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ANOVA
In this section, I denotes the treatments/groups, and
J the measurements in each group. For two-factor,
I, J denote the treatments/groups, and J the measure-
ments within each I, J combination. Use ANOVA for
comparing more than 2 groups.
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SSTOT = SSW + SSB

SSB/(I − 1) ∼ χ2
I−1

SSW /[I(J − 1)] ∼ χ2
I(J−1)

E[SSW ] = I(J − 1)σ
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E[SSB ] = J
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α
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One-factor ANOVA, same-sized groups
The test statistic is

F =
SSB/(I − 1)

SSW /[I(J − 1)]
∼ FI−1,I(J−1)

Reject H0 if F > FI−1,I(J−1)(α).

One-factor ANOVA, differently-sized groups
The test statistic follows a slightly different degree of
freedoms I − 1 := df1 and

∑n
i=1 Ji − I =: df2.

F ∼ Fdf1,df2

Two-factor ANOVA
There will be an additional sum of squares term for
the interaction between groups. Its associated degree
of freedom in as a chi-square distributed random vari-
able, and within the final F distributed test statistic
is (I − 1)(J − 1). The sum of squared errors (within
groups) has degree of freedom as chi-squared IJ(K−1).

Post-ANOVA Tests
Turkey’s correction and Bonferroni’s correction reduces
the probability of type I error in multiple tests after the
ANOVA. The Kruskal-Wallis test, a generalisation of
the Mann-Whitney test, is a nonparametric test which
is particularly useful for small data sets.

Two-Sample Tests

In this section, X1, · · · , Xn and Y1, · · · , Ym are each
i.i.d. samples of X and Y respectively, unless other-
wise stated. Define Di := Xi − Yi. The variances for
X and Y are unknown.

Estimating the Equality of Variances
If SX ≤ 2SY or SY ≤ 2SX , it is reasonable to assume
that σX = σY .

Normal, Unpaired, with Equal Variance
Calculate the pooled variance, s2p as such.

S
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Y
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The test statistic t is

t =
(X̄ − Ȳ )− (µX − µY )

SEX̄−Ȳ

which follows a t distribution with m + n − 2 degrees
of freedom.

Normal, Unpaired, with Unequal Variance
The variance of the sampling distribution Var(X̄ − Ȳ )
is simply

Var(X̄ − Ȳ ) = S
2
X/n+ S

2
Y /m

The test statistic t is

t =
X̄ − Ȳ − (µX − µY )√

S2
X/n+ S2

Y /m

which follows a t distribution with degrees of freedom
df as

df =
(S2
X/n+ S2

Y /m)2

(S2
X
/n)2
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Y
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Normal, Paired
The variance of the sampling distribution Var(D̄) can
be estimated simply by the unbiased sample variance
of the series of Di random variables. The test statistic
t is

t =
D̄ − µD
SED̄

Unpaired, Nonparametric
Rank the values of the samples Xi, Yj from 1 to n+m.
The null hypotheses is that Xi, Yj are distributed iden-
tically, and therefore should rank ‘evenly’. Then, the
rank sum scores are defined as

RX =

n∑
i=1

Rank(Xi); RY =

m∑
j=1

Rank(Yj)

Select the sample with the smaller size (w.r.t. n,m).
Denote its rank sum score R, and define R′ := n(n +
m+ 1)− R. The Mann-Whitney test statistic is

R
∗

= min(R,R
′
)

H0 is rejected for small R∗.

Paired, Parametric
Rank the absolute values of Di from 1 to n = m. The
null hypotheses is that D is distributed symmetrically
about 0. Define

W+ =
∑
{Rank(Di)|Di > 0}

W− =
∑
{Rank(Di)|Di < 0}

Denote W := min(W−,W+). H0 is rejected for small
W .

Hypothesis Testing

In a hypothesis testing question, you must include (i)
assumptions made, (ii) the null and alternate hypothe-
ses, (iii) the test statistic and its distribution, (iv) the
p-value, and (v) the conclusion.

Terminology

- The significance level (or size) α of a test is the prob-
ability of committing a type I error, or rejecting the
null hypothesis, H0 when it is true.

- The power 1− β of a test is the probability that H0

is rejected when it is false.
- β denotes the probability of a type II error, or failing

to reject H0 when it is false.
- The α and power of a tests are mutual trade-offs.
- The set of values of a test statistic leading to rejec-

tion of H0 is the rejection or critical region. Those
leading to acceptance is the acceptance region.

- The p-value is the smallest significance level at which
H0 would be rejected.

- The null distribution is the probability distribution
of the test statistic when H0 is true.

Simple and Composite Hypotheses
A hypothesis that does not completely specify the
probability distribution is called a composite hypothe-
sis. Otherwise, it is a simple hypothesis. A hypothesis
that is ‘one-tailed’ is called a ‘one-sided’ alternative.

Uniformly Most Powerful
If an alternative hypothesisH1 is composite, a test that
is most powerful for every simple alternative in H1 is
said to be uniformly most powerful. The test which is
uniformly most powerful for a one-sided alternative is
not for the two-sided.

Confidence Interval
Denote the acceptance region of the test as A(θ0).
Then, the set

C(X) = {θ|X ∈ A(θ)}
is a 100%(1 − α) confidence region for θ. The CI con-
tains all the values of θ for which the null hypothesis
H0 : θ = θ0 is not rejected.

Neyman-Pearson Lemma
Suppose that H0 and H1 are simple hypotheses. Set
the significance level of the test at α. Any other test
for which the significance level is less than or equal to
α has power less than or equal to that of the likelihood
ratio test.

Generalised Likelihood Ratio Test (GLRT)
The generalised likelihood ratio test a non-optimal test
used for situations of composite hypothesis where no
optimal test exists. Denote the null and alternative hy-
potheses as H0 : θ ∈ ω0 and H1 : θ ∈ ω1 respectively,
where ω0, ω1 are disjoint and subsets of Ω, the sample
space. The generalised likelihood ratio test statistic is

Λ
∗

=
maxθ∈ω0

L(θ)

maxθ∈ω1
L(θ)

For simplicity, we define Λ such that Λ = min(Λ∗, 1).

Λ =
maxθ∈ω0

L(θ)

maxθ∈Ω L(θ)

Then, the generalised likelihood test rejects for Λ ≤ λ0,
where P (Λ ≤ λ0|H0) = α.

Distribution of −2 log Λ
For the GLRT, As the sample size n → ∞, Under
smoothness conditions on the pmfs or pdfs involved,
the null distribution of −2 log Λ tends to a chi-square

distribution with degrees of freedom df as

df = dim Ω− dimω0

dim Ω, dimω0 are the number of free parameters un-
der Ω and ω0 respectively. Rejecting for small Λ is
then also rejecting for large −2 log Λ. Special case:
the one-tailed rejection region −2 log Λ = n(X̄ −
µ0)2/σ2 > χ2

1(α) can be made two tailed |X̄ − µ0| >
(σ/
√
n)z(α/2) by definition of χ2

1.

Likelihood Ratio Test (LRT)
In the case of the simple alternative hypothesis, simply
define Λ directly.

Λ =
L(θ|H0)

L(θ|H1)

Pearson Chi-square Test
The Pearson chi-square test is asymptotically equal to
the GLRT. The test statistic for a multinomial dis-
tributed r.v. is

X
2

=

m∑
i=1

(Oi − Ei)2

Ei
=

m∑
i=1

(xi − npi(θ̂))2

npi(θ̂)

Where X2 ∼ χ2
m−k−1, k is the number of values of the

multinomial distribution.

Efficiency & Sufficiency

Mean Square Error (MSE)
The MSE is a common measure of accuracy of an esti-
mator.

MSE(θ̂) = E[(θ̂ − θ0)
2
]

= Var(θ̂) + (E[θ̂]− θ0)
2

= SE
2

+ bias
2

Efficiency

The efficiency of two estimators, θ̂0, θ̂1 is given as

eff(θ̂0, θ̂1) := Var(θ̂1)/Var(θ̂0)

When any of the Var(θ̂) is estimated via the asymp-
totic variance, the efficiency is called the asymptotic
relative efficiency.

Cramér-Rao Inequality
Under smoothness assumptions of a f(x|θ) for a statis-
tic T := t(X1, · · · , Xn)

Var(T ) ≥
1

nI(θ)

This gives the lower bound for the variance of any es-
timator of θ. An unbiased estimator whose variance
achieves this lower bound is said to be efficient. The
MLE is asymptotically efficient.

Sufficiency
A statistic T (X1, · · · , Xn) is said to be sufficient for
θ if the conditional distribution of X1, · · · , Xn given
T = t does not depend on θ for any value of t. If T is
sufficient for θ, the MLE for θ is a function only of T .

Factorization Theorem



The statistic T (X1, · · · , Xn) is sufficient for a param-
eter θ iff the joint pdf factorises in the form

f(~x|θ) = g(T (~x), θ)h( ~X)

Exponential Family of Probability Distributions
1-parameter members of the exponential family have
pdfs or pmfs in the form

f(x|θ) =

{
exp{c(θ)T (x) + d(θ) + S(x)}, if x ∈ A,
0, otherwise.

where the set A does not depend on θ.

Rao-Blackwell Theorem
Let θ̂0 be an estimator for θ with finite second moment,

T a sufficient statistic for θ, and θ̂1 = E[θ̂0|T ].

E[(θ̂1 − θ)2
] ≤ E[(θ̂0 − θ)2

]

θ̂1 is an estimator of θ which is better than any esti-

mator θ̂0 since θ̂1 = E[θ̂0|T ] which is a function of the
sufficient statistic T .

Other Stuff

d

dx
f(g(x)) = f

′
(g(x))g

′
(x)

d

dx
f(x)g(x) = f(x)g

′
(x) + f

′
(x)g(x)

d

dx

f(x)

g(x)
=
f ′(x)g(x)− f(x)g′(x)

g(x)2

d

dx
f(x)

g(x)
= f(x)

g(x)

(
g
′
(x) ln f(x) + g(x)

f ′(x)

f(x)

)
∫ b

a

u dv = uv

∣∣∣∣b
a

−
∫ b

a

v du

Γ(z + 1) = zΓ(z)

Γ(1) = 1

Γ(n) = 1 · 2 · · · · · (n− 1) = (n− 1)!

E[X] =
∑
i

xip(xi)

E[X] =

∫ ∞
−∞

xf(x) dx

E[Y ] = E[E[Y |X]]

Var(X) = E[(X − E[X])
2
]

Var(X) = E[X
2
]− E[X]

2

Var(a+ bX) = b
2
V ar(X)

Var(Y ) = Var(E[Y |X]) + E[Var(Y |X)]

Cov(X,Y ) = E[(X − µX)(Y − µY )]

Cov(X,Y ) = E[XY ]− E[X] E[Y ] if X |= Y
n∑
i=1

(Xi − µ0)
2

=

[
n∑
i=1

(Xi − X̄)
2

]
+ n(X̄ − µ0)

2

ρ =
Cov(X,Y )√

Var(X) Var(Y )

S
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=
1
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(Xi − X̄)
2

S
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Cov(aX + bY, cW + dV )

= acCov(X,W ) + adCov(X,V )+

bcCov(Y,W ) + bdCov(Y, V )

P (Bj |A) =
P (A|Bj)P (Bj)∑n
j=1 P (A|Bj)P (Bj)

Information on Various Distributions
Binomial:

p(k) =
(n
k

)
p
k
(1− p)n−k, k = 0, 1, · · · , n

E[X] = np

Var(X) = np(1− p)
Geometric:

p(k) = p(1− p)k−1
, k = 1, · · ·

E[X] = 1/p

Var(X) = (1− p)/p2

Negative binomial:

p(k) =
(k − 1

r − 1

)
p
r
(1− p)k−r, k = r, r + 1, · · ·

E[X] = r/p

Var(X) = [r(1− p)]/p2

Poisson:

p(k) = (λ
k
e
−λ

)/k!, k = 0, 1, · · ·
E[X] = Var(X) = λ

Normal:

f(x) =
1

σ
√

2π
exp{−

(x− µ)2

2σ2
}, −∞ < x <∞

E[X] = µ

Var(X) = σ
2

Gamma:

f(x) =
λα

Γ(α)
x
α−1

e
−λx

, x ≥ 0

E[X] = α/λ

Var(X) = α/λ
2

Chi-square:

Z ∼ N(0, 1)

Z
2 ∼ χ2

1 ∼ Γ(1/2, 1/2)

Yi ∼ χ2
1; Y1 + · · ·+ Yn ∼ χ2

n, |= Yi
t:

Z√
U/n

∼ tn, Z ∼ N(0, 1); U ∼ χ2
n

f(t) =
Γ[(n+ 1)/2]
√
nπΓ(n/2)

(
1 +

t2

n

)−(n+1)/2

F :
U/n

V/m
∼ Fn,m, U ∼ χ2

n;V ∼ χ2
m

f(x) =
Γ[(n +m)/2]

Γ(m/2)Γ(n/2)

( n
m

)n
2 x

n
2
−1

(
1 +

n

m
x

)−n+m
2

f(x) is over x ≥ 0. If T ∼ tn then T 2 ∼ F1,n.

Central Limit Theorem
For Sn =

∑n
i=1 Xi,

lim
x→∞

P

(
Sn

σ
√
n
≤ x

)
= Φ(x)

X̄ ∼ N(µ, σ
2
/n)

Linear Functions of a Random Variable
Let Y = g(X). To find fY (y),

FY (y) = P (Y ≤ y)

= P (g(X) ≤ y)

= P (X ≤ g−1
(y))

= FX(g
−1

(y))

fY (y) =
d

dy
FX(g

−1
(y))

=
dg−1

dy
fX(g

−1
(y))

Non-linear Functions of Random Variables
Let Y = g( ~X), where ~X := (X1, X2, · · · ) with mean
vector ~µ. Then, in order to find the mean and variance

of Y , first take the Taylor expansion of g( ~X),

Y = g( ~X)

≈ g(µ) + (X1 − µ1)
∂g(µ)

∂x1

+ (X2 − µ2)
∂g(µ)

∂x2

+ · · ·

Then, E[Y ] ≈ g(µ), and

V ar(Y ) ≈ V ar(g(µ) + (X1 − µ1) · · ·

Consider for example, ~X := (X1, X2). Then

V ar(X) ≈ σ2
X1

(
∂g(µ)

∂x1

)2

+

σ
2
X2

(
∂g(µ)

∂x2

)2

+

2σXY

(
∂g(µ)

∂x1

)(
∂g(µ)

∂x2

)
Simple Random Sampling
Simple random sampling without replacement means
that each sample is not independent of another. While
the mean of the simple random sample is still unbiased,
that is E[X̄] = µ,

Cov(Xi, Xj) = −σ2
/(N − 1)

for two different simple random samples, i.e. i 6= j.
The variance of the sample mean then becomes

V ar(X̄) =
σ2

n

(
N − n
N − 1

)
The variance of the sample total is

V ar(T ) = N
2

(
σ2

n

)
N − n
N − 1

σ is unknown and must be estimated.

s
2
X̄ =

s2

n

(
1−

n

N

)
s
2
T = N

2
s
2
X̄

where s2 = 1
n−1

∑n
i=1(Xi − X̄)2 is the unbiased sam-

ple variance.

Consistency

Let θ̂n be an estimate of a parameter θ0 based on a

sample of size n. θ̂n is said to be consistent in probabil-

ity if θ̂n converges in probability to θ0 as n approaches
infinity. That is, for ε > 0,

P (|θ̂n − θ0| > ε)→ 0 as n→∞

Fisher Information

I(θ) = E

[
∂

∂θ
log f(X|θ)

]2

= −E

[
∂2

∂θ2
log f(X|θ)

]

Large Sample Theory for MLE

Let θ̂ denote the MLE of θ0. The probability distribu-
tion of √

nI(θ0)(θ̂ − θ0)

tends to a standard normal distribution. Therefore,
the asymptotic variance of the MLE is

1

nI(θ)
= −

1

E[l′′(θ0)]

Approximate Confidence Intervals
Confidence intervals can be approximated through the

large sample theory for MLE by taking
√
nI(θ0)(θ̂ −

θ0)→ N(0, 1), as n→∞.

P

(
−z(α/2) ≤

√
nI(θ̂)(θ̂ − θ0) ≤ z(α/2)

)
≈ 1− α


