Number Systems & Data Representation
Sizes of data/types

e byte : 8 bits

e nibble : 4 bits (half-byte)

e word : multiple bytes (1, 2, 4) (for MIPS it’s 4)
e int : 4 bytes (1 bit for sign, 31 for magnitude)
e float : 4 bytes

e double : 8 bytes

e char : 1 byte

Representation & Complements

e Convert decimal whole numbers to base R : divide
by R, first remainder is LSB, last is MSB

e Convert decimal fractions to base R : multiply by R,
first carry is MSB, last is LSB

e base R to base RV partition in groups of N e.g
groups of 4 for base 2 to base 16

e Convert to R-1s complement : Flip the digits; digit
= R - digit

e Convert to Rs complement :
1 to the number

e 1s complement has +ive and -ive 0

e 2s complement has only 1 representation of 0

e 2s complement can represent an i1additional negative
number e.g for binary, 1000 represents -8 (+8 cannot
be represented in a signed 4 bit number)

e Convert to excess X: Take number minus X (0 refers
to -x)

e IEEE 754 Floating-Point
sign|exponent|mantissa

e Single-precision float has 1 bit sign, 8 bit excess-127
exponent, 23 bit mantissa (normalized with a leading
bit 1 i.e the mantissa is the X in 1.X)

e Double has 1 bit sign, 11 bit excess-1023 exponent,
52 bit mantissa

Flip the digits, then add

Representation:

Operations with binary numbers

e 2s complement addition: Simply add & ignore carry
out of MSB

e 2s complement subtraction: take 2s complement of
number to be subtracted, then do 2s addition.

e 1s complement addition: Add; If there is a carry out,
add 1 to the result

e 1s complement subtraction: take 1ls complement of
number to be subtracted, then do 1s addition.

e check for overflow: If result is opposite sign of
both operands (that have the same sign)

MIPS
R, I, J format

R: Opcode, rs, rt,rd, shamt, funct

I: Opcode,rs,rt, Imm

rd is not used, check datasheet for instruction syntax
For branch, Imm is the relative number of 1words to
go to (with respect to PC + 4), in 2s complement
representation

e J: Opcode, Address

e First 4 bits are assumed to be 4 MSBs of PC +4. Last
2 bits assumed to be 0 (because of word addressing)

Instruction Set Architecture
Architectures & Endianness

(CS2100 Cheatsheet 17/18 Sem 2

by vig

e Von Neumann: Data(operands) stored in memory

e Stack: operands are on top of stack

e Accumulator: One operator is in the accumulator (a
special register)

e Memory-memory (all operands in memory)

e Register-Register (all operands in registers) (MIPS)

e Big-endian: Most significant byte stored in lowest
address

e Little-endian: Least significant byte stored in lowest
address (easier to read)

Opcode encoding

e To maximize, reserve 1 instruction for lesser-bit in-
struction types.

e To minimize, reserve all but 1 instruction for lesser-
bit instruction types

e Forumla for maximizing: 27°-°Fbits 4 (1 — F) where
F is the fraction of bits lost by reserving bits

Boolean Algebra

Laws

e Identity: A+0=Aand A-1=A

e Complement: A+ A’ =1and A- A" =0

e Commutative: A+ B=B+Aand A-B=B-A
e Associative: A + (B + C) (A + B) + C and

A-(B-C)=(A-B)-C
. Dlstrlbutlve A+ (B-C)=(A+B)-(A+C) and
S(B+C)=(A-B)+(A-0)
. Duality (not a real law): If we flip AND/OR oper-
ators and flip the operands (0 and 1), the boolean
equation still holds

Theorems

e Idempotency: X + X =X and X - X = X

e One/Zero Element: X +1=1and X-0=0
e Involution: (X') =X

e Absorption:

X+ (X-Y)=X
X - (X+Y)=X
e Absorption (variant):
X+(X - Y)=Xx+Y
X (X' +Y)=X-Y
e DeMorgans’ (can be used on > 2 variables):
(XYY =X +Y'
(X+Y) =X .Y
e Concensus:
(X-Y)+(X - 2)+ (Y- 2) = (X -Y) + (X . 2)
(X+Y) X' +2)- (Y+2)=(X+Y) (X' +2)

Minterms & Maxterms

e Sum-Of-Products (SOP): Product term or a logical
sum of product terms

e minterm: Product term that contains n literals from
all the variables

e Product-Of-Sum (POS): Sum term or a logical prod-
uct of sum terms

e Maxterm: Sum term that contains n literals from all
the variables

e Mz = ma’ because of De Morgan’s

e Sum of 2 distinct Maxterms is 1 e.g M1234 +
M1120 =1

e Product of 2 distinct minterms is 0 e.g m1234 -
m1120 =0

Combinatorial Circuits
Gates

e AND, OR, NOT is a complete set of logic
e NAND is a complete set of logic
e NOR is a complete set of logic

e Produce SOP with AND >> OR or NAND >>
NAND

e Produce POS with OR >> AND or NOR >> NOR

e With negated outputs, use NAND to simulate OR
and NOR to simulate AND

X—ED)_X'

(x-x)'=x"

x—§) o—x

(x+x)'=x"

((xy)-(xy)) = ((xy))' = xy ((x+y)+(x+y))' = ((x+y))' = x+y
Y
y xy

((x+)"+(y+y))' = (x+y)" = xy

((xX)"(yy))' = (x"y)' = x+y

K-maps

e Prime Implicant (PI) is a product term formed by
combining the 1imaximum possible no. of minterms
(largest group)

e Essential Prime Implicant (EPI) is a PI that includes
at least one minterm not covered by any other group

e Label the K-map rows/columns in a 1gray code man-
ner e.g 00,01, 11,10

e Grouping 2N cells(only power-sizes are allowed) elim-
inates n variables

e EPIs are counted only by checking 1s, not Xs

e K-maps help to obtain canonical SOP, but might not
provide the simplest expression possible (need to use
boolean algebra for that)

Delays : Note that for combinatorial circuits, there is
a delay: for every logic gate with n inputs, calculate
delay = max(t1,ta, ... ty) + tgelay

max(0,0)+t =t

X — max(t,0)+t =
Y
! 2t max(t,2t)+ = 3t
) >
A —

MSI Components

Multiplexer o Si S Y
Use minterm as selection : v g (l) :”
line, using 0/1 as inputs. : !

I 10 1L
fl 11
S S, _—
Y= 15(8,54) + 1181750 + 12(5:S) + 1x(5,S)

For smaller size multi-
plexer, use one of the vari-
ables for input lines.

YoV Y, Y,

.
Demultiplexer I ol 0boo
. v, "o 00bo
i~ 1Y to6w
i
Fo Fi F, F;|C G
Encoder o o olo o
0 1 0 00 1 _
0 0 1 o|1 o|C1=F2tFs
0.0 0 1|1 1|Cy=F,+F;
Decoder 2x4
Generate minterms and pec O0——Fo
use OR to form a function *| St 1—F;
Alternatively, use NOR on *So 2 ~F>
I
maxterms. E 3 Fs
. . Inputs Outputs
Priority Encoder D, D, D, D g

. Bl - Bl -
N-N-E
N

0 0 0 0
1 0 0 0
X 1 0 0
X X 1 0
X X X 1

Larger Components
Remove a decoder that
gives duplicate outputs
(w.r.t another decoder) by
using an OR gate with the
outputs from the first de-
coder, and the enable in-
put of the second.

Sequential Logic

Excitation Tables

0 o[s r] [e o] «
0 0 0 X 0 0 0 X
0 1 1 0 0 1 1 X
1 0 0 1 1 0 X 1
1 1 X 0 1 1 X 0

(a) $-R flip-flop. (b) J-K flip-flop.

o o[@ | @

0 0 0 0 0 0

0 1 1 0 1 1

1 0 0 1 0 1

1 1 1 1 1 0

(©) D flip-flop. (d) T flip-flop.

e For m flip-flops, up to 2" states exist.
e SR has invalid code while JK uses that for the toggle
code

e T is the itoggle flip-flop

e D is the 1setting flip-flop

e Negative input for Clock — flip-flop is negative edge-
triggered

Static RAM

Seloct
Select

gt
Input Output

Read/Wite

output

Readite’

Oxaputs

Input data

as cells

Dyanmic RAM does not use flip-flop
For BC, Write is 0, Read is 1

1K*8 RAM = 1024words*8bits

In 12 bit address to 4K*8 RAM constructed using
1K*8 blocks, the 2 most significant bits are fed into
decoder to determine which block to use.

e Expand horizontally to increase word size, vertically
to increase memory size

Pipelining

Pipeline register contents

e [F/ID: Instruction from memory & PC + 4

e ID/EX: Data read from regsiter files, 32-bit Sign
extended I'mm, & PC + 4

e EX/MEM: Imm, & (PC + 4) + (Imm % 4), ALU
result, isZero signal & RD2 from register file

e MEM/W B: ALU result, Memory read data & write
regsiter data (passed through all pipelines)

Performance

e If cycle/clock time is given, just use that
e Single cycle:

N
CTicqa =, T
Timegseq = I * CTseq (choose the maximum CTseq)
e Multi-cycle [1 stage per cycle, cycle time chosen to
be time for longest stage]
CTpuiti = max(Ty) i.e longest stage time
Timemuiti = I * AverageCPI « CTpyyiti
e Pipeline [Several stages per cycle]
CTpipetine = max(Ty) + Tq where Ty is the pipeline
register overhead
Timepipetine = (I + N — 1) % CTpipeline
o If Nintstructions >> Nstages,

Timegeq

Time,

Speeduppipetine =
p Ppipeline pipeline

Hazard and resolution

e Without data forwarding: If dependent cycle is
- right before: 2 cycle delay
- 2 cycles before: 1 cycle delay
e With data forwarding: If dependent cycle is
- dependent on lw: 1 cycle delay
- otherwise: no delay

e Without control measures: 3 cycle delay

e With early branching/resolution: 1 cycle delay after
branch instruction
- with forwarding & dependent on non-lw: 1 cycle bef
branch
- with forwarding & dependent on lw: 2 cycles bef
branch
- without forwarding: dependent: 2 cycle delay bef
branch

e With branch prediction:
- 3 cycles occur if no early branching
- 1 cycle occur if there is early branching
- then, instructions either get flushed/not flushed

e With delayed branch: If 3 instruction before branch
that can be moved into delayed slot, move it. Else,
stall/no-op

Cache

Average Access time

Ratepqt * Timep;t + (1 — Ratept) * Penaltymiss
Direct Mapped Cache

e Blocks in cache: 2™
e Bytes per block: 2N

Set Associative Cache

e N-way SAC — N cache blocks per set
e Bytes per block: 2
. _ Sizecqeh
e Cache bgck: ;l S;.czez‘;;c‘]:N
e Sets = ACREZLOCRS — D

Fully Associative Cache
e Bytes per block: 2V
For each address

e Set Index = (val mod 2N+M)/ /2N
e Word Index = (val mod 2V)//Byteswora
e Tag = val//2NtM

Miss Rates

e Conlfict miss rates decrease with increasing associa-
tivity

e DMC of size N has the same miss rate as a 2-way
SAC of size %

e Capacity miss only depends on cache size, same size
— same capcatiy miss

e As cache size increases, capcacity miss decreases

Block Replacement

e Least Recently Used: Note that it is hard to keep
track if there are many choices and there is a cost to
keeping track of this as well

e First in First out

e Random Replacement

o Least Frequently Used

‘Writing Policy

e Write through cache: Write to both cache and main
memory

e Write back cache: Only write to cache, write to mem-
ory when block is replaced

e Write Miss — Write allocate: Load complete block
and write onto the cache = Write to main memory
if using write through policy

o Write Miss — Write around: Do not load block to
cache, write to memory only

o
o
3
= 22 X
£
1%}
=
°Ee
F¥] o
g £ > &8 g
] @ T o5 ¢
g 3 38 mBE
=) E Qg H
L x g] s g5 7]
i®
0 =
‘ B
8 | 3% 5
>33\ ¢
~ 9 5
< E
-
< —
H 2
@
- -
H=ox c
< o]
(&)
= - N
g 3 2 8
= 2 ¢ & g
ol - = °
& Ry = =
) M2 (28
) o g%y ol & \2%
3 § B 3 3| %
< \ | Control
<
=D X &
[¢) - (=]
o H for] L) - 3
N] - - S| |=
- = o £ 2|9
g 8 % g al |3
b fat ol |8
3 4 - v -
§. g g 2 2 B g
SR H S =
s 2 S
SE g <
S9 £
2% i opcode rs rt rd shamt funct
= 5 _31:26 25:21 20:16 15:11 10:6 5:0
=3 - - - -
g, T258:c25358
N5 T T - -9 9o9o 9o
" 3 EEEEEEE
]
SIeEEEBEEEEE
-> ©
3
QO
S| To
g 5igssergsecx
E S = 2=
Z;';g,oooo‘—\—-——'
I IR
0=
= o
=]
) 2 ety ena
@\ >
>
n .
= O 0 - © -« 0 = O
S WEls - 9O = = 99
T V35558888
< ©
S 0 O - 0O =« O
WElc- v 0O - v 0 O
0w |T85353558888
a (8]
3
S |vd
C3 - O O v« O « O
Q FEl=- - 00 = = g 9o
S| fEl- - - - 00 & &
S |5 © © oo S S oo
s | o
W D=
[+]
L,
= N © 1 ¥ ® N «— O
g + + + + + +

ALUcontrol | Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 slt
1100 NOR
[J]
ol| & ¥
o ¢ AT |(©o|©
© M oM
S =
(7]
m| ©
B o
S|Eg |o|—|Xx|x
= n| o~
<
(3}
5 |lo|lo|o|«
[
() m 0
©
n|e
9 A |||~ |O
=|= & 0
L = o
g T
4 J|lo|~|o|o
= ¥ q
o _8|a8
e M O®(ine-
o
A N-RN-NN-NE]
o n
] o
3 8|38
<] SRens|SSS
L
M| Ol n
[} o ~
g’ Emm
®|d
a 9 ABunos|R2T
w0
ﬁ E O« |« | O
O o
a
® =N
u < 00
A o
%, — | o|X|X 2
. B .
o s N By O
S Y= (3 Y
—~ o Eﬁ o
® > .5 5.8
Qo o E = 2|+ E 2
Z|2 |5 |8 |EasdsEasd
o
opcode operand operand
Type-A [6bits | S5bits | 5bits |
opcode operand
Type-B | 11 bits | sbits |

Max (1 type A)

=14 (28 —-1)%2°

Min (1 type B) = (25 — 1) +2°

Input
Big-Endian
Little-Endian

0X DE AD BE EF
0: DE, 1: AD ...
0: EF, 1: BE ...

11 10
.00048828125 .0009765625 .001953125 .00390625

12

13

Power negative:

.0078125

