

}
+ ln p(X).

Rearranging this, we obtain (10.34).



170 Solutions 10.11–10.13

10.11 NOTE: Consult note preceding Solution 10.10 for some relevant corrections.

We start by rewriting the lower bound as follows

L =
∑

m

∑

Z

q(Z|m)q(m) ln

{
p(Z,X,m)

q(Z|m)q(m)

}

=
∑

m

∑

Z

q(Z|m)q(m) {ln p(Z,X|m) + ln p(m) − ln q(Z|m) − ln q(m)}

=
∑

m

q(m)

(
ln p(m) − ln q(m)

+
∑

Z

q(Z|m){ln p(Z,X|m) − ln q(Z|m)}
)

=
∑

m

q(m) {ln (p(m) exp{Lm}) − ln q(m)} , (264)

where

Lm =
∑

Z

q(Z|m) ln

{
p(Z,X|m)

q(Z|m)

}
.

We recognize (264) as the negative KL divergence betweenq(m) and the (not nec-
essarily normalized) distributionp(m) exp{Lm}. This will be maximized when the
KL divergence is minimized, which will be the case when

q(m) ∝ p(m) exp{Lm}.

10.12 This derivation is given in detail in Section 10.2.1, startingwith the paragraph con-
taining (10.43) (page 476) and ending with (10.49).

10.13 In order to derive the optimal solution forq(µk,Λk) we start with the result (10.54)
and keep only those term which depend onµk or Λk to give

ln q?(µk,Λk) = lnN
(
µk|m0, (β0Λk)

−1)
+ lnW(Λk|W0, ν0)

+

N∑

n=1

E[znk] lnN
(
xn|µk,Λ

−1
k

)
+ const.

= −β0

2
(µk − m0)

TΛk(µk − m0) +
1

2
ln |Λk| −

1

2
Tr
(
ΛkW

−1
0

)

+
(ν0 −D − 1)

2
ln |Λk| −

1

2

N∑

n=1

E[znk](xn − µk)TΛk(xn − µk)

+
1

2

(
N∑

n=1

E[znk]

)
ln |Λk| + const. (265)
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Using the product rule of probability, we can expressln q?(µk,Λk) asln q?(µk|Λk)
+ ln q?(Λk). Let us first of all identify the distribution forµk. To do this we need
only consider terms on the right hand side of (265) which depend onµk, giving

ln q?(µk|Λk)

= −1

2
µT

k

[
β0 +

N∑

n=1

E[znk]

]
Λkµk + µT

k Λk

[
β0m0 +

N∑

n=1

E[znk]xn

]

+const.

= −1

2
µT

k [β0 +Nk]Λkµk + µT
k Λk [β0m0 +Nkxk] + const.

where we have made use of (10.51) and (10.52). Thus we see thatln q?(µk|Λk)
depends quadratically onµk and henceq?(µk|Λk) is a Gaussian distribution. Com-
pleting the square in the usual way allows us to determine the mean and precision of
this Gaussian, giving

q?(µk|Λk) = N (µk|mk, βkΛk) (266)

where

βk = β0 +Nk

mk =
1

βk
(β0m0 +Nkxk) .

Next we determine the form ofq?(Λk) by making use of the relation

ln q?(Λk) = ln q?(µk,Λk) − ln q?(µk|Λk).

On the right hand side of this relation we substitute forln q?(µk,Λk) using (265),
and we substitute forln q?(µk|Λk) using the result (266). Keeping only those terms
which depend onΛk we obtain

ln q?(Λk) = −β0

2
(µk − m0)

TΛk(µk − m0) +
1

2
ln |Λk| −

1

2
Tr
(
ΛkW

−1
0

)

+
(ν0 −D − 1)

2
ln |Λk| −

1

2

N∑

n=1

E[znk](xn − µk)TΛk(xn − µk)

+
1

2

(
N∑

n=1

E[znk]

)
ln |Λk| +

βk

2
(µk − mk)TΛk(µk − mk)

− 1

2
ln |Λk| + const.

=
(νk −D − 1)

2
ln |Λk| −

1

2
Tr
(
ΛkW

−1
k

)
+ const.
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Here we have defined

W−1
k = W−1

0 + β0(µk − m0)(µk − m0)
T +

N∑

n=1

E[znk](xn − µk)(xn − µk)T

−βk(µk − mk)(µk − mk)T

= W−1
0 +NkSk +

β0Nk

β0 +Nk
(xk − m0)(xk − m0)

T (267)

νk = ν0 +

N∑

n=1

E[znk]

= ν0 +Nk,

where we have made use of the result

N∑

n=1

E[znk]xnxT
n =

N∑

n=1

E[znk](xn − xk)(xn − xk)T +Nkxkx
T
k

= NkSk +Nkxkx
T
k (268)

and we have made use of (10.53). Note that the terms involvingµk have cancelled
out in (267) as we expect sinceq?(Λk) is independent ofµk.

Thus we see thatq?(Λk) is a Wishart distribution of the form

q?(Λk) = W(Λk|Wk, νk).

10.14 We can express the required expectation as an integration with respect to the varia-
tional posterior distributionq?(µk,Λk) = q?(µk|Λk)q?(Λk). Thus we have

Eµk,Λk

[
(xn − µk)TΛk(xn − µk)

]

=

∫∫
Tr
{
Λk(xn − µk)(xn − µk)T

}
q?(µk|Λk)q?(Λk) dµk dΛk.

Next we use the resultq?(µk|Λk) = N (µk|mk, βkΛk) to perform the integration
overµk using the standard expressions for expectations under a Gaussian distribu-
tion, giving

E[µk] = mk

E[µkµ
T
k ] = mkm

T
k + β−1

k Λ−1
k

from which we obtain the expectation with respect toµk in the form

Eµk

[
(xn − µk)(xn − µk)T

]

= xnxT
n − xnmT

k − mkx
T
n + mkm

T
k + β−1

k Λ−1
k

= (xn − mk)(xn − mk)T + β−1
k Λ−1

k .
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Finally, taking the expectation with respect toΛk we have

Eµk,Λk

[
(xn − µk)TΛk(xn − µk)

]

=

∫
Tr
{
Λk

[
(xn − mk)(xn − mk)T + β−1

k Λ−1
k

]}
q?(Λk) dΛk

=

∫ {
(xn − mk)TΛk(xn − mk) +Dβ−1

k

}
q?(Λk) dΛk

= Dβ−1
k + νk(xn − mk)TWk(xn − mk)

as required. Here we have usedq?(Λk) = W(Λk|Wk, νk), together with the stan-
dard result for the expectation under a Wishart distribution to giveE[Λk] = νkWk.

10.15 By substituting (10.58) into (B.17) and then using (B.24) together with the fact that∑
k Nk = N , we obtain (10.69).

10.16 To derive (10.71) we make use of (10.38) to give

E[ln p(D|z,µ,Λ)]

=
1

2

N∑

n=1

K∑

k=1

E[znk] {E[ln |Λk|] − E[(xn − µk)Λk(xn − µk)] −D ln(2π)} .

We now useE[znk] = rnk together with (10.64) and the definition ofΛ̃k given by
(10.65) to give

E[ln p(D|z,µ,Λ)] =
1

2

N∑

n=1

K∑

k=1

rnk

{
ln Λ̃k

−Dβ−1
k − νk(xn − mk)TWk(xn − mk) −D ln(2π)

}
.

Now we use the definitions (10.51) to (10.53) together with the result (268) to give
(10.71).

We can derive (10.72) simply by taking the logarithm ofp(z|π) given by (10.37)

E[ln p(z|π)] =

N∑

n=1

K∑

k=1

E[znk]E[lnπk]

and then making use ofE[znk] = rnk together with the definition of̃πk given by
(10.65).

10.17 The result (10.73) is obtained by using the definition ofp(π) given by (10.39) to-
gether with the definition of̃πk given by (10.66).
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For the result (10.74) we start with the definition of the priorp(µ,Λ) given by
(10.40) to give

E[ln p(µ,Λ)] =

1

2

K∑

k=1

{
D lnβ0 −D ln(2π) + E[ln |Λk|] − β0E[(µk − m0)

TΛk(µk − m0)]
}

+K lnB(W0, ν0) +

K∑

k=1

{
(ν0 −D − 1)

2
E[ln |Λk|] −

1

2
Tr(W−1

0 E[Λk])

}
.

Now consider the termE[(µk−m0)
TΛk(µk−m0)]. To evaluate this expression we

first perform the expectation with respect toq?(µk|Λk) then the subsequently per-
form the expectation with respect toq?(Λk). Using the standard results for moments
under a Gaussian we have

E[µk] = mk

E[µkµ
T
k ] = mkm

T
k + β−1

k Λ−1
k

and hence

EµkΛk
[(µk − m0)

TΛk(µk − m0)] = Tr
(
EµkΛk

[
Λk(µk − m0)(µk − m0)

T
])

= Tr
(
EΛk

[
Λk(β−1

k Λ−1
k + mkm

T
k − m0m

T
k − mkm

T
0 + m0m

T
0 )
])

= Kβ−1
k + (mk − m0)

T
E[Λk](mk − m0).

Now we use (B.80) to giveE[Λk] = νkWk andE[lnΛk] = ln Λ̃k from (10.65) to
give (10.74).

For (10.75) we take use the result (10.48) forq?(z) to give

E[ln q(z)] =

N∑

n=1

K∑

k=1

E[znk] ln rnk

and usingE[znk] = rnk we obtain (10.75).

The solution (10.76) forE[ln q(π)] is simply the negative entropy of the correspond-
ing Dirichlet distribution (10.57) and is obtained from (B.22).

Finally, we need the entropy of the Gaussian-Wishart distribution q(µ,Λ). First of
all we note that this distribution factorizes into a product of factorsq(µk,Λk) and
the entropy of the product is the sum of the entropies of the individual terms, as is
easily verified. Next we write

ln q(µk,Λk) = ln q(µk|Λk) + ln q(Λk).

Consider first the quantityE[ln q(µk|Λk)]. Taking the expectation first with respect
toµk we can make use of the standard result (B.41) for the entropy of a Gaussian to
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give

EµkΛk
[ln q(µk|Λk)] = EΛk

[
1

2
ln |Λk| +

D

2
(lnβk − 1 − ln(2π))

]

=
1

2
ln Λ̃k +

D

2
(lnβk − 1 − ln(2π)) .

The termE[ln q(Λk)] is simply the negative entropy of a Wishart distribution, which
we write as−H[q(Λk)].

10.18 We start withβk, which appears in (10.71), (10.74) and (10.77). Using these, we can
differentiate (10.70) w.r.t.β−1

k , to get

∂L
∂β−1

k

=
D

2
(−Nk − β0 + βk) .

Setting this equal to zero and rearranging the terms, we obtain (10.60). We then
considermk, which appears in the quadratic terms of (10.71) and (10.74). Thus
differentiation of (10.70) w.r.t.mk gives

∂L
∂mk

= −Nkνk (Wkmk − Wkxk) − β0νk (Wkmk − Wkm0) .

Setting this equal to zero, using (10.60) and rearranging the terms, we obtain (10.61).

Next we tackle{Wk, νk}. Here we need to perform a joint optimization w.r.t.Wk

andνk for eachk = 1, . . . ,K. Like βk, Wk andνk appear in (10.71), (10.74) and
(10.77). Using these, we can rewrite the r.h.s. of (10.70) as

1

2

K∑

k

(
Nk ln Λ̃k −Nkνk

{
Tr (SkWk) + Tr

(
Wk (xk − mk) (xk − mk)

T
)}

+ ln Λ̃k − β0νk (mk − m0)
T
Wk (mk − m0) + (ν0 −D − 1) ln Λ̃k

− νkTr
(
W−1

0 Wk

)
− ln Λ̃k + 2H [q(Λk]

)
(269)

where we have dropped terms independent of{Wk, νk}, ln Λ̃k is given by (10.65),

H [q(Λk] = − lnB(Wk, νk) − νk −D − 1

2
ln Λ̃k

νkD

2
(270)

where we have used (10.65) and (B.81), and, from (B.79),

lnB(Wk, νk) =
νk

2
ln |Wk| −

νkD

2
−

D∑

i=1

ln Γ

(
νk + 1 − i

2

)
. (271)

Restricting attention to a single component,k, and making use of (270), (269) gives

1

2
(Nk + ν0 − νk) ln Λ̃k − νk

2
Tr (WkFk) − lnB(Wk, νk) +

νkD

2
(272)
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where

Fk = W−1
0 +NkSk +Nk (xk − mk) (xk − mk)

T

+β0 (mk − m0) (mk − m0)
T

= W−1
0 +NkSk +

Nkβ0

Nk + β0

(xk − m0) (xk − m0)
T (273)

as we shall show below. Differentiating (272) w.r.t.νk, making use of (271) and
(10.65), and setting the result to zero, we get

0 =
1

2

(
(Nk + ν0 − νk)

d ln Λ̃k

dνk
− ln Λ̃k − Tr (WkFk)

+ ln |Wk| +D ln 2 +

D∑

i=1

ln Γ

(
νk + 1 − i

2

)
+D

)

=
1

2

(
(Nk + ν0 − νk)

d ln Λ̃k

dνk
− Tr (WkFk) +D

)
. (274)

Similarly, differentiating (272) w.r.t.Wk, making use of (271), (273) and (10.65),
and setting the result to zero, we get

0 =
1

2

(
(Nk + ν0 − νk)W−1

k − Fk + W−1
k

)

=
1

2

(
(Nk + ν0 − νk)W−1

k − W−1
0 −NkSk

− Nkβ0

Nk + β0

(xk − m0) (xk − m0)
T

+ W−1
k

)
(275)

We see that the simultaneous equations (274) and (275) are satisfied if and only if

0 = Nk + ν0 − νk

0 = W−1
0 +NkSk +

Nkβ0

Nk + β0

(xk − m0) (xk − m0)
T − W−1

k

from which (10.63) and (10.62) follow, respectively. However, we still have to derive
(273). From (10.60) and (10.61), derived above, we have

mk =
β0m0 +Nkxk

β0 +Nk
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and using this, we get

Nk (xk − mk) (xk − mk)
T

+ β0 (mk − m0) (mk − m0)
T

=

Nkxkx
T
k −Nkxk

(β0m0 +Nkxk)T

β0 +Nk
− β0m0 +Nkxk

β0 +Nk
Nkx

T
k

+
Nk(β0m0 +Nkxk)(β0m0 +Nkxk)T

(β0 +Nk)2
+
β0(β0m0 +Nkxk)(β0m0 +Nkxk)T

(β0 +Nk)2

− β0m0
(β0m0 +Nkxk)T

β0 +Nk
− β0m0 +Nkxk

β0 +Nk
β0m

T
0 + β0m0m

T
0 .

We now gather the coefficients of the terms on the r.h.s. as follows.

Coefficients ofxkx
T
k :

Nk − N2
k

β0 +Nk
− N2

k

β0 +Nk
+

N3
k

(β0 +Nk)2
+

β0N
2
k

(β0 +Nk)2

= Nk − N2
k

β0 +Nk
− N2

k

β0 +Nk
+

N3
k

(β0 +Nk)2
+

β0N
2
k

(β0 +Nk)2

=
Nkβ

2
0 +N2

kβ0 +N2
kβ0 +N3

k − 2(N2
kβ0 +N3

k) +N3
k + β0N

2
k

(β0 +Nk)2

=
Nkβ

2
0 + β0N

2
k

(β0 +Nk)2
=
Nkβ0(β0 +Nk)

(β0 +Nk)2
=

Nkβ0

β0 +Nk

Coefficients ofxkm
T
0 andm0x

T
k (these are identical):

− Nkβ0

β0 +Nk
+

β0N
2
k

(β0 +Nk)2
+

β2
0Nk

(β0 +Nk)2
− Nkβ0

β0 +Nk

=
Nkβ0

β0 +Nk
− 2Nkβ0

β0 +Nk
= − Nkβ0

β0 +Nk

Coefficients ofm0m
T
0 :

Nkβ
2
0

(β0 +Nk)2
+

β3
0

(β0 +Nk)2
− 2β2

0

β0 +Nk
+ β0

=
β2

0(Nk + β0)

(β0 +Nk)2
− 2β2

0

β0 +Nk
+ β0

=
β2

0 − 2β2
0 + β2

0 +Nkβ0

β0 +Nk
=

Nkβ0

β0 +Nk

Thus

Nk (xk − mk) (xk − mk)
T

+ β0 (mk − m0) (mk − m0)
T

=
Nkβ0

Nk + β0

(xk − m0) (xk − m0)
T (276)
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as desired.

Now we turn our attention toα, which appear in (10.72) and (10.73), through
(10.66), and (10.76). Using these together with (B.23) and (B.24), we can differ-
entiate (10.70) w.r.t.αk and set it equal to zero, yielding

∂L
∂αk

= [Nk + (α0 − 1) − (αk − 1)]
∂ ln π̂k

∂αk
− ln π̂k − ∂ lnC(α)

∂αk

= [Nk + (α0 − 1) − (αk − 1)]

{
ψ1(αk) − ψ1(α̂)

∂α̂

∂αk

}

+ψ(α̂) − ψ(αk) − ψ(α̂)
∂α̂

∂αk
+ ψ(αk)

= [Nk + (α0 − 1) − (αk − 1)] {ψ1(αk) − ψ1(α̂)} = 0 (277)

whereψ(·) andψ1(·) are di- and trigamma functions, respectively. If we assume that
α0 > 0, (10.58) must hold for (277) to hold, since the trigamma function is strictly
positive and monotoncally decreasing for arguments greater than zero.

Finally, we maximize (10.70) w.r.t.rnk, subject to the constraints
∑

k rnk = 1 for
all n = 1, . . . , N . Note thatrnk not only appears in (10.72) and (10.75), but also in
(10.71) throughNk, xk andSk, and so we must substitute using (10.51), (10.52) and
(10.53), respectively. To simplify subsequent calculations, we start by considering
the last two terms inside the braces of (10.71), which we write together as

1

2

K∑

k=1

νkTr (WkQk) (278)

where, using (10.51), (10.52) and (10.53),

Qk =

N∑

n=1

rnk (xn − xk) (xn − xk)
T

+Nk (xk − mk) (xk − mk)
T

=

N∑

n=1

rnkxnxT
n − 2Nkxkx

T
k +Nkxkx

T
k

+Nkxkx
T
k −Nkmkx

T
k −Nkxkm

T
k +Nkmkm

T
k

=

N∑

n=1

rnk (xn − mk) (xn − mk)
T
. (279)

Using (10.51), (278) and (279), we can now consider all terms in (10.71) which
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depend onrkn and add the appropriate Lagrange multiplier terms, yielding

1

2

K∑

k=1

N∑

n=1

rnk

(
ln Λ̃k −Dβ−1

k

)

− 1

2

K∑

k=1

N∑

n=1

rnkνk (xn − mk)
T
Wk (xn − mk)

+

K∑

k=1

N∑

n=1

rnk ln π̃k −
K∑

k=1

N∑

n=1

rnk ln rnk +

N∑

n=1

λn

(
1 −

K∑

k=1

rnk

)
.

Taking the derivative of this w.r.t.rkn and setting it equal to zero we obtain

0 =
1

2
ln Λ̃k − D

2βk
− 1

2
νk (xn − mk)

T
Wk (xn − mk)

+ ln π̃k − ln rnk − 1 − λn.

Moving ln rnk to the l.h.s. and exponentiating both sides, we see that for eachn,

rnk ∝ π̃kΛ̃
1/2
k exp

{
− D

2βk
− 1

2
νk (xn − mk)

T
Wk (xn − mk)

}

which is in agreement with (10.67); the normalized form is then given by (10.49).

10.19 We start by performing the integration overπ in (10.80), making use of the result

E[πk] =
αk

α̂

to give

p(x̂|D) =

K∑

k=1

αk

α̂

∫∫
N (x̂|µk,Λ

−1
k )q(µk,Λk) dµk dΛk.

The variational posterior distribution overµ andΛ is given from (10.59) by

q(µk,Λk) = N
(
µk|mk, (βkΛk)

−1) W(Λk|Wk, νk).

Using this result we next perform the integration overµk. This can be done explicitly
by completing the square in the exponential in the usual way, or we can simply
appeal to the general result (2.109) and (2.110) for the linear-Gaussian model from
Chapter 2 to give
∫

N (x̂|µk,Λ
−1
k )N

(
µk|mk, (βkΛk)

−1)
dµk = N

(
x̂|mk,

(
1 + β−1

k

)
Λ−1

k

)
.

Thus we have

p(x̂|D) =

K∑

k=1

αk

α̂

∫
N
(
x̂|mk,

(
1 + β−1

k

)
Λ−1

k

)
W(Λk|Wk, νk) dΛk.
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The final integration overΛk is the convolution of a Wishart with a Gaussian. Omit-
ting multiplicative constants which are independent ofx̂ we have
∫

N
(
x̂|mk,

(
1 + β−1

k

)
Λ−1

k

)
W(Λk|Wk, νk) dΛk

∝
∫

|Λk|1/2+(νk−D−1)/2 exp

{
− 1

2
(
1 + β−1

k

)Tr
[
Λk(x̂ − mk)(x̂ − mk)T

]

−1

2
Tr
[
ΛkW

−1
k

]}
dΛk.

We can now perform this integration by observing that the argumentof the integral is
an un-normalized Wishart distribution (unsurprisingly since the Wishart is the conju-
gate prior for the precision of a Gaussian) and so we can write downthe result of this
integration, up to an overall constant, by using the known normalization coefficient
for the Wishart, given by (B.79). Thus we have

∫
N
(
x̂|mk,

(
1 + β−1

k

)
Λ−1

k

)
W(Λk|Wk, νk) dΛk

∝
∣∣∣∣∣W

−1
k +

1(
1 + β−1

k

)(x̂ − mk)(x̂ − mk)T

∣∣∣∣∣

−(νk+1)/2

∝
∣∣∣∣∣I +

1(
1 + β−1

k

)Wk(x̂ − mk)(x̂ − mk)T

∣∣∣∣∣

−(νk+1)/2

where we have omitted factors independent ofx̂ since we are only interested in the
functional dependence on̂x, and we have made use of the result|AB| = |A||B| and
omitted an overall factor of|W−1

k |. Next we use the identity

∣∣I + abT
∣∣ = (1 + aTb)

wherea andb areD-dimensional vectors andI is theD ×D unit matrix, to give
∫

N
(
x̂|mk,

(
1 + β−1

k

)
Λ−1

k

)
W(Λk|Wk, νk) dΛk

∝
{

1 +
1(

1 + β−1
k

)(x̂ − mk)TWk(x̂ − mk)

}−(νk+1)/2

.

We recognize this result as being a Student distribution, and bycomparison with the
standard form (B.68) for the Student we see that it has meanmk, precision given
by (10.82) and degrees of freedom parameterνk + 1 − D. We can re-instate the
normalization coefficient using the standard form for the Studentdistribution given
in Appendix B.
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10.20 Consider first the posterior distribution over the precision of componentk given by

q?(Λk) = W(Λk|Wk, νk).

From (10.63) we see that for largeN we haveνk → Nk, and similarly from (10.62)
we see thatWk → N−1

k S−1
k . Thus the mean of the distribution overΛk, given by

E[Λk] = νkWk → S−1
k which is the maximum likelihood value (this assumes that

the quantitiesrnk reduce to the corresponding EM values, which is indeed the case
as we shall show shortly). In order to show that this posterior is also sharply peaked,
we consider the differential entropy,H[Λk] given by (B.82), and show that, asNk →
∞, H[Λk] → 0, corresponding to the density collapsing to a spike. First consider
the normalizing constantB(Wk, νk) given by (B.79). SinceWk → N−1

k S−1
k and

νk → Nk,

− lnB(Wk, νk) → −Nk

2
(D lnNk + ln |Sk| −D ln 2)+

D∑

i=1

ln Γ

(
Nk + 1 − i

2

)
.

We then make use of Stirling’s approximation (1.146) to obtain

ln Γ

(
Nk + 1 − i

2

)
' Nk

2
(lnNk − ln 2 − 1)

which leads to the approximate limit

− lnB(Wk, νk) → −NkD

2
(lnNk − ln 2 − lnNk + ln 2 + 1) − Nk

2
ln |Sk|

= −Nk

2
(ln |Sk| +D) . (280)

Next, we use (10.241) and (B.81) in combination withWk → N−1
k S−1

k andνk →
Nk to obtain the limit

E [ln |Λ|] → D ln
Nk

2
+D ln 2 −D lnNk − ln |Sk|

= − ln |Sk|,

where we approximated the argument to the digamma function byNk/2. Substitut-
ing this and (280) into (B.82), we get

H[Λ] → 0

whenNk → ∞.

Next consider the posterior distribution over the meanµk of thekth component given
by

q?(µk|Λk) = N (µk|mk, βkΛk).

From (10.61) we see that for largeN the meanmk of this distribution reduces to
xk which is the corresponding maximum likelihood value. From (10.60) we see that
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βk → Nk and Thus the precisionβkΛk → βkνkWk → NkS
−1
k which is large for

largeN and hence this distribution is sharply peaked around its mean.

Now consider the posterior distributionq?(π) given by (10.57). For largeN we
haveαk → Nk and so from (B.17) and (B.19) we see that the posterior distribution
becomes sharply peaked around its meanE[πk] = αk/α → Nk/N which is the
maximum likelihood solution.

For the distributionq?(z) we consider the responsibilities given by (10.67). Using
(10.65) and (10.66), together with the asymptotic result for the digamma function,
we again obtain the maximum likelihood expression for the responsibilities for large
N .

Finally, for the predictive distribution we first perform the integration overπ, as in
the solution to Exercise 10.19, to give

p(x̂|D) =

K∑

k=1

αk

α

∫∫
N (x̂|µk,Λk)q(µk,Λk) dµk dΛk.

The integrations overµk andΛk are then trivial for largeN since these are sharply
peaked and hence approximate delta functions. We therefore obtain

p(x̂|D) =

K∑

k=1

Nk

N
N (x̂|xk,Wk)

which is a mixture of Gaussians, with mixing coefficients given byNk/N .

10.21 The number of equivalent parameter settings equals the number of possible assign-
ments ofK parameter sets toK mixture components:K for the first component,
timesK − 1 for the second component, timesK − 2 for the third and so on, giving
the resultK!.

10.22 The mixture distribution over the parameter space takes the form

q(Θ) =
1

K!

K!∑

κ=1

qκ(θκ)

whereθκ = {µk,Σk,π}, κ indexes the components of this mixture andΘ = {θκ}.
With this model, (10.3) becomes

L(q) =

∫
q(Θ) ln

{
p(X,Θ)

q(Θ)

}
dΘ

=
1

K!

K!∑

κ=1

∫
qκ(θκ) ln p(X,θκ) dθκ

− 1

K!

K!∑

κ=1

∫
qκ(θκ) ln

(
1

K!

K!∑

κ′=1

qκ′(θκ′)

)
dθκ

=

∫
q(θ) ln p(X,θ) dθ −

∫
q(θ) ln q(θ) dθ + lnK!
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whereq(θ) corresponds to any one of theK! equivalentqκ(θκ) distributions. Note
that in the last step, we use the assumption that the overlap between these distribu-
tions is negligible and hence

∫
qκ(θ) ln qκ′(θ) dθ ' 0

whenκ 6= κ′.

10.23 When we are treatingπ as a parameter, there is neither a prior, nor a variational
posterior distribution, overπ. Therefore, the only term remaining from the lower
bound, (10.70), that involvesπ is the second term, (10.72). Note however, that
(10.72) involves theexpectations of lnπk underq(π), whereas here, we operate
directly withπk, yielding

Eq(Z)[ln p(Z|π)] =

N∑

n=1

K∑

k=1

rnk lnπk.

Adding a Langrange term, as in (9.20), taking the derivative w.r.t. πk and setting the
result to zero we get

Nk

πk
+ λ = 0, (281)

where we have used (10.51). By re-arranging this to

Nk = −λπk

and summing both sides overk, we see that−λ =
∑

k Nk = N , which we can use
to eliminateλ from (281) to get (10.83).

10.24 The singularities that may arise in maximum likelihood estimation are caused by a
mixture component,k, collapsing on a data point,xn, i.e., rkn = 1, µk = xn and
|Λk| → ∞.

However, the prior distributionp(µ,Λ) defined in (10.40) will prevent this from
happening, also in the case of MAP estimation. Consider the product of the expected
complete log-likelihood andp(µ,Λ) as a function ofΛk:

Eq(Z) [ln p(X|Z,µ,Λ)p(µ,Λ)]

=
1

2

N∑

n=1

rkn

(
ln |Λk| − (xn − µk)TΛk(xn − µk)

)

+ ln |Λk| − β0(µk − m0)
TΛk(µk − m0)

+(ν0 −D − 1) ln |Λk| − Tr
[
W−1

0 Λk

]
+ const.

where we have used (10.38), (10.40) and (10.50), together with the definitions for
the Gaussian and Wishart distributions; the last term summarizes terms independent
of Λk. Using (10.51)–(10.53), we can rewrite this as

(ν0 +Nk −D) ln |Λk| − Tr
[
(W−1

0 + β0(µk − m0)(µk − m0)
T +NkSk)Λk

]
,
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Figure 9 Illustration of the true log marginal likelihood for a
Gaussian mixture model (×) and the correspond-
ing variational bound obtained from a factorized
approximation (◦) as functions of the number of
mixture components, K. The dashed arrows em-
phasize the typical increase in the difference be-
tween the true log marginal likelihood and the
bound. As a consequence, the bound tends to
have its peak at a lower value of K than the true
log marginal likelihood.

K

where we have dropped the constant term. Using (C.24) and (C.28), wecan compute
the derivative of this w.r.t.Λk and setting the result equal to zero, we find the MAP
estimate forΛk to be

Λ−1
k =

1

ν0 +Nk −D
(W−1

0 + β0(µk − m0)(µk − m0)
T +NkSk).

From this we see that|Λ−1
k | can never become 0, because of the presence ofW−1

0

(which we must chose to be positive definite) in the expression on the r.h.s.

10.25 As the number of mixture components grows, so does the number ofvariables that
may be correlated, but which are treated as independent under a variational approxi-
mation, as illustrated in Figure 10.2. As a result of this, the proportion of probability
mass under the true distribution,p(Z,π,µ,Σ|X), that the variational approximation
q(Z,π,µ,Σ) does not capture, will grow. The consequence will be that the second
term in (10.2), the KL divergence betweenq(Z,π,µ,Σ) andp(Z,π,µ,Σ|X), will
increase. Since this KL divergence is the difference between the true log marginal
and the corresponding the lower bound, the latter must decreasecompared to the
former. Thus, as illustrated in Figure 9, chosing the number of components based on
the lower bound will tend to underestimate the optimal numberof components.

10.26 Extending the variational treatment of Section 10.3 to also includeβ, we specify the
prior for β

p(β) = Gam (β|c0, d0) (282)

and modify (10.90) as

p(t,w, α, β) = p(t|w, β)p(w|α)p(α)p(β) (283)

where the first factor on the r.h.s. correspond to (10.87) with the dependence onβ
made explicit.

The formulae forq?(α), (10.93)–(10.95), remain unchanged. Forq(w), we follow
the path mapped out in Section 10.3, incorporating the modifications required by the
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changed treatment ofβ; (10.96)–(10.98) now become

ln q?(w) = Eβ [ln p(t|w, β)] + Eα [ln p(w|α)] + const

= −E[β]

2

N∑

n=1

{
wTφn − tn

}2 − E[α]

2
wTw + const

= −1

2
wT
(
E[α]I + E[β]ΦTΦ

)
w + E[β]wTΦTt + const.

Accordingly, (10.100) and (10.101) become

mN = E[β]SNΦt

SN =
(
E[α]I + E[β]ΦTΦ

)−1
.

For q(β), we use (10.9), (282) and (283) to obtain

ln q?(β) = Ew [ln p(t|w, β)] + ln p(β) + const

=
N

2
lnβ − β

2
Ew

[
N∑

n=1

{
wTφn − tn

}2

]
+ (c0 − 1) lnβ − d0β

which we recognize as the logarithm of a Gamma distribution withparameters

cN = c0 +
N

2

dN = d0 +
1

2
E

[
N∑

n=1

(
wTφn − tn

)2
]

= d0 +
1

2

(
Tr
(
ΦTΦE

[
wwT

])
+ tTt

)
− tTΦE[w]

= d0 +
1

2

(
‖t − ΦmN‖2

+ Tr
(
ΦTΦSN

))

where we have used (10.103) and, from (B.38),

E[w] = mN . (284)

Thus, from (B.27),
E[β] =

cN
dN

. (285)

In the lower bound, (10.107), the first term will be modified and two new terms
added on the r.h.s.We start with the modified log likelihood term:

Eβ [Ew [ln p(t|w, β)]] =
N

2
(E[β] − ln(2π)) − E[β]

2
E
[
‖t − Φw‖2]

=
N

2
(ψ(cN ) − ln dN − ln(2π))

− cN
2dN

(
|t − Φw‖2

+ Tr
(
ΦTΦSN

))
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where we have used (284), (285), (10.103) and (B.30). Next we considerthe term
corresponding log prior overβ:

E [ln p(β)] = (c0 − 1)E[lnβ] − d0E[β] + c0 ln d0 − ln Γ(c0)

= (c0 − 1)(ψ(cN ) − ln dN ) − d0cN
dN

+ c0 ln d0 − ln Γ(c0)

where we have used (285) and (B.30). Finally, from (B.31), we get the last term in
the form of the negative entropy of the posterior overβ:

−E [ln q?(β)] = (cN − 1)ψ(cN ) + ln dN − cN − ln Γ(cN ).

Finally, the predictive distribution is given by (10.105) and (10.106), with1/β re-
placed by1/E[β].

10.27 Consider each of the five terms in the lower bound (10.107) in turn. For the terms
arising from the likelihood function we have

E[ln p(t|w)] = −N
2

ln(2π) +
N

2
lnβ − β

2
E

[
N∑

n=1

(tn − wTφn)2

]

= −N
2

ln(2π) +
N

2
lnβ

−β
2

{
tTt − 2E[wT]ΦTt + Tr

(
E[wwT]ΦTΦ

)}
.

The prior overw gives rise to

E[ln p(w|α)] = −M
2

ln(2π) +
M

2
E[lnα] − E[α]

2
E[wTw].

Similarly, the prior overα gives

E[ln p(α)] = a0 ln b0 + (a0 − 1)E[lnα] − b0E[α] − ln Γ(a0).

The final two terms inL represent the negative entropies of the Gaussian and gamma
distributions, and are given by (B.41) and (B.31) respectively, so that

−E[ln q(w)] =
1

2
ln |SN | + M

2
(1 + ln(2π)).

Similarly we have

−E[ln q(α)] = −(an − 1)ψ(aN ) + aN + ln Γ(aN ) + ln bN .

Now we substitute the following expressions for the moments

E[w] = mN

E[wwT] = mNmT
N + SN

E[α] =
aN

bN
E[lnα] = ψ(aN ) − ln bN .

and combine the various terms together to obtain (10.107).
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10.28 NOTE: In PRML, Equations (10.119)–(10.121) contain errors; please consult the
PRML Errata for relevant corrections.

We start by writing the complete-data likelihood, given by (10.37) and (10.38) in a
form corresponding to (10.113). From (10.37) and (10.38), we have

p(X,Z|π,µ,Λ) = p(X|Z,µ,Λ)p(Z|π)

=

N∏

n=1

K∏

k=1

(
πkN

(
xn|µk,Λ

−1
k

))znk

which is a product over data points, just like (10.113). Focussing on the individual
factors of this product, we have

p(xn, zn|π,µ,Λ) =

K∏

k=1

(
πkN

(
xn|µk,Λ

−1
k

))znk
= exp

{
K∑

k=1

znk

(
lnπk

+
1

2
ln |Λk| −

D

2
ln(2π) − 1

2
(xn − µk)TΛ(xn − µk)

)}
.

Drawing on results from Solution 2.57, we can rewrite this in the form of (10.113),
with

η =




Λkµk−→
Λk

µT
k Λkµk

ln |Λk|
lnπk




k=1,...,K

(286)

u(xn, zn) =



znk




xn

1
2

−−−→
xnxT

n

− 1
2

1
2
1







k=1,...,K

(287)

h(xn, zn) =

K∏

k=1

(
(2π)−D/2

)znk

(288)

g(η) = 1

where we have introduce the notation

[vk]k=1,...,K =




v1

v2

...
vK



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and the operator
−→
M which returns a vector formed by stacking the columns of the

argument matrix on top of each other.

Next we seek to rewrite the prior over the parameters, given by (10.39) and (10.40),
in a form corresponding to (10.114) and which also matches (286). From, (10.39),
(10.40) and Appendix B, we have

p(π,µ,Λ) = Dir (π|α0)

K∏

k=1

N
(
µk|m0, (β0Λk)

−1)W (Λk|W0, ν0)

= C(α0)

(
β0

2π

)KD/2

B(W0, ν0)
K exp

{
K∑

k=1

(α0 − 1) lnπk

+
ν0 −D

2
ln |Λk| −

1

2
Tr
(
Λk

[
β0(µk − m0)(µk − m0)

T + W0

])
}
.

we can rewrite this in the form of (10.114) withη given by (286),

χ0 =




β0m0

− 1
2

(
β0

−−−−→
m0m

T
0 +

−−−→
W−1

0

)

−β0/2
(ν0 −D)/2
α0 − 1




k=1,...,K

(289)

g(η) = 1

f(υ0,χ0) = C(α0)

(
β0

2π

)KD/2

B(W0, ν0)
K

andυ0 replacesν0 in (10.114) to avoid confusion withν0 in (10.40).

Having rewritten the Bayesian mixture of Gaussians as a conjugate model from the
exponential family, we now proceed to rederive (10.48), (10.57) and (10.59). By
exponentiating both sides of (10.115) and making use of (286)–(288), we obtain
(10.47), withρnk given by (10.46), from which (10.48) follows.

Next we can use (10.50) to take the expectation w.r.t.Z in (10.121), substitutingrnk

for E[znk] in (287). Combining this with (289), (10.120) and (10.121) become

υN = υ0 +N = 1 +N
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and

υNχN =




β0m0

− 1
2

(
β0

−−−−→
m0m

T
0 +

−−−→
W−1

0

)

−β0/2
(ν0 −D)/2
α0 − 1




k=1,...,K

+

N∑

n=1



rnk




xn

1
2

−−−→
xnxT

n

− 1
2

1
2
1







k=1,...,K

=




β0m0 +Nkxk

− 1
2

(
β0

−−−−→
m0m

T
0 +

−−−→
W−1

0 +Nk

−−−−−−−−−→(
Sk + xkx

T
k

))

−(β0 +Nk)/2
(ν0 −D +Nk)/2
α0 − 1 +Nk




k=1,...,K

(290)

where we useυN instead ofνN in (10.119)–(10.121), to avoid confusion withνk,
which appears in (10.59) and (10.63). From the bottom row of (287) and(290), we
see that the inner product ofη andυNχN gives us the r.h.s. of (10.56), from which
(10.57) follows. The remaining terms of this inner product are

K∑

k=1

{
µT

k Λk (β0m0 +Nkxk)

− 1

2
Tr
(
Λk

[
β0

−−−−→
m0m

T
0 +

−−−→
W−1

0 +Nk

−−−−−−−−−→(
Sk + xkx

T
k

)])

− 1

2
(β0 +Nk)µT

k Λkµk +
1

2
(ν0 +Nk −D) ln |Λ|

}
.

Restricting our attention to parameters corresponding to a single mixture component
and making use of (10.60), (10.61) and (10.63), we can rewrite this as

− 1

2
βkµ

T
k Λkµk + βkµ

T
k Λkmk − 1

2
βkm

T
k Λkmk +

1

2
ln |Λ|

+
1

2
βkm

T
k Λkmk − 1

2
Tr
(
Λk

[
β0

−−−−→
m0m

T
0 +

−−−→
W−1

0 +Nk

−−−−−−−−−→(
Sk + xkx

T
k

)])

+
1

2
(νk −D − 1) ln |Λ|.

The first four terms match the logarithm ofN
(
µk|mk, (βkΛk)

−1) from the r.h.s.
of (10.59); the missingD/2[lnβk − ln(2π)] can be accounted for inf(υN ,χN ). To
make the remaining terms match the logarithm ofW (Λk|W0, ν0) from the r.h.s. of
(10.59), we need to show that

β0m0m
T
0 +Nkxkx

T
k − βkmkm

T
k
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equals the last term on the r.h.s. of (10.62). Using (10.60), (10.61) and (276), we get

β0m0m
T
0 +Nkxkx

T
k − βkmkm

T
k

= β0m0m
T
0 +Nkxkx

T
k − β0m0m

T
k −Nkxkm

T
k

= β0m0m
T
0 − β0m0m

T
k +Nkxkx

T
k −Nkxkm

T
k + βkmkm

T
k − βkmkm

T
k

= β0m0m
T
0 − β0m0m

T
k − β0mkm

T
0 + β0mkm

T
k

+Nkxkx
T
k −Nkxkm

T
k −Nkmkx

T
k +Nkmkm

T
k

= β0(mk − m0)(mk − m0)
T +Nk(xk − mk)(xk − mk)T

=
β0Nk

β0 +Nk
(xk − m0)(xk − m0)

T.

Thus we have recoveredlnW (Λk|W0, ν0) (missing terms are again accounted for
by f(υN ,χN )) and thereby (10.59).

10.29 NOTE: In the 1st printing of PRML, the use ofλ to denote the varitional param-
eter leads to inconsistencies w.r.t. exisiting literature. To remedy thisλ should be
replaced byη from the beginning of Section 10.5 up to and including the last line
before equation (10.141). For further details, please consult thePRML Errata.

Standard rules of differentiation give

d ln(x)

dx
=

1

x

d2 ln(x)

dx2
= − 1

x2
.

Since its second derivative is negative for all value ofx, ln(x) is concave for0 <
x <∞.

From (10.133) we have

g(η) = min
x

{ηx− f(x)}
= min

x
{ηx− ln(x)} .

We can minimize this w.r.t.x by setting the corresponding derivative to zero and
solving forx:

dg

dx
= η − 1

x
= 0 =⇒ x =

1

η
.

Substituting this in (10.133), we see that

g(η) = 1 − ln

(
1

η

)
.

If we substitute this into (10.132), we get

f(x) = min
η

{
ηx− 1 + ln

(
1

η

)}
.
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Again, we can minimize this w.r.t.η by setting the corresponding derivative to zero
and solving forη:

df

dη
= x− 1

η
= 0 =⇒ η =

1

x
,

and substituting this into (10.132), we find that

f(x) =
1

x
x− 1 + ln

(
1

1/x

)
= ln(x).

10.30 NOTE: Please consult note preceding Solution 10.29 for relevant corrections.

Differentiating the log logistic function, we get

d

dx
lnσ =

(
1 + e−x

)−1
e−x = σ(x)e−x (291)

and, using (4.88),

d2

dx2
lnσ = σ(x)(1 − σ(x))e−x − σ(x)e−x = −σ(x)2e−x

which will always be negative and hencelnσ(x) is concave.

From (291), we see that the first order Taylor expansion oflnσ(x) aroundξ becomes

lnσ(x) = lnσ(ξ) + (x− ξ)σ(ξ)e−ξ +O
(
(x− xi)2

)
.

Sincelnσ(x) is concave, its tangent line will be an upper bound and hence

lnσ(x) 6 lnσ(ξ) + (x− ξ)σ(ξ)e−ξ. (292)

Following the presentation in Section 10.5, we define

η = σ(ξ)e−ξ. (293)

Using (4.60), we have

η = σ(ξ)e−ξ =
e−ξ

1 + e−ξ

=
1

1 + eξ
= σ(−ξ)

= 1 − σ(ξ)

and hence
σ(ξ) = 1 − η.

From this and (293)

ξ = lnσ(ξ) − ln η

= ln(1 − η) − ln η.
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Using these results in (292), we have

lnσ(x) 6 ln(1 − η) + xη − η [ln(1 − η) − ln η] .

By exponentiating both sides and making use of (10.135), we obtain (10.137).

10.31 NOTE: Please consult note preceding Solution 10.29 for relevant corrections.

Taking the derivative off(x) w.r.t.x we get

df

dx
= − 1

ex/2 + e−x/2

1

2

(
ex/2 − e−x/2

)
= −1

2
tanh

(x
2

)

where we have used (5.59). From (5.60), we get

f ′′(x) =
d2f

dx2
= −1

4

(
1 − tanh

(x
2

)2
)
.

Sincetanh(x/2)2 < 1 for finite values ofx, f ′′(x) will always be negative and so
f(x) is concave.

Next we definey = x2, noting thaty will always be non-negative, and expressf as
a function ofy:

f(y) = − ln

{
exp

(√
y

2

)
+ exp

(
−
√
y

2

)}
.

We then differentiatef w.r.t. y, yielding

df

dy
= −

{
exp

(√
y

2

)
+ exp

(
−
√
y

2

)}−1

(294)

1

4
√
y

{
exp

(√
y

2

)
− exp

(
−
√
y

2

)}

= − 1

4
√
y

tanh

(√
y

2

)
. (295)

and, using (5.60),

d2f

dy2
=

1

8y3/2
tanh

(√
y

2

)
− 1

16y

{
1 − tanh

(√
y

2

)2
}

=
1

8y

(
tanh

(√
y

2

){
1√
y

+
1

2
tanh

(√
y

2

)}
− 1

2

)
. (296)

We see that this will be positive if the factor inside the outermost parenthesis is
positive, which is equivalent to

1√
y

tanh

(√
y

2

)
>

1

2

{
1 − tanh2

(√
y

2

)}
.
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If we divide both sides bytanh
(√

y/2
)
, substitutea for

√
y/2 and then make use

of (5.59), we can write this as

1

a
>

ea + e−a

ea − e−a
− ea − e−a

ea + e−a

=
(ea + e−a)

2 − (ea − e−a)
2

(ea − e−a) (ea + e−a)

=
4

e2a − e−2a
.

Taking the inverse of both sides of this inequality we get

a <
1

4

(
e2a − e−2a

)
.

If differentiate both sides w.r.t.a we see that the derivatives are equal ata = 0 and
for a > 0, the derivative of the r.h.s. will be greater than that of the l.h.s. Thus, the
r.h.s. will grow faster and the inequality will hold fora > 0. Consequently (296)
will be positive fory > 0 and approach+∞ asy approaches0.

Now we use (295) to make a Taylor expansion off(x2) aroundξ2, which gives

f(x2) = f(ξ2) + (x2 − ξ2)f ′(ξ2) +O
(
(x2 − ξ2)2

)

> − ln

{
exp

(
ξ

2

)
+ exp

(
−ξ

2

)}
− (x2 − ξ2)

1

4ξ
tanh

(
ξ

2

)
.

where we have used the fact thatf is convex function ofx2 and hence its tangent
will be a lower bound. Defining

λ(ξ) =
1

4ξ
tanh

(
ξ

2

)

we recover (10.143), from which (10.144) follows.

10.32 We can see this from the lower bound (10.154), which is simply a sumof the prior
and indepedent contributions from the data points, all of whichare quadratic inw. A
new data point would simply add another term to this sum and we can regard terms
from the previously arrived data points and the original prior collectively as a revised
prior, which should be combined with the contributions from the new data point.

The corresponding sufficient statistics, (10.157) and (10.158),can be rewritten di-
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rectly in the corresponding sequential form,

mN = SN

(
S−1

0 m0 +

N∑

n=1

(tn − 1/2)φn

)

= SN

(
S−1

0 m0 +

N−1∑

n=1

(tn − 1/2)φn + (tN − 1/2)φN

)

= SN

(
S−1

N−1SN−1

(
S−1

0 m0 +

N−1∑

n=1

(tn − 1/2)φn

)
+ (tN − 1/2)φN

)

= SN

(
S−1

N−1mN−1 + (tN − 1/2)φN

)

and

S−1
N = S−1

0 + 2

N∑

n=1

λ(ξn)φnφ
T
n

= S−1
0 + 2

N−1∑

n=1

λ(ξn)φnφ
T
n + 2λ(ξN )φNφ

T
N

= S−1
N−1 + 2λ(ξN )φNφ

T
N .

The update formula for the variational parameters, (10.163), remain the same, but
each parameter is updated only once, although this update will be part of an iterative
scheme, alternating between updatingmN andSN with ξN kept fixed, and updating
ξN with mN andSN kept fixed. Note that updatingξN will not affect mN−1 and
SN−1. Note also that this updating policy differs from that of the batch learning
scheme, where all variational parameters are updated using statistics based on all
data points.

10.33 Taking the derivative of (10.161) w.r.t.ξn, we get

∂Q

∂ξn
=

1

σ(ξn)
σ′(ξn) − 1

2
− λ′(ξn)

(
φT

nE
[
wwT

]
φ− ξ2

n

)
+ λ(ξn)2ξn

=
1

σ(ξn)
σ(ξn)(1 − σ(x)) − 1

2
− λ′(ξn)

(
φT

nE
[
wwT

]
φ− ξ2

n

)

+
1

2ξn

[
σ(x) − 1

2

]
2ξn

= −λ′(ξn)
(
φT

nE
[
wwT

]
φ− ξ2

n

)

where we have used (4.88) and (10.141). Setting this equal to zero,we obtain
(10.162), from which (10.163) follows.
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10.34 NOTE: In the1st printing of PRML, there are a number of sign errors in Equation
(10.164); the correct form is

L(ξ) =
1

2
ln

|SN |
|S0|

+
1

2
mT

NS−1
N mN − 1

2
mT

0 S−1
0 m0

+

N∑

n=1

{
lnσ(ξn) − 1

2
ξn + λ(ξn)ξ2

n

}
.

We can differentiateL w.r.t. ξn using (3.117) and results from Solution 10.33, to
obtain

∂L
∂ξn

=
1

2
Tr

(
S−1

N

∂SN

∂ξn

)
+

1

2
Tr

(
aNaT

N

∂SN

∂ξn

)
+ λ′(ξn)ξ2

n (297)

where we have defined
aN = S−1

N mN . (298)

From (10.158) and (C.21), we get

∂SN

∂ξn
=

∂
(
S−1

N

)−1

∂ξn
= −SN

∂S−1
N

∂ξn
SN

= −SN2λ′(ξn)φnφ
T
nSN .

Substituting this into (297) and setting the result equal to zero, we get

−1

2
Tr
((

S−1
N + aNaT

N

)
SN2λ′(ξn)φnφ

T
nSN

)
+ λ′(ξn)ξ2

n = 0.

Rearranging this and making use of (298) we get

ξ2
n = φT

nSN

(
S−1

N + aNaT
N

)
SNφn

= φT
n

(
SN + mNmT

N

)
φn

where we have also used the symmetry ofSN .

10.35 NOTE: See note in Solution 10.34.

From (2.43), (4.140) and (10.153), we see that

p(w)h(w, ξ) = (2π)−W/2 |S0|−1/2

exp

{
−1

2
wT

(
S−1

0 + 2

N∑

n=1

λ(ξn)φnφ
T
n

)
w

+wT

(
S−1

0 m0 +

N∑

n=1

φn

[
tn − 1

2

])}

exp

{
−1

2
mT

0 S−1
0 m0 +

N∑

n=1

ξn
2

+ λ(ξn)ξ2
n

}
N∏

n=1

σ(ξn).
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Using (10.157) and (10.158), we can complete the square overw, yielding

p(w)h(w, ξ) = (2π)−W/2 |S0|−1/2
N∏

n=1

σ(ξn)

exp

{
−1

2
(w − mN )TS−1

N (w − mN )

}

exp

{
1

2
mT

NS−1
N mN − 1

2
mT

0 S−1
0 m0

N∑

n=1

ξn
2

+ λ(ξn)ξ2
n

}
.

Now we can do the integral overw in (10.159), in effect replacing the first exponen-
tial factor with(2π)W/2 |SN |1/2. Taking logarithm, we then obtain (10.164).

10.36 If we denote the joint distribution corresponding to the firstj factors bypj(θ,D),
with corresponding evidencepj(D), then we have

pj(D) =

∫
pj(θ,D) dθ =

∫
pj−1(θ,D)fj(θ) dθ

= pj−1(D)

∫
pj−1(θ|D)fj(θ) dθ

' pj−1(D)

∫
qj−1(θ)fj(θ) dθ = pj−1(D)Zj .

By applying this result recursively we see that the evidence is given by the product
of the normalization constants

p(D) =
∏

j

Zj .

10.37 Here we use the general expectation-propagation equations (10.204)–(10.207). The
initial q(θ) takes the form

qinit(θ) = f̃0(θ)
∏

i 6=0

f̃i(θ)

wheref̃0(θ) = f0(θ). Thus

q\0(θ) ∝
∏

i 6=0

f̃i(θ)

andqnew(θ) is determined by matching moments (sufficient statistics) against

q\0(θ)f0(θ) = qinit(θ).

Since by definition this belongs to the same exponential family form asqnew(θ) it
follows that

qnew(θ) = qinit(θ) = q\0(θ)f0(θ).
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Thus

f̃0(θ) =
Z0 q

new(θ)

q\0(θ)
= Z0f0(θ)

where

Z0 =

∫
q\0(θ)f0(θ) dθ =

∫
qnew(θ) dθ = 1.

10.38 The ratio is given by

q\n(θ) ∝ exp

{
− 1

2v
‖θ − m‖2 +

1

2vn
‖θ − mn‖2

}

∝ exp

{
−1

2
θTθ

(
1

v
− 1

vn

)
+ θT

(
1

v
m − 1

vn
mn

)}

from which we obtain the variance given by (10.215). The mean is then obtained by
completing the square and is therefore given by

m\n = v\n
(
v−1m − v−1

n mn

)

= v\n
(
v−1m − v−1

n mn

)
+ v\nv−1

n m − v\nv−1
n m

= v\n
(
v−1 − v−1

n

)
m + v\nv−1

n (m − mn)

Hence we obtain (10.214).

The normalization constant is given by

Zn =

∫
N (θ|m\n, v\nI) {(1 − w)N (xn|θ, I) + wN (xn|0, aI)} dθ.

The first term can be integrated by using the result (2.115) while the second term
is trivial since the background distribution does not depend onθ and hence can be
taken outside the integration. We therefore obtain (10.216).

10.39 NOTE: In PRML, a termv\nD should be added to the r.h.s. of (10.245).

We derive (10.244) by noting

∇m\n lnZn =
1

Zn
∇m\n

∫
q\n(θ)fn(θ) dθ

=
1

Zn

∫
q\n(θ)fn(θ)

{
− 1

v\n
(m\n − θ)

}
dθ

= −m\n

v\n
+

E[θ]

v\n
.

We now use this to derive (10.217) by substituting forZn using (10.216) to give

∇m\n lnZn =
1

Zn
(1 − w)N (xn|m\n, (v\n + 1)I)

1

v\n + 1
(xn − m\n)

= ρn
1

v\n + 1
(xn − m\n)
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where we have defined

ρn = (1 − w)
1

Zn
N (xn|m\n, (v\n + 1)I) = 1 − w

Zn
N (xn|0, aI).

Similarly for (10.245) we have

∇v\n lnZn =
1

Zn
∇v\n

∫
q\n(θ)fn(θ) dθ

=
1

Zn

∫
q\n(θ)fn(θ)

{
1

2(v\n)2

(
m\n − θ

)T (
m\n − θ

)
− D

2v\n

}
dθ

=
1

2(v\n)2

{
E[θTθ] − 2E[θT]m\n + ‖m\n‖2

}
− D

2v\n
.

Re-arranging we obtain (10.245). Now we substitute forZn using (10.216) to give

∇v\n lnZn =
1

Zn
(1 − w)N (xn|m\n, (v\n + 1)I)

[
1

2(v\n + 1)2
‖xn − m\n‖2 − D

2(v\n + 1)

]
.

Next we note that the variance is given by

vI = E[θθT] − E[θ]E[θT]

and so, taking the trace, we have

Dv = E[θTθ] − E[θT]E[θ]

whereD is the dimensionality ofθ. Combining the above results we obtain (10.218).

Chapter 11 Sampling Methods

11.1 Since the samples are independent, for the mean, we have

E

[
f̂
]

=
1

L

L∑

l=1

∫
f(z(l))p(z(l)) dz(l) =

1

L

L∑

l=1

E [f ] = E [f ] .

Using this together with (1.38) and (1.39), for the variance, we have

var
[
f̂
]

= E

[(
f̂ − E

[
f̂
])2
]

= E

[
f̂2
]
− E [f ]

2
.
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Now note

E
[
f(z(k)), f(z(m))

]
=

{
var[f ] + E[f2] if n = k,
E[f2] otherwise,

= E[f2] + δmkvar[f ],

where we again exploited the fact that the samples are independent.

Hence

var
[
f̂
]

= E

[
1

L

L∑

m=1

f(z(m))
1

L

L∑

k=1

f(z(k))

]
− E[f ]2

=
1

L2

L∑

m=1

L∑

k=1

{
E[f2] + δmkvar[f ]

}
− E[f ]2

=
1

L
var[f ]

=
1

L
E
[
(f − E [f ])

2]
.

11.2 From (1.27) we have,
py(y) = pz(h(y)) |h′(y)| .

Differentiating (11.6) w.r.t.y and using the fact thatpz(h(y)) = 1, we see that

py(y) = p(y).

11.3 Using the standard integral
∫

1

a2 + u2
du =

1

a
tan−1

(u
a

)
+ C

whereC is a constant, we can integrate the r.h.s. of (11.8) to obtain

z = h(y) =

∫ y

−∞
p(ŷ) dŷ =

1

π
tan−1(y) +

1

2

where we have chosen the constantC = 1/2 to ensure that the range of the cumula-
tive distribution function is[0, 1].

Thus the required transformation function becomes

y = h−1(z) = tan

(
π

(
z − 1

2

))
.

11.4 We need to calculate the determinant of the Jacobian

∂(z1, z2)

∂(y1, y2)
.
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In doing so, we will find it helpful to make use of intermediary variables in polar
coordinates

θ = tan−1 z2
z1

(299)

r2 = z2
1 + z2

2 (300)

from which it follows that

z1 = r cos θ (301)

z2 = r sin θ. (302)

From (301) and (302) we have

∂(z1, z2)

∂(r, θ)
=

(
cos θ sin θ

−r sin θ r cos θ

)

and thus ∣∣∣∣
∂(z1, z2)

∂(r, θ)

∣∣∣∣ = r(cos2 θ + sin2 θ) = r. (303)

From (11.10), (11.11) and (300)–(302) we have

y1 = z1

(
−2 ln r2

r2

)1/2

=
(
−2 ln r2

)1/2
cos θ (304)

y2 = z2

(
−2 ln r2

r2

)1/2

=
(
−2 ln r2

)1/2
sin θ (305)

which give

∂(y1, y2)

∂(r, θ)
=

(
−2 cos θ (−2 ln r2)

−1/2
r−1 −2 sin θ (−2 ln r2)

−1/2
r−1

− sin θ (−2 ln r2)
1/2

cos θ (−2 ln r2)
1/2

)

and thus
∣∣∣∣
∂(r, θ)

∂(y1, y2)

∣∣∣∣ =

∣∣∣∣
∂(y1, y2)

∂(r, θ)

∣∣∣∣
−1

=
(
−2r−1(cos2 θ + sin2 θ)

)−1
= −r

2
.

Combining this with (303), we get
∣∣∣∣
∂(z1, z2)

∂(y1, y2)

∣∣∣∣ =

∣∣∣∣
∂(z1, z2)

∂(r, θ)

∂(r, θ)

∂(y1, y2)

∣∣∣∣

=

∣∣∣∣
∂(z1, z2)

∂(r, θ)

∣∣∣∣
∣∣∣∣
∂(r, θ)

∂(y1, y2)

∣∣∣∣ = −r
2

2
(306)

However, we only retain the absolute value of this, since bothsides of (11.12) must
be non-negative. Combining this with

p(z1, z2) =
1

π
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which follows from the fact thatz1 andz2 are uniformly distributed on the unit circle,
we can rewrite (11.12) as

p(y1, y2) =
1

2π
r2. (307)

By squaring the left- and rightmost sides of (304) and (305), addingup the results
and rearranging, we see that

r2 = exp

(
−1

2

(
y2
1 + y2

2

))

which toghether with (307) give (11.12).

11.5 SinceE [z] = 0,
E [y] = E [µ+ Lz] = µ.

Similarly, sinceE
[
zzT
]

= I,

cov [y] = E
[
yyT

]
− E [y] E

[
yT
]

= E

[
(µ+ Lz) (µ+ Lz)

T
]
− µµT

= LLT

= Σ.

11.6 The probability of acceptance follows directly from the mechanism used to accept or
reject the sample. The probability of a samplez being accepted equals the probability
of a sampleu, drawn uniformly from the interval[0, kq(z)], being less than or equal
to a valuẽp(z) 6 kq(z), and is given by is given by

p(acceptance|z) =

∫ p̃(z)

0

1

kq(z)
du =

p̃(z)

kq(z)
.

Therefore, the probability of drawing a sample,z, is

q(z)p(acceptance|z) = q(z)
p̃(z)

kq(z)
=
p̃(z)

k
. (308)

Integrating both sides w.r.t.z, we see thatkp(acceptance) = Zp, where

Zp =

∫
p̃(z) dz.

Combining this with (308) and (11.13), we obtain

q(z)p(acceptance|z)

p(acceptance)
=

1

Zp
p̃(z) = p(z)

as required.
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11.7 NOTE: In PRML, the roles ofy andz in the text of the exercise should be swapped
in order to be consistent with the notation used in Section 11.1.2, including (11.16);
this is opposite to the notation used in Section 11.1.1.

We will suppose thaty has a uniform distribution on[0, 1] and we seek the distribu-
tion of z, which is derived from

z = b tan y + c.

From (11.5), we have

q(z) = p(y)

∣∣∣∣
dy

dz

∣∣∣∣ (309)

From the inverse transformation

y = tan−1(u(z)) = tan−1
(z − c

b

)

where we have implicitly definedu(z), we see that

dy

dz
=

d

du
tan−1(u)

du

dz

=
1

1 + u2

du

dz

=
1

1 + (z − c)2/b2
1

b
.

Substituting this into (309), using the fact thatp(y) = 1 and finally absorbing the
factor1/b into k, we obtain (11.16). .

11.8 NOTE: In PRML, equation (11.17) and the following end of the sentenceneed to
modified as follows:

q(z) = kiλi exp {−λi (z − zi)} ẑi−1,i < z 6 ẑi,i+1

whereẑi−1,i is the point of intersection of the tangent lines atzi−1 andzi, λi is the
slope of the tangent atzi andki accounts for the corresponding offset.

We start by determining̃q(z) with coefficients̃ki, such that̃q(z) > p(z) everywhere.
From Figure 11.6, we see that

q̃(zi) = p(zi)

and thus, from (11.17),

q̃(zi) = k̃iλi exp (−λi(zi − zi))

= k̃iλi = p(zi). (310)
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Next we compute the normalization constant forq in terms ofki,

Zq =

∫
q̃(z) dz

=

K∑

i=1

k̃iλi

∫ ẑi,i+1

ẑi−1,i

exp (−λi(z − zi)) dz

=

K∑

i=1

ki (311)

whereK denotes the number of grid points and

ki = k̃iλi

∫ ẑi,i+1

ẑi−1,i

exp (−λi(z − zi)) dz

= k̃i (exp {−λi (ẑi−1,i − zi)} − exp {−λi (ẑi,i+1 − zi)}) . (312)

Note thatẑ0,1 and ẑK,K+1 equal the lower and upper limits onz, respectively, or
−∞/+∞ where no such limits exist.

11.9 NOTE: See correction detailed in Solution 11.8

To generate a sample fromq(z), we first determine the segment of the envelope
function from which the sample will be generated. The probabilitymass in segment
i is given from (311) aski/Zq. Hence we drawv fromU(v|0, 1) and obtain

i =





1 if v 6 k1/Zq

m if
∑m−1

j=1 kj/Zq < v 6
∑m

j=1 kj/Zq, 1 < m < K

K otherwise.

Next, we can use the techniques of Section 11.1.1 to sample fromthe exponential
distribution corresponding to the chosen segmenti. We must, however, take into
account that we now only want to sample from a finite interval of the exponential
distribution and so the lower limit in (11.6) will bêzi−1,i. If we consider the uni-
formly distributed variablew, U(w|0, 1), (11.6), (310) and (311) give

w = h(z) =

∫ z

ẑi−1,i

q(z̃) dz̃

=
k̃i

ki
λi exp (λizi)

∫ z

ẑi−1,i

exp (−λiz̃) dz̃

=
k̃i

ki
exp (λizi) [exp (−λiẑi−1,i) − exp (−λiz)] .
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Thus, by drawing a samplew? and transforming it according to

z? =
1

λi
ln

[
w? ki

k̃i exp (λizi)
− exp (−λiẑi−1,i)

]

=
1

λi
ln [w? (exp {−λiẑi−1,i} − exp {−λiẑi,i+1}) − exp (−λiẑi−1,i)]

where we have used (312), we obtain a sample fromq(z).

11.10 NOTE: In PRML, “z(1) = 0” should be “z(0) = 0” on the first line following
Equation (11.36)

From (11.34)–(11.36) and the fact thatE
[
z(τ)
]

= 0 for all values ofτ , we have

Ez(τ )

[(
z(τ)
)2]

= 0.5 Ez(τ−1)

[(
z(τ−1)

)2]
+ 0.25 Ez(τ−1)

[(
z(τ−1) + 1

)2]

+0.25 Ez(τ−1)

[(
z(τ−1) − 1

)2]

= Ez(τ−1)

[(
z(τ−1)

)2]
+

1

2
. (313)

With z(0) = 0 specified in the text following (11.36), (313) gives

Ez(1)

[(
z(1)
)2]

= Ez(0)

[(
z(0)
)2]

+
1

2
=

1

2
.

Assuming that

Ez(k)

[(
z(k)
)2]

=
k

2

(313) immediatly gives

Ez(k+1)

[(
z(k+1)

)2]
=
k

2
+

1

2
=
k + 1

2

and thus
Ez(τ )

[(
z(τ)
)2]

=
τ

2
.

11.11 This follows from the fact that in Gibbs sampling, we sample a single variable,zk,
at the time, while all other variables,{zi}i 6=k, remain unchanged. Thus,{z′i}i 6=k =
{zi}i 6=k and we get

p?(z)T (z, z′) = p?(zk, {zi}i 6=k)p?(z′k|{zi}i 6=k)

= p?(zk|{zi}i 6=k)p?({zi}i 6=k)p?(z′k|{zi}i 6=k)

= p?(zk|{z′i}i 6=k)p?({z′i}i 6=k)p?(z′k|{z′i}i 6=k)

= p?(zk|{z′i}i 6=k)p?(z′k, {z′i}i 6=k)

= p?(z′)T (z′, z),

where we have used the product rule together withT (z, z′) = p?(z′k|{zi}i 6=k).
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11.12 Gibbs sampling isnot ergodic w.r.t. the distribution shown in Figure 11.15, since the
two regions of non-zero probability do not overlap when projected onto either thez1-
ot thez2-axis. Thus, as the initial sample will fall into one and only one of the two
regions, all subsequent samples will also come from that region.However, had the
initial sample fallen into the other region, the Gibbs sampler would have remained
in that region. Thus, the corresponding Markov chain would have two stationary
distributions, which is counter to the definition of the equilibrium distribution.

11.13 The joint distribution overx, µ andτ can be written

p(x, µ, τ |µ0, s0, a, b) = N
(
x|µ, τ−1

)
N (µ|µ0, s0) Gam (τ |a, b) .

From Bayes’ theorem we see that

p(µ|x, τ, µ0, s0) ∝ N
(
x|µ, τ−1

)
N (µ|µ0, s0)

which, from (2.113)–(2.117), is also a Gaussian,

N (µ|µ̂, ŝ)

with parameters

ŝ−1 = s−1
0 + τ

µ̂ = ŝ
(
τx+ s−1

0 µ0

)
.

Similarly,
p(τ |x, µ, a, b) ∝ N

(
x|µ, τ−1

)
Gam (τ |a, b)

which, we know from Section 2.3.6, is a gamma distribution

Gam
(
τ |â, b̂

)

with parameters

â = a+
1

2

b̂ = b+
1

2
(x− µ)

2
.

11.14 NOTE: In PRML,α2
i should beα2 in the last term on the r.h.s. of (11.50).

If we take the expectation of (11.50), we obtain

E [z′i] = E

[
µi + α (zi − µi) + σi

(
1 − α2

)1/2
ν
]

= µi + α (E [zi] − µi) + σi

(
1 − α2

)1/2
E [ν]

= µi.
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Now we can use this together with (1.40) to compute the varianceof z′i,

var [z′i] = E

[
(z′i)

2
]
− E [z′i]

2

= E

[(
µi + α (zi − µi) + σi

(
1 − α2

)1/2
ν
)2
]
− µ2

i

= α2
E
[
(zi − µi)

2]
+ σ2

i

(
1 − α2

)
E
[
ν2
]

= σ2
i

where we have used the first and second order moments ofzi andν.

11.15 Using (11.56), we can differentiate (11.57), yielding

∂H

∂ri
=
∂K

∂ri
= ri

and thus (11.53) and (11.58) are equivalent.

Similarly, differentiating (11.57) w.r.t.zi we get

∂H

∂zi
=
∂E

∂zi
,

and from this, it is immediately clear that (11.55) and (11.59) areequivalent.

11.16 From the product rule we know that

p(r|z) ∝ p(r, z).

Using (11.56) and (11.57) to rewrite (11.63) as

p(z, r) =
1

ZH
exp (−H(z, r))

=
1

ZH
exp (−E(z) −K(r))

=
1

ZH
exp

(
−1

2
‖r‖2

)
exp (−E(z)) .

Thus we see thatp(z, r) is Gaussian w.r.t.r and hencep(r|z) will be Gaussian too.

11.17 NOTE: In the1st printing of PRML, there are sign errors in equations (11.68) and
(11.69). In both cases, the sign of the argument to the exponential forming the second
argument to themin-function should be changed.

First we note that, ifH(R) = H(R′), then the detailed balance clearly holds, since
in this case, (11.68) and (11.69) are identical.

Otherwise, we either haveH(R) > H(R′) or H(R) < H(R′). We consider the
former case, for which (11.68) becomes

1

ZH
exp(−H(R))δV

1

2
,
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since themin-function will return1. (11.69) in this case becomes

1

ZH
exp(−H(R′))δV

1

2
exp(H(R′) −H(R)) =

1

ZH
exp(−H(R))δV

1

2
.

In the same way it can be shown that both (11.68) and (11.69) equal

1

ZH
exp(−H(R′))δV

1

2

whenH(R) < H(R′).

Chapter 12 Continuous Latent Variables

12.1 Suppose that the result holds for projection spaces of dimensionalityM . TheM +
1 dimensional principal subspace will be defined by theM principal eigenvectors
u1, . . . ,uM together with an additional direction vectoruM+1 whose value we wish
to determine. We must constrainuM+1 such that it cannot be linearly related to
u1, . . . ,uM (otherwise it will lie in theM -dimensional projection space instead of
defining anM + 1 independent direction). This can easily be achieved by requiring
thatuM+1 be orthogonal tou1, . . . ,uM , and these constraints can be enforced using
Lagrange multipliersη1, . . . , ηM .

Following the argument given in section 12.1.1 foru1 we see that the variance in the
directionuM+1 is given byuT

M+1SuM+1. We now maximize this using a Lagrange
multiplier λM+1 to enforce the normalization constraintuT

M+1uM+1 = 1. Thus we
seek a maximum of the function

uT
M+1SuM+1 + λM+1

(
1 − uT

M+1uM+1

)
+

M∑

i=1

ηiu
T
M+1ui.

with respect touM+1. The stationary points occur when

0 = 2SuM+1 − 2λM+1uM+1 +

M∑

i=1

ηiui.

Left multiplying withuT
j , and using the orthogonality constraints, we see thatηj = 0

for j = 1, . . . ,M . We therefore obtain

SuM+1 = λM+1uM+1

and souM+1 must be an eigenvector ofS with eigenvalueuM+1. The variance
in the directionuM+1 is given byuT

M+1SuM+1 = λM+1 and so is maximized by
choosinguM+1 to be the eigenvector having the largest eigenvalue amongstthose
not previously selected. Thus the result holds also for projection spaces of dimen-
sionalityM + 1, which completes the inductive step. Since we have already shown
this result explicitly forM = 1 if follows that the result must hold for anyM 6 D.
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12.2 Using the result (C.24) we can set the derivative ofJ̃ with respect toÛ to zero to
obtain

0 = (ST + S)Û − Û(HT + H).

We note thatS is symmetric so thatST = S. Similarly we can chooseH to be sym-
metric without loss of generality since any non-symmetric component would cancel
from the expression for̃J since the latter involves a trace ofH times a symmetric
matrix. (See Exercise 1.14 and its solution.) Thus we have

SÛ = ÛH.

Clearly one solution is take the columns ofÛ to be eigenvectors ofS. To discuss the
general solution, consider the eigenvector equation forH given by

HΨ = ΨL.

SinceH is a symmetric matrix its eigenvectors can be chosen to be a complete
orthonormal set in the(D−M)-dimensional space, andL will be a diagonal matrix
containing the corresponding eigenvalues, withΨ a(D−M)×(D−M)-dimensional
orthogonal matrix satisfyingΨTΨ = I.

If we right multiply the eigenvector equation forS by Ψ we obtain

SÛΨ = ÛHΨ = ÛΨL

and definingŨ = ÛΨ we obtain

SŨ = ŨL

so that the columns of̃U are the eigenvectors ofS, and the elements of the diagonal
matrixL are the corresponding eigenvalues.

Using the cyclic property of the trace, together with the orthogonality property
ΨTΨ, the distortion function can be written

J = Tr(ÛTSÛ) = Tr(ΨTÛTSÛΨ) = Tr(ŨSŨ) = Tr(L).

Thus the distortion measure can be expressed in terms of the sum ofthe eigenvalues
of S corresponding to the(D−M) eigenvectors orthogonal to the principal subspace.

12.3 By left-multiplying both sides of (12.28) byvT
i , we obtain

1

N
vT

i XXTvi = λiv
T
i vi = λi

where we have used the fact thatvi is orthonormal. From this we see that
∥∥XTvi

∥∥2
= Nλi

from which we in turn see thatui defined by (12.30) will have unit length.
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12.4 Using the results of Section 8.1.4, the marginal distributionfor this modified proba-
bilistic PCA model can be written

p(x) = N (x|Wm + µ, σ2I + WTΣ−1W).

If we now define new parameters

W̃ = Σ1/2W

µ̃ = Wm + µ

then we obtain a marginal distribution having the form

p(x) = N (x|µ̃, σ2I + W̃TW̃).

Thus any Gaussian form for the latent distribution therefore gives rise to a predictive
distribution having the same functional form, and so for convenience we choose the
simplest form, namely one with zero mean and unit covariance.

12.5 Sincey = Ax + b,
p(y|x) = δ(y − Ax − b)

i.e. a delta function atAx + b. From the sum and product rules, we have

p(y) =

∫
p(y,x) dx =

∫
p(y|x)p(x) dx

=

∫
δ(y − Ax − b)p(x) dx.

WhenM = D andA is assumed to have full rank, we have

x = A−1(y − b)

and thus

p(y) = N
(
A−1(y − b)|µ,Σ

)

= N
(
y|Aµ+ b,AΣAT

)
.

WhenM > D, y will be strictly confined to aD-dimensional subspace and hence
p(y) will be singular. In this case we have

x = A−L(y − b)

whereA−L is the left inverse ofA and thus

p(y) = N
(
A−L(y − b)|µ,Σ

)

= N
(

y|Aµ+ b,
((

A−L
)T

Σ−1A−L
)−1

)
.
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The covariance matrix on the last line cannot be computed, but we can still compute
p(y), by using the corresponding precision matrix and constraining the density to be
zero outside the column space ofA:

p(y) = N
(

y|Aµ+ b,
((

A−L
)T

Σ−1A−L
)−1

)
δ
(
y − AA−L (y − b) − b

)
.

Finally, whenM < D, we can make use of (2.113)–(2.115) and setL−1 = 0 in
(2.114). While this means thatp(y|x) is singular, the marginal distributionp(y),
given by (2.115), is non-singular as long asA andΣ are assumed to be of full rank.

12.6 Omitting the parameters,W, µ andσ, leaving only the stochastic variablesz and
x, the graphical model for probabilistic PCA is identical with the the ‘naive Bayes’
model shown in Figure 8.24 in Section 8.2.2. Hence these two models exhibit the
same independence structure.

12.7 From (2.59), the multivariate form of (2.270), (12.31) and (12.32), we get

E[x] = Ez [Ex [x|z]]

= Ez [Wz + µ]

= µ.

Combining this with (2.63), the covariance formula corresponding to (2.271), (12.31)
and (12.32), we get

cov[x] = Ez [covx[x|z]] + covx [Ex[x|z]]

= Ez

[
σ2I
]
+ covz [Wz + µ]

= σ2I + Ez

[
(Wz + µ− Ez [Wz + µ]) (Wz + µ− Ez [Wz + µ])

T
]

= σ2I + Ez

[
WzzTWT

]

= σ2I + WWT.

12.8 NOTE: In the 1st printing of PRML, equation (12.42) contains a mistake; the co-
variance on the r.h.s. should beσ2M−1.

By matching (12.31) with (2.113) and (12.32) with (2.114), we havefrom (2.116)
and (2.117) that

p(z|x) = N
(
z|(I + σ−2WTW)−1WTσ−2I(x − µ), (I + σ−2WTW)−1

)

= N
(
z|M−1WT(x − µ), σ2M−1

)
,

where we have also used (12.41).

12.9 By expanding the square in the last term of (12.43) and then making use of results
from Appendix C, we can calculate the derivative w.r.t.µ and set this equal to zero,
yielding

−NC−1µ+ C−1

N∑

n=1

xn = 0. (314)
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Rearrangning this and making use of (12.1), we get

µ = x.

12.10 Using results from Appendix C, we can differentiate the r.h.s. of (314) w.r.t.µ, giving

−NC−1.

If σ2 > 0, C will be positive definite, in which caseC−1 is also positive definite,
and hence the log likelihood function will be concave with a unique maximum atµ.

12.11 Takingσ2 → 0 in (12.41) and substituting into (12.48) we obtain the posterior mean
for probabilistic PCA in the form

(WT
MLWML)−1WT

ML(x − x).

Now substitute forWML using (12.45) in which we takeR = I for compatibility
with conventional PCA. Using the orthogonality propertyUT

MUM = I and setting
σ2 = 0, this reduces to

L−1/2UT
M (x − x)

which is the orthogonal projection is given by the conventional PCA result (12.24).

12.12 For σ2 > 0 we can show that the projection is shifted towards the origin of latent
space by showing that the magnitude of the latent space vector is reduced compared
to theσ2 = 0 case. The orthogonal projection is given by

zorth = L
−1/2
M UT

M (x − x)

whereLM andUM are defined as in (12.45). The posterior mean projection is given
by (12.48) and so the difference between the squared magnitudes of each of these is
given by

‖zorth‖2 − ‖E[z|x]‖2

= (x − x)T
(
UML

−1/2
M UM − WMLM

−1M−1WT
ML

)
(x − x)

= (x − x)TUM

{
L−1 − (L + σ2I)−1

}
UT

M (x − x)

where we have use (12.41), (12.45) and the fact thatL andM are symmetric. The
term in curly braces on the last line is diagonal and has elementsσ2/λi(λi + σ2)
which are all positive. Thus the matrix is positive definite andso the contraction
with the vectorUM (x − x) must be positive, and so there is a positive (non-zero)
shift towards the origin.

12.13 Substituting the r.h.s. of (12.48) forE[z|x] in (12.94), we obtain,

x̃n = WML

(
WT

MLWML

)−1
WT

ML(xn − x).
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From (12.45) we see that

(
WT

MLWML

)−1
=
(
LM − σ2I

)−1

and so

x̃n = UMUT
M (xn − x).

This is the reconstruction ofxn − x using theM eigenvectors corresponding to
theM largest eigenvalues, which we know from Section 12.1.2 minimizes the least
squares projection cost (12.11).

12.14 If we substituteD − 1 for M in (12.51), we get

D(D − 1) + 1 − (D − 1)((D − 1) − 1)

2
=

2D2 − 2D + 2 −D2 + 3D − 2

2

=
D2 +D

2
=
D(D + 1)

2

as required. SettingM = 0 in (12.51) given the value 1 for the number of parameters
in C, corresponding to the scalar variance parameter,σ2.

12.15 NOTE: In PRML, a termM/2 ln(2π) is missing from the summand on the r.h.s. of
(12.53). However, this is only stated here for completeness as itactually does not
affect this solution.

Using standard derivatives together with the rules for matrix differentiation from
Appendix C, we can compute the derivatives of (12.53) w.r.t.W andσ2:

∂

∂W
E[ln p

(
X,Z|µ,W, σ2

)
] =

N∑

n=1

{
1

σ2
(xn − x)E[zn]T − 1

σ2
WE[znzT

n ]

}

and

∂

∂σ2
E[ln p

(
X,Z|µ,W, σ2

)
] =

N∑

n=1

{
1

2σ4
E[znzT

n ]WTW

+
1

2σ4
‖xn − x‖2 − 1

σ4
E[zn]TWT(xn − x) − D

2σ2

}

Setting these equal to zero and re-arranging we obtain (12.56) and (12.57), respec-
tively.
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12.16 We start by noting that the marginal likelihood factorizes over data points as well as
the individual elements of the data points,

p(X|µ,W, σ2) =

∫
p(Z)p(X|Z,µ,W, σ2) dZ

=

N∏

n=1

∫
p(zn)p(xn|zn,µ,W, σ2) dzn

=

N∏

n=1

∫
p(zn)

D∏

i=1

N (xni|wizn + µi, σ
2) dzn (315)

wherexni denotes theith element ofxn, µi denotes theith element ofµ andwi the
ith row of W. If we assume that any missing values are missing at random (see page
441 of PRML), we can deal with these by integrating them out of (315). Letxo

n and
xm

n denote the observed and missing parts ofxn, respectively. Using this notation,
we can rewrite (315) as

p(X|µ,W, σ2) =

N∏

n=1

∫
p(zn)

∏

xni∈xo
n

N (xni|wizn + µi, σ
2)

∫ ∏

xnj∈xm
n

N (xnj |wjzn + µj , σ
2) dxm

n dzn

=

N∏

n=1

∫
p(zn)

∏

xni∈xo
n

N (xni|wizn + µi, σ
2) dzn

=

N∏

n=1

p(xo
n|µ,W, σ2).

Thus we are left with a ‘reduced’ marginal likelihood, where for each data point,xn,
we only need to consider the observed elements,xo

n.

Now we can derive an EM algorithm for finding the parameter values that maxi-
mizes this ‘reduced’ marginal likelihood. In doing so, we shallfind it convenient to
introduce indicator variables,ιni, such thatιni = 1 if xni is observed andιni = 0
otherwise. This allows us to rewrite (12.32) as

p(x|z) =

D∏

i=1

N (xi|wiz + µi, σ
2)ιni

and the complete-data log likelihood as

ln p(X,Z|µ,W, σ) =

N∑

n=1

{
ln p(zn) +

D∑

i=1

ιni lnN (xni|wizn + µi, σ
2)

}
.
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Following the path taken in Section 12.2.2, making use of (12.31) and taking the
expectation w.r.t. the latent variables, we obtain

E [ln p(X,Z|µ,W, σ)] = −
N∑

n=1

{
M

2
ln(2π) +

1

2
Tr
(
E
[
znzT

n

])

+

D∑

i=1

ιni

{
ln(2πσ2) +

1

2σ2
(xni − µni)

2 − 1

σ2
E[zn]TwT

i (xni − µni)

+
1

2σ2
Tr
(
E
[
znzT

n

]
wT

i wi

)}
}
.

Taking the derivative w.r.t.µi and setting the result equal to zero, we obtain

µnew
i =

1
∑N

m=1 ιmi

N∑

n=1

ιnixni.

In the E step, we compute the sufficient statistics, which due to the altered form of
p(x|z) now take slightly different shapes. Equation (12.54) becomes

E[zn] = M−1
n WT

nyn

whereyn is a vector containing the observed elements ofxn minus the correspond-
ing elements ofµnew, Wn is a matrix formed by the rows ofW corresponding to
the observed elements ofxn and, accordingly, from (12.41)

Mn = WT
nWn + σ2I.

Similarly,
E
[
znzT

n

]
= σ2M−1

n + E[zn]E[zn]T.

The M step is similar to the fully observed case, with

Wnew =

[
N∑

n=1

ynE[zn]T

][
N∑

n=1

E
[
znzT

n

]
]−1

σ2
new =

1
∑N

n=1

∑D
i=1 ιni

N∑

n=1

D∑

i=1

ιni

{
(xni − µnew

i )2

−2E[zn]T (wnew
i )

T
(xni − µnew

i )

+Tr
(

E
[
znzT

n

]
(wnew

i )
T
wnew

i

)}

wherewnew
i equals theith row Wnew.

In the fully observed case, allιni = 1, yn = xn, Wn = W andµnew = x, and
hence we recover (12.54)–(12.57).
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12.17 NOTE: In PRML, there are errors in equation (12.58) and the preceding text.In
(12.58),X̃ should beX̃T and in the preceding text we defineΩ to be a matrix of size
M ×N whosenth columnis given by the vectorE[zn].

Setting the derivative ofJ with respect toµ to zero gives

0 = −
N∑

n=1

(xn − µ− Wzn)

from which we obtain

µ =
1

N

N∑

n=1

xn − 1

N

N∑

n=1

Wzn = x − Wz.

Back-substituting intoJ we obtain

J =

N∑

n=1

‖(xn − x − W(zn − z)‖2.

We now defineX to be a matrix of sizeN ×D whosenth row is given by the vector
xn − x and similarly we defineZ to be a matrix of sizeD ×M whosenth row is
given by the vectorzn − z. We can then writeJ in the form

J = Tr
{
(X − ZWT)(X − ZWT)T

}
.

Differentiating with respect toZ keepingW fixed gives rise to the PCA E-step
(12.58). Similarly setting the derivative ofJ with respect toW to zero with{zn}
fixed gives rise to the PCA M-step (12.59).

12.18 Analysis of the number of independent parameters follows the same lines as for
probabilistic PCA except that the one parameter noise covarianceσ2I is replaced by
aD parameter diagonal covarianceΨ. Thus the number of parameters is increased
byD − 1 compared to the probabilistic PCA result (12.51) giving a total number of
independent parameters of

D(M + 1) −M(M − 1)/2.

12.19 To see this we define a rotated latent space vectorz̃ = Rz whereR is anM ×M or-
thogonal matrix, and similarly defining a modified factor loading matrixW̃ = WR.
Then we note that the latent space distributionp(z) depends only onzTz = z̃Tz̃,
where we have usedRTR = I. Similarly, the conditional distribution of the ob-
served variablep(x|z) depends only onWz = W̃z̃. Thus the joint distribution
takes the same form for any choice ofR. This is reflected in the predictive distri-
butionp(x) which depends onW only through the quantityWWT = W̃W̃T and
hence is also invariant to different choices ofR.
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12.20 The log likelihood function is given by

lnL(µ,W,Ψ) =

N∑

n=1

ln p(xn|µ,C)

=

N∑

n=1

{
− ln |C| − (xn − µ)TC−1(xn − µ)

}

whereC is defined by (12.65). Differentiating with respect toµT and setting the
derivative to zero we obtain

0 =

N∑

n=1

C−1(xn − µ).

Pre-multiplying byC and re-arranging shows thatµ is given by the sample mean
defined by (12.1). Taking the second derivative of the log likelihood we obtain

∂2 lnL

∂µT∂µ
= −NC−1.

SinceC is a positive definite matrix, its inverse will also be positivedefinite (see
Appendix C) and hence the stationary point will be a unique maximum of the log
likelihood.

12.21 By making use of (2.113)–(2.117) together with (12.31) and (12.64), we obtain the
posterior distribution of the latent variablez, for a given value of the observed vari-
ablex, in the form

p(z|x) = N (z|GWTΨ−1(x − x).

whereG is defined by (12.68). Since the data points are drawn independently from
the distribution, the posterior distribution forzn depends only on the observationxn

(for given values of the parameters). Thus (12.66) follows directly.For the second
order statistic we use the general result

E[znzT
n ] = cov[zn] + E[zn]E[zn]T

from which we obtain (12.67).

12.22 NOTE: In PRML, Equations (12.69) and (12.70) contain minor typographical errors.
On the l.h.s.Wnew andΨnew should beWnew andΨnew, respectively.

For the M step we first write down the complete-data log likelihood function, which
takes the form

lnLC =

N∑

n=1

{ln p(zn) + ln p(xn|zn)}

=
1

2

N∑

n=1

{
−M ln(2π) − zT

nzn −D ln(2π) − ln |Ψ|

−(xn − x − Wzn)TΨ−1(xn − x − Wzn)
}
.
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Now take the expectation with respect to{zn} to give

Ez [lnLC] =
1

2

N∑

n=1

{
− ln |Ψ| − Tr

(
E[znzT

n ]WTΨ−1W
)

+2E[zn]TWTΨ−1(xn − x)
}
−NTr

(
SΨ−1

)
+ const.

whereS is the sample covariance matrix defined by (12.3), and the constant terms
are those which are independent ofW andΨ. Recall that we are making a joint
optimization with respect toW andΨ. Setting the derivative with respect toWT

equal to zero, making use of the result (C.24), we obtain

0 = −2Ψ−1W

N∑

n=1

E[znzT
n ] + 2Ψ−1

N∑

n=1

[
(xn − x)E[zn]T

]
.

Pre-multiplying byΨ and re-arranging we then obtain (12.69). Note that this result
is independent ofΨ.

Next we maximize the expected complete-data log likelihood with respect toΨ. For
convenience we set the derivative with respect toΨ−1 equal to zero, and make use
of (C.28) to give

0 = NΨ − W

[
N∑

n=1

E[znzT
n ]

]
WT + 2

[
N∑

n=1

(xn − x)E[zn]T

]
W −NS.

This depends onW, and so we can substitute forWnew in the second term, using
the result (12.69), which simplifies the expression. Finally, sinceΨ is constrained to
be diagonal, we take set all of the off-diagonal components to zero giving (12.70) as
required.

12.23 The solution is given in figure 10. The model in which all parameters are shared
(left) is not particularly useful, since all mixture components will have identical pa-
rameters and the resulting density model will not be any differentto one offered
by a single PPCA model. Different models would have arisen if only some of the
parameters, e.g. the meanµ, would have been shared.

12.24 We can derive an EM algorithm by treatingη in (2.160) as a latent variable. Thus
given a set of i.i.d. data points,X = {xn}, we define the complete-data log likeli-
hood as

ln p(X,η|µ,Λ, ν) =

N∑

n=1

{
lnN

(
xn|µ, (ηnΛ)−1

)
+ ln Gam (ηn|ν/2, ν/2)

}

whereη is anN -dimensional vector with elementsηn. The corresponding expected
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Figure 10 The left plot shows the
graphical model correspond-
ing to the general mixture of
probabilistic PCA. The right
plot shows the correspond-
ing model were the param-
eter of all probabilist PCA
models (µ, W and σ2) are
shared across components.
In both plots, s denotes
the K-nomial latent variable
that selects mixture compo-
nents; it is governed by the
parameter, π.
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complete-data log likelihood is then given by

Eη [ln p(X,η|µ,Λ, ν)] = −1

2

N∑

n=1

{
D(ln(2π) − E[ln ηn]) − ln |Λ|

+ E[ηn]
(
xTΛx − 2xTΛµ+ µTΛµ

)
+ 2 ln Γ(ν/2)

− ν(ln ν − ln 2) − (ν − 2)E[ln ηn] + E[ηn]
}

(316)

where we have used results from Appendix B. In order to compute the necessary
expectations, we need the distribution overη, given by

p(η|X,µ,Λ, ν) =

N∏

n=1

p(ηn|xn,µ,Λ, ν)

∝
N∏

n=1

N
(
xn|µ, (ηnΛ)−1

)
Gam (ηn|ν/2, ν/2) .

From Section 2.3.6, we know that the factors in this product are independent Gamma
distributions with parameters

an =
ν +D

2

bn =
ν + (xn − µ)TΛ(xn − µ)

2

and the necessary expectations are given by

E[ηn] =
an

bn
E[ln ηn] = ψ(an) − ln bn.

In the M step, we calculate the derivatives of (316) w.r.t.µ andΣ, set these equal to
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zero and solve for the respective parameter, to obtain

µML =

∑N
n=1 E[ηn]xn∑N

n=1 E[ηn]

ΛML =

(
1

N

N∑

n=1

E[ηn](xn − µML)(xn − µML)T

)−1

Also for ν, we calculate the derivative of (316) and set the result equal tozero, to get

1 + ln
(ν

2

)
− ψ

(ν
2

)
+

1

2

N∑

n=1

{E[ln ηn] − E[ηn]} = 0.

Unfortunately, there is no closed form solution w.r.t.ν, but sinceν is scalar, we can
afford to solve this equation numerically.

12.25 Following the discussion of section 12.2, the log likelihood function for this model
can be written as

L(µ,W,Φ) = −ND
2

ln(2π) − N

2
ln |WWT + Φ|

−1

2

N∑

n=1

{
(xn − µ)T(WWT + Φ)−1(xn − µ)

}
,

where we have used (12.43).

If we consider the log likelihood function for the transformed dataset we obtain

LA(µ,W,Φ) = −ND
2

ln(2π) − N

2
ln |WWT + Φ|

−1

2

N∑

n=1

{
(Axn − µ)T(WWT + Φ)−1(Axn − µ)

}
.

Solving for the maximum likelihood estimator forµ in the usual way we obtain

µA =
1

N

N∑

n=1

Axn = Ax = AµML.

Back-substituting into the log likelihood function, and using the definition of the
sample covariance matrix (12.3), we obtain

LA(µ,W,Φ) = −ND
2

ln(2π) − N

2
ln |WWT + Φ|

−1

2

N∑

n=1

Tr
{
(WWT + Φ)−1ASAT

}
.
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We can cast the final term into the same form as the corresponding termin the origi-
nal log likelihood function if we first define

ΦA = AΦ−1AT, WA = AW.

With these definitions the log likelihood function for the transformed data set takes
the form

LA(µA,WA,ΦA) = −ND
2

ln(2π) − N

2
ln |WAWT

A + ΦA|

−1

2

N∑

n=1

{
(xn − µA)T(WAWT

A + ΦA)−1(xn − µA)
}
−N ln |A|.

This takes the same form as the original log likelihood function apart from an addi-
tive constant− ln |A|. Thus the maximum likelihood solution in the new variables
for the transformed data set will be identical to that in the old variables.

We now ask whether specific constraints onΦ will be preserved by this re-scaling. In
the case of probabilistic PCA the noise covarianceΦ is proportional to the unit ma-
trix and takes the formσ2I. For this constraint to be preserved we requireAAT = I

so thatA is an orthogonal matrix. This corresponds to a rotation of the coordinate
system. For factor analysisΦ is a diagonal matrix, and this property will be pre-
served ifA is also diagonal since the product of diagonal matrices is again diagonal.
This corresponds to an independent re-scaling of the coordinate system. Note that in
general probabilistic PCA is not invariant under component-wise re-scaling and fac-
tor analysis is not invariant under rotation. These results are illustrated in Figure 11.

12.26 If we multiply (12.80) byK we obtain (12.79) so that any solution of the former will
also be a solution of the latter. Letãi be a solution of (12.79) with eigenvalueλi and
let ai be a solution of (12.80) also having eigenvalueλi. If we write ãi = ai +bi we
see thatbi must satisfyKbi = 0 and hence is an eigenvector ofK with eigenvalue
0. It therefore satisfies

N∑

n=1

bnik(xn,x) = 0

for all values ofx. Now consider the eigenvalue projection. We see that

ṽT
i φ(x) =

N∑

n=1

φ(x)Tãniφ(xn)

=

N∑

n=1

anik(xn,x) +

N∑

n=1

bnik(xn,x) =

N∑

n=1

anik(xn,x)

and so both solutions give the same projections. A slightly different treatment of the
relationship between (12.79) and (12.80) is given by Schölkopf (1998).



Solution 12.26 221

Figure 11 Factor analysis is covariant under a componentwise re-scaling of the data variables (top plots), while
PCA and probabilistic PCA are covariant under rotations of the data space coordinates (lower plots).
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12.27 In the case of the linear kernel, we can rewrite the l.h.s. of (12.80) as

Kai =

N∑

m=1

k(xn,xm)aim

=

N∑

m=1

xT
nxmami

and substituting this in (12.80), we get

N∑

m=1

xT
nxmami = λiNai.

Next, we left-multiply both sides byxn and sum overn to obtain

NS

N∑

m=1

xmaim = λiN

N∑

n=1

xnain.

Finally, we divide both sides by N and define

ui =

N∑

n=1

xnain

to recover (12.17).

12.28 If we assume that the functiony = f(x) is strictly monotonic, which is necessary to
exclude the possibility for spikes of infinite density inp(y), we are guaranteed that
the inverse functionx = f−1(y) exists. We can then use (1.27) to write

p(y) = q(f−1(y))

∣∣∣∣
df−1

dy

∣∣∣∣ . (317)

Since the only restriction onf is that it is monotonic, it can distribute the probability
mass overx arbitrarily overy. This is illustrated in Figure 1 on page 9, as a part of
Solution 1.4. From (317) we see directly that

|f ′(x)| =
q(x)

p(f(x))
.

12.29 NOTE: In the 1st printing of PRML, this exercise contains two mistakes. In the
second half of the exercise, we require thaty1 is symmetrically distributed around0,
not just that−1 6 y1 6 1. Moreover,y2 = y2

1 (noty2 = y2
2).
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If z1 andz2 are independent, then

cov[z1, z2] =

∫∫
(z1 − z̄1)(z2 − z̄2)p(z1, z2) dz1 dz2

=

∫∫
(z1 − z̄1)(z2 − z̄2)p(z1)p(z2) dz1 dz2

=

∫
(z1 − z̄1)p(z1) dz1

∫
(z2 − z̄2)p(z2) dz2

= 0,

where

z̄i = E[zi] =

∫
zip(zi) dzi.

Fory2 we have

p(y2|y1) = δ(y2 − y2
1),

i.e., a spike of probability mass one aty2
1 , which is clearly dependent ony1. With ȳi

defined analogously tōzi above, we get

cov[y1, y2] =

∫∫
(y1 − ȳ1)(y2 − ȳ2)p(y1, y2) dy1 dy2

=

∫∫
y1(y2 − ȳ2)p(y2|y1)p(y1) dy1 dy2

=

∫
(y3

1 − y1ȳ2)p(y1) dy1

= 0,

where we have used the fact that all odd moments ofy1 will be zero, since it is
symmetric around zero.

Chapter 13 Sequential Data

13.1 Since the arrows on the path fromxm to xn, withm < n− 1, will meet head-to-tail
at xn−1, which is in the conditioning set, all such paths are blocked by xn−1 and
hence (13.3) holds.

The same argument applies in the case depicted in Figure 13.4,with the modification
thatm < n− 2 and that paths are blocked byxn−1 or xn−2.
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13.2 We first of all find the joint distributionp(x1, . . . ,xn) by marginalizing over the
variablesxn+1, . . . ,xN , to give

p(x1, . . . ,xn) =
∑

xn+1

· · ·
∑

xN

p(x1, . . . ,xN )

=
∑

xn+1

· · ·
∑

xN

p(x1)

N∏

m=2

p(xm|xm−1)

= p(x1)

n∏

m=2

p(xm|xm−1).

Now we evaluate the required conditional distribution

p(xn|x1, . . . ,xn−1) =
p(x1, . . . ,xn)∑

xn

p(x1, . . . ,xn)

=

p(x1)

n∏

m=2

p(xm|xm−1)

∑

xn

p(x1)

n∏

m=2

p(xm|xm−1)

.

We now note that any factors which do not depend onxn will cancel between nu-
merator and denominator, giving

p(xn|x1, . . . ,xn−1) =
p(xn|xn−1)∑

xn

p(xn|xn−1)

= p(xn|xn−1)

as required.

For the second order Markov model, the joint distribution is given by (13.4). The
marginal distribution over the variablesx1, . . . ,xn is given by

p(x1, . . . ,xn) =
∑

xn+1

· · ·
∑

xN

p(x1, . . . ,xN )

=
∑

xn+1

· · ·
∑

xN

p(x1)p(x2|x1)

N∏

m=3

p(xm|xm−1,xm−2)

= p(x1)p(x2|x1)

n∏

m=3

p(xm|xm−1,xm−2).
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The required conditional distribution is then given by

p(xn|x1, . . . ,xn−1) =
p(x1, . . . ,xn)∑

xn

p(x1, . . . ,xn)

=

p(x1)p(x2|x1)

n∏

m=3

p(xm|xm−1,xm−2)

∑

xn

p(x1)p(x2|x1)

n∏

m=3

p(xm|xm−1,xm−2)

.

Again, cancelling factors independent ofxn between numerator and denominator
we obtain

p(xn|x1, . . . ,xn−1) =
p(xn|xn−1,xn−2)∑

xn

p(xn|xn−1,xn−2)

= p(xn|xn−1,xn−2).

Thus the prediction at stepn depends only on the observations at the two previous
stepsxn−1 andxn−2 as expected.

13.3 From Figure 13.5 we see that for any two variablesxn andxm, m 6= n, there is a
path between the corresponding nodes that will only pass through one or more nodes
corresponding toz variables. None of these nodes will be in the conditioning set
and the edges on the path meet head-to-tail. Thus, there will be an unblocked path
betweenxn andxm and the model will not satisfy any conditional independence or
finite order Markov properties.

13.4 The learning ofw would follow the scheme for maximum learning described in
Section 13.2.1, withw replacingφ. As discussed towards the end of Section 13.2.1,
the precise update formulae would depend on the form of regression model used and
how it is being used.

The most obvious situation where this would occur is in a HMM similar to that
depicted in Figure 13.18, where the emmission densities not only depends on the
latent variablez, but also on some input variableu. The regression model could
then be used to mapu to x, depending on the state of the latent variablez.

Note that when a nonlinear regression model, such as a neural network, is used, the
M-step forw may not have closed form.

13.5 Consider first the maximization with respects to the componentsπk of π. To do this
we must take account of the summation constraint

K∑

k=1

πk = 1.
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We therefore first omit terms fromQ(θ,θold) which are independent ofπ, and then
add a Lagrange multiplier term to enforce the constraint, giving the following func-
tion to be maximized

Q̃ =

K∑

k=1

γ(z1k) lnπk + λ

(
K∑

k=1

πk − 1

)
.

Setting the derivative with respect toπk equal to zero we obtain

0 = γ(z1k)
1

πk
+ λ. (318)

We now multiply through byπk and then sum overk and make use of the summation
constraint to give

λ = −
K∑

k=1

γ(z1k).

Substituting back into (318) and solving forλ we obtain (13.18).

For the maximization with respect toA we follow the same steps and first omit
terms fromQ(θ,θold) which are independent ofA, and then add appropriate La-
grange multiplier terms to enforce the summation constraints. In this case there are
K constraints to be satisfied since we must have

K∑

k=1

Ajk = 1

for j = 1, . . . ,K. We introduceK Lagrange multipliersλj for j = 1, . . . ,K, and
maximize the following function

Q̂ =

N∑

n=2

K∑

j=1

K∑

k=1

ξ(zn−1,j , znk) lnAjk +

K∑

j=1

λj

(
K∑

k=1

Ajk − 1

)
.

Setting the derivative of̂Q with respect toAjk to zero we obtain

0 =

N∑

n=2

ξ(zn−1,j , znk)
1

Ajk
+ λj . (319)

Again we multiply through byAjk and then sum overk and make use of the sum-
mation constraint to give

λj = −
N∑

n=2

K∑

k=1

ξ(zn−1,j , znk).

Substituting forλj in (319) and solving forAjk we obtain (13.19).
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13.6 Suppose that a particular elementπk of π has been initialized to zero. In the first
E-step the quantityα(z1k) is given from (13.37) by

α(z1k) = πkp(x1|φk)

and so will be zero. From (13.33) we see thatγ(z1k) will also be zero, and hence in
the next M-step the new value ofπk, given by (13.18) will again be zero. Since this
is true for any subsequent EM cycle, this quantity will remain zero throughout.

Similarly, suppose that an elementAjk of A has been set initially to zero. From
(13.43) we see thatξ(zn−1,j , znk) will be zero sincep(znk|zn−1,j) ≡ Ajk equals
zero. In the subsequent M-step, the new value ofAjk is given by (13.19) and hence
will also be zero.

13.7 Using the expression (13.17) forQ(θ,θold) we see that the parameters of the Gaus-
sian emission densities appear only in the last term, which takes the form

N∑

n=1

K∑

k=1

γ(znk) ln p(xn|φk) =

N∑

n=1

K∑

k=1

γ(znk) lnN (xn|µk,Σj)

=

N∑

n=1

K∑

k=1

γ(znk)

{
−D

2
ln(2π) − 1

2
ln |Σk| −

1

2
(xn − µk)TΣ−1

k (xn − µk)

}
.

We now maximize this quantity with respect toµk andΣk. Setting the derivative
with respect toµk to zero and re-arranging we obtain (13.20). Next if we define

Nk =

N∑

n=1

γ(znk)

Ŝk =

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T

then we can rewrite the final term fromQ(θ,θold) in the form

−NkD

2
ln(2π) − Nk

2
ln |Σk| −

1

2
Tr
(
Σ−1

k Ŝk

)
.

Differentiating this w.r.t.Σ−1
k , using results from Appendix C, we obtain (13.21).

13.8 Only the final term ofQ(θ,θold given by (13.17) depends on the parameters of the
emission model. For the multinomial variablex, whoseD components are all zero
except for a single entry of 1,

N∑

n=1

K∑

k=1

γ(znk) ln p(xn|φk) =

N∑

n=1

K∑

k=1

γ(znk)

D∑

i=1

xni lnµki.
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Now when we maximize with respect toµki we have to take account of the con-
straints that, for each value ofk the components ofµki must sum to one. We there-
fore introduce Lagrange multipliers{λk} and maximize the modified function given
by

N∑

n=1

K∑

k=1

γ(znk)

D∑

i=1

xni lnµki +

K∑

k=1

λk

(
D∑

i=1

µki − 1

)
.

Setting the derivative with respect toµki to zero we obtain

0 =

N∑

n=1

γ(znk)
xni

µki
+ λk.

Multiplying through byµki, summing overi, and making use of the constraint on
µki together with the result

∑
i xni = 1 we have

λk = −
N∑

n=1

γ(znk).

Finally, back-substituting forλk and solving forµki we again obtain (13.23).

Similarly, for the case of a multivariate Bernoulli observed variablex whoseD com-
ponents independently take the value 0 or 1, using the standard expression for the
multivariate Bernoulli distribution we have

N∑

n=1

K∑

k=1

γ(znk) ln p(xn|φk)

=

N∑

n=1

K∑

k=1

γ(znk)

D∑

i=1

{xni lnµki + (1 − xni) ln(1 − µki)} .

Maximizing with respect toµki we obtain

µki =

N∑

n=1

γ(znk)xni

N∑

n=1

γ(znk)

which is equivalent to (13.23).

13.9 We can verify all these independence properties using d-separation by refering to
Figure 13.5.

(13.24) follows from the fact that arrows on paths from any ofx1, . . . ,xn to any of
xn+1, . . . ,xN meet head-to-tail or tail-to-tail atzn, which is in the conditioning set.
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(13.25) follows from the fact that arrows on paths from any ofx1, . . . ,xn−1 to xn

meet head-to-tail atzn, which is in the conditioning set.

(13.26) follows from the fact that arrows on paths from any ofx1, . . . ,xn−1 to zn

meet head-to-tail or tail-to-tail atzn−1, which is in the conditioning set.

(13.27) follows from the fact that arrows on paths fromzn to any ofxn+1, . . . ,xN

meet head-to-tail atzn+1, which is in the conditioning set.

(13.28) follows from the fact that arrows on paths fromxn+1 to any ofxn+2, . . . ,xN

to meet tail-to-tail atzn+1, which is in the conditioning set.

(13.29) follows from (13.24) and the fact that arrows on paths from any of x1, . . . ,
xn−1 to xn meet head-to-tail or tail-to-tail atzn−1, which is in the conditioning set.

(13.30) follows from the fact that arrows on paths from any ofx1, . . . ,xN to xN+1

meet head-to-tail atzN+1, which is in the conditioning set.

(13.31) follows from the fact that arrows on paths from any ofx1, . . . ,xN to zN+1

meet head-to-tail or tail-to-tail atzN , which is in the conditioning set.

13.10 We begin with the expression (13.10) for the joint distribution of observed and latent
variables in the hidden Markov model, reproduced here for convenience

p(X,Z|θ) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

m=1

p(xm|zm)

where we have omitted the parameters in order to keep the notationuncluttered. By
marginalizing over all of the latent variables exceptzn we obtain the joint distribu-
tion of the remaining variables, which can be factorized in the form

p(X, zn) =
∑

z1

· · ·
∑

zn−1

∑

zn+1

· · ·
∑

zN

p(X,Z|θ)

=


∑

z1

· · ·
∑

zn−1

p(z1)

n∏

m=2

p(zm|zm−1)

n∏

l=1

p(xl|zl)




×


∑

zn+1

· · ·
∑

zN

N∏

m=n+1

p(zm|zm−1)

N∏

l=n+1

p(xl|zl)


 .

The first factor in square brackets on the r.h.s. we recognize asp(x1, . . . ,xn, zn).
Next we note from the product rule that

p(xn+1, . . . ,xN |x1, . . . ,xn, zn) =
p(x1, . . . ,xN , zn)

p(x1, . . . ,xn, zn)
.

Thus we can identify the second term in square brackets with the conditional distri-
butionp(xn+1, . . . ,xN |x1, . . . ,xn, zn). However, we note that the second term in
square brackets does not depend onx1, . . . ,xn. Thus we have the result

p(x1, . . . ,xN , zn) = p(x1, . . . ,xn, zn)p(xn+1, . . . ,xN |zn).
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Dividing both sides byp(zn) we obtain

p(x1, . . . ,xN |zn) = p(x1, . . . ,xn|zn)p(xn+1, . . . ,xN |zn).

which is the required result (13.24).

Similarly, from (13.10) we have

p(x1, . . . ,xn, z1, . . . , zn) = p(x1, . . . ,xn−1, z1, . . . , zn−1)p(zn|zn−1)p(xn|zn)

It follows that

p(x1, . . . ,xn−1, z1, . . . , zn−1|xn, zn) =
p(x1, . . . ,xn, z1, . . . , zn)

p(xn|zn)p(zn)

=
p(x1, . . . ,xn−1, z1, . . . , zn−1)p(zn|zn−1)

p(zn)

where we see that the right hand side is independent ofxn, and hence the left hand
side must be also. We therefore have the following conditional independence prop-
erty

p(x1, . . . ,xn−1, z1, . . . , zn−1|xn, zn) = p(x1, . . . ,xn−1, z1, . . . , zn−1|zn).

Marginalizing both sides of this result overz1, . . . , zn−1 then gives the required
result (13.25).

Again, from the joint distribution we can write

p(x1, . . . ,xn−1, z1, . . . , zn) = p(x1, . . . ,xn−1, z1, . . . , zn−1)p(zn|zn−1).

We therefore have

p(x1, . . . ,xn−1, z1, . . . , zn−2|zn−1, zn) =
p(x1, . . . ,xn−1, z1, . . . , zn)

p(zn|zn−1)p(zn−1)

=
p(x1, . . . ,xn−1, z1, . . . , zn−1)

p(zn−1)

where we see that the right hand side is independent ofzn and hence the left hand
side must be also. This implies the conditional independence property

p(x1, . . . ,xn−1, z1, . . . , zn−2|zn−1, zn) = p(x1, . . . ,xn−1, z1, . . . , zn−2|zn−1).

Marginalizing both sides with respect toz1, . . . , zn−2 then gives the required result
(13.26).

To prove (13.27) we marginalize the both sides of the expression(13.10) for the joint
distribution with respect to the variablesx1, . . . ,xn to give

p(xn+1, . . . ,xN , zn, zn+1) =


∑

z1

· · ·
∑

zn−1

p(z1)

n∏

m=2

p(zm|zm−1)

n∏

l=1

p(xl|zl)




p(zn+1|zn)p(xn+1|zn+1)


∑

zn+1

· · ·
∑

zN

N∏

m=n+2

p(zm|zm−1)

N∏

l=n+1

p(xl|zl)


 .
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The first factor in square brackets is just
∑

z1

· · ·
∑

zn−1

p(z1, . . . , zn) = p(zn)

and so by the product rule the final factor in square brackets must be

p(xn+1, . . . ,xN |zn, zn+1).

However, the second factor in square brackets is itself independent ofzn which
proves (13.27).

To prove (13.28) we first note that the decomposition of the jointdistributionp(X,Z)
implies the following factorization

p(X,Z) = p(x1, . . . ,xn, z1, . . . , zn)p(zn+1|zn)p(xn+1|zn+1)

p(xn+2, . . . ,xN , zn+1, . . . , zN |zn+1).

Next we make use of

p(xn+1, . . . ,xN , zn+1) =
∑

x1

· · ·
∑

xn

∑

z1

· · ·
∑

zn

∑

zn+2

· · ·
∑

zN

p(X,Z)

= p(zn+1)p(xn+1|zn+1)p(xn+2, . . . ,xN |zn+1).

If we now divide both sides byp(xn+1, zn+1) we obtain

p(xn+2, . . . ,xN |zn+1,xn+1) = p(xn+2, . . . ,xN |zn+1)

as required.

To prove (13.30) we first use the expression for the joint distribution ofX andZ to
give

p(xN+1,X, zN+1) =
∑

z1

· · ·
∑

zN

p(X,Z)p(zN+1|zN )p(xN+1|zN+1)

= p(X, zN+1)p(xN+1|zN+1)

from which it follows that

p(xN+1|X, zN+1) = p(xN+1|zN+1)

as required.

To prove (13.31) we first use the expression for the joint distribution ofX andZ to
give

p(zN+1,X, zN ) =
∑

z1

· · ·
∑

zN−1

p(X,Z)p(zN+1|zN )

= p(X, zN )p(zN+1|zN )
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from which it follows that

p(zN+1|zN ,X) = p(zN+1|zN )

as required.

Finally, to prove (13.29) we first marginalize both sides of the joint distribution
(13.10) with respect toz1, . . . , zn−2, zn+1, . . . zN to give

p(X, zn−1, zn) =


∑

z1

· · ·
∑

zn−2

p(z1)

n−1∏

m=2

p(zm|zm−1)

n−1∏

l=1

p(xl|zl)




p(zn|zn−1)p(xn|zn)
∑

zn+1

· · ·
∑

zN

N∏

m=n+1

p(zm|zm−1)

N∏

l=n+1

p(xl|zl)


 .

The first factor in square brackets isp(x1, . . . ,xn−1, zn−1). The second factor in
square brackets is

∑

zn+1

· · ·
∑

zN

p(xn+1, . . . ,xN , zn, . . . , zN ) = p(xn+1, . . . ,xN , zn).

Thus we have

p(X, zn−1, zn) = p(x1, . . . ,xn−1, zn−1)

p(zn|zn−1)p(xn|zn)p(xn+1, . . . ,xN , zn)

and dividing both sides byp(zn, zn−1) = p(zn|zn−1)p(zn−1) we obtain (13.28).

The final conclusion from all of this exhausting algebra is that it is much easier
simply to draw a graph and apply the d-separation criterion!

13.11 From the first line of (13.43), we have

ξ(zn−1, zn) = p(zn−1, zn|X).

This corresponds to the distribution over the variables associated with factorfn in
Figure 13.5, i.e.zn−1 andzn.

From (8.69), (8.72), (13.50) and (13.52), we have

p(zn−1, zn) ∝ fn(zn−1, zn,xn)µzn−1→fn
(zn−1)µzn→fn(zn)

= p(zn|zn−1)p(xn|zn)µfn−1→zn−1
(zn−1)µfn+1→zn

(zn)

= p(zn|zn−1)p(xn|zn)α(zn−1)β(zn). (320)

In order to normalize this, we use (13.36) and (13.41) to obtain
∑

zn

∑

zn−1

p(zn−1, zn) =
∑

zn

β(zn)p(xn|zn

∑

zn−1

p(zn|zn−1)α(zn)

=
∑

zn

β(zn)α(zn) = p(X)
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which together with (320) give (13.43).

13.12 First of all, note that for every observed variable there is a corresponding latent vari-
able, and so for every sequenceX(r) of observed variables there is a corresponding
sequenceZ(r) of latent variables. The sequences are assumed to be independent
given the model parameters, and so the joint distribution of alllatent and observed
variables will be given by

p(X,Z|θ) =

R∏

r=1

p(X(r),Z(r)|θ)

whereX denotes{X(r)} andZ denotes{Z(r)}. Using the sum and product rules
of probability we then see that posterior distribution for the latent sequences then
factorizes with respect to those sequences, so that

p(Z|X,θ) =
p(X,Z|θ)∑

Z

p(X,Z|θ)

=

R∏

r=1

p(X(r),Z(r)|θ)

∑

Z(1)

· · ·
∑

Z(R)

R∏

r=1

p(X(r),Z(r)|θ)

=

R∏

r=1

{
p(X(r),Z(r)|θ)∑
Z(r) p(X(r),Z(r)|θ)

}

=

R∏

r=1

p(Z(r)|X(r),θ).

Thus the evaluation of the posterior distribution of the latent variables, correspond-
ing to the E-step of the EM algorithm, can be done independentlyfor each of the
sequences (using the standard alpha-beta recursions).

Now consider the M-step. We use the posterior distribution computed in the E-step
usingθold to evaluate the expectation of the complete-data log likelihood. From our
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expression for the joint distribution we see that this is given by

Q(θ,θold) = EZ [ln p(X,Z|θ)]

= EZ

[
R∑

r=1

ln p(X(r),Z(r)|θ)
]

=

R∑

r=1

p(Z(r)|X(r),θold) ln p(X,Z|θ)

=

R∑

r=1

K∑

k=1

γ(z
(r)
1k ) lnπk +

R∑

r=1

N∑

n=2

K∑

j=1

K∑

k=1

ξ(z
(r)
n−1,j , z

(r)
n,k) lnAjk

+

R∑

r=1

N∑

n=1

K∑

k=1

γ(z
(r)
nk ) ln p(x(r)

n |φk).

We now maximize this quantity with respect toπ andA in the usual way, with La-
grange multipliers to take account of the summation constraints (see Solution 13.5),
yielding (13.124) and (13.125). The M-step results for the mean of the Gaussian
follow in the usual way also (see Solution 13.7).

13.13 Using (8.64), we can rewrite (13.50) as

α(zn) =
∑

z1,...,zn−1

Fn(zn, {z1, . . . , zn−1}), (321)

whereFn(·) is the product of all factors connected tozn via fn, includingfn itself
(see Figure 13.15), so that

Fn(zn, {z1, . . . , zn−1}) = h(z1)

n∏

i=2

fi(zi, zi−1), (322)

where we have introducedh(z1) andfi(zi, zi−1) from (13.45) and (13.46), respec-
tively. Using the corresponding r.h.s. definitions and repeatedly applying the product
rule, we can rewrite (322) as

Fn(zn, {z1, . . . , zn−1}) = p(x1, . . . ,xn, z1, . . . , zn).

Applying the sum rule, summing overz1, . . . , zn−1 as on the r.h.s. of (321), we
obtain (13.34).

13.14 NOTE: In PRML, the reference to (8.67) should refer to (8.64).

This solution largely follows Solution 13.13. Using (8.64), wecan rewrite (13.52)
as

β(zn) =
∑

zn+1,...,zN

Fn+1(zn, {zn+1, . . . , zN}), (323)
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whereFn+1(·) is the product of all factors connected tozn via fn+1, includingfn+1

itself so that

Fn+1(zn, {zn+1, . . . , zN}) =

N∏

i=n+1

fi(zi−1, zi)

= p(zn+1|zn)p(xn+1|zn+1)

N∏

i=n+2

fi(zi−1, zi)

= p(zn+1|zn)p(xn+1|zn+1) · · · p(zN |zN−1)p(xN |zN ) (324)

where we have used (13.46). Repeatedly applying the product rule,we can rewrite
(324) as

Fn+1(zn, {zn+1, . . . , zN}) = p(xn+1, . . . ,xN , zn+1, . . . , zN |zn).

Substituting this into (323) and summing overzn+1, . . . , zN , we obtain (13.35).

13.15 NOTE: In the 1st printing of PRML, there are typographic errors in (13.65);cn
should bec−1

n andp(zn|z−1) should bep(zn|zn−1) on the r.h.s.

We can use (13.58), (13.60) and (13.63) to rewrite (13.33) as

γ(zn) =
α(zn)β(zn)

p(X)

=
α̂(zn)

(∏n
m=1 cm

) (∏N
l=n+1 cl

)
β̂(zn)

p(X)

=
α̂(zn)

(∏N
m=1 cm

)
β̂(zn)

p(X)

= α̂(zn)β̂(zn).

We can rewrite (13.43) in a similar fashion:

ξ(zn−1, zn) =
α(zn)p(xn|zn)p(zn|zn−1)β(zn)

p(X)

=
α̂(zn)

(∏n−1

m=1 cm

)(∏N
l=n+1 cl

)
β̂(zn)p(xn|zn)p(zn|zn−1)

p(X)

= c−1
n α̂(zn)p(xn|zn)p(zn|zn−1)β̂(zn).

13.16 NOTE: In the1st printing of PRML, ln p(x+1|zn) should beln p(zn+1|zn) on the
r.h.s. of (13.68) Moreoverp(. . .) should beln p(. . .) on the r.h.s. of (13.70).

We start by rewriting (13.6) as

p(x1, . . . ,xN , z1, . . . , zN ) = p(z1)p(x1|z1)

N∏

n=2

p(xn|zn)p(zn|zn−1).
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Taking the logarithm we get

ln p(x1, . . . ,xN , z1, . . . , zN )

= ln p(z1) + ln p(x1|z1) +

N∑

n=2

(ln p(xn|zn) + ln p(zn|zn−1))

where, with the first two terms we have recovered the r.h.s. of (13.69). We now use
this to maximize overz1, . . . , zN ,

max
z1,...,zN

{
ω(z1) +

N∑

n=2

[ln p(xn|zn) + ln p(zn|zn−1)]

}

= max
z2,...,zN

{
ln p(x2|z2) + max

z1

{ln p(z2|z1) + ω(z1)}

+

N∑

n=3

[ln p(xn|zn) + ln p(zn|zn−1)]

}

= max
z2,...,zN

{
ω(z2) +

N∑

n=3

[ln p(xn|zn) + ln p(zn|zn−1)]

}
(325)

where we have exchanged the order of maximization and summation for z2 to re-
cover (13.68) forn = 2, and since the first and the last line of (325) have identical
forms, this extends recursively to alln > 2.

13.17 The emission probabilities over observed variablesxn are absorbed into the corre-
sponding factors,fn, analogously to the way in which Figure 13.14 was transformed
into Figure 13.15. The factors then take the form

h(z1) = p(z1|u1)p(x1|z1,u1) (326)

fn(zn−1, zn) = p(zn|zn−1,un)p(xn|zn,un). (327)

13.18 By combining the results from Solution 13.17 with those from Section 13.2.3, the
desired outcome is easily obtained.

By combining (327) with (13.49) and (13.50), we see that

α(zn) =
∑

zn−1

p(zn|zn−1,un)p(xn|zn,un)α(zn−1)

corresponding to (13.36). The initial condition is given directly by (326) and corre-
sponds to (13.37).

Similarly, from (327), (13.51) and (13.52), we see that

β(zn) =
∑

zn+1

p(zn+1|zn,un+1)p(xn+1|zn+1,un+1)β(zn+1)
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which corresponds to (13.38). The presence of the input variables does not affect the
initial conditionβ(zN ) = 1.

13.19 Since the joint distribution over all variables, latent and observed, is Gaussian, we
can maximize w.r.t. any chosen set of variables. In particular,we can maximize
w.r.t. all the latent variables jointly or maximize each of the marginal distributions
separately. However, from (2.98), we see that the resulting means will be the same in
both cases and since the mean and the mode coincide for the Gaussian, maximizing
w.r.t. to latent variables jointly and individually will yield the same result.

13.20 Making the following substitions from the l.h.s. of (13.87),

x ⇒ zn−1 µ⇒ µn−1 Λ−1 ⇒ Vn−1

y ⇒ zn A ⇒ A b ⇒ 0 L−1 ⇒ Γ,

in (2.113) and (2.114), (2.115) becomes

p(zn) = N (zn|Aµn−1,Γ + AVn−1A
T),

as desired.

13.21 If we substitute the r.h.s. of (13.87) for the integral on the r.h.s. of (13.86), we get

cnN (zn|µn,Vn) = N (xn|Czn,Σ)N (zn|Aµn−1,Pn−1).

The r.h.s. define the joint probability distribution overxn andzn in terms of a con-
ditional distribution overxn givenzn and a distribution overzn, corresponding to
(2.114) and (2.113), respectively. What we need to do is to rewrite this into a con-
ditional distribution overzn givenxn and a distribution overxn, corresponding to
(2.116) and (2.115), respectively.

If we make the substitutions

x ⇒ zn µ⇒ Aµn−1 Λ−1 ⇒ Pn−1

y ⇒ xn A ⇒ C b ⇒ 0 L−1 ⇒ Σ,

in (2.113) and (2.114), (2.115) directly gives us the r.h.s. of (13.91).

From (2.114), we have that

p(zn|xn) = N (zn|µn,Vn) = N (zn|M(CTΣ−1xn +P−1
n−1Aµn−1),M), (328)

where we have used (2.117) to define

M = (Pn−1 + CTΣ−1C)−1. (329)

Using (C.7) and (13.92), we can rewrite (329) as follows:

M = (Pn−1 + CTΣ−1C)−1

= Pn−1 − Pn−1C
T(Σ + CPn−1C

T)−1CPn−1

= (I − Pn−1C
T(Σ + CPn−1C

T)−1C)Pn−1

= (I − KnC)Pn−1,
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which equals the r.h.s. of (13.90).

Using (329), (C.5) and (13.92), we can derive the following equality:

MCTΣ−1 = (Pn−1 + CTΣ−1C)−1CTΣ−1

= Pn−1C
T(CPn−1C

T + Σ)−1 = Kn.

Using this and (13.90), we can rewrite the expression for the mean in(328) as fol-
lows:

M(CTΣ−1xn + P−1
n−1Aµn−1) = MCTΣ−1xn + (I − KnC)Aµn−1

= Knxn + Aµn−1 − KnCAµn−1

= Aµn−1 + Kn(xn − CAµn−1),

which equals the r.h.s. of (13.89).

13.22 Using (13.76), (13.77) and (13.84), we can write (13.93), for the casen = 1, as

c1N (z1|µ1,V1) = N (z1|µ0,V0)N (x1|Cz1,Σ).

The r.h.s. define the joint probability distribution overx1 andz1 in terms of a con-
ditional distribution overx1 given z1 and a distribution overz1, corresponding to
(2.114) and (2.113), respectively. What we need to do is to rewrite this into a con-
ditional distribution overz1 givenx1 and a distribution overx1, corresponding to
(2.116) and (2.115), respectively.

If we make the substitutions

x ⇒ z1 µ⇒ µ0 Λ−1 ⇒ V0

y ⇒ x1 A ⇒ C b ⇒ 0 L−1 ⇒ Σ,

in (2.113) and (2.114), (2.115) directly gives us the r.h.s. of (13.96).

13.23 Using (13.76) and (13.77) we can rewrite (13.93) as

c1α̂(z1) = N (z1|µ0,V0)N (x1|Cz1,Σ) .

Making the same substitutions as in Solution 13.22, (2.115) and (13.96) give

p(x1) = N
(
x1|Cµ0,Σ + CV0C

T
)

= c1.

Hence, from the product rule and (2.116),

α̂(z1) = p(z1|x1) = N (z1|µ1,V1)

where, from (13.97) and (C.7),

V1 =
(
V−1

0 + CTΣ−1C
)−1

= V0 − V0C
T
(
Σ + CV0C

T
)−1

CV0

= (I − K1C)V0
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and

µ1 = V1

(
CTΣ−1x1 + V−1

0 µ0

)

= µ0 + K1 (x1 − Cµ0)

where we have used

V1C
TΣ−1 = V0C

TΣ−1 − K1CV0C
TΣ−1

= V0C
T
(
I −

(
Σ + CV0C

T
)−1

CV0C
T
)

Σ−1

= V0C
T

(
I −

(
Σ + CV0C

T
)−1

CV0C
T

+
(
Σ + CV0C

T
)−1

Σ −
(
Σ + CV0C

T
)−1

Σ

)
Σ−1

= V0C
T
(
Σ + CV0C

T
)−1

= K1.

13.24 This extension can be embedded in the existing framework by adopting the following
modifications:

µ′
0 =

[
µ0

1

]
V′

0 =

[
V0 0

0 0

]
Γ′ =

[
Γ 0

0 0

]

A′ =

[
A a

0 1

]
C′ =

[
C c

]
.

This will ensure that the constant termsa andc are included in the corresponding
Gaussian means forzn andxn for n = 1, . . . , N .

Note that the resulting covariances forzn, Vn, will be singular, as will the corre-
sponding prior covariances,Pn−1. This will, however, only be a problem where
these matrices need to be inverted, such as in (13.102). These cases must be handled
separately, using the ‘inversion’ formula

(P′
n−1)

−1 =

[
P−1

n−1 0

0 0

]
,

nullifying the contribution from the (non-existent) variance of the element inzn that
accounts for the constant termsa andc.

13.25 NOTE: In PRML, the second half on the third sentence in the exercise should read:
“. . . in which C = 1, A = 1 andΓ = 0.” Moreover, in the following sentencem0

andV0 should be replaced byµ0 andP0; see also the PRML errata.

SinceC = 1, P0 = σ2
0 andΣ = σ2, (13.97) gives

K1 =
σ2

0

σ2
0 + σ

.
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Substituting this into (13.94) and (13.95), we get

µ1 = µ0 +
σ2

0

σ2
0 + σ

(x1 − µ0)

=
1

σ2
0 + σ

(σ2
0x1 + σµ0)

σ2
1 =

(
1 − σ2

0

σ2
0 + σ

)
σ2

0

=
σ2

0σ
2

σ2
0 + σ

whereσ2
1 replacesV1. We note that these agree with (2.141) and (2.142), respec-

tively.

We now assume that (2.141) and (2.142) hold forN , and we rewrite them as

µN = σ2
N

(
1

σ2
0

µ0 +
N

σ2
µ

(N)
ML

)
(330)

σ2
N =

σ2
0σ

2

Nσ2
0 + σ

(331)

where, analogous to (2.143),

µ
(N)
ML =

1

N

N∑

n=1

xn. (332)

SinceA = 1 andΓ = 0, (13.88) gives

PN = σ2
N (333)

substituting this into (13.92), we get

KN+1 =
σ2

N

Nσ2
N + σ

(334)

Using (331), (333), (334) and (13.90), we get

σ2
N+1 =

(
1 − σ2

N

σ2
N + σ

)
σ2

N

=
σ2

Nσ
2

σ2
N + σ

(335)

=
σ2

0σ
4/(σ2

0 + σ)

(σ2σ2
0σ

4 + σ2Nσ2
0)/(σ

2
0 + σ)

=
σ2

0σ
2

(N + 1)σ2
0 + σ

.
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Using (330), (332), (334), (335) and (13.89), we get

µN+1 = µN +
σ2

N

σ2
N + σ

(xN+1 − µN )

=
1

σ2
N + σ

(σ2
NxN+1 + σµN )

=
σ2

N

σ2
0 + σ

xN+1 +
σ2

Nσ
2

σ2
N + σ

(
1

σ2
0

µ0 +
1

σ2

N∑

n=1

xn

)

= σ2
N+1

(
1

σ2
0

µ0 +
N + 1

σ2
µ

(N+1)
ML

)
.

Thus (330) and (331) must hold for allN > 1.

13.26 NOTE: In the1st printing of PRML, equation (12.42) contains a mistake; the covari-
ance on the r.h.s. should beσ2M−1. Furthermore, the exercise should make explicit
the assumption thatµ = 0 in (12.42).

From (13.84) and the assumption thatA = 0, we have

p(zn|x1, . . . ,xn) = p(zn|xn) = N (zn|µn,Vn) (336)

whereµn andVn are given by (13.89) and (13.90), respectively. SinceA = 0 and
Γ = I, Pn−1 = I for all n and thus (13.92) becomes

Kn = Pn−1C
T
(
CPn−1C

T + Σ
)−1

= WT
(
WWT + σ2I

)−1
(337)

where we have substitutedW for C andσ2I for Σ. Using (337), (12.41), (C.6) and
(C.7), (13.89) and (13.90) can be rewritten as

µn = Knxn

= WT
(
WWT + σ2I

)−1
xn

= M−1WTxn

Vn = (I − KnC)Pn−1 = I − KnW

= I − WT
(
WWT + σ2I

)−1
W

=
(
σ−2WTW + I

)−1

= σ2
(
WTW + σ2I

)−1
= σ2M−1

which makes (336) equivalent with (12.42), assumingµ = 0.

13.27 NOTE: In the 1st printing of PRML, this exercise should have made explicit the
assumption thatC = I in (13.86).
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From (13.86), it is easily seen that ifΣ goes to0, the posterior overzn will become
completely determined byxn, since the first factor on the r.h.s. of (13.86), and hence
also the l.h.s., will collapse to a spike atxn = Czn.

13.28 NOTE: In PRML, this exercise should also assume thatC = I., Moreover,V0

should be replaced byP0 in the text of the exercise; see also the PRML errata.

Starting from (13.75) and (13.77), we can use (2.113)–(2.117) to obtain

p(z1|x1) = N (z1|µ1,V1)

where

µ1 = V1

(
CTΣ−1x1 + P−1

0 µ0

)
= x1 (338)

V1 =
(
P−1

0 + CTΣ−1C
)−1

= Σ (339)

sinceP0 → ∞ andC = I; note that these results can equally well be obtained from
(13.94), (13.95) and (13.97).

Now we assume that forN

µN = xN =
1

N

N∑

n=1

xn (340)

VN =
1

N
Σ (341)

and we note that these assumptions are met by (338) and (339), respectively. From
(13.88) and (341), we then have

PN = VN =
1

N
Σ (342)

sinceC = I andΓ = 0. Using this together with (13.92), we obtain

KN+1 = PNCT
(
CPNCT + Σ

)−1

= PN (PN + Σ)
−1

=
1

N
Σ

(
1

N
Σ + Σ

)−1

=
1

N
Σ

(
N + 1

N
Σ

)−1

=
1

N + 1
I.
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Substituting this into (13.89) and (13.90), making use of (340) and (342), we have

µN+1 = µN +
1

N + 1
(xN+1 − µN )

= xN +
1

N + 1
(xN+1 − xN )

=
1

N + 1
xN+1 +

(
1 − 1

N + 1

)
1

N

N∑

n=1

=
1

N + 1

N+1∑

n=1

xn = xN+1

VN+1 =

(
I − 1

N + 1
I

)
1

N
Σ

=
1

N + 1
Σ.

Thus, (340) and (341) holds for allN > 1.

13.29 NOTE: In the1st printing of PRML,µN should beµn on the r.h.s. of (13.100)

Multiplying both sides of (13.99) bŷα(zn), and then making use of (13.98), we get

cn+1N
(
zn|µ̂n, V̂n

)
= α̂(zn)

∫
β̂(zn+1)p(xn+1|zn+1)p(zn+1|zn) dzn+1

(343)
Using (2.113)–(2.117), (13.75) and (13.84), we have

α̂(zn)p(zn+1|zn) = N (zn|µn,Vn)N (zn+1|Azn,Γ)

= N (zn+1|Aµn,AVnA + Γ)N (zn|mn,Mn) (344)

where

mn = Mn

(
ATΓ−1zn+1 + V−1

n µn

)
(345)

and, using (C.7) and (13.102),

Mn =
(
ATΓ−1A + Vn

)−1
(346)

= Vn − VnAT
(
Γ + AVnAT

)−1
AVn

= Vn − VnATP−1
n AVn (347)

=
(
I − VnATP−1

n A
)
Vn

= (I − JnA)Vn (348)

Substituting the r.h.s. of (344) into (343) and then making useof (13.85)–(13.88) and
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(13.98), we have

cn+1N
(
zn|µ̂n, V̂n

)
=

∫
β̂(zn+1)p(xn+1|zn+1)N (zn+1|Aµn,Pn)

N (zn|mn,Mn) dzn+1

=

∫
β̂(zn+1)cn+1α̂(zn+1)N (zn|mn,Mn) dzn+1

= cn+1

∫
γ(zn+1)N (zn|mn,Mn) dzn+1

= cn+1

∫
N
(
zn+1|µ̂n, V̂n

)
N (zn|mn,Mn) dzn+1.

Thus, from this, (345) and (2.113)–(2.115), we see that

µ̂n = Mn

(
ATΓ−1µ̂n+1 + V−1

n µn

)
(349)

V̂n = MnATΓ−1V̂n+1Γ
−1AMn + Mn. (350)

Using (347) and (13.102), we see that

MnATΓ−1 =
(
V − VnATP−1

n AVn

)
ATΓ−1

= VnAT
(
I − P−1

n AVnAT
)
Γ−1

= VnAT
(
I − P−1

n AVnAT − P−1
n Γ + P−1

n Γ
)
Γ−1

= VnAT
(
I − P−1

n Pn + P−1
n Γ

)
Γ−1

= VnATP−1
n = Jn (351)

and using (348) together with (351), we can rewrite (349) as (13.100).Similarly,
using (13.102), (347) and (351), we rewrite (350) as

V̂n = MnATΓ−1V̂n+1Γ
−1AMn + Mn

= JnV̂n+1J
T
n + Vn − VnATP−1

n AVn

= Vn + Jn

(
V̂n+1 − Pn

)
JT

n

13.30 NOTE: See note in Solution 13.15.

The first line of (13.103) corresponds exactly to (13.65). We then use (13.75),
(13.76), (13.84) and (13.98) to rewritep(zn|zn−1), p(xn|zn), α̂(zn−1) andβ̂(zn),
respectively, yielding the second line of (13.103).



Solutions 13.31–13.33 245

13.31 Substituting the r.h.s. of (13.84) for̂α(zn) in (13.103) and then using (2.113)–(2.117)
and (13.86), we get

ξ(zn−1, zn)

=
N
(
zn−1|µn−1,Vn−1

)
N (zn|Azn−1,Γ)N (xn|Czn,Σ)N

(
zn|µ̂n, V̂n

)

N (zn|µn,Vn) cn

=
N
(
zn|Aµn−1,Pn−1

)
N (zn−1|mn−1,Mn−1)N

(
zn|µ̂n, V̂n

)

N
(
zn|Aµn−1,Pn−1

)

= N (zn−1|mn−1,Mn−1)N
(
zn|µ̂n, V̂n

)
(352)

wheremn−1 andMn−1 are given by (345) and (346). Equation (13.104) then fol-
lows from (345), (351) and (352).

13.32 NOTE: In PRML, V0 should be replaced byP0 in the text of the exercise; see also
the PRML errata.

We can write the expected complete log-likelihood, given by the equation after
(13.109), as a function ofµ0 andP0, as follows:

Q(θ,θold) = −1

2
ln |P0|

−1

2
EZ|θold

[
zT
1 P−1

0 z1 − zT
1 P−1

0 µ0 − µT
0 P−1

0 z1 + µT
0 P−1

0 µ0

]
(353)

=
1

2

(
ln |P−1

0 | − Tr

[
P−1

0 EZ|θold

[
z1z

T
1 − z1µ

T
0 − µ0z

T
1 + µ0µ

T
0

]])
, (354)

where we have used (C.13) and omitted terms independent ofµ0 andP0.

From (353), we can calculate the derivative w.r.t.µ0 using (C.19), to get

∂Q

∂µ0

= 2P−1
0 µ0 − 2P−1

0 E[z1].

Setting this to zero and rearranging, we immediately obtain (13.110).

Using (354), (C.24) and (C.28), we can evaluate the derivatives w.r.t. P−1
0 ,

∂Q

∂P−1
0

=
1

2

(
P0 − E[z1z

T
1 ] − E[z1]µ

T
0 − µ0E[zT

1 ] + µ0µ
T
0

)
.

Setting this to zero, rearrangning and making use of (13.110), we get (13.111).

13.33 NOTE: In PRML, the first instance ofAnew on the second line of equation (13.114)
should be transposed.
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Expanding the square in the second term of (13.112) and making use of the trace
operator, we obtain

EZ|θ

[
1

2

N∑

n=2

(zn − Azn−1)
T
Γ−1 (zn − Azn−1)

]

= EZ|θ

[
1

2

N∑

n=2

Tr
(
Γ−1

{
Azn−1z

T
n−1A

T

−znzT
n−1A

T − Azn−1z
T
n + znzT

n

})
]
. (355)

Using results from Appendix C, we can calculate the derivative ofthis w.r.t. A,
yielding

∂Q

∂A
= Γ−1AE

[
zn−1z

T
n−1

]
− Γ−1

E
[
znzT

n−1

]
.

Setting this equal to zero and solving forA, we obtain (13.113).

Using (355) and results from Appendix C, we can calculate the derivative of (13.112)
w.r.t. Γ−1, to obtain

∂Q

∂Γ
=
N − 1

2
Γ − 1

2

N∑

n=2

(
AE

[
zn−1z

T
n−1

]
AT − E

[
znzT

n−1

]
AT

− AE
[
zn−1z

T
n

]
+ E

[
znzT

n

]
)
.

Setting this equal to zero, substitutingAnew for A and solving forΓ, we obtain
(13.114).

13.34 NOTE: In PRML, the first and third instances ofCnew on the second line of equation
(13.116) should be transposed.

By making use of (C.28), equations (13.115) and (13.116) are obtained in an identi-
cal manner to (13.113) and (13.114), respectively, in Solution 13.33.

Chapter 14 Combining Models

14.1 The required predictive distribution is given by

p(t|x,X,T) =
∑

h

p(h)
∑

zh

p(zh)

∫
p(t|x,θh, zh, h)p(θh|X,T, h) dθh, (356)
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where

p(θh|X,T, h) =
p(T|X,θh, h)p(θh|h)

p(T|X, h)

∝ p(θ|h)
N∏

n=1

p(tn|xn,θ, h)

= p(θ|h)
N∏

n=1

(
∑

znh

p(tn, znh|xn,θ, h)

)
(357)

The integrals and summations in (356) are examples of Bayesian averaging, account-
ing for the uncertainty about which model,h, is the correct one, the value of the cor-
responding parameters,θh, and the state of the latent variable,zh. The summation
in (357), on the other hand, is an example of the use of latent variables, where dif-
ferent data points correspond to different latent variable states,although all the data
are assumed to have been generated by a single model,h.

14.2 Using (14.13), we can rewrite (14.11) as

ECOM = Ex



{

1

M

M∑

m=1

εm(x)

}2



=
1

M2
Ex



{

M∑

m=1

εm(x)

}2



=
1

M2

M∑

m=1

M∑

l=1

Ex [εm(x)εl(x)]

=
1

M2

M∑

m=1

Ex

[
εm(x)2

]
=

1

M
EAV

where we have used (14.10) in the last step.

14.3 We start by rearranging the r.h.s. of (14.10), by moving the factor1/M inside the
sum and the expectation operator outside the sum, yielding

Ex

[
M∑

m=1

1

M
εm(x)2

]
.

If we then identifyεm(x) and1/M with xi andλi in (1.115), respectively, and take
f(x) = x2, we see from (1.115) that

(
M∑

m=1

1

M
εm(x)

)2

6

M∑

m=1

1

M
εm(x)2.
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Since this holds for all values ofx, it must also hold for the expectation overx,
proving (14.54).

14.4 If E(y(x)) is convex, we can apply (1.115) as follows:

EAV =
1

M

M∑

m=1

Ex [E(y(x))]

= Ex

[
M∑

m=1

1

M
E(y(x))

]

> Ex

[
E

(
M∑

m=1

1

M
y(x)

)]

= ECOM

whereλi = 1/M for i = 1, . . . ,M in (1.115) and we have implicitly defined ver-
sions ofEAV andECOM corresponding toE(y(x)).

14.5 To prove that (14.57) is a sufficient condition for (14.56) we haveto show that (14.56)
follows from (14.57). To do this, consider a fixed set ofym(x) and imagine varying
theαm over all possible values allowed by (14.57) and consider the values taken by
yCOM(x) as a result. The maximum value ofyCOM(x) occurs whenαk = 1 where
yk(x) > ym(x) for m 6= k, and hence allαm = 0 for m 6= k. An analogous result
holds for the minimum value. For other settings ofα,

ymin(x) < yCOM(x) < ymax(x),

sinceyCOM(x) is a convex combination of points,ym(x), such that

∀m : ymin(x) 6 ym(x) 6 ymax(x).

Thus, (14.57) is a sufficient condition for (14.56).

Showing that (14.57) is a necessary condition for (14.56) is equivalent to show-
ing that (14.56) is a sufficient condition for (14.57). The implication here is that
if (14.56) holds for any choice of values of the committee members {ym(x)} then
(14.57) will be satisfied. Suppose, without loss of generality, thatαk is the smallest
of theα values, i.e.αk 6 αm for k 6= m. Then consideryk(x) = 1, together with
ym(x) = 0 for all m 6= k. Thenymin(x) = 0 while yCOM(x) = αk and hence
from (14.56) we obtainαk > 0. Sinceαk is the smallest of theα values it follows
that all of the coefficients must satisfyαk > 0. Similarly, consider the case in which
ym(x) = 1 for all m. Thenymin(x) = ymax(x) = 1, while yCOM(x) =

∑
m αm.

From (14.56) it then follows that
∑

m αm = 1, as required.

14.6 If we differentiate (14.23) w.r.t.αm we obtain

∂E

∂αm
=

1

2

(
(eαm/2 + e−αm/2)

N∑

n=1

w(m)
n I(ym(xn) 6= tn) − e−αm/2

N∑

n=1

w(m)
n

)
.
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Setting this equal to zero and rearranging, we get
∑

nw
(m)
n I(ym(xn) 6= tn)
∑

nw
(m)
n

=
e−αm/2

eαm/2 + e−αm/2
=

1

eαm + 1
.

Using (14.16), we can rewrite this as

1

eαm + 1
= εm,

which can be further rewritten as

eαm =
1 − εm
εm

,

from which (14.17) follows directly.

14.7 Taking the functional derivative of (14.27) w.r.t.y(x), we get

δ

δy(x)
Ex,t [exp {−ty(x)}] = −

∑

t

t exp {−ty(x)} p(t|x)p(x)

= {exp {y(x)} p(t = −1|x) − exp {−y(x)} p(t = +1|x)} p(x).

Setting this equal to zero and rearranging, we obtain (14.28).

14.8 Assume that (14.20) is a negative log likelihood function. Then the corresponding
likelihood function is given by

exp(−E) =

N∏

n=1

exp (− exp {−tnfm(xn)})

and thus
p(tn|xn) ∝ exp (− exp {−tnfm(xn)}) .

We can normalize this probability distribution by computing the normalization con-
stant

Z = exp (− exp {fm(xn)}) + exp (− exp {−fm(xn)})
but sinceZ involvesfm(x), the log of the resulting normalized probability distribu-
tion no longer corresponds to (14.20) as a function offm(x).

14.9 The sum-of-squares error for the additive model of (14.21) is defined as

E =
1

2

N∑

n=1

(tn − fm(xn))2.

Using (14.21), we can rewrite this as

1

2

N∑

n=1

(tn − fm−1(xn) − 1

2
αmym(x))2,
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where we recognize the two first terms inside the square as the residual from the
(m − 1)-th model. Minimizing this error w.r.t.ym(x) will be equivalent to fitting
ym(x) to the (scaled) residuals.

14.10 The error function that we need to minimize is

E(t) =
1

2

∑

{tn}
(tn − t)

2
.

Taking the derivative of this w.r.t.t and setting it equal to zero we get

dE

dt
= −

∑

{tn}
(tn − t) = 0.

Solving fort yields

t =
1

N ′

∑

{tn}
tn

whereN ′ = |{tn}|, i.e. the number of values in{tn}.

14.11 NOTE: In PRML, the text of this exercise contains mistakes; please refer to the
PRML Errata for relevant corrections.

The misclassification rates for the two tree models are given by

RA =
100 + 100

400 + 400
=

1

4

RB =
0 + 200

400 + 400
=

1

4

From (14.31) and (14.32) we see that the pruning criterion for the cross-entropy case
evaluates to

CXent(TA) = −2

(
100

400
ln

100

400
+

300

400
ln

300

400

)
+ 2λ ' 1.12 + 2λ

CXent(TB) = −400

400
ln

400

400
− 200

400
ln

200

400
− 0

400
ln

0

400
− 200

400
ln

200

400
+ 2λ

' 0.69 + 2λ

Finally, from (14.31) and (14.33) we see that the pruning criterion for the Gini index
case become

CGini(TA) = 2

[
300

400

(
1 − 300

400

)
+

100

400

(
1 − 100

400

)]
+ 2λ =

3

4
+ 2λ

CGini(TB) =
400

400

(
1 − 400

400

)
+

200

400

(
1 − 200

400

)

+
0

400

(
1 − 0

400

)
+

200

400

(
1 − 200

400

)
+ 2λ =

1

2
+ 2λ.
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Thus we see that, while both trees have the same misclassification rate, B performs
better in terms of cross-entropy as well as Gini index.

14.12 Drawing on (3.32), we redefine (14.34) as

p(t|θ) =

K∑

k=1

πkN
(
t|WTφ, β−1I

)

and then make the corresponding changes to (14.35)–(14.37) andQ
(
θ,θold

)
; also

t will be replaced byT to align with the notation used in Section 3.1.5. Equation
(14.39) will now take the form

Q
(
θ,θold

)
=

N∑

n=1

γnk

{
−β

2

∥∥tn − WTφn

∥∥2
}

+ const.

Following the same steps as in the single target case, we arriveat a corresponding
version of (14.42):

Wk =
(
ΦTRkΦ

)−1
ΦTRkT.

Forβ, (14.43) becomes

Q
(
θ,θold

)
=

N∑

n=1

K∑

k=1

γnk

{
D

2
lnβ − β

2

∥∥tn − WTφn

∥∥2
}

and consequently (14.44) becomes

1

β
=

1

ND

N∑

n=1

K∑

k=1

γnk

∥∥tn − WTφn

∥∥2
.

14.13 Starting from the mixture distribution in (14.34), we follow the samesteps as for
mixtures of Gaussians, presented in Section 9.2. We introduce aK-nomial latent
variable,z, such that the joint distribution overz andt equals

p(t, z) = p(t|z)p(z) =

K∏

k=1

(
N
(
t|wT

kφ, β
−1
)
πk

)zk
.

Given a set of observations,{(tn,φn)}N
n=1, we can write the complete likelihood

over these observations and the correspondingz1, . . . , zN , as

N∏

n=1

K∏

k=1

(
πkN (tn|wT

kφn, β
−1)
)znk

.

Taking the logarithm, we obtain (14.36).
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14.14 SinceQ(θ, θold) (defined by the unnumbered equation preceeding (14.38)) has ex-
actly the same dependency onπ as (9.40), (14.38) can be derived just like the corre-
sponding result in Solution 9.9.

14.15 The predictive distribution from the mixture of linear regression models for a new
input feature vector,̂φ, is obtained from (14.34), withφ replaced bŷφ. Calculating
the expectation oft under this distribution, we obtain

E[t|φ̂,θ] =

K∑

k=1

πkE[t|φ̂,wk, β].

Depending on the parameters, this expectation is potentiallyK-modal, with one
mode for each mixture component. However, the weighted combination of these
modes output by the mixture model may not be close to any singlemode. For exam-
ple, the combination of the two modes in the left panel of Figure14.9 will end up in
between the two modes, a region with no signicant probability mass.

14.16 This solution is analogous to Solution 14.12. It makes use of results from Section
4.3.4 in the same way that Solution 14.12 made use of results fromSection 3.1.5.
Note, however, that Section 4.3.4 usesk as class index andK to denote the number
of classes, whereas here we will usec andC, respectively, for these purposes. This
leavesk andK for mixture component indexing and number of mixture components,
as used elsewhere in Chapter 14.

Using 1-of-C coding for the targets, we can look to (4.107) to rewrite (14.45) as

p(t|φ,θ) =

K∑

k=1

πk

C∏

c=1

ytc

kc

and making the corresponding changes to (14.46)–(14.48), which lead to an expected
complete-data log likelihood function,

Q
(
θ,θold

)
=

N∑

n=1

K∑

k=1

γnk

{
lnπk +

C∑

c=1

tnc ln ynkc

}

corresponding to (14.49).

As in the case of the mixture of logistic regression models, the Mstep forπ is the
same as for other mixture models, given by (14.50). In the M step forW1, . . . ,WK ,
where

Wk = [wk1, . . . ,wkC ]

we can again deal with each mixture component separately, using an iterative method
such as IRLS, to solve

∇wkc
Q =

N∑

n=1

γnk (ynkc − tnc)φn = 0
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where we have used (4.109) and (14.51). We obtain the correspondingHessian from
(4.110) (NOTE: In the 1st printing of PRML, the leading minus sign on the r.h.s.
should be removed.) and (14.52) as

Hk = ∇wkc
∇wkĉ

Q =

N∑

n=1

γnkynkc (Icĉ − ynkĉ)φnφ
T
n .

14.17 If we defineψk(t|x) in (14.58) as

ψk(t|x) =

M∑

m=1

λmkφmk(t|x),

we can rewrite (14.58) as

p(t|x) =

K∑

k=1

πk

M∑

m=1

λmkφmk(t|x)

=

K∑

k=1

M∑

m=1

πkλmkφmk(t|x).

By changing the indexation, we can write this as

p(t|x) =

L∑

l=1

ηlφl(t|x),

whereL = KM , l = (k − 1)M + m, ηl = πkλmk andφl(·) = φmk(·). By
construction,ηl > 0 and

∑L
l=1 ηl = 1.

Note that this would work just as well ifπk andλmk were to be dependent onx, as
long as they both respect the constraints of being non-negativeand summing to1 for
every possible value ofx.

Finally, consider a tree-structured, hierarchical mixture model,as illustrated in the
left panel of Figure 12. On the top (root) level, this is a mixture with two components.
The mixing coefficients are given by a linear logistic regression model and hence are
input dependent. The left sub-tree correspond to a local conditional density model,
ψ1(t|x). In the right sub-tree, the structure from the root is replicated, with the
difference that both sub-trees contain local conditional density models,ψ2(t|x) and
ψ3(t|x).

We can write the resulting mixture model on the form (14.58) with mixing coeffi-
cients

π1(x) = σ(vT
1 x)

π2(x) = (1 − σ(vT
1 x))σ(vT

2 x)

π3(x) = (1 − σ(vT
1 x))(1 − σ(vT

2 x)),
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Figure 12 Left: an illustration of a
hierarchical mixture model,
where the input depen-
dent mixing coefficients
are determined by linear
logistic models associated
with interior nodes; the
leaf nodes correspond to
local (conditional) density
models. Right: a possi-
ble division of the input
space into regions where
different mixing coefficients
dominate, under the model
illustrated left.

σ(vT
1 x)

σ(vT
2 x)

ψ1(t|x)

ψ2(t|x) ψ3(t|x)

π1

π2

π3

whereσ(·) is defined in (4.59) andv1 andv2 are the parameter vectors of the logistic
regression models. Note thatπ1(x) is independent of the value ofv2. This would
not be the case if the mixing coefficients were modelled using asingle level softmax
model,

πk(x) =
eu

T
k x

∑3

j e
uT

j
x
,

where the parametersuk, corresponding toπk(x), will also affect the other mixing
coeffiecients,πj 6=k(x), through the denominator. This gives the hierarchical model
different properties in the modelling of the mixture coefficientsover the input space,
as compared to a linear softmax model. An example is shown in theright panel
of Figure 12, where the red lines represent borders of equal mixing coefficients in
the input space. These borders are formed from two straight lines, corresponding to
the two logistic units in the left panel of 12. A corresponding division of the input
space by a softmax model would involve three straight lines joined at a single point,
looking, e.g., something like the red lines in Figure 4.3 in PRML; note that a linear
three-class softmax model could not implement the borders show inright panel of
Figure 12.
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