
CS1231 Cheatsheet
for finals, by ning

Appendix A of Epp is not covered. Theorems, corollar-
ies, lemmas, etc. from the Epp textbook are prefixed
with ‘Epp’; those without asterisks (*) are from the
lecture notes, those with the asterisk are not (e.g.
Epp theorems not covered by the lecture). In titles,
‘T’ is short for theorem, ‘L’ for lemma, ’C’ for corollary.

Proofs

Basic Notation

R set of real numbers
Z set of integers (includes 0)
Q set of rationals
N set of natural numbers (usually includes 0)
∃ there exists...
∃! there exists a unique...
∀ for all...
∈ member of...
3 such that...

Proof Types

- By Construction: finding or giving a set of direc-
tions to reach the statement to be proven true. In
proving equality, a useful note:

a ≤ b ∧ a ≥ b→ a = b

- By Contraposition: proving a statement through
its logically equivalent contrapositive.

- By Contradiction: proving that the negation of
the statement leads to a logical contradiction.

- By Exhaustion: considering each case.

- By Mathematical Induction: proving for a base
case, then an induction step. In the inductive step,
work from the k + 1, not the k case.

- By Strong Induction: mathematical induction as-
suming P (k), P (k − 1), · · · , P (a) are all true.

Order of Operations

First ∼ (also represented as ¬). No priority within ∧
and ∨, so p∧ q∨ r is ambiguous and should be written
as (p ∧ q) ∨ r or p ∧ (q ∨ r). The implication, → is
performed last. Can be overwritten by parenthesis.

Universal & Existential Generalisation
‘All boys wear glasses’ is written as

∀x(Boy(x)→ Glasses(x))

If conjunction was used, this statement would be fal-
sified by the existence of a ‘non-boy’ in the domain of x.

‘There is a boy who wears glasses’ is written as

∃x(Boy(x) ∧Glasses(x))

If implication was used, this statement would true
even if the domain of x is empty.

Valid Arguments as Tautologies
All valid arguments can be restated as tautologies.

Rules of Inference
Modus ponens

p→ q

p

· q
Modus tollens

p→ q

¬q
· ¬p

Generalization

p

· p ∨ q
Specialization

p ∧ q
· p

Elimination

p ∨ q
¬q
· p

Transitivity

p→ q

q → r

· p→ r

Proof by Division into Cases

p ∨ q
p→ r

q → r

· r
Contradiction Rule

¬p→ c

· p
Universal Rules of Inference
Only modus ponens, modus tollens, and transitivity
have universal versions in the lecture notes.

Implicit Quantification
The notation P (x) =⇒ Q(x) means that every
element in the truth set of P (x) is in the truth set of
Q(x), or equivalently, ∀x, P (x)→ Q(x).

The notation P (x) ⇐⇒ Q(x) means that P (x)
and Q(x) have identical truth sets, or equivalently,
∀x, P (x)↔ Q(x).

Implication Law

p→ q ≡ ¬p ∨ q

Universal Instantiation
If some property is true of everything in a set, then it
is true of any particular thing in the set.

Universal Generalization
If P (c) must be true, and we have assumed nothing
about c, then ∀x, P (x) is true.

Regular Induction
Modify the domain of the quantifiers below according
to P , if necessary:

P (0)

∀k ∈ N, P (k)→ P (k + 1)

∀k ∈ N, P (n)

Epp T2.1.1 Logical Equivalences
Commutative Laws

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

Associative Laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributive Laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

Identity Laws
p ∧ t ≡ p

p ∨ c ≡ p

Negation Laws
p ∨ ¬p ≡ t

p ∧ ¬p ≡ c

Double Negative Law

¬(¬p) ≡ p
Idempotent Laws

p ∧ p ≡ p

p ∨ p ≡ p

Universal Bound Laws

p ∨ t ≡ t

p ∧ c ≡ c

De Morgan’s Laws

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

Absorption Laws

p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p

Negations of t and c

¬t ≡ c

¬c ≡ t

Definition 2.2.1 (Conditional)
If p and q are statement variables, the conditional of q
by p is “if p then q” or “p implies q”, denoted p → q.
It is false when p is true and q is false; otherwise it is

true. We call p the hypothesis (or antecedent), and q
the conclusion (or consequent).

A conditional statement that is true because its hy-
pothesis is false is called vacuously true or true by
default.

Definition 2.2.2 (Contrapositive)
The contrapositive of p→ q is ¬q → ¬p.

Definition 2.2.3 (Converse)
The converse of p→ q is q → p.

Definition 2.2.4 (Inverse)
The inverse of p→ q is ¬p→ ¬q.

Definition 2.2.6 (Biconditional)
The biconditional of p and q is denoted p ↔ q and is
true if both p and q have the same truth values, and
is false if p and q have opposite truth values.

Definition 2.2.7 (Necessary & Sufficient)
“r is sufficient for s” means r → s, “r is necessary for
s” means ¬r → ¬s or equivalently s→ r.

Definition 2.3.2 (Sound & Unsound Arguments)
An argument is called sound, iff it is valid and all its
premises are true.

Definition 3.1.3 (Universal Statement)
A universal statement is of the form

∀x ∈ D,Q(x)

It is defined to be true iff Q(x) is true for every x in
D. It is defined to be false iff Q(x) is false for at least
one x in D.

Definition 3.1.4 (Existential Statement)
A existential statement is of the form

∃x ∈ D s.t. Q(x)

It is defined to be true iff Q(x) is true for at least one
x in D. It is defined to be false iff Q(x) is false for all
x in D.

Theorem 3.2.1 (Negation of Universal State.)
The negation of a statement of the form

∀x ∈ D,P (x)

is logically equivalent to a statement of the form

∃x ∈ D s.t. ¬P (x)

Theorem 3.2.2 (Negation of Existential State.)
The negation of a statement of the form

∃x ∈ D s.t. P (x)

is logically equivalent to a statement of the form

∀x ∈ D,¬P (x)

Number Theory

Properties (of Numbers)
Closure, i.e.

∀x, y ∈ Z, x+ y ∈ Z, and xy ∈ Z

Commutativity, i.e.

a+ b = b+ a and ab = ba

Distributivity, i.e.

a(b+ c) = ab+ ac and (b+ c)a = ba+ ca

Trichotomy, i.e.

(a < b)⊕ (b < a)⊕ (a = b)

(Can be used without proof)

Definition 1.1.1 (Colorful)

An integer n is said to be colorful if there exists some
integer k such that n = 3k.

Definition 1.3.1 (Divisibility)

If n and d are integers and d 6= 0,

d | n ⇐⇒ ∃k ∈ Z s.t. n = dk

Theorem 4.1.1 (Linear Combination)

∀a, b, c ∈ Z, (a | b) ∧ (a | c)→ ∀x, y ∈ Z, a | (bx+ cy)

*Epp T4.3.1 (Pos. Divisors of Pos. Integers)

For all positive integers a, b,

a | b→ a ≤ b
Epp T4.3.3 (Transitivity of Divisibility)

∀a, b, c ∈ Z, (a | b) ∧ (b | c)→ a | c
Theorem 4.4.1 (Quotient-Remainder Theorem)
Given any integer a and any positive integer b, there
exist unique integers q and r such that

a = bq + r and 0 ≤ r < b

Representation of Integers
Given any positive integer n and base b, repeatedly
apply the Quotient-Remainder Theorem to get,

n = bq0 + r0

q0 = bq1 + r1

q1 = bq2 + r2

· · ·
qm−1 = bqm + rm

The process stops when qm = 0. Eliminating the quo-
tients qi we get,

n = rmb
m

+ rm−1b
m−1

+ · · · r1b+ r0

Which may be represented compactly in base b as a
sequence of the digits ri,

n = (rmrm−1 · · · r1r0)b

Definition 4.2.1 (Prime number)

n is prime ⇐⇒ ∀r, s ∈ Z+

n = rs→
(r = 1 ∧ s = n) ∨ (r = n ∧ s = 1)

n is composite ⇐⇒ ∃r, s ∈ Z+
s.t.

n = rs ∧
(1 < r < n) ∧ (1 < s < n)

List of Primes to 100
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97.

Proposition 4.2.2

For any two primes p and p′,

p | p′ → p = p
′

Theorem 4.2.3
If p is a prime and x1, x2, · · · , xn are any inte-
gers s.t. p | x1x2 · · · xn, then p | xi for some
xi, i ∈ {1, 2, · · · , n}.

Epp T4.3.5 (Unique Prime Factorisation)
Given any integer n > 1

∃k ∈ Z+
,

∃p1, p2, · · · , pk ∈ primes,

∃e1, e2, · · · , ek ∈ Z+
,

such that
n = p

e1
1 p

e2
2 · · · p

ek
k

and any other expression for n as a product of prime
numbers is identical, except perhaps for the order in
which the factors are written.

Epp Proposition 4.7.3
For any a ∈ Z and any prime p,

p | a→ p - (a+ 1)

Epp T4.7.4 (Infinitude of Primes)
The set of primes is infinite.

Definition 4.5.4 (Relatively Prime)
Integers a and b are relatively prime (or coprime) iff
gcd(a, b) = 1.

Definition 4.3.1 (Lower Bound)
An integer b is said to be a lower bound for a set
X ⊆ Z if b ≤ x for all x ∈ X.

Does not require b to be in X.

Theorem 4.3.2 (Well Ordering Principle)
If a non-empty set S ⊆ Z has a lower bound, then S
has a least element.

Note three conditions: |S| > 0, S ⊆ Z, and S has
lower bound.

Likewise, if ... upper bound ... has a greatest element.

Proposition 4.3.3 (Uniqueness of least element)
If a set S has a least element, then the least element
is unique.

Proposition 4.3.4 (Uniqueness of greatest e.)
If a set S has a greatest element, then the greatest
element is unique.

Theorem 4.4.1 (Quotient-Remainder Theorem)
Given any integer a and any positive integer b, there
exist unique integers q and r such that

a = bq + r and 0 ≤ r < b

Definition 4.5.1 (Greatest Common Divisor)
Let a and b be integers, not both zero. The greatest
common divisor of a and b, denoted gcd(a, b), is the
integer d satisfying

1. d | a and d | b
2. ∀c ∈ Z ((c | a) ∧ (c | b)→ c ≤ d)

Proposition 4.5.2 (Existence of gcd)
For any integers a, b, not both zero, their gcd exists
and is unique.

Theorem 4.5.3 (Bézout’s Identity)
Let a, b be integers, not both zero, and let d =
gcd(a, b). Then there exists integers x, y such that

ax+ by = d

Or, the gcd of two integers is some linear combination
of the said numbers, where x, y above have multiple
solution pairs once a solution pair (x, y) is found. Also
solutions, for any integer k,

(x+
kb

d
, y −

ka

d
)

*Epp T8.4.8 (Euclid’s Lemma)
For all a, b, c ∈ Z, if gcd(a, c) = 1 and a | bc, then
a | b.

*Epp L4.8.1 (gcd of an integer and 0)
If r is a positive integer, then gcd(r, 0) = r.

*Epp L4.8.2 (Basis of Euclid’s Algorithm)

If a, b ∈ Z+, and q, r ∈ Z s.t. a = bq + r, then

gcd(a, b) = gcd(b, r)

Algorithm 4.8.2 (Euclidean Algorithm)

def gcd(a, b):
if a == 0:

return b
if b == 0:

return a
return gcd(a%b, b) if a >= b else gcd(a, b%a)

For example, to evaluate gcd(330, 156):

gcd(330, 156) (= gcd(330 mod 156, 156))

= gcd(18, 156) (= gcd(18, 156 mod 18))

= gcd(18, 12) (= gcd(18 mod 12, 12))

= gcd(6, 12) (= gcd(6, 12 mod 6))

= gcd(6, 0)

= 6

Proposition 4.5.5
For any integers a, b, not both zero, if c is a common
divisor of a and b, then c | gcd(a, b).

Definition 4.7.1 (Congruence modulo)

Let m, z ∈ Z and d ∈ Z+. We say that m is congruent
to n modulo d and write

m ≡ n (mod d)

iff
d | (m− n)

More concisely,

m ≡ n (mod d) ⇐⇒ d | (m− n)

Epp T8.4.1 (Modular Equivalences)
Let a, b, n ∈ Z and n > 1. The following statements
are all equivalent,

1. n | (a− b)
2. a ≡ b (modn)
3. a = b+ kn for some k ∈ Z

4. a and b have the same non-negative remainder
when divided by n

5. a mod n = b mod n

Epp T8.4.3 (Modulo Arithmetic)
Let a, b, c, d, n ∈ Z, n > 1, and suppose

a ≡ c (modn) and b ≡ d (modn)
Then

1. (a+ b) ≡ (c+ d) (modn)
2. (a− b) ≡ (c− d) (modn)
3. ab ≡ cd (modn)
4. am ≡ cm (modn), for all m ∈ Z+

Epp C8.4.4
Let a, b, c, d, n ∈ Z, n > 1, then

ab ≡ [(a mod n)(b mod n)] (modn)

or equivalently,

ab mod n = [(a mod n)(b mod n)] (modn)

In particular, if m is a positive integer, then

a
m ≡ [(a mod n)

m
] (modn)

Definition 4.7.2 (Multiplicative inv. modulo n)
For any integers a, n with n > 1, if an integer s is
such that as ≡ 1 (modn), then s is the multiplicative

inverse of a modulo n. We may write s as a−1.

Because the commutative law still applies in modulo
arithmetic, we also have

a
−1
a ≡ 1 (modn)

Multiplicative inverses are not unique. If s is an
inverse, then so is (s+ kn) for any integer k.

Theorem 4.6.3 (Existence of multiplicative in-
verse)
For any integer a, its multiplicative inverse modulo n
where n > 1, a−1, exists iff a and n are coprime.

Finding the Multiplicative Inverse
To find the multiplicative inverse a−1 mod b, note
that since a, b are coprime, using Bézout’s Identity,
there exists x, y ∈ Z6=0 such that,

ax+ by = gcd(a, b)

ax+ by = 1

ax+ by ≡ 1 (mod b)

ax ≡ 1 (mod b)

a
−1 ≡ x (mod b)

To find x, employ the extended Euclidean algo-
rithm: express b using the quotient-remainder theorem
(T4.4.1) with a as the quotient. Then express the re-
mainder r using the divisor as quotient. Repeat with
the new remainder until a remainder of 1 is obtained.
Finally, express 1 in terms of a and b using the equali-
ties formulated during the algorithm. For example, to
find the multiplicative inverse of 5 mod 18.

quotient-remainder theorem: n = dq + r

n = d q + r (1)

18 = (3)5 + 3 (2)

5 = (1)3 + 2 (3)

3 = (1)2 + 1 (4)

Now, express 1 in terms of 5 and 18.

1 = (1) 3 − (1) 2

= (1) 3 − (1) [(1)5− (1)3]

= (−1) 5 + (2) 3

= (−1) 5 + (2) [(1)18− (3)5]

= (2) 18 + (−7) 5

Take mod 18 on both sides,

1 ≡ (2)18 + (−7)5 (mod 18)

(2)18 + (−7)5 ≡ 1 (mod 18)

(−7)5 ≡ 1 (mod 18)

(11)5 ≡ 1 (mod 18)

So, 5−1 mod 18 = 11.

Corollary 4.7.4 (Special case: n is prime)
If n = p is a prime number, then all integers a in the
range 0 < a < p have multiplicative inverses modulo
p.

Epp T8.4.9 (Cancellation Law for mod. arith.)
For all a, b, c, n ∈ Z, n > 1, and a and n are coprime,

ab ≡ ac (modn)→ b ≡ c (modn)

*Epp T8.4.10 (Fermat’s Little Theorem)
For any prime p and any integer a, ap ≡ a (mod p).

Alternatively, if p - a then ap−1 ≡ 1 (mod p).

Definition 4.6.1 (Least Common Multiple)
For any non-zero integers a, b, their least common mul-
tiple, denoted lcm(a, b) is the positive integer m such
that:

1. a | m and b | m
2. ∀c ∈ Z+((a | c) ∧ (b | c)→ c ≤ m

Sequences

Empty Sums & Products
By definition, when n < m,

n∑
i=m

ai = 0

n∏
i=m

= 1

Epp T5.1.1
For real numbered sequences am, am+1, am+2, ... and
bm, bm+1, bm+2..., c ∈ R, the following holds for any
n ≥ m

n∑
k=m

ak +

n∑
k=m

bk =

n∑
k=m

(ak + bl)

c ·
n∑

k=m

ak =

n∑
k=m

c · ak(
n∏

k=m

ak

)
·
(

n∏
k=m

bk

)
=

n∏
k=m

(ak · bk)

Common Sequences

Arithmetic sequence:

Sn =
n

2
(2a+ (n− 1)d)

Geometric sequence:

Sn =
a(rn − 1)

r − 1

S∞ =
a

1− r
, |r| < 1

Triangle numbers:

Tn =

n∑
k=1

k =
n(n+ 1)

2

Fibonacci numbers:

∀n ∈ N, Fk =


0 if k = 0

1 if k = 1

Fk−1 + Fk−2 otherwise

=
φk − (−φ)−k

√
5

where φ = (1 +
√

5/2).

Definition 5.4.1
A second-order linear homogeneous recurrence relation
with constant coefficients is a recurrence relation of the
form:

Fk = aFk−1 + bFk−2

Where a, b ∈ R, b 6= 0; and ∀k ∈ Zk≥k0
for k0 ∈ Z.

- Second-order means recurrence relation goes up to
but not exceeding Fk−2.

- Linear means the highest power of the (Fk−r)m

term is m = 1.
- Homogeneous means C = 0 in the more general case
Fk = aFk−1 + bFk−2 + C.

- Constant coefficients means a, b does not depend on
k.

Epp T5.8.3 (Distinct-Roots Theorem)
If a second-order linear homogeneous recurrence rela-
tion with constant coefficients has real roots r and s
for its characteristic equation,

t
2 − at− b = 0

Then Fk can be written in closed form as

Fk = cr
k

+ ds
k

Where c, d ∈ R can be found by solving for known val-
ues of the sequence. Recall that the roots of a quadratic
equation ax2 + bx+ c are given by:

x =
−b±

√
b2 − 4ac

2a

Epp T5.8.5 (Single-Roots Theorem)
If a second-order linear homogeneous recurrence rela-
tion with constant coefficients has one single real root
r for its characteristic equation,

t
2 − at− b = 0

Then Fk can be written in closed form as

Fk = cr
k

+ dkr
k

Where c, d ∈ R can be found by solving for known
values of the sequence.

Sets

Definition 6.1.1 (Subsets & Supersets)
S is a subset of T if all the elements of S are elements
of T , denoted S ⊆ T . Formally,

S ⊆ T ←→ ∀x ∈ S(x ∈ T)

Definition 6.2.1 (Empty Set)
An empty set has no element, and is denoted ∅ or {}.
Formally, where U is the universal set:

∀Y ∈ U(Y 6∈ ∅)

Epp T6.24
An empty set is a subset of all sets.

∀S, S is a set, ∅ ⊆ S
Definition 6.2.2 (Set Equality)
Two sets are equal iff they have the same elements.

Proposition 6.2.3
For any two sets X,Y , X and Y are subsets of each
other iff X = Y . Formally,

∀X,Y ((X ⊆ Y ∧ Y ⊆ X)←→ X = Y)

Epp C6.2.5 (Empty Set is Unique)
It’s what it says.

Definition 6.2.4 (Power Set)

The power set of a set S denoted P(S), or 2S ; is the set
whose elements are all possible subsets of S. Formally,

P(S) = {X | X ⊆ S}
Theorem 6.3.1
If a set X has n elements, n ≥ 0, then P(X) has 2n

elements.

Definition 6.3.1 (Union)
Let S be a set of sets. T is the union of sets in S, iff
each element of T belongs to some set in S. Formally,

T =
⋃
S =

⋃
X∈S

X = {y ∈ U | ∃X ∈ S(y ∈ X)}

Proposition 6.3.2
Some properties of union,

-
⋃

∅ =
⋃

A∈∅ A = ∅
-
⋃
{A} = A

- A ∪∅ = A

- A ∪ B = B ∪ A
- A ∪ (B ∪ C) = (A ∪ B) ∪ C
- A ∪ A = A

- A ⊆ B ←→ A ∪ B = B

Definition 6.3.3 (Intersection)
Let S be a non-empty set of sets. T is the intersection
of sets in S, iff each element of T also belongs to all
the sets in S. Formally,

T =
⋂
S =

⋂
X∈S

X

= {y ∈ U | ∀X((X ∈ S)→ (y ∈ X))}
Proposition 6.3.4
Let A,B,C be sets. Some properties of intersection,

- A ∩∅ = ∅
- A ∩ B = B ∩ A
- A ∩ (B ∩ C) = (A ∩ B) ∩ C
- A ⊆ B ←→ A ∩ B = A

- A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

- A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Definition 6.3.5 (Disjoint)
Let S, T be sets. S and T are disjoint iff S ∩ T = ∅.

Definition 6.3.6 (Mutually Disjoint)
Let V be a set of sets. The sets T ∈ V are mutually
disjoint iff every two distinct sets are disjoint. For-
mally,

∀X,Y ∈ V (X 6= Y → X ∩ Y = ∅)

Definition 6.3.7 (Partition)
Let S be a set, and V a set of non-empty subsets of S.
Then V is a partition of S iff

1. The sets in V are mutually disjoint
2. The union of sets in V equals S

Definition 6.3.8 (Non-symmetric Difference)
Let S, T be two sets. The (non-symmetric) difference
of S and T denoted S − T or S \ T is the set whose
elements belong to S and do not belong to T . Formally,

S − T = {y ∈ U | y ∈ S ∧ y 6∈ T}
This is analogous to subtraction for numbers.

Definition 6.3.9 (Symmetric Difference)
Let S, T be two sets. The symmetric difference of S
and T denoted S 	 T is the set whose elements belong
to S or T but not both. Formally,

S 	 T = {y ∈ U | y ∈ S ⊕ y ∈ T}
This is analogous to the exclusive-or in predicate logic.

Definition 6.3.10 (Set Complement)
Let A ⊆ U . Then, the complement of A denoted Ac is
U − A.

Relations

Definition 8.1.1 (Ordered Pair)
Let S be a non-empty set, and x, y ∈ S. The ordered
pair denoted (x, y) is a mathematical object where the
first element is x and the second is y.

(x, y) = (a, b) ⇐⇒ x = a ∧ y = b

Definition 8.1.2 (Ordered n-tuple)

Generalise the ordered pair to n elements. The ordered
n-tuple (x1, x2, · · · , xn) consists of x1, x2, · · · , xn ele-
ments together with ordering.

(x1, x2, · · · , xn) = (y1, y2, · · · , yn)

⇐⇒ x1 = y1, x2 = y2, · · · , xn = yn

Definition 8.1.3 (Cartesian Product)
Let S, T be two sets. The Cartesian product (or cross
product) of S and T denoted S×T is the set such that

∀X∀Y ((X,Y) ∈ S × T ←→ (X ∈ S) ∧ (Y ∈ T))

For example,

{1, 2, 3} × {a, b}
= {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

Definition 8.1.4 (Generalised Cartesian Prod.)

Generalise the cartesian product for n sets.

A1 × A2 × · · · × An

= {(a1, · · · , an) | a1 ∈ A1, · · · , an ∈ An}
Let V be a set of sets with which to apply the cartesian
product to. We can also write∏

S∈V
S

Definition 8.2.1 (Relations)
Let S, T be two sets. A binary relation from S to T
denoted R is a subset of the cartesian product S × T .
The notation s R t stands for (s, t) ∈ R. s�R t stands
for (s, t) 6∈ R.

Definitions 8.2.[2-4] (Dom, Im, coDom)
Let R ⊆ S × T be a binary relation from S to T . De-
note the domain (8.2.2) of R as Dom(R); the image
(or range, 8.2.3) as Im(R); and the co-domain (8.2.4)
as coDom(R).

Dom(R) = {s ∈ S | ∃t ∈ T (s R t)}
Im(R) = {t ∈ T | ∃s ∈ S(s R t)}

coDom(R) = T

Proposition 8.2.5
Let R be a binary relation. Im(R) ⊆ coDom(R).

Definition 8.2.6 (Inverse)
Let S, T be sets; R ⊆ S × T be a binary relation. The
inverse of the relation R denoted R−1 is the relation
from T to S such that

∀s ∈ S, ∀t ∈ T (t R−1
s←→ s R t)

Definition 8.2.7 (n-ary relation)
Generalise the binary relation for n sets
S1, S2, · · · , Sn. An n-ary relation on the n sets is
a subset of the cartesian product

∏
i Si. n is the arity

or degree of the relation.

Definition 8.2.8 (Composition)
Let S, T, U be sets; and R ⊆ S × T , R′ ⊆ T × U
be relations. The composition of R with R′, denoted
R′ ◦ R is the relation from S to U such that

∀x ∈ S, ∀z ∈ U(x R′◦R z ↔ (∃y ∈ T (x R y ∧ y R′ z)))
In other words, x ∈ S and z ∈ U are related iff there
is a ‘path’ from x to z via some intermediate y ∈ T .

Repeated Compositions

Rn
:= R ◦ · · · ◦ R︸ ︷︷ ︸

n

=
⊙
n

R

Proposition 8.2.9 (Associativity of Composition)

R′′ ◦ (R′ ◦ R) = (R′′ ◦ R′) ◦ R = R′′ ◦ R′ ◦ R
Proposition 8.2.10 (Inverse of Composition)

(R′ ◦ R)
−1

= R−1 ◦ R′−1

Definitions 8.3.[1-3] (Properties of Relations)
Let A be a set, and R ∈ A× A be a relation on A.

R is reflexive (8.3.1) iff ∀x ∈ A(x R x).

R is symmetric (8.3.2) iff ∀x, y ∈ A(x R y → y R x).

R is transitive (8.3.3) iff ∀x, y, z ∈ A((x R y ∧
y R z)→ x R z)).

Definition 8.6.1 (Anti-symmetric)
Let A be a set, and R ∈ A× A be a relation on A. R
is anti-symmetric iff

∀x ∈ A, ∀y ∈ A((x R y ∧ y R x)→ x = y)

Definition 8.3.4 (Equivalence Relation)
A relation R is called an equivalence relation iff R is
reflexive, symmetric, and transitive.

Definition 8.3.5 (Equivalence Class)
Let x ∈ A. The equivalence class of x denoted [x] is
the set of all elements y ∈ A that are in relation with
x. That is

[x] = {y ∈ A | x R y}

Epp T8.3.4 (Partition by Equivalence Relation)
Let R be an equivalence relation on a set A. Then the
set of distinct equivalence classes form a partition of A.

Epp L8.3.2
Let R be an equivalence relation on a set A, and let
a, b ∈ A. If a R b then [a] = [b].

Epp L8.3.3
Let R be an equivalence relation on a set A, and let
a, b ∈ A. Either [a] ∩ [b] = ∅ or [a] = [b].

Epp T8.3.1 (Equivalence Relation by Partition)
Given a partition S1, S2, cdots of a set A, there exists
an equivalence relation R on A whose equivalence
classes make up precisely that partition.

Definition 8.5.1 (Transitive Closure)
Let A be a set and R a relation on A. The transitive
closure of R denoted Rt is a relation that satisfies the
three properties:

1. Rt is transitive.
2. R ⊆ Rt.
3. If S is any other transitive relation such that
R ⊆ S, then Rt ⊆ S.

Intuitively, the transitive the closure can be under-
stood as the smallest superset that is transitive.
Similar definitions exist for the reflexive closure and
symmetric closure.

Proposition 8.5.2

Rt
=

∞⋃
i=1

Ri

Definition 8.6.2 (Partial Order)
R is a partial order iff it is reflexive, anti-symmetric,
and transitive. A set A is called a partially ordered
set with respect to a relation � iff � is a partial order
relation on A.

Hasse Diagrams
The Hasse diagram is a simplified directed graph.

1. Draw the directed graph so that all arrows point
upwards.

2. Eliminate all self-loops

3. Eliminate all arrows implied by transitivity.

4. Remove the direction of the arrows.

1

2

3

9
18

The above diagram represents the partial order for “di-
vides” on the set A = {1, 2, 3, 9, 18}. That is

∀a, b ∈ A(a | b←→ ∃k ∈ Z(b = ka))

It can be represented by the following Hasse diagram.

1

2

3

9

18

Definition 8.6.3 (Comparable)
Let � be a partial order on set A. a, b ∈ A are said to
be comparable iff either a � b or b � a. Otherwise, a
and b are noncomparable.

Definition 8.6.4 (Total Order)
Let � be a partial order on set A. � is said to be a
total order iff � is a partial order, and all x, y ∈ A are
comparable. Formally,

∀x, y ∈ A(x � y ∨ y � x)

Definition 8.6.5 (Maximal)
Let � be a partial order on the set A. An element x is
a maximal element iff

∀y ∈ A(x � y → x = y)

Definition 8.6.6 (Maximum)
Let � be a partial order on the set A. An element T
is the maximum element iff

∀x ∈ A(x � T)

Definition 8.6.7 (Minimal)
Let � be a partial order on the set A. An element x is
a minimal element iff

∀y ∈ A(y � x→ x = y)

Definition 8.6.8 (Minimum)
Let � be a partial order on the set A. An element ⊥
is the minimum element iff

∀x ∈ A(⊥ � x)

Definition 8.6.9 (Well Ordered)

Let � be a partial order on the set A. A is well ordered
iff every non-empty subset of A contains a minimum el-
ement. Formally,

∀S ∈ P(A)(S 6= ∅→ (∃x ∈ S ∀y ∈ S(x � y)))

Functions

Definition 7.1.1 (Function)
Let f be a relation such that f ⊆ S × T . Then f is a
function from S to T denoted f : S → T iff

∀x ∈ S, ∃!y ∈ T (x f y)

Intuitively, this means that every element in S must
have exactly one ‘outgoing arrow’.

Definitions 7.1.[2-5]
Let f : S → T be a function, x ∈ S and y ∈ T such
that f(x) = y; U ⊆ S, and V ⊆ T .

x is a pre-image (7.1.2) of y.

The inverse image of the element (7.1.3) y is the set of
all its pre-images, i.e. {x ∈ S | f(x) = y}.

The inverse image of the set (7.1.4) V is the set that
contains all the pre-images of all the elements of V ,
i.e. {x ∈ S | ∃y ∈ V (f(x) = y)}.

The restriction (7.1.5) of f to U is the set
{(x, y) ∈ U × T | f(x) = y}.

Definition 7.2.1 (Injective, or One-to-one)
Let f : S → T be a function. f is injective (or one-to-
one) iff

∀y ∈ T, ∀x1, x2 ∈ S((f(x1) = y ∧ f(x2) = y)→ x1 = x2)

Intuitively, this means that every element in T has
have at most one ‘incoming arrow’.

Definition 7.2.2 (Surjective, or Onto)
Let f : S → T be a function. f is surjective (or onto)
iff

∀y ∈ T, ∃x ∈ S(f(x) = y)

Intuitively, this means that every element in T has at
least one ‘incoming arrow’.

Definition 7.2.3 (Bijective)
A function is bijective (or is a bijection) iff it is injec-
tive and subjective. Intuitively, this means that every
element in T has exactly one incoming arrow.

Definition 7.2.4 (Inverse)

Let f : S → T be a function and let f−1 be the inverse
relation of f from T to S. Then f is bijective iff f−1

is a function.

Definition 7.3.1 (Composition)
Let f : S → T , g : T → U be functions. The compo-
sition of f and g denoted g◦f is a function from S to U .

Definition 7.3.2 (Identity)
The identity function on a set A, IA is defined by,

∀x ∈ A(IA(x) = x)

Proposition 7.3.3

Let f : A → A be an injective function of A. Then
f−1 ◦ f = IA.

Combinatorics

Definitions & Notations
A sample space is the set of all possible outcomes of
a random process or experiment. An event is a subset
of a sample space.

For a finite set A, N(A) denotes the number of ele-
ments in A.

An r-permutation of a set of n elements is an ordered
selection of r elements taken from the set. The number
of r-permutations of a set of n elements is denoted
P (n, r).

An r-combination of as set of n elements is a subset
of r of the n elements, denoted

(n
r

)
.

An r-combination with repetition allowed, or mul-
tiset of size r, chosen from a set X of n elements
is an unordered selection of elements taken from X
with repetition allowed; denoted as [xi1 , xi2 , · · · , xir]
where each xij

is in X and some of the xij
may equal

each other.

Equally Likely Probability Formula
If S is a finite sample space in which all outcomes are
equally likely and E is an event in S, then the proba-
bility of E, denoted P (E), is

P (E) =
N(E)

N(S)

Theorem 9.1.1 (Number of Elements)
If m and n are integers and m ≤ n, then there are
n−m+ 1 integers from m to n inclusive.

Theorem 9.2.1 (Multiplication Rule)
If an operation consists of k steps, and the first step
can be performed in n1 ways, the second in n2 ways,
..., the kth step in nk ways, then the entire operation
can be performed in n1 × n2 × · · ·nk ways.

Theorem 9.2.2 (Permutations)
The number of permutations of a set with n (n ≥ 1)
elements is n!

Theorem 9.2.3 (r-permutations from n)
If n, r ∈ Z and 1 ≤ r ≤ n, then the number of r-
permutations of a set of n elements is given by,

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1)

=
n!

(n− r)!
Theorem 9.3.1 (Addition Rule)
Let A be a finite set equal to the union of k distinct
mutually disjoint sets A1, A2, · · · , Ak. Then,

N(A) = N(A1) +N(A2) + · · ·+N(Ak)

Theorem 9.3.2 (Difference Rule)
Let A be a finite set and B a subset of A. Then,

N(A− B) = N(A)− B(N)

Theorem 9.3.3 (Inclusion/Exclusion Principle)

If A,B,C are finite sets, then

N(A ∪ B) =N(A) +N(B)−N(A ∩ B)

N(A ∪ B ∪ C) =N(A) +N(B) +N(C)

−N(A ∩ B)−N(A ∩ C)

−N(B ∩ C) +N(A ∩ B ∩ C)

Pigeonhole Principle

A function from one finite set to a smaller finite set
cannot be one-to-one. There must be at least 2 ele-
ments in the domain that have the same image in the
co-domain.

Generalised Pigeonhole Principle

For any function f from a finite set X with n elements
to a finite set Y with m elements and for any positive
integer k, if k < n/m, then there is some y ∈ Y such
that y is the image of at least k + 1 distinct elements
of X.

Gen. Pigeonhole Principle, Contrapositive

For any function f form a finite set X with n elements
to a finite set Y with m elements and for any positive
integer k, if for each y ∈ Y , f−1(y) has at most k
elements, then X has at most km elements; in other
words n ≤ km.

Theorem 9.5.1 (r-combinations from n)

If n, r ∈ Z+ and r ≤ n, then the number of r −
combinations that can be chosen from a set of n ele-
ments is given by, (n

r

)
=
P (n, r)

r!

=
n!

r!(n− r)!

Theorem 9.5.2 (Perm. w/ Indistinguishables)

For a set of n objects of which n1 are indistinguishable
from each other, as are n2, and n3, ..., and nk, then
the number of distinguishable permutations of the n
objects is(n

n1

)(n− n1

n2

)
· · ·
(n− n1 − n2 − · · · − nk − 1

nk

)
=

n!

n1!n2! · · ·nk!

Theorem 9.6.1 (Multisets of r)

The number of r-combinations with repitition allowed
that can be selected from a set of n elements is(r + n− 1

r

)
This equals the number of ways r objects can be
selected from n categories of objects with repetitions
allowed.

Theorem 9.7.1 (Pascal’s Formula)

Let n, r ∈ Z+, r ≤ n. Then(n+ 1

r

)
=
(n

r − 1

)
+
(n
r

)
Theorem 9.7.2 (Binomial Theorem)

Given a, b ∈ R and n ∈ Z+,

(a+ b)
n

=
n∑

k=0

(n
k

)
a
n−k

b
k

= a
n

+
(n

1

)
a
n−1

b+ · · ·+
(n

n− 1

)
ab

n−1
+ b

n

Probability

Axioms of Probability
Let S be a sample space, and P a probability func-
tion from the set of all events in S to the set of real
numbers; A,B ⊆ S,

1. 0 ≤ P (A) ≤ 1
2. P (∅) = 0 and P (S) = 1
3. If A,B are disjoint sets, i.e. A ∩ B = ∅, then

P (A ∪ B) = P (A) + P (B)

Theorem 9.3.3 (Inclusion/Exclusion Principle)
If A, B, and C are any finite sets, then

N(A ∪ B) = N(A) +N(B)−N(A ∩ B)

N(A ∪ B ∪ C) = N(A) +N(B) +N(C)

−N(A ∩ B)−N(A ∩ C)

−N(B ∩ C) +N(A ∩ B ∩ C)

Probability of the Complement

P (A
c
) = 1− P (A)

Probability of the Union

P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

Expected Value
The expected value of a random experiment with dis-
crete real numbered outcomes a1, a2, · · · , an with cor-
responding probabilities p1, p2, · · · , pn is∑

n

akpk

Conditional Probability
Let A,B ⊆ S. If P (A) 6= 0, then the conditional prob-
ability of B given A, denoted P (B|A) is

P (B|A) =
P (A ∩ B)

P (A)

A useful form of this equality is

P (A ∩ B) = P (B|A) · P (A)

Bayes’ Theorem
Suppose a sample space S has mutually disjoint events
B1, B2, · · · , Bn. Suppose A is an event in S, and
all events have non-zero probabilities. If k ∈ Z+,
1 ≤ k ≤ n, then

P (Bk|A) =
P (A|Bk)P (Bk)∑n
i=1 P (A|Bi)P (Bi)

Independent Events
Let A,B ⊆ S, A,B be independent events iff

P (A ∩ B) = P (A)P (B)

Pairwise/Mutually Independent
Let A,B,C ⊆ S. A,B,C are pairwise independent iff
they satisfy conditions 1–3 below. They are mutally
independent iff they satisify all conditions below.

1. P (A ∩ B) = P (A) · P (B)
2. P (A ∩ C) = P (A) · P (C)

3. P (B ∩ C) = P (B) · P (C)
4. P (A ∩ B ∩ C) = P (A) · P (B) · P (C)

In general, n events are mutually independent iff the
probability of the intersection of any subset of events
is the product of the corresponding probabilities of
said events.

Graphs

Graph
A graph G consists of 2 finite sets: a non-empty set
V (G) of vertices and a set E(G) of edges, where each
edge is associated with a set consisting of either one
or two vertices called its endpoints.

An edge connects its two endpoints. Two vertices con-
nected by an edge are adjacent vertices. A vertex with
a self-loop is adjacent to itself. An edge is incident on
each of its endpoints, and two edges incident on the
same endpoint are adjacent edges.

For an edge e incident on vertices v, w, we can write
e = {v, w}.

Directed Graph
A directed graph (or digraph) consists of 2 finite sets:
a non-empty set V (G) of vertices and a set D(G) of
directed edges, where each edge is associated with an
ordered pair of vertices called its endpoints.

For a directed edge e associated with the pair (v, w)
of vertices, we can write e = (v, w).

Simple Graph
A simple graph is an undirected graph that does not
have any loops or parallel edges.

Complete Graph
A complete graph on n vertices, n > 0, denoted Kn,
is a simple graph with n vertices and exactly one edge
connecting each pair of distinct vertices. The number
of edges is Tn, the nth triangle number.

Complete Bipartite Graph
A complete bipartite graph on (m,n) vertices,
m,n > 0, denoted Km,n is a simple graph with
distinct vertices v1, v2, · · · , vm and w1, w2, · · · , wn

that satisfies the properties:

For all i, k = 1, 2, · · · ,m and j, l = 1, 2, · · · , n,

1. There is an edge from each vi to each wj .
2. There is no edge from any vi to any vk.
3. There is no edge from any wj to any wl.

Subgraph
A graph H is a subgraph of a graph G iff every vertex
in H is also a vertex in G, and every edge in H is
also an edge in G, and every edge in H has the same
endpoints as it has in G.

Degree
The degree of v, a vertex of graph G, denoted deg(v),
equals the number of edges that are incident on v,
with self-loops counted twice. The total degree of G is

the sum of the degrees of all vertices of G.

Theorem 10.1.1 (Handshake Theorem)
The sum of the degrees of all the vertices of a graph G
is twice the number of edges of G.

Total Degree of G =
∑

v∈V (G)

deg(v)

= 2×N(edges in G)

Corollary 10.1.2
The total degree of a graph is even.

Proposition 10.1.3
In any graph there are an even number of vertices of
odd degree.

R
e
p

e
a
te

d
R

e
p

e
a
te

d
S
a
m

e
M

u
st

C
o
n
ta

in
E

d
g
e
?

V
e
rt

e
x
?

S
ta

rt
/
E

n
d
?

≥
1

E
d
g
e
?

W
a
lk

a
ll
o
w

e
d

a
ll
o
w

e
d

a
ll
o
w

e
d

n
o

T
r
a
il

n
o

a
ll
o
w

e
d

a
ll
o
w

e
d

n
o

P
a
t
h

n
o

n
o

n
o

n
o

C
lo

s
e
d

W
a
lk

a
ll
o
w

e
d

a
ll
o
w

e
d

y
e
s

n
o

C
ir

c
u
it

n
o

a
ll
o
w

e
d

y
e
s

y
e
s

S
im

p
le

C
ir

c
u
it

n
o

fi
rs

t,
la

st
o
n
ly

y
e
s

y
e
s

Walk, Trails, Paths, etc.
Let G be a graph and v, w ∈ V (G).

A walk from v to w is a finite alternating sequence of
adjacent vertices and edges of G. It can be written
in the form v0e1v1e2 · · · vnenw; or v0v1 · · · vnw; or
e1e2 · · · en.

A trivial walk from v to v consists of the single vertex v.

A trail from v to w is a walk from v to w that does
not contain a repeated edge.

A path from v to w is a trail that does not contain a
repeated vertex.

A closed walk is a walk that starts and ends at the
same vertex.

A circuit (or cycle) is a closed walk that contains at
least one edge and does not contain a repeated edge.

A simple circuit is a circuit that does not have any
repeated vertex except the first and last.

Connectedness
Two vertices v, w of a graph G are connected iff there
is a walk from v to w.

The graph G is connected iff ∀v, w ∈ V (G) there is a
walk from v to w. Then, G is either a tree or has a
circuit.

Lemma 10.2.1
Let G be a graph.

- If G is connected, then any two distinct vertices of
G can be conted by a path.

- If vertices v and w are part of a circuit in G and one
edge is remd from the circuit, then there still exists
a trail from v to w in G

- If G is connected and G contains a circuit, then an
edge of the circuit can be removed without discon-
necting G.

Connected Component
A graph H is a connected component of a graph G iff

1. The graph H is a subgraph of H.
2. The graph H is connected.
3. No connected subgraph of G has H has a sub-

graph and contains vertices or edges that are
not in H.

Euler Circuit
An Euler circuit for G is a circuit that contains every
vertex and every edge of G. That is, an Euler circuit
for G is a sequence of adjacent vertices and edges in
G that has at least one edge, starts and ends at the
same vertex, uses every vertex of G at least once, and
uses every edge of G exactly once.

An Eulerian graph is a graph that contains an Euler
circuit.

Theorem 10.2.2
If a graph has an Euler circuit, then every vertex of
the graph has positive even degree.

Contrapositive: if some vertex of a graph has odd
degree, then the graph does not have an Euler circuit.

Theorem 10.2.3
If a graph G is connected and the degree of every
vertex of G is a positive even integer, then G has an
Euler circuit.

Theorem 10.2.4
A graph G has an Euler circuit iff G is connected and
every vertex of G has positive even degree.

Euler Trail
An Euler trail/path from v to w is a sequence of
adjacent edges and vertices that starts at v, ends at
w, passes through every vertex of G at least once, and
traverses every edge of G exactly once.

Corollary 10.2.5
Let v, w be distinct vertices of G. There is an Euler
trail from v to w iff G is connected, v and w have odd
degree, and all other vertices of G have positive even
degree.

Hamiltonian Circuit
A Hamiltonian circuit for a graph G is a simple circuit
that includes every vertex of G. That is, a Hamilto-
nian circuit for G is a sequence of adjacent vertices
and distinct edges in which very vertex of G appears
exactly once, except for the first and last, which are
the same.

A Hamiltonian graph (or Hamilton graph) is a graph
that contains a Hamiltonian circuit. There is no
analogous criterion to T10.2.4 to determining whether
a given graph has a Hamiltonian circuit.

Proposition 10.2.6
If a graph G has a Hamiltonian circuit, then G has a
subgraph H with the following properties,

1. H contains every vertex of G.

2. H is connected.

3. H has the same number of edges as vertices.

4. Every vertex of H has degree 2.

Since the converse is not true, this proposition cannot
be used to check if a graph has a Hamiltonian circuit.
However, the contrapositive can be used to check if a
graph does not have a Hamiltonian circuit.

Matrix
A m × n matrix A over a set S is a rectangular array
of elements of S arranged into m rows and n columns.

Two matrices A and B are equal iff A and B are the
same size, and all the corresponding entries of A and
B are equal.

Adjacency Matrix of a Directed Graph
Let G be a directed graph with ordered vertices
v1, v2, · · · , vn. The adjacency matrix of G is the n×n
matrix A = (aij) over the set of non-negative integers
such that for all i, j = 1, 2, · · · , n,

aij = the number of arrows from vi to vj

Adjacency Matrix of an Undirected Graph
Let G be an undirected graph with ordered vertices
v1, v2, · · · , vn. The adjacency matrix of G is the n×n
matrix A = (aij) over the set of non-negative integers
such that for all i, j = 1, 2, · · · , n,

aij = the number of edges connecting vi and vj

Symmetric Matrix
A n×n matrix is symmetric iff for all i, j = 1, 2, · · · , n,

aij = aji

Theorem 10.3.1

Let G be a graph with connected components
G1, G2, · · · , Gk. If there are ni vertices in each con-
nected component Gi and these vertices are numbered
consecutively, then the adjacency matrix of G has the
form 

A1 O · · · O O
O A2 · · · O O

.

.

.
.
.
.

. . .
.
.
.

.

.

.
O O · · · Ak−1 O
O O · · · O Ak


where each Ai is the ni × ni adjacency matrix of Gi

for all i = 1, 2, · · · , k, and the O’s represents matrices
whose entries are all 0.

Scalar Product

(
ai1 ai2 · · · ain

)

b1j
b2j
.
.
.
bnj


= ai1b1j + ai2b2j + · · ·+ ainbnj

Matrix Multiplication
Let A = (aij), B = (bij), then the matrix product
of A × B, denoted AB, defined as (cij), is the matrix
where

cij = ai1b1j + ai2b2j + · · ·+ aikbkj

Intuitively, this means that the (i, j)th entry of AB

can be found by the scalar product of the ith row of A
and the jth column of B.

Identity Matrix
The n×n identity matrix In (or I) is the n×n matrix
in which all the entries of the main diagonal are 1’s,
and all other entries are 0’s.

nth Power of a Matrix
For any n × n matrix A, the powers of A are defined
as

A
k

=

{
I if k = 0

AAk−1 for k ∈ Z+, k ≥ 1

Theorem 10.3.2
Let G be the graph with vertices v1, v2, · · · , vm and
adjacency matrix A. Then, for each positive integer n
and for all integers i, j = 1, 2, · · · ,m, the (i, j)th entry
of An is the number of walks of length n from vi to
vj .

Isomorphic Graph
Let G and G′ be graphs with vertex sets V (G), V (G′)
and edge sets E(G), E(G′) respectively. G is isomor-
phic to G′ iff there exists a one-to-one correspondence
(relabelling) g : V (G)→ V (G′) and h : E(G)→ E(G′)
such that the edge-endpoint functions of G and G′ are
preserved. Formally, this means that

∀v ∈ V (G), e ∈ E(G),

v is endpoint of e ⇐⇒ g(v) is endpoint of h(e)

Theorem 10.4.1
Let S be a set of graphs and R be the relation of graph
isomorphism on S. Then R is an equivalence relation

on S.

Theorem 10.4.2 (Invariant Properties)
Each of the following properties is an invariant for
graph isomorphism, where n, m, and k are all non-
negative integers.

1. has n vertices;
2. has m edges;
3. has a vertex of degree k;
4. has m vertices of degree k;
5. has a circuit of length k;
6. has a simple circuit of length k;
7. has m simple circuits of length k;
8. is connected;
9. has an Euler circuit;

10. has a Hamiltonian circuit.

Planar Graph
A planar graph is a graph that can be drawn on a
two-dimensional plane without edges crossing.

Euler’s Formula
For a connected planar simple graph G = (V,E) with
e = |E| and v = |V |, the number of faces f = e−v+2.

Tree
A graph is circuit-free iff it has no circuits. A graph is
a tree iff it is circuit-free and connected. A trivial tree
is a graph that consists of a single vertex. A graph is
a forest iff it is circuit-free and not connected.

Lemma 10.5.1
Any non-trivial tree has at least one vertex of degree 1.

Terminal & Internal Vertices
If a tree T has only one or two vertices, then each is
a terminal vertex (or leaf). If T has at least three
vertices, then a vertex of degree 1 in T is called a ter-
minal vertex (or leaf), and a vertex of degree greater
than 1 in T is called an internal vertex (or leaf).

Theorem 10.5.2
Any tree with n > 0 vertices has n− 1 edges.

Lemma 10.5.3
Let C be any circuit in a connected graph G. If one
of the edges of C is removed from G, then the graph
that remains is still connected.

Theorem 10.5.4
Let G be a connected graph with n vertices and n− 1
edges. G is a tree.

Rooted Tree
A rooted tree is a tree in which there is one vertex that
is distinguished from the others as the root. The level
of a vertex is the number of edges along the unique
path between it and the root. The height of a rooted
tree is the maximum level of any vertex of the tree.

Given the root or any internal vertex v of a rooted
tree, the children of v are all those vertices that are
adjacent to v and are one level farther away from the
root than v.

If w is a child of v, then v is the parent of w. Two
distinct vertices that are both children of the same
parent are called siblings.

Given two distinct vertices v, w; if v lies on a unique
path between w and the root, then v is an ancestor of
w, and w a descendant of v.

(Full) Binary Tree
A binary tree is a rooted tree in which every parent
has at most two children. Each child is either a left
child xor right child. Every parent has at most one left
child and one right child. A full binary tree is a binary
tree in which each parent has exactly two children.

The total number of vertices is the number of vertices
that have a parent plus vertices that do not have a
parent; or equivalently the number of internal vertices
plus the terminal vertices.

Subtrees
The left subtree of a parent v in in binary tree T
is the binary tree whose root is the left child of v,
whose vertices consist of the left child of v and all
its descendants, and whose edges consists of all those
edges of T that connect the vertices of the left subtree.
The right subtree is defined similarly.

*Epp T10.6.1 (Full Binary Tree Theorem)
If T is a full binary tree with k internal vertices, then
T has a total of 2k+ 1 vertices and has k+ 1 terminal
vertices.

Theorem 10.6.2
For non-negative integers h, if T is any binary tree with
height h and t terminal vertices, then

t ≤ 2
h

log2 t ≤ h
Binary Tree Traversal
Breadth-first search starts at the root and visits its
adjacent vertices, then moves to the next level.

Depth-first search can be pre-order, in-order, or post-
order. In pre-order, print, traverse left then right; in
in-order, traverse left, print, then traverse right; in
post-order, traverse left, right, then print.

The print operation can be represented by a ‘dot’ on a
vertex in its tree diagram, and the order of prints can
be determined by tracing the outline of the diagram
anti-clockwise from the root. Draw the ‘dot’ on the
left, bottom, and right of the vertex for pre-order,
in-order, and post-order respectively.

Reconstructing BT from Traversal Order
Given a sequence of nodes traversed in depth-first
pre-order, in-order, or post-order; it may be possible
to reconstruct the binary tree. Note that in pre-order
and post-order, the first node traversed is always the
root node (of traversal). Then, the nodes to the left
of the identified root node in the in-order sequence all
belong to the left subtree, and likewise for the right
subtree. Repeat these observations recursively for each
subtree until the full binary tree is constructed.

Spanning Tree

A spanning tree for a graph G is a subgraph of G that
contains every vertex of G and is a tree.

Proposition 10.7.1
Every connected graph has a spanning tree, and any
two spanning trees for a graph have the same number
of edges.

Weighted Graph
A weighted graph is a graph for which each edge has
an associated positive real number weight. The sum
of weights of all the edges is the total weight of a
weighted graph.

Minimum Spanning Tree
A minimum spanning tree for a connected weighted
graph is a spanning tree that has the least possible
total weight compared to all other spanning trees for
the graph. If G is a weighted graph and e is an edge
of G, then w(e) denotes the weight of e and w(G)
denotes the total weight of G.

Algorithm 10.7.1 (Kruskal’s Algorithm)
In this algorithm, the edges of a connected weighted
graph are examined one by one in order of increas-
ing weight. At each stage, the edge being examined is
added to what will become the minimum spanning tree,
provided that this addition does not create a circuit.

def kruskal(G):
T = new Graph()
edges = edges_of(G)
for edge in edges:

e = min(edge) # wrt weight
if T + e has no circuit:

T = T + e
return T

Algorithm 10.7.2 (Prim’s Algorithm)
In this algorithm, a minimum spanning tree T is build
by expanding outward in connected links from some
vertex. One edge and one vertex are added at each it-
eration. The edge added is the one of least weight that
connects the vertices already in T with those not in T ,
and the vertex is the endpoint of this edge that is not
already in T .

def prims(G):
seed = random.choice(V(G))
T = new Graph(seed)
vertices = V(G) - seed
while V(T) != V(G):

find min edge connecting T to G - T
e = least_edge(T, vertices)
T = T + e
vertices = vertices - endpts(e)

return T

