Appendix A of Epp is not covered. Theorems, corol-
laries, lemmas, etc. not mentioned in the lecture notes
are marked with an asterisk (*).

Proofs

Basic Notation

e R: the set of all real numbers

e Z: the set of integers (includes 0)
e : the set of rationals

e I: there exists...

e 3l: there exists a unique...

e V: for all...

e <: member of...

e 5: such that...

Proof Types

e By Construction: finding or giving a set of direc-
tions to reach the statement to be proven true.
e By Contraposition: proving a statement through
its logical equivalent contrapositive.
e By Contradiction: proving that the negation of
the statement leads to a logical contradiction.
e By Exhaustion: considering each case.
e By Mathematical Induction: proving for a base
case, then an induction step.
1. P(a)
2. Vk € Z,k > a (P(k) —» P(k+ 1))
3. Vn € Z,n > a (P(n))
e By Strong Induction: mathematical induction as-
suming P(k), P(k — 1),---, P(a) are all true.

Order of Operations

First ~ (also represented as —). No priority within A
and V, so pAqVris ambiguous and should be written
as (p Aq) Vror pA(qVr). The implication, — is
performed last. Can be overwritten by parenthesis.

Universal & Existential Generalisation
‘All boys wear glasses’ is written as

Vz(Boy(z) — Glasses(z))

If conjunction was used, this statement would be fal-
sified by the existence of a ‘non-boy’ in the domain of x.

‘There is a boy who wears glasses’ is written as
Jz(Boy(x) A Glasses(x))

If implication was used, this statement would true
even if the domain of x is empty.

Valid Arguments as Tautologies
All valid arguments can be restated as tautologies.

Rules of Inference
Modus ponens

p—q
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Modus tollens
pP—4q
-q
P
Generalization

‘pVg
Specialization

pPAg

Elimination
pVaq
-q

Transitivity
pP—q
q—r
cp—oT
Proof by Division into Cases
pVyq
p—r
q—r
.r
Contradiction Rule
-p —c
P
Universal Rules of Inference

Only modus ponens, modus tollens, and transitivity
have universal versions in the lecture notes.

Implicit Quantification

The notation P(z) = Q(x) means that every
element in the truth set of P(z) is in the truth set of
Q(z), or equivalently, Vz, P(z) — Q(x).

The notation P(x) <= Q(x) means that P(x)
and Q(z) have identical truth sets, or equivalently,

Vz, P(z) + Q(x).

Implication Law

p—=q=-pVg

Universal Instantiation
If some property is true of everything in a set, then it
is true of any particular thing in the set.

Universal Generalization
If P(c) must be true, and we have assumed nothing

about ¢, then Vz, P(z) is true.

Regular Induction

P(0)
Vk € N, P(k) — P(k +1)
v

Epp T2.1.1 Logical Equivalences
Commutative Laws

PAG=qAp
pVqg=qVp
Associative Laws
(PAQ)AT=pA(gAT)
(Vg Vvr=pv(gVr)
Distributive Laws
pA(@gvr)=(@AQV(PAT)
pV(gnr)=(pVa A(pVr)

Identity Laws

pANt=p

pVec=p
Negation Laws

pV-p=t

pA-p=c
Double Negative Law

~(-p)=p
Idempotent Laws

PAP=D

pVp=p

Universal Bound Laws
pVt=t
pAC=c
De Morgan’s Laws
~(pAg) =-pV g
=(pVg =-pA-q
Absorption Laws
pV(pAg) =p
pA(PVa) =p
Negations of t and ¢
—t=c
-c =
Definition 2.2.1 (Conditional)
If p and ¢ are statement variables, the conditional of ¢
by p is “if p then ¢” or “p implies ¢”, denoted p — q.
It is false when p is true and ¢ is false; otherwise it is

true. We call p the hypothesis (or antecedent), and ¢
the conclusion (or consequent).

A conditional statement that is true because its hy-
pothesis is false is called vacuously true or true by

default.

Definition 2.2.2 (Contrapositive)
The contrapositive of p — ¢ is =g — —p.

Definition 2.2.3 (Converse)
The converse of p — q is ¢ — p.

Definition 2.2.4 (Inverse)
The inverse of p — ¢ is =p — —q.

Definition 2.2.6 (Biconditional)

The biconditional of p and ¢ is denoted p <+ ¢ and is
true if both p and ¢ have the same truth values, and
is false if p and g have opposite truth values.

Definition 2.2.7 (Necessary & Sufficient)
“r is sufficient for s” means r — s, “r is necessary for
s” means —r — —s or equivalently s — 7.

Definition 2.3.2 (Sound & Unsound Arguments)
An argument is called sound, iff it is valid and all its
premises are true.

Definition 3.1.3 (Universal Statement)
A universal statement is of the form

Vz € D,Q(x)

It is defined to be true iff Q(z) is true for every z in
D. It is defined to be false iff Q(x) is false for at least
one z in D.

Definition 3.1.4 (Existential Statement)
A existential statement is of the form

Jz € D s.t. Q(x)

It is defined to be true iff Q(z) is true for at least one
z in D. It is defined to be false iff Q(z) is false for all
x in D.

Theorem 3.2.1 (Negation of Universal State.)
The negation of a statement of the form

Vz € D, P(x)
is logically equivalent to a statement of the form
Jxz € D s.t. ~P(x)

Theorem 3.2.2 (Negation of Existential State.)
The negation of a statement of the form

3z € D s.t. P(x)

is logically equivalent to a statement of the form
Vz € D,-P(z)

Number Theory

Properties (of Numbers)
Closure, i.e.

Ve,y €Z, t+y €Z, and xy €Z
Commutativity, i.e.
a+b=>b+a and ab = ba
Distributivity, i.e.
a(b+c) =ab+ ac and (b+ c)a = ba + ca



Trichotomy, i.e.
(a<b)®(b<a)d(a=0b)
(Can be used without proof)

Definition 1.1.1 (Colorful)
An integer n is said to be colorful if there exists some
integer k such that n = 3k.

Definition 1.3.1 (Divisibility)
If n and d are integers and d # 0,

din <= 3k €Zst. n=dk
Proposition 1.3.2 (Linear Combination)
VYa,b,c € Z, alb A alc = Vz,y € Z, a|(bz + cy)

If a divides b and ¢, then it also divides their linear
combination (bx + cy).

Theorem 4.1.1 (Linear Combination)
Va,b,c € Z, alb A a|lc = Vz,y € Z, al(bx + cy)

Epp T4.3.3 (Transitivity of Divisibility)
Ya,b,c € Z, alb Ablc — alc
Theorem 4.4.1 (Quotient-Remainder Theorem)

Given any integer a and any positive integer b, there
exist unique integers ¢ and r such that

a=bg+rand0<r<b
Representation of Integers

Given any positive integer n and base b, repeatedly
apply the Quotient-Remainder Theorem to get,

n = bgo + 10
go =bq+m1
g1 =bgz+ 12
Qm—1 =bqm + m

The process stops when g,, = 0. Eliminating the quo-
tients q; we get,
n=Tmb™ 4 P 1b" T b4 T

‘Which may be represented compactly in base b as a
sequence of the digits r;,

N = (TmTm—1-""T17T0)b

Definition 4.2.1 (Prime number)

n is prime <= Vr,s € 7t
n=rs—
(r=1As=n)V(r=nAs=1)
n is composite <= 3Ir,s € 77 s.t.
n=rsA
lI<r<n)A(l<s<n)
List of Primes to 100
2,3,5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97.

Proposition 4.2.2
For any two primes p and p’,

plp =»p=p

Theorem 4.2.3

If p is a prime and zi,z2,---,x, are any inte-
gers s.t. p | wiwe---xpn, then p | z; for some
it € {1,2,--- ,n}.

Epp T4.3.5 (Unique Prime Factorisation)
Given any integer n > 1

Ik ezt
3p1,p2, - ,px € Pprimes,
Jer, ez, - e €ZT,

such that
=3 (=2 e
n=plps? "'pkk
and any other expression for n as a product of prime
numbers is identical, except perhaps for the order in
which the factors are written.

Epp Proposition 4.7.3
For any a € Z and any prime p,
pla—=pf(at+l)

Epp T4.7.4 (Infinitude of Primes)
The set of primes is infinite.

Definition 4.5.4 (Relatively Prime)
Integers a and b are relatively prime (or coprime) iff
ged(a,b) = 1.

Definition 4.3.1 (Lower Bound)
An integer b is said to be a lower bound for a set
XCZifb<zforallz e X.

Does not require b to be in X.
Theorem 4.3.2 (Well Ordering Principle)
If a non-empty set S C Z has a lower bound, then S

has a least element.

Note three conditions:
lower bound.

|S| > 0, S C Z, and S has

Likewise, if ... upper bound ... has a greatest element.
Proposition 4.3.3 (Uniqueness of least element)
If a set S has a least element, then the least element
is unique.

Proposition 4.3.4 (Uniqueness of greatest e.)
If a set S has a greatest element, then the greatest
element is unique.

Theorem 4.4.1 (Quotient-Remainder Theorem)
Given any integer a and any positive integer b, there
exist unique integers ¢ and r such that

a=bg+rand 0<r<b
Definition 4.5.1 (Greatest Common Divisor)
Let a and b be integers, not both zero. The greatest

common divisor of a and b, denoted gcd(a, b), is the
integer d satisfying

1. d|aand d|b
2. Ve€Z ((cla) A(c|b) = c<d)

Proposition 4.5.2 (Existence of gecd)
For any integers a, b, not both zero, their gcd exists

and is unique.

Theorem 4.5.3 (Bézout’s Identity)
Let a, b be integers, not both zero, and let d
gcd(a, b). Then there exists integers z, y such that

ar + by =d

Or, the gcd of two integers is some linear combination
of the said numbers, where z, y above have multiple
solution pairs once a solution pair (z, y) is found. Also
solutions, for any integer k,

o ka,
T+ —,y— —

a’Y "
*Epp T8.4.8 (Euclid’s Lemma)
For all a,b,c € Z, if ged(a,c) = 1 and a | be, then
alb.

*Epp Lemma 4.8.2
If a,b € ZT, and q,7 € Z s.t. a = bq + r, then

ged(a, b) = ged(b, )

Proposition 4.5.5
For any integers a, b, not both zero, if ¢ is a common
divisor of @ and b, then ¢ | gcd(a,b).

Definitoin 4.7.1 (Congruence modulo)
Let m,z € Z and d € ZT. We say that m is congruent
to n modulo d and write

m = n (mod d)

d|(m—n)
More concisely,
m=n (modd) <= d|(m—n)

Epp T8.4.1 (Modular Equivalences)
Let a,b,n € Z and n > 1. The following statements
are all equivalent,

n|(a—0b)

a =b (mod n)

a=0>b+ kn for some k € Z

a and b have the same non-negative remainder
when divided by n

Ll

ar

amodn =bmodn

Epp T8.4.3 (Modulo Arithmetic)
Let a,b,c,d,n € Z, n > 1, and suppose

a =c (mod n) and b = d (mod n)

Then
1. (a+b) = (¢c+d) (mod n)
2. (a—0b) = (c—d) (modn)
3. ab = cd (mod n)
4. a™ = c™ (mod n), for all m € ZF

Epp Corollary 8.4.4
Let a,b,c,d,n € Z, n > 1, then

ab = [(a mod n)(b mod n)] (mod n)

or equivalently,

ab mod n = [(a mod n)(b mod n)] mod n

In particular, if m is a positive integer, then

a™ = [(a mod n)™] (mod n)

Definition 4.7.2 (Multiplicative inv. modulo n)
For any integers a,n with n > 1, if an integer s is
such that as = 1 (mod n), then s is the multiplicative
inverse of a modulo n. We may write s as a™ 1.

Because the commutative law still applies in modulo
arithmetic, we also have

a"'a =1 (mod n)

Multiplicative inverses are not unique. If s is an
inverse, then so is (s + kn) for any integer k.

Theorem 4.6.3 (Existence of multiplicative in-
verse)

For any integer a, its multiplicative inverse modulo n
where n > 1, a~ !, exists iff a and n are coprime.

Finding the Multiplicative Inverse
For example, to find the multiplicative inverse of
5 mod 18,

18=3x5+3

5=1x3+2

3=1x2+1

1=1x140
So

1=1x14+0=1
183-1x2)=3-2
=3-(5-3)=2x3-5
2(18—=3x5)—5=2x18—7x5
1-2x18=-7x5
1-2x18=—7x5 (mod 18)
1=-7x5 (mod 18)

Therefore, we have 5~ mod 18 = —7, or equivalently
under modulo 11.

Corollary 4.7.4 (Special case: n is prime)

If n = p is a prime number, then all integers a in the
range 0 < a < p have multiplicative inverses modulo
p.

Epp T8.4.9 (Cancellation Law for mod. arith.)
For all a,b,c,n € Z, n > 1, and a and n are coprime,

ab = ac (mod n) — b = ¢ (mod n)



