
CS2100 Cheatsheet 17/18 Sem 2
by vig

Number Systems & Data Representation
Sizes of data/types

• byte : 8 bits
• nibble : 4 bits (half-byte)
• word : multiple bytes (1, 2, 4) (for MIPS it’s 4)
• int : 4 bytes (1 bit for sign, 31 for magnitude)
• float : 4 bytes
• double : 8 bytes
• char : 1 byte

Representation & Complements

• Convert decimal whole numbers to base R : divide
by R, first remainder is LSB, last is MSB

• Convert decimal fractions to base R : multiply by R,
first carry is MSB, last is LSB

• base R to base RN : partition in groups of N e.g
groups of 4 for base 2 to base 16

• Convert to R-1s complement : Flip the digits; digit
= R - digit

• Convert to Rs complement : Flip the digits, then add
1 to the number

• 1s complement has +ive and -ive 0
• 2s complement has only 1 representation of 0
• 2s complement can represent an ıadditional negative

number e.g for binary, 1000 represents -8 (+8 cannot
be represented in a signed 4 bit number)

• Convert to excess X: Take number minus X (0 refers
to -x)

• IEEE 754 Floating-Point Representation:
sign|exponent|mantissa

• Single-precision float has 1 bit sign, 8 bit excess-127
exponent, 23 bit mantissa (normalized with a leading
bit 1 i.e the mantissa is the X in 1.X)

• Double has 1 bit sign, 11 bit excess-1023 exponent,
52 bit mantissa

Operations with binary numbers

• 2s complement addition: Simply add & ignore carry
out of MSB

• 2s complement subtraction: take 2s complement of
number to be subtracted, then do 2s addition.

• 1s complement addition: Add; If there is a carry out,
add 1 to the result

• 1s complement subtraction: take 1s complement of
number to be subtracted, then do 1s addition.

• check for overflow: If result is opposite sign of
both operands (that have the same sign)

MIPS
R, I, J format

• R: Opcode, rs, rt, rd, shamt, funct
• I: Opcode, rs, rt, Imm
• rd is not used, check datasheet for instruction syntax
• For branch, Imm is the relative number of ıwords to

go to (with respect to PC + 4), in 2s complement
representation

• J: Opcode,Address
• First 4 bits are assumed to be 4 MSBs of PC+4. Last

2 bits assumed to be 0 (because of word addressing)

Instruction Set Architecture
Architectures & Endianness

• Von Neumann: Data(operands) stored in memory
• Stack: operands are on top of stack
• Accumulator: One operator is in the accumulator (a

special register)
• Memory-memory (all operands in memory)
• Register-Register (all operands in registers) (MIPS)
• Big-endian: Most significant byte stored in lowest

address
• Little-endian: Least significant byte stored in lowest

address (easier to read)

Opcode encoding

• To maximize, reserve 1 instruction for lesser-bit in-
struction types.

• To minimize, reserve all but 1 instruction for lesser-
bit instruction types

• Forumla for maximizing: 2no.ofbits ∗ (1 − F) where
F is the fraction of bits lost by reserving bits

Boolean Algebra
Laws

• Identity: A + 0 = A and A · 1 = A
• Complement: A + A′ = 1 and A · A′ = 0
• Commutative: A + B = B + A and A · B = B · A
• Associative: A + (B + C) = (A + B) + C and

A · (B · C) = (A · B) · C
• Distributive: A + (B · C) = (A + B) · (A + C) and

A · (B + C) = (A · B) + (A · C)
• Duality (not a real law): If we flip AND/OR oper-

ators and flip the operands (0 and 1), the boolean
equation still holds

Theorems

• Idempotency: X + X = X and X ·X = X
• One/Zero Element: X + 1 = 1 and X · 0 = 0
• Involution: (X′)′ = X
• Absorption:

X + (X · Y) = X
X · (X + Y) = X

• Absorption (variant):
X + (X′ · Y) = X + Y
X · (X′ + Y) = X · Y

• DeMorgans’ (can be used on > 2 variables):
(X · Y)′ = X′ + Y ′

(X + Y)′ = X′ · Y ′

• Concensus:
(X · Y) + (X′ · Z) + (Y · Z) = (X · Y) + (X′ · Z)
(X + Y) · (X′ + Z) · (Y + Z) = (X + Y) · (X′ + Z)

Minterms & Maxterms

• Sum-Of-Products (SOP): Product term or a logical
sum of product terms

• minterm: Product term that contains n literals from
all the variables

• Product-Of-Sum (POS): Sum term or a logical prod-
uct of sum terms

• Maxterm: Sum term that contains n literals from all
the variables

• Mx = mx′ because of De Morgan’s
• Sum of 2 distinct Maxterms is 1 e.g M1234 +

M1120 = 1

• Product of 2 distinct minterms is 0 e.g m1234 ·
m1120 = 0

Combinatorial Circuits
Gates

• AND, OR, NOT is a complete set of logic

• NAND is a complete set of logic

• NOR is a complete set of logic

• Produce SOP with AND >> OR or NAND >>
NAND

• Produce POS with OR >> AND or NOR >> NOR

• With negated outputs, use NAND to simulate OR
and NOR to simulate AND

K-maps

• Prime Implicant (PI) is a product term formed by
combining the ımaximum possible no. of minterms
(largest group)

• Essential Prime Implicant (EPI) is a PI that includes
at least one minterm not covered by any other group

• Label the K-map rows/columns in a ıgray code man-
ner e.g 00, 01, 11, 10

• Grouping 2N cells(only power-sizes are allowed) elim-
inates n variables

• EPIs are counted only by checking 1s, not Xs

• K-maps help to obtain canonical SOP, but might not
provide the simplest expression possible (need to use
boolean algebra for that)

Delays : Note that for combinatorial circuits, there is
a delay: for every logic gate with n inputs, calculate
delay = max(t1, t2, . . . tn) + tdelay

MSI Components

Multiplexer
Use minterm as selection
line, using 0/1 as inputs.
For smaller size multi-
plexer, use one of the vari-
ables for input lines.

Demultiplexer

Encoder

Decoder
Generate minterms and
use OR to form a function
Alternatively, use NOR on
maxterms.

Priority Encoder

Larger Components
Remove a decoder that
gives duplicate outputs
(w.r.t another decoder) by
using an OR gate with the
outputs from the first de-
coder, and the enable in-
put of the second.

Sequential Logic
Excitation Tables

• For m flip-flops, up to 2m states exist.
• SR has invalid code while JK uses that for the toggle

code

• T is the ıtoggle flip-flop
• D is the ısetting flip-flop
• Negative input for Clock→ flip-flop is negative edge-

triggered

Static RAM

• Dyanmic RAM does not use flip-flop as cells
• For BC, Write is 0, Read is 1
• 1K*8 RAM ⇒ 1024words*8bits
• In 12 bit address to 4K*8 RAM constructed using

1K*8 blocks, the 2 most significant bits are fed into
decoder to determine which block to use.

• Expand horizontally to increase word size, vertically
to increase memory size

Pipelining
Pipeline register contents

• IF/ID: Instruction from memory & PC + 4
• ID/EX: Data read from regsiter files, 32-bit Sign

extended Imm, & PC + 4
• EX/MEM : Imm, & (PC + 4) + (Imm ∗ 4), ALU

result, isZero signal & RD2 from register file
• MEM/WB: ALU result, Memory read data & write

regsiter data (passed through all pipelines)

Performance

• If cycle/clock time is given, just use that

• Single cycle:

CTseq =
∑N

k=1
Tk

Timeseq = I ∗ CTseq (choose the maximum CTseq)

• Multi-cycle [1 stage per cycle, cycle time chosen to
be time for longest stage]
CTmulti = max(Tk) i.e longest stage time
Timemulti = I ∗ AverageCPI ∗ CTmulti

• Pipeline [Several stages per cycle]
CTpipeline = max(Tk) +Td where Td is the pipeline
register overhead
Timepipeline = (I + N − 1) ∗ CTpipeline

• If Nintstructions >> Nstages,

Speeduppipeline =
Timeseq

Timepipeline

Hazard and resolution

• Without data forwarding: If dependent cycle is
· right before: 2 cycle delay
· 2 cycles before: 1 cycle delay

• With data forwarding: If dependent cycle is
· dependent on lw: 1 cycle delay
· otherwise: no delay

• Without control measures: 3 cycle delay
• With early branching/resolution: 1 cycle delay after

branch instruction
· with forwarding & dependent on non-lw: 1 cycle bef
branch
· with forwarding & dependent on lw: 2 cycles bef
branch
· without forwarding: dependent: 2 cycle delay bef
branch

• With branch prediction:
· 3 cycles occur if no early branching
· 1 cycle occur if there is early branching
· then, instructions either get flushed/not flushed

• With delayed branch: If ∃ instruction before branch
that can be moved into delayed slot, move it. Else,
stall/no-op

Cache
Average Access time
Ratehit ∗ Timehit + (1− Ratehit) ∗ Penaltymiss

Direct Mapped Cache

• Blocks in cache: 2M

• Bytes per block: 2N

Set Associative Cache

• N-way SAC → N cache blocks per set
• Bytes per block: 2M

• Cache bocks =
Sizecache
Sizeblock

• Sets = CacheBlocks
N = 2N

Fully Associative Cache

• Bytes per block: 2N

For each address

• Set Index = (val mod 2N+M)//2N

• Word Index = (val mod 2N)//Bytesword

• Tag = val//2N+M

Miss Rates

• Conlfict miss rates decrease with increasing associa-
tivity

• DMC of size N has the same miss rate as a 2-way
SAC of size N

2
• Capacity miss only depends on cache size, same size
→ same capcatiy miss

• As cache size increases, capcacity miss decreases

Block Replacement

• Least Recently Used: Note that it is hard to keep
track if there are many choices and there is a cost to
keeping track of this as well

• First in First out
• Random Replacement
• Least Frequently Used

Writing Policy

• Write through cache: Write to both cache and main
memory

• Write back cache: Only write to cache, write to mem-
ory when block is replaced

• Write Miss – Write allocate: Load complete block
and write onto the cache ⇒ Write to main memory
if using write through policy

• Write Miss – Write around: Do not load block to
cache, write to memory only

Max (1 type A) = 1 + (26 − 1) ∗ 25

Min (1 type B) = (26 − 1) + 25

Input 0X DE AD BE EF
Big-Endian 0: DE, 1: AD . . .

Little-Endian 0: EF, 1: BE . . .

