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Matrices
Definition 2.5.2. Let A = (aij) be an n× n matrix. Let Mij be
an (n− 1)× (n− 1) matrix obtained from A by deleting the ith
row and the jth column. Then the determinant of A is defined as

det(A) =

{
a11 if n = 1

a11A11 + · · ·+ a1nA1n if n > 1

where
Aij = (−1)i+j det

(
Mij

)
The number Aij is called the (i, j)-cofactor of A.

Theorem 2.5.8. The determinant of a triangular matrix is equal
to the product of its diagonal entries.

Theorem 2.5.15. Let A be a square matrix.

1. If B is obtained from A by multiplying one row of A by a
constant k, then det(B) = k det(A).

2. If B is obtained from A by interchanging two rows, then
det(B) = − det(A).

3. If B is obtained from A by adding a multiple of one row of
A to another row, then det(B) = det(A).

4. Let E be an elementary matrix of the same size as A. Then
det(EA) = det(E) det(A).

Theorem 2.5.25. If A is invertible, then A−1 = 1
det(A)

adj(A).

Theorem 2.5.27. Suppose Ax = b is a linear system where A is
an n× n matrix. Let Ai be the matrix obtained from A be
replacing the ith column of A by b. If A is invertible, then the
system has only one solution

x =
1

det(A)

det (A1)
..
.

det (An)


Definition 2.5.24. Let A be a square matrix of order n. Then
the (classical) adjoint of A is the n× n matrix

adj(A) = (Aij)
T
n×n

where Aij is the (i, j)-cofactor of A.

Euclidean Spaces
Definition 3.2.3. Let S = {u1, . . . ,uk} be a set of vectors in
Rn. Then the set of all linear combinations of u1, . . . ,uk,

{c1u1 + · · ·+ ckuk | c1, . . . , ck ∈ R}

is called the linear span of S (or the linear span of u1, . . . ,uk)
and is denoted by span(S) (or span{u1, . . . ,uk}).

Theorem 3.2.10. Let S1 = {u1, . . . ,uk} and S2 = {v1, . . . ,vm}
be subsets of Rn. Then span (S1) ⊆ span (S2) if and only if each
ui is a linear combination of v1, . . . ,vm.

Definition 3.3.2. Let V be a subset of Rn. Then V is called a
subspace of Rn if V = span(S) where S = {u1, . . . ,uk} for some
vectors u1, . . . ,uk ∈ Rn.

More precisely, V is called the subspace spanned by S (or the
subspace spanned by u1, . . . ,uk). We also say that S spans (or
u1, . . . ,uk span) the subspace V .

Remark 3.3.8. Let V be a non-empty subset of Rn. Then V is a
subspace of Rn if and only if

for all u,v ∈ V and c, d ∈ R, cu + dv ∈ V

Definition 3.4.2. Let S = {u1, . . . ,uk} be a set of vectors in
Rn. Consider the equation

c1u1 + · · ·+ ckuk = 0

where c1, . . . , ck are variables.

1. S is called a linearly dependent set and u1, . . . ,uk are said
to be linearly independent if the equation has only the
trivial solution c1 = · · · = ck = 0.

2. S is called a linearly independent set and u1, . . . ,uk are
said to be linearly dependent if the equation has non-trivial
solutions.

Definition 3.5.4. Let S = {u1, . . . ,uk} be a subset of a vector
space V . Then S is called a basis for V if S is linearly independent
and S spans V .

Definition 3.5.8. Let S = {u1, . . . ,uk} be a basis for a vector
space V and v a vector in V . By Theorem 3.5.7, v is expressed
uniquely as a linear combination

v = c1u1 + · · ·+ ckuk

The coefficients c1, . . . , ck are called the coordinates of v relative
to the basis S.

The vector (v)S = (c1, . . . , ck) ∈ Rk is called the coordinate vector
of v relative to the basis S.

Theorem 3.6.1. Let V be a vector space which has a basis with
k vectors. Then

1. any subset of V with more than k vectors is always linearly
dependent;

2. any subset of V with less than k vectors cannot span V .

Definition 3.6.3. The dimension of a vector space V , denoted
by dim(V ), is defined to be the number of vectors in a basis for V .
In addition, we define the dimension of the zero space to be zero.

Theorem 3.6.7. Let V be a vector space of dimension k and S a
subset of V . The following are equivalent:

1. S is a basis for V .

2. S is linearly independent and |S| = k.

3. S spans V and |S| = k.

Definition 3.7.3. Let S = {u1, . . . ,uk} and T be two bases for a
vector space. The square matrix P =

(
[u1]T · · · [u2]T

)
is

called the transition matrix from S to T .

Vector Space of Matrices

Definition 4.1.2. Let A = (aij) be an m× n matrix. The row
space of A is the subspace of Rn spanned by the rows of A. The
column space of A is the subspace of Rm spanned by the columns
of A.

Theorem 4.1.7. Let A and B be row equivalent matrices. Then
the row space of A and the row space of B are identical, i.e.
elementary row operations preserve the row space of a matrix.

Theorem 4.1.11. Let A and B be row equivalent matrices.
Then the following statements hold:

1. A given set of columns of A is linearly independent if and
only if the set of corresponding columns of B is linearly
independent.

2. A given set of columns of A forms a basis for the column
space of A if and only if the set of corresponding columns of
B forms a basis for the column space of B.

Theorem 4.2.1. The row space and column space of a matrix
have the same dimension.

Definition 4.2.3. The rank of a matrix is the dimension of its
row space (or column space). We denote the rank of a matrix A
by rank(A). Note that rank(A) is equal to the number of nonzero
rows as well as the number of pivot columns in a row-echelon form
of A.

Theorem 4.2.8. Let A and B be m× n and n× p matrices
respectively. Then

rank(AB) ≤ min{rank(A), rank(B)}

Definition 4.3.1. Let A be an m× n matrix. The solution space
of the homogeneous system of linear equations Ax = 0 is known
as the nullspace of A.

The dimension of the null space of a matrix A is known as the
nullity of A and is denoted by nullity(A). If A is an m× n
matrix, it is clear that nullity(A) ≤ n since the nullspace is a
subspace of Rn.

Theorem 4.3.4. Let A be a matrix with n columns. Then

rank(A) + nullity(A) = n

Theorem 4.3.6. Suppose the linear equations Ax = b has a
solution v. Then the solution set of the system is given by

M = {u + v | u is an element of the nullspace of A}



Orthogonality
Definition 5.2.1.

1. Two vectors u and v in Rn are called orthogonal if u ·v = 0.

2. A set S of vectors in Rn is called orthogonal if every pair of
distinct vectors in S are orthogonal.

3. A set S of vectors in Rn is called orthonormal if S is
orthogonal and every vector in S is a unit vector.

Definition 5.2.4.

1. A basis S for a vector space is called an orthogonal basis if
S is orthogonal.

2. A basis S for a vector space is called an orthonormal basis
if S is orthonormal.

Theorem 5.2.8. If S = {u1, . . . ,uk} is an orthogonal basis for a
vector space V , then for any vector w in V ,

w =
w · u1

u1 · u1
u1 + · · ·+

w · uk

uk · uk
uk

i.e. (w)S =
(

w·u1
u1·u1

, . . . , w·uk
uk·uk

)
Definition 5.2.10. Let V be a subspace of Rn. A vector u ∈ Rn
is said to be orthogonal (or perpendicular) to V if u is orthogonal
to all vectors in V .

Definition 5.2.13. Let V be a subspace of Rn. Every vector
u ∈ Rn can be written uniquely as

u = n + p

such that n is a vector orthogonal to V and p is a vector in V .
The vector p is called the (orthogonal) projection of u onto V .

Theorem 5.2.15. Let V be a subspace of Rn and w a vector in
Rn. If {u1, . . . ,uk} is an orthogonal basis for V , then

w · u1

u1 · u1
u1 + · · ·+

w · uk

uk · uk
uk

is the projection of w onto V .

Theorem 5.2.19. Let {u1, . . . ,uk} be a basis for a vector space
V . Let

v1 = u1

v2 = u2 −
u2 · v1

v1 · v1
v1

...

vk = uk −
uk · v1

v1 · v1
v1 − · · · −

uk · vk−1

vk−1 · vk−1
vk−1

Note that the right side is the projection of the vectors onto the
orthogonal basis. To convert it into an orthonormal basis for V,
simply divide each vi by their length.

Theorem 5.3.10. Let Ax = b be a linear system. Then u is a
least squares solution to Ax = b if and only if u is a solution to
ATAx = AT b.

Definition 5.4.3. A square matrix A is called orthogonal if
A−1 = AT .

Eigens and Diagonalization
Definition 6.1.3. Let A be a square matrix of order n. A
nonzero column vector u in Rn is called an eigenvector of A if

Au = λu

for some scalar λ. The scalar λ is called an eigenvalue of A and u
is said to be an eigenvector of A associated with the eigenvalue λ.

Definition 6.1.6. Let A be a square matrix of order n. The
equation

det(λI −A) = 0

is called the characteristic equation of A and the polynomial

det(λI −A)

is called the characteristic polynomial of A.

Theorem 6.1.8. Let A be an n× n matrix. The following
statements are equivalent:

1. A is invertible.

2. The linear system Ax = 0 has only the trivial solution.

3. The reduced row-echelon form of A is an identity matrix.

4. A can be expressed as a product of elementary matrices.

5. det(A) 6= 0

6. The rows of A form a basis for Rn.

7. The columns of A form a basis for Rn.

8. rank(A) = n

9. 0 is not an eigenvalue of A.

Theorem 6.1.9. If A is a triangular matrix, the eigenvalues of A
are the diagonal entries of A.

Definition 6.1.11. Let A be a square matrix of order n and λ an
eigenvalue of A. Then the solution space of the linear system
(λI −A)x = 0 is called the eigenspace of A associated with the
eigenvalue λ and is denoted by Eλ.

Note that if u is a nonzero vector in Eλ, then u is an eigenvector
of A associated with the eigenvalue λ.

Definition 6.2.1. A square matrix A is called diagonalizable if
there exists an invertible matrix P such that P−1AP is a
diagonal matrix. Here the matrix P is said to diagonalize A.

Theorem 6.2.3. Let A be a square matrix of order n. Then A is
diagonlizable if and only if A has n linearly independent
eigenvectors.

Remark 6.2.5.2. The dimension of an eigenspace Eλ of a square
matrix A associated with the eigenvalue λ is at most the
multiplicity of λ in the characteristic polynomial of A.

Furthermore, A is diagonalizable if and only if the dimension of
each eigenspace of A is equal to the multiplicity of its associated
eigenvalue.

Theorem 6.2.7. Let A be a square matrix of order n. If A has n
distinct eigenvalues, then A is diagonalizable.

Definition 6.3.2. A square matrix A is called orthogonally
diagonalizable if there exists an orthogonal matrix P such that
P TAP is a diagonal matrix. Here the matrix P is said to
orthogonally diagonalize A.

Theorem 6.3.4. A square matrix is orthogonally diagonalizable
if and only if it is symmetric.

Linear Transformations
Definition 7.1.1. A linear transformation is a mapping
T : Rn → Rm of the form

T


x1...
xn


 =

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

 for

x1...
xn

 ∈ Rn

where a11, . . . , amn are real numbers. In particular, if n = m, T is
also called a linear operator on Rn. We can rewrite the formula of
T as

T


x1...
xn


 =

 a11 · · · a1n
...

am1 · · · amn


x1...
xn


The matrix (aij)m×n above is called the standard matrix for T .

Definition 7.1.10. Let S : Rn → Rm and T : Rm → Rk be linear
transformations. The composition of T with S, denoted by T ◦ S,
is a mapping from Rn → Rk such that

(T ◦ S)(u) = T (S(u)) for u ∈ Rn

Definition 7.2.1. Let T : Rn → Rm be a linear transformation.
The range of T , denoted by R(T ), is the set of images of T , i.e.

R(T ) = {T (u) | u ∈ Rn} ⊆ Rm

Theorem 7.2.4. Let T : Rn → Rm be a linear transformation
and A the standard matrix for T . Then the range of T is defined
as:

R(T ) = the column space of A

which is a subspace of Rm. This is also called the range of the
linear transformation.

Definition 7.2.5. Let T be a linear transformation. The
dimension of R(T ) is called the rank of T and is denoted by
rank(T ).

By Theorem 7.2.4, if A is the standard matrix for T , then
rank(T ) = rank(A).

Definition 7.2.7. Let T : Rn → Rm be a linear transformation.
The kernel of T , denoted by Ker(T ), is the set of vectors in Rn
whose image is the zero vector in Rm, i.e.

Ker(T ) = {u | T (u) = 0} ⊆ Rn

This is also called the nullity of T.

Theorem 7.2.9. Let T : Rn → Rm be a linear transformation
and A the standard matrix for T . Then

Ker(T ) = the nullspace of A

Definition 7.2.10. Let T be a linear transformation. The
dimension of Ker(T ) is called the nullity of T and is denoted by
nullity(T ).

By Theorem 7.2.9, if A is the standard matrix for T , then
nullity(T ) = nullity(A).

Theorem 7.2.13. If T : Rn → Rm is a linear transformation,
then

rank(T ) + nullity(T ) = n


