Matrices

Definition 2.5.2. Let A = (a;;) be an n X n matrix. Let M;; be
an (n — 1) X (n — 1) matrix obtained from A by deleting the ith
row and the jth column. Then the determinant of A is defined as

det(A) = {‘“1 if n =1

a11411 + -+ aindin ifn>1

where o
Aij = (—1)""7 det (M;;)
The number A;; is called the (i, j)-cofactor of A.
Theorem 2.5.8. The determinant of a triangular matrix is equal
to the product of its diagonal entries.

Theorem 2.5.15. Let A be a square matrix.

1. If B is obtained from A by multiplying one row of A by a
constant k, then det(B) = kdet(A).

2. If B is obtained from A by interchanging two rows, then
det(B) = —det(A).

3. If B is obtained from A by adding a multiple of one row of
A to another row, then det(B) = det(A).

4. Let E be an elementary matrix of the same size as A. Then
det(EA) = det(E) det(A).

Theorem 2.5.25. If A is invertible, then A1 = m adj(A).
Theorem 2.5.27. Suppose Az = b is a linear system where A is
an n X n matrix. Let A; be the matrix obtained from A be
replacing the ith column of A by b. If A is invertible, then the
system has only one solution

det (A1)

x = :
et(A .
det(4) det (An)

Definition 2.5.24. Let A be a square matrix of order n. Then
the (classical) adjoint of A is the n X n matrix

adj(4) = (4i;); .,
where A;; is the (4, j)-cofactor of A.

Euclidean Spaces

Definition 3.2.3. Let S = {u1,...,ug} be a set of vectors in

R™. Then the set of all linear combinations of w1, ..., ug,
{01u1+~~-+ckuk ‘ Cly...,Ck ER}

is called the linear span of S (or the linear span of u1,...,ug)

and is denoted by span(S) (or span{u1,...,ug}).

Theorem 3.2.10. Let S1 = {u1,...,ux} and Sz = {v1,...,vm}

be subsets of R™. Then span (S1) C span (S2) if and only if each

u; is a linear combination of v1,...,Vm.
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Definition 3.3.2. Let V be a subset of R™. Then V is called a
subspace of R™ if V = span(S) where S = {u1,...,ug} for some
vectors wi,...,u € R™.

More precisely, V is called the subspace spanned by S (or the
subspace spanned by u1,...,u). We also say that S spans (or
u1,...,u span) the subspace V.

Remark 3.3.8. Let V be a non-empty subset of R™. Then V is a
subspace of R™ if and only if

forallu,v € Vand ¢,d € R, cu+dv eV

Definition 3.4.2. Let S = {u1,..
R™. Consider the equation

.,uR} be a set of vectors in

ciur + -+ crup =0

where c1,...,ck are variables.

1. S is called a linearly dependent set and w1y, ..., ug are said
to be linearly independent if the equation has only the
trivial solution ¢ = --- = ¢, = 0.

2. S is called a linearly independent set and u1,...,uy are
said to be linearly dependent if the equation has non-trivial
solutions.

Definition 3.5.4. Let S = {u1,...,ur} be a subset of a vector
space V. Then S is called a basis for V' if S is linearly independent
and S spans V.

Definition 3.5.8. Let S = {u1,...,ug} be a basis for a vector
space V and v a vector in V. By Theorem 3.5.7, v is expressed
uniquely as a linear combination

v=ciul + -+ crug

The coefficients ¢y, ..
to the basis S.

., ¢ are called the coordinates of v relative

The vector (v)s = (c1,-..,cx) € RF is called the coordinate vector
of v relative to the basis S.

Theorem 3.6.1. Let V be a vector space which has a basis with
k vectors. Then

1. any subset of V' with more than k vectors is always linearly
dependent;

2. any subset of V' with less than k vectors cannot span V.

Definition 3.6.3. The dimension of a vector space V', denoted
by dim(V'), is defined to be the number of vectors in a basis for V.
In addition, we define the dimension of the zero space to be zero.

Theorem 3.6.7. Let V be a vector space of dimension k£ and S a
subset of V. The following are equivalent:

1. S is a basis for V.

2. S is linearly independent and |S| = k.

3. S spans V and |S| = k.
Definition 3.7.3. Let S = {u1,...,ux} and T be two bases for a

vector space. The square matrix P = ([u1]p [uz]y) is
called the transition matriz from S to T

Vector Space of Matrices

Definition 4.1.2. Let A = (a;;) be an m X n matrix. The row
space of A is the subspace of R"™ spanned by the rows of A. The
column space of A is the subspace of R™ spanned by the columns
of A.

Theorem 4.1.7. Let A and B be row equivalent matrices. Then
the row space of A and the row space of B are identical, i.e.
elementary row operations preserve the row space of a matrix.

Theorem 4.1.11. Let A and B be row equivalent matrices.
Then the following statements hold:

1. A given set of columns of A is linearly independent if and
only if the set of corresponding columns of B is linearly
independent.

2. A given set of columns of A forms a basis for the column
space of A if and only if the set of corresponding columns of
B forms a basis for the column space of B.

Theorem 4.2.1. The row space and column space of a matrix
have the same dimension.

Definition 4.2.3. The rank of a matrix is the dimension of its
row space (or column space). We denote the rank of a matrix A
by rank(A). Note that rank(A) is equal to the number of nonzero
rows as well as the number of pivot columns in a row-echelon form
of A.

Theorem 4.2.8. Let A and B be m x n and n X p matrices
respectively. Then

rank(AB) < min{rank(A), rank(B)}
Definition 4.3.1. Let A be an m X n matrix. The solution space

of the homogeneous system of linear equations Az = 0 is known
as the nullspace of A.

The dimension of the null space of a matrix A is known as the
nullity of A and is denoted by nullity(A). If A is an m x n
matrix, it is clear that nullity(A) < n since the nullspace is a
subspace of R".

Theorem 4.3.4. Let A be a matrix with n columns. Then

rank(A) + nullity(A) = n

Theorem 4.3.6. Suppose the linear equations Az = b has a
solution v. Then the solution set of the system is given by

M = {u+ v | u is an element of the nullspace of A}



Orthogonality
Definition 5.2.1.

1. Two vectors u and v in R"™ are called orthogonal if u-v = 0.

2. A set S of vectors in R" is called orthogonal if every pair of
distinct vectors in S are orthogonal.

3. A set S of vectors in R" is called orthonormal if S is
orthogonal and every vector in S is a unit vector.
Definition 5.2.4.

1. A basis S for a vector space is called an orthogonal basis if
S is orthogonal.

2. A basis S for a vector space is called an orthonormal basis
if S is orthonormal.

Theorem 5.2.8. If S = {u1,...,ug} is an orthogonal basis for a
vector space V/, then for any vector w in V/,

w - Ul w - U
w = uy +--+ —ug
ui - u1 U - Uk
. _ w-ug w-Up
ie. (w)g = (urul""’ “k‘“k)

Definition 5.2.10. Let V be a subspace of R™. A vector u € R™
is said to be orthogonal (or perpendicular) to V if u is orthogonal
to all vectors in V.

Definition 5.2.13. Let V be a subspace of R™. Every vector
u € R™ can be written uniquely as

u=n-+p

such that n is a vector orthogonal to V' and p is a vector in V.
The vector p is called the (orthogonal) projection of w onto V.

Theorem 5.2.15. Let V be a subspace of R"™ and w a vector in

R™. If {u1,...,ug} is an orthogonal basis for V, then
w - ul w - Up
up oy,
ul - ul U - Uk

is the projection of w onto V.

Theorem 5.2.19. Let {u1,...,ug} be a basis for a vector space

V. Let

V1 = Ul
ug - v1

V2 = U2 — 1
v1 - V1
U - V1 Uk - Vp—1

V = Uk — vV, — o ————————— Vg1
vy - V1 Vg—1 " " Vk—1

Note that the right side is the projection of the vectors onto the
orthogonal basis. To convert it into an orthonormal basis for V,
simply divide each v; by their length.

Theorem 5.3.10. Let Az = b be a linear system. Then w is a
least squares solution to Az = b if and only if w is a solution to
AT Ax = ATb.

Definition 5.4.3. A square matrix A is called orthogonal if
A1 = AT,

Eigens and Diagonalization

Definition 6.1.3. Let A be a square matrix of order n. A
nonzero column vector w in R"™ is called an eigenvector of A if

Au = du
for some scalar A. The scalar A is called an eigenvalue of A and u

is said to be an eigenvector of A associated with the eigenvalue A.

Definition 6.1.6. Let A be a square matrix of order n. The
equation

det(A\I — A) =0
is called the characteristic equation of A and the polynomial

det(AI — A)
is called the characteristic polynomial of A.
Theorem 6.1.8. Let A be an n X n matrix. The following
statements are equivalent:
1. A is invertible.

The linear system Az = 0 has only the trivial solution.
The reduced row-echelon form of A is an identity matrix.
A can be expressed as a product of elementary matrices.
det(A) #0
The rows of A form a basis for R™.
The columns of A form a basis for R™.
rank(A) =n

9. 0 is not an eigenvalue of A.
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Theorem 6.1.9. If A is a triangular matrix, the eigenvalues of A
are the diagonal entries of A.

Definition 6.1.11. Let A be a square matrix of order n and A an
eigenvalue of A. Then the solution space of the linear system

(A — A)z = 0 is called the eigenspace of A associated with the
eigenvalue A and is denoted by FE.

Note that if w is a nonzero vector in Ey, then u is an eigenvector
of A associated with the eigenvalue .

Definition 6.2.1. A square matrix A is called diagonalizable if
there exists an invertible matrix P such that P~1AP is a
diagonal matrix. Here the matrix P is said to diagonalize A.

Theorem 6.2.3. Let A be a square matrix of order n. Then A is
diagonlizable if and only if A has n linearly independent
eigenvectors.

Remark 6.2.5.2. The dimension of an eigenspace E) of a square
matrix A associated with the eigenvalue X is at most the
multiplicity of A in the characteristic polynomial of A.

Furthermore, A is diagonalizable if and only if the dimension of
each eigenspace of A is equal to the multiplicity of its associated
eigenvalue.

Theorem 6.2.7. Let A be a square matrix of order n. If A has n
distinct eigenvalues, then A is diagonalizable.

Definition 6.3.2. A square matrix A is called orthogonally
diagonalizable if there exists an orthogonal matrix P such that
PT AP is a diagonal matrix. Here the matrix P is said to
orthogonally diagonalize A.

Theorem 6.3.4. A square matrix is orthogonally diagonalizable
if and only if it is symmetric.

Linear Transformations

Definition 7.1.1. A linear transformation is a mapping
T :R™ — R™ of the form

il a1121 + - + a1n%n T1
T : = : for € R"™
Tn Am1Z1 + + + AmnTn Tn
where ai1,...,amn are real numbers. In particular, if n = m, T is

also called a linear operator on R™. We can rewrite the formula of

1 aiy -

T : =

*QAln 1

Tn am1 " Amn Tn

above is called the standard matrixz for T'.

The matrix (aij),,

Definition 7.1.10. Let S : R® — R™ and T : R™ — R¥ be linear
transformations. The composition of T' with S, denoted by T o S,
is a mapping from R™ — R¥ such that

(T'o S)(uw) = T(S(u)) for u € R™

Definition 7.2.1. Let T': R™ — R™ be a linear transformation.
The range of T, denoted by R(T), is the set of images of T, i.e.

R(T) = {T(u) | u € R"} C R™

Theorem 7.2.4. Let T': R™ — R™ be a linear transformation
and A the standard matrix for T. Then the range of T is defined
as:

R(T') = the column space of A

which is a subspace of R™. This is also called the range of the
linear transformation.

Definition 7.2.5. Let T be a linear transformation. The
dimension of R(T) is called the rank of T and is denoted by
rank (7).

By Theorem 7.2.4, if A is the standard matrix for 7', then
rank(T) = rank(A).

Definition 7.2.7. Let T : R” — R™ be a linear transformation.
The kernel of T, denoted by Ker(T), is the set of vectors in R™
whose image is the zero vector in R™, i.e.

Ker(T) ={u | T(u) =0} CR"
This is also called the nullity of T.

Theorem 7.2.9. Let T : R™ — R™ be a linear transformation
and A the standard matrix for 7. Then

Ker(T') = the nullspace of A

Definition 7.2.10. Let T be a linear transformation. The
dimension of Ker(T') is called the nullity of T and is denoted by
nullity (7).

By Theorem 7.2.9, if A is the standard matrix for T', then
nullity (7)) = nullity (A).

Theorem 7.2.13. If T : R® — R™ is a linear transformation,
then
rank(7) + nullity (T') = n



