
UQF2101I Cheatsheet
for test 2, by ning

Learning Objectives

• Random variables
• Distribution of probabilities
• Taking expectation, E—mean and variance
• Normal distribution & derived distributions
• Data transformations in its distribution
• Linear combinations of random variables
• Inferring about a population from a sample
• Functions of sample data—statistics & point es-

timators
• Sampling distributions
• Interval estimators
• Testing the significance of sample findings
• Errors in hypothesis testing
• Reducing probability of errors in hypothesis

testing

Random variables & their distributions

• Variable that can take on one or more values,
each of them associated with a probability

• Can be discrete or continuous
• Discrete random variables are described by a

probability mass function
• Continuous random variables are described by

a probability density function
• The area under a probability distribution func-

tion (PDF) is always 1, i.e.∫ ∞
−∞

P (x) dx = 1

• The mean, µ of a PDF is its central tendency;
its variance is its variability, or dispersion about
the mean.

For discrete random variables,

µ =

n∑
i=1

xi · f(xi)

σ
2

=

n∑
i=1

(xi − µ)
2 · f(xi)

For continuous random variables,

µ =

∫ ∞
−∞

x · f(x) dx

σ
2

=

∫ ∞
−∞

(x− µ)
2 · f(x) dx

Expectation operator

• First, note that the mean and variance produce
a single number from many outcomes using a
weighted average

• Intuitively, the taking the expected value is a
similar process of finding a weighted average

Some basic properties of the expectation oper-
ator, E, for constants a, b, and random variable
X,

E(b) = b

E(aX + b) = aE(X) + b

E(g(X)) 6= g(E(X))

Normal distribution

• Typically notated as X ∼ N(µ, σ2); X is a ran-
dom variable that is normally distribution with
mean µ and variance σ2

• The standard normal distribution, Z is defined
as

Z =
X − µ
σ

=⇒ Z ∼ N(0, 1)

and has a shorthand P (Z ≤ z) = Φ(z)

Derived distributions
The normal distribution is used as a basis to generate
other important distributions.

Log-normal distribution If Y = ln(X), where Y ∼
N(λ, ξ2), then X is log-normally distributed with mean
µ and variance σ2,

X ∼ Lognormal(µ, σ
2
)

λ = ln µ−
1

2
ξ
2

ξ
2

= ln

(
1 +

σ2

µ2

)
Chi-square (χ2)
If X = Z2, where Z is the standard normal, i.e.
Z ∼ N(0, 1), then X is chi-square (χ2) distributed.
The χ2 distribution has an additional parameter k,
the degree of freedom.

T-distribution
If Z and χ2

k are independent standard normal and chi-
square random variables respectively, then

T =
Z√
χ2
k/k

is t-distributed with k degrees of freedom.

Data transformations

• If the data is asymmetric, or has significant out-
liers, it may be useful to re-express the data in
other terms

• This makes the data ‘normal’ and more easily
understandable

• Still, when reporting results, we often report in
terms of the original expression

• Some common transformations are,

Observation Transformation
Strong positive skew ln X

Moderate positive skew
√
X

Moderate negative skew
√
K −X

Strong negative skew ln (K −X)

where K = max + 1

Linear combinations

• The linear combination of random variables is
a random variable

• In particular, if X1 ∼ N(µ1, σ1
2) and X2 ∼

N(µ2, σ2
2); and X1, X2 are independent, then

for Y = a1X1 + a2X2,

Y ∼ N(a1µ1 + a2µ2, a1
2
σ1

2
+ a2

2
σ2

2
)

• However, if X1 and X2 are not normally dis-
tributed, their linear combination Y may not
always be linearly distributed

• Nonetheless, we can still obtain the mean and
variance for linear combinations of random vari-
ables of any distributions,

Y = a1X1 + a2X2

µY = a1E(X1) + a2E(X2)

σY
2

= E((Y − µY )
2
)

= a1
2
E((X1 − µq)2)

+ a2
2
E((X2 − µ2)

2
)

+ 2a1a2E(X1 − µ1)(X2 − µ2)

Note that the last term is the covariance, and
the covariance = 0 if X1 and X2 are indepen-
dent

Central limit theorem

• The sum of a large number of identical and inde-
pendent random variables has an approximately
normal distribution

• Rule of thumb for ‘large number’: n ≥ 30

From sample to population

• Population: the totality of observations that we
are interested; Sample: a subset of the popula-
tion obtained

• In reality, it is often practically impossible to
collect enough data to definitively draw conclu-
sions and make decisions about the population

• What we can do, however, is to sample a por-
tion of the population, and infer about he pop-
ulation from having analysed the sample

• However, while we can be certain about our con-
clusions about the sample group, there is going
to be some ambiguity when we apply sample
conclusions to unobserved data points in the
population

• Using probability as an analogy,

Sample-population Probability
Population Sample space

Sample Event

Point estimators

• Suppose we are trying to obtain some parame-
ters of the population distribution, e.g. mean,
µ or variance, σ2

• One way to estimate these parameters is to ap-
ply some function to our sample to condense
them to a single number (that estimates the pa-
rameter we are trying to obtain)

• This function is known as a point estimator,

Θ̂; it produces a point estimate, or statistic θ̂,
which estimates the population parameter θ

Unbiased estimators

• An estimator is unbiased if E(Θ̂) = θ
• Otherwise, the bias of an estimator is bias =

E(Θ̂)− θ
• Intuitively, the expectation of Θ̂ is the average

value of that estimator over many outcomes
• Note that the sample mean, X̄ and the sam-

ple variance, S2 are unbiased estimators for the
population mean, µ, and population variance,
σ2 respectively

Estimator variance

• Many estimators can be biased; we can further
rate estimators by their variance (precision)

• Typically presented as the standard error,
which is the standard deviation of the estimator

Mean square error

• Overall, we can quantify the goodness of an es-
timator by its bias and standard error. The
mean square error combines the two into a sin-
gle quantity, the mean square error:

MSE(Θ̂) = (Std error)
2

+ (E(Θ̂)− θ)2

= Var(Θ̂) + bias
2

Note: an unbiased estimator has MSE = Var

Sampling distributions

• Point estimators, Θ̂, are random variables
• Therefore, they have a mean and variance

(above)
• But also a probability distribution
• The probability distribution of a point estima-

tor is known as the sampling distribution—the
type of distribution depends on the nature of
the underlying population, sample size n, the
estimator itself

Sample mean
Under conditions of the central limit theorem, the sam-
ple mean, X̄ is normally distributed,

X̄ ∼ N(µ, σ
2
/n)

Sample variance
The sample variance is χ2 distributed,

(n− 1) S2

σ2
∼ χ2

n−1

Sample mean, unknown σ2

If the population variance is unknown, it is substituted
by the sample variance, a χ2-distributed random vari-
able. Hence, the sample mean takes the form of a t-
distribution,

T =
X̄ − µ
S/
√
n

Interval estimates



• The confidence of an interval is not the proba-
bility that a calculated interval around the sam-
ple mean includes the population mean; that
probability is either 0 or 1, since the interval is
already calculated—“the die has been cast”

• Rather, it can be understood as the proportion
of calculated intervals that will contain the pop-
ulation mean

Hypothesis testing

• X, a sample, can be defined as

X = µ+ ε

where ε is a random variable representing ‘ran-
dom disturbance’ due to any sources of variabil-
ity in the sampling method or population

• Therefore, there is an uncertainty that comes
with estimating µ with X̄—is the value ob-
tained, x̄ the population mean, µ? If not, how
close are x̄ and µ?

• Since sample variance is practically non-zero,
then we are unable to make the correct conclu-
sions every time

• We can only hope to ‘be correct most of the
time’

• The aim of hypothesis testing is ‘to know if the
mean of the unknown population has a value of
µ0, with only a single small sample available

• i.e. to make a general conclusion about the pop-
ulation based on specific observations from the
sample

• H0 must be specific, H1 is usually non-specific
• The significance level α, determines the values

of x̄ where H0 is rejected
• The p-value is the probability of obtaining a

result equal to or more severe than what was
obtained, given that H0 is true

• For a two-tail test, the p-value is 2 × P(X̄ ≤ x̄
or 2× P(X̄ ≥ x̄, whichever is smaller

Errors in hypothesis testing

• Type I error: rejecting H0 when H0 is true
• The probability of committing a type I error is

the significance level, α of the test
• Type II error: failing to reject H0 when H1 is

true
• Power: probability of not committing a type II

error, i.e.
Power = (1− β)

Power is also the probability of correctly reject-
ing a false null hypothesis

• Power is a measure of specificity—the ability of
a test to detect differences

• Then, there is a specific difference to detect;
i.e. the difference between µ0 = 50;µ1 = 52
is harder to detect than the difference between
µ0 = 50;µ1 = 60

• Therefore, to calculate the probability of a type
II error, one must specify what is the magnitude
of difference to detect

• Fixing the sample size, n, decreasing the prob-
ability of one type of error increases the proba-
bility of the other

Reducing probability of errors in hypoth-
esis testing

• To increase the power of a test, i.e. decrease the
probability of a type II error, define a larger dif-
ference that you would like to reliability detect

• Alternatively, increase the sample size

• The probability of a type I error is usually de-
fined by the tester as the level of significance,
α

Examples
Calculating the 95% confidence interval for sam-
ple mean

P

(
X̄ − 1.96 ·

σ
√
n
≤ µ ≤ X̄ + 1.96 ·

σ
√
n

)
= 0.95

Calculating the 95% confidence interval for sam-
ple mean with unknown σ2,

P

(
X̄ − t0.025,n−1 ·

s
√
n
≤ µ ≤ X̄ + t0.025,n−1 ·

s
√
n

)
= 0.95

Hypothesis testing on the mean

1. Identify the parameter of interest from the
problem context

2. State the null hypothesis, H0

H0 : µ = µ0 = 60

3. State an appropriate alternative hypothesis, H1

H1 : µ 6= 60

4. Choose a significance level, α

α = 0.05

5. State an appropriate test statistic; usually Z if
population variance is known, otherwise t

Z0 =
X̄ − µ0

σ/
√
n

6. State and compute the rejection region for the
statistic, e.g. for σ2 = 100 and n = 10

P (zα=0.025 ≤
X̄ − µ0

σ/
√
n
≤ zα=0.975) = 0.95

P (−1.96 ·
10
√

10
+ 60 ≤ X̄ ≤ 1.96 ·

10
√

10
+ 60) = 0.95

P (53.8 ≤ X̄ ≤ 66.2) = 0.95

7. Decide if H0 should be rejected, and report it
in the problem context

The amount of time for a lab to process samples
is a RV with mean 9.2 mins and standard de-
viation 1.8 mins. Suppose a random sample of
n = 48 is collected. Find the probability that the
average processing time for these samples is (a)
less than 10 mins; (b) between 9 and 10 mins.

let X̄ =
1

48

48∑
i=1

Xi,

then, by the central limit theorem,

X̄ ∼ N(9.2, 1.8
2
/48)

P(X̄ ≤ 10)

= P

(
X̄ − 9.2√
1.82/48

≤
10− 9.2√

1.82/48

)

= Φ

(
10− 9.2√

1.82/48

)

= Φ(3.07)

= 0.99893 ≈ 0.999

P(9 ≤ X̄ ≤ 10)

= Φ

(
10− 9.2√

1.82/48

)
− Φ

(
9− 9.2√
1.82/48

)
= Φ(3.07)− Φ(−0.7698)

= 0.99893− 0.220650

= 0.77828 ≈ 0.778

Find the mean square error for Θ̂ = 1/2 · (2X1 −
X6 +X4), for a random sample X1, X2, · · · , X6

MSE = Std. Error
2

+ Bias
2

= Var(X1 + 1/4 ·X6 + 1/4 ·X4)+

(1/2 · E(2X1 −X6 +X4)− µ)
2

= 3/2 · σ2
+ (1/2 · (2µ)− µ)

2

= 3/2 · σ2


