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Baye’s Rule
Suppose that B1, B2, · · · , Bn are partitions of the sam-
ple space Ω. Then for any event A,

P (Bj |A) =
P (A|Bj)P (Bj)∑n
j=1 P (A|Bj)P (Bj)

Expectation
The expectation of a random variable X is defined
as follows for the discrete and continuous case respec-
tively,

E[X] =
∑
i

xip(xi)

E[X] =

∫ ∞
−∞

xf(x) dx

Moment Generating Functions
The moment generating function (MGF) of a random
variable X is,

M(t) = E[e
tX

]

and the rth moment of a random variable is E[Xr] if
it exists.

Variance
The variance σ2 of a random variable X, then the vari-
ance of X is,

V ar(X) = E[(X − E[X])
2
]

And
V ar(a+ bX) = b

2
V ar(X)

Sample Variance
The unbiased sample variance S2 is

S
2

=
1

n− 1

n∑
i=1

(Xi − X̄)
2

The biased sample variance σ̂2 is

σ̂
2

=
1

n

n∑
i=1

(Xi − X̄)
2

Covariance
If X and Y are jointly distributed random variables
with means µX and µY respectively, then the covari-
ance of X and T is,

Cov(X,Y ) = E[(X − µX)(Y − µY )]

If X and Y are independent, then

Cov(X,Y ) = E[XY ]− E[X] E[Y ]

If X and Y are positively associated, then the covari-
ance will be positive, and vice versa.

Correlation
Additionally, the correlation ρ can be expressed as,

ρ =
Cov(X,Y )√
V ar(X)V ar(Y )

−1 ≤ ρ ≤ 1 and ρ = ±1 ⇐⇒ P (Y = a + bX) = 1 for
some constants a, b.

Mean Square Error

If the true value of a quantity being measured is de-
noted x0, then the measurement X can be modelled
as,

X = xo + β + ε

where β is the constant error and ε is the random com-
ponent of the error. And

E[ε] = 0

V ar(ε) = σ
2

E[X] = x0 + β

V ar(X) = σ
2

The mean squared error is then

MSE = β
2

+ σ
2

Bias and Standard Error
The bias of an estimator is given by E[θ̂] − θ0. The
standard error is the standard deviation of the sam-
pling distribution.

Bernoulli Distribution
The Bernoulli distribution is defined over the parame-
ter p ∈ [0, 1]. Its PMF is

P (X = x) =

{
1− p if x = 0

p if x = 1

The MGF is 1 − p + pet. The mean and variance are
p and p(1 − p) respectively. The fisher information is
1/(pq).

Binomial Distribution
The binomial distribution is defined over two parame-
ters, n ∈ {0, 1, 2, · · · } and p ∈ [0, 1]. Its PMF is

P (X = k) =
(n
k

)
p
k
(1− p)n−k

The MGF is (1−p+pet)n. The mean and variance are
np and np(1 − p) respectively. The fisher information
is n

p(1−p)
for a fixed n.

Poisson Distribution
The poisson distribution is defined over the parameter
λ > 0. Its PMF is

P (X = k) =
λke−λ

k!

The MGF is eλ(et−1). The mean and variance are both
λ. The fisher information is 1/λ.

Geometric Distribution
The geometric distribution is defined over the param-
eter k ∈ Z+. Its PMF is

P (X = k) = p(1− p)k−1

The MFG is pet/(1−(1−p)et). The mean and variance
are 1/p and (1− p)/p2 respectively.

Gamma Distribution
The gamma distribution is defined over two parame-
ters, α > 0, λ > 0. Its PDF is

f(x) =
λα

Γ(α)
x
α−1

e
−λx

The MGF is
(
1− t

λ

)−α for t < λ. The mean and

variance are α/λ and α/λ2 respectively.

Normal Distribution
The normal distribution is defined over two parame-
ters, −∞ < µ < ∞, σ > 0. Its probability density
function is

f(x) =
1

σ
√

2π
e
−(x−µ)2/2σ2

, −∞ < x <∞

The MGF is eµt+σ
2t2/2. Its mean and variance are µ

and σ2 respectively. The normal distribution is sym-
metric about µ, such that f(µ− x) = f(µ+ x).

Standard Normal Distribution
Z ∼ N(0, 1) is the standard normal. Its CDF is com-
monly denoted Φ and its density φ. To ’standardise’ a
normal distribution X to Z, note that

Z =
X − µ
σ

∼ N(0, 1)

χ2 Distribution
For the standard random variable Z, the distribution
of Y = Z2 is called the chi-square distribution with 1
degree of freedom, χ2

1.

χ2
1 is a special case of the gamma distribution, where

α = λ = 1/2, i.e. χ2
1 = Γ(1/2, 1/2).

Then, if Y1, Y2, · · · , Yn are independent χ2
1 random

variables, the distribution of W = Y1 + Y2 + · · · + Yn
is the chi2 random variable with n degrees of freedom,
χ2
n.

The density of χ2
n ∼ Γ(n/2, 1/2) is given by

f(x) =
1

2n/2Γ(n/2)
x

(n/2)−1
e
x/2

t Distribution
For the standard normal random variable Z and U ∼
χ2
n, where Z and U are independent, the distribution

of Z/
√
U/n is the t distribution with n degrees of free-

dom. Its PDF is

f(t) =
Γ[(n+ 1)/2]
√
nπΓ(n/2)

(
1 +

t2

n

)−(n+1)/2

F Distribution
If U ∼ χ2

n and V ∼ χ2
m, then the distribution of

W =
U/n
V/m

is the F distribution with n and m degrees

of freedom, Fn,m. Its PDF is

f(x) =
Γ[(n +m)/2]

Γ(m/2)Γ(n/2)

( n
m

)n/2
x
n/2−1

(
1 +

n

m
x

)−(n+m)/2

for x ≥ 0. Also, if T ∼ tn then T 2 ∼ F1,n

Central Limit Theorem
Let X1, X2, · · · be a sequence of independent random
variables having mean 0 and variance σ2 and the com-
mon distribution function F and MGF m defined in a
neighbourhood of zero. If

Sn =
n∑
i=1

Xi

then

lim
x→∞

P

(
Sn

σ
√
n
≤ x

)
= Φ(x)

A more useful result is as follows: if X1, X2, · · · , Xn
are i.i.d. random variables with large n, then

X̄ ∼ N(µ, σ
2
/n)

Linear Functions of a Random Variable
Let Y = g(X). To find fY (y),

FY (y) = P (Y ≤ y)

= P (g(X) ≤ y)

= P (X ≤ g−1
(y))

= FX(g
−1

(y))

fY (y) =
d

dy
FX(g

−1
(y))

=
dg−1

dy
fX(g

−1
(y))

Non-linear Functions of Random Variables
Let Y = g( ~X), where ~X := (X1, X2, · · · ) with mean
vector ~µ. Then, in order to find the mean and variance

of Y , first take the Taylor expansion of g( ~X),

Y = g( ~X)

≈ g(µ) + (X1 − µ1)
∂g(µ)

∂x1

+ (X2 − µ2)
∂g(µ)

∂x2

+ · · ·

Then, E[Y ] ≈ g(µ), and

V ar(Y ) ≈ V ar(g(µ) + (X1 − µ1) · · ·

Consider for example, ~X := (X1, X2). Then

V ar(X) ≈ σ2
X1

(
∂g(µ)

∂x1

)2

+

σ
2
X2

(
∂g(µ)

∂x2

)2

+

2σXY

(
∂g(µ)

∂x1

)(
∂g(µ)

∂x2

)
Simple Random Sampling
Simple random sampling without replacement means
that each sample is not independent of another. While
the mean of the simple random sample is still unbiased,
that is E[X̄] = µ,

Cov(Xi, Xj) = −σ2
/(N − 1)

for two different simple random samples, i.e. i 6= j.
The variance of the sample mean then becomes



V ar(X̄) =
σ2

n

(
N − n
N − 1

)
The variance of the sample total is

V ar(T ) = N
2

(
σ2

n

)
N − n
N − 1

For both expressions above, however, σ is unknown and
must be estimated. Therefore, we have also the unbi-
ased estimates for V ar(X̄) and V ar(T )

s
2
X̄ =

s2

n

(
1−

n

N

)
s
2
T = N

2
s
2
X̄

where s2 = 1
n−1

∑n
i=1(Xi − X̄)2 is the unbiased sam-

ple variance.

Method of Moments Estimators
The method of moments estimates the parameter θ by
finding expressions for it in terms of the lowest possible
order moments and then substituting sample moments
into these expressions.

Maximum Likelihood Estimators
The MLE estimator finds an estimate of the parameter
θ0 which maximises the probability of having observed
the sample. The likelihood function is

L(θ) =

n∏
i=1

f(xi|θ)

Often, this function is difficult to maximise. Since log
is a monotonic increasing function, we may simplify
this problem by finding the maximum of the loglikeli-
hood function instead

l(θ) =
n∑
i=1

log f(xi|θ)

Consistency

Let θ̂n be an estimate of a parameter θ0 based on a

sample of size n. ˆthetan is said to be consistent in

probability if θ̂n converges in probability to θ0 as n
approaches infinity. That is, for ε > 0,

P (|θ̂n − θ0| > ε)→ 0 as n→∞

Fisher Information
The fisher information, I(θ) is defined as

I(θ) = E

[
∂

∂θ
log f(X|θ)

]2

= −E

[
∂2

∂θ2
log f(X|θ)

]
Large Sample Theory for MLE

Let θ̂ denote the MLE of θ0. The probability distribu-
tion of √

nI(θ0)(θ̂ − θ0)

tends to a standard normal distribution. Therefore,
the asymptotic variance of the MLE is

1

nI(θ)
= −

1

E[l′′(θ0)]

Approximate Confidence Intervals
Confidence intervals can be approximated through the

large sample theory for MLE by taking
√
nI(θ0)(θ̂ −

θ0)→ N(0, 1), as n→∞.

P

(
−z(α/2) ≤

√
nI(θ̂)(θ̂ − θ0) ≤ z(α/2)

)
≈ 1− α


