Baye’s Rule
Suppose that By, Ba, - - - , B, are partitions of the sam-
ple space Q. Then for any event A,
P(A|B)) P(B)
Y71 P(A|B;)P(B;)

P(B;|A) =

Expectation

The expectation of a random variable X is defined
as follows for the discrete and continuous case respec-
tively,

E[X] = Z zip(zi)

E[X] = /-_O:O zf(x) dz

Moment Generating Functions
The moment generating function (MGF) of a random
variable X is,

M(t) = E[e'™]
and the 7*" moment of a random variable is E[X"] if
it exists.
Variance

The variance o2 of a random variable X, then the vari-
ance of X is,

Var(X) = E[(X - E[X])’]
And
Var(a +bX) = b*Var(X)

Sample Variance
The unbiased sample variance S? is

. i(Xq‘, - X)?
i=1

n—1

2
S =
The biased sample variance &2 is

1 & -
62 == (X — X)?
n =1

Covariance

If X and Y are jointly distributed random variables
with means px and py respectively, then the covari-
ance of X and T is,

Cou(X,Y) = E[(X — jix)(Y — iy )]
If X and Y are independent, then
Cov(X,Y) = E[XY] — E[X]E[Y]

If X and Y are positively associated, then the covari-
ance will be positive, and vice versa.

Correlation
Additionally, the correlation p can be expressed as,
Cov(X,Y)

r= Var(X)Var(Y)

—1<p<landp==41 < P(Y =a+bX) =1 for
some constants a, b.

Mean Square Error
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If the true value of a quantity being measured is de-
noted xzg, then the measurement X can be modelled
as,

X=z,+B+c¢€

where (3 is the constant error and e is the random com-
ponent of the error. And

Ele] =0
Var(e) = o

E[X] =0 + 8
Var(X) = o?

The mean squared error is then
MSE = 8% + o2

Bias and Standard Error R
The bias of an estimator is given by E[§] — 6g. The
standard error is the standard deviation of the sam-
pling distribution.
Bernoulli Distribution
The Bernoulli distribution is defined over the parame-
ter p € [0,1]. Its PMF is

1- if x =

P(X:a:):{ p iHz=0
P ifxe =1

The MGF is 1 — p + pe'. The mean and variance are
p and p(1 — p) respectively. The fisher information is

1/(pq)-

Binomial Distribution
The binomial distribution is defined over two parame-
ters, n € {0,1,2,---} and p € [0, 1]. Its PMF is

Px =k = (7)pFa—-p"

The MGF is (1—p+pe’)™. The mean and variance are
np and np(l — p) respectively. The fisher information
is ﬁ for a fixed n.

Poisson Distribution
The poisson distribution is defined over the parameter
A > 0. Its PMF is

Ake—A
P(X=k) ="

The MGF is eMet ~1. The mean and variance are both
A. The fisher information is 1/A.
Geometric Distribution

The geometric distribution is defined over the param-
eter k € ZT. Its PMF is

P(X =k) =p(1-p""
The MFG is pe’ /(1—(1—p)e’). The mean and variance
are 1/p and (1 — p)/p? respectively.

Gamma Distribution
The gamma distribution is defined over two parame-
ters, a > 0, A > 0. Its PDF is

AT
I(a)

a—1_—Az
x €

f(z) =

The MGF is (1 - %)70{ for t < X. The mean and
variance are /X and a/A? respectively.

Normal Distribution

The normal distribution is defined over two parame-
ters, —oo < p < oo, o > 0. Its probability density
function is

L —@=m?/202
oV 2T ’

flx) =

—oco < x < 00

The MGF is e*t7°t*/2 Tts mean and variance are m
and o2 respectively. The normal distribution is sym-
metric about p, such that f(u —x) = f(pu + ).
Standard Normal Distribution

Z ~ N(0,1) is the standard normal. Its CDF is com-
monly denoted ® and its density ¢. To ’standardise’ a
normal distribution X to Z, note that

X —p

Z = ~ N(0,1)

x2 Distribution

For the standard random variable Z, the distribution
of Y = Z? is called the chi-square distribution with 1
degree of freedom, X?-

X? is a special case of the gamma distribution, where
a=A=1/2ie xi:=0(1/2,1/2).

Then, if Y1,Ys,---,Y, are independent Xf random
variables, the distribution of W = Y1 + Yo +--- + Y,
is2the chi? random variable with n degrees of freedom,
Xn -

The density of Xi ~T'(n/2,1/2) is given by

1
_ (n/2)—1 _x/2
1@ = rmr ) ® ¢

t Distribution
For the standard normal random variable Z and U ~
Xi, where Z and U are independent, the distribution
of Z/+/U/n is the t distribution with n degrees of free-
dom. Its PDF is

) = I[(n+1)/2] (1 N ﬁ) —(n+1)/2
vnrl'(n/2) n

F Distribution

If U ~ XZ and V ~ an, then the distribution of

W = ‘[/J//;:L is the F' distribution with n and m degrees

of freedom, F}, .. Its PDF is

oy = Ko m)/3 (l)”“ Ln/2-1 (1 n iz)—<n+m)/2

T(m/2)0(n/2) \m m

for > 0. Also, if T ~ t,, then T? ~ Fy ,

Central Limit Theorem
Let X1, X2, -+ be a sequence of independent random
variables having mean 0 and variance o2 and the com-
mon distribution function F' and MGF m defined in a
neighbourhood of zero. If

then

lim P S < =3
AP\ s =) =@

A more useful result is as follows: if X1, Xo,---
are i.i.d. random variables with large n, then

» Xn

X ~ N(u,o®/n)

Linear Functions of a Random Variable
Let Y = g(X). To find fy (y),

Fy(y) = P(Y <)

= P(g(X) < p)
=P(X <g '(w)
= Fx(g ()

Fr(y) = %Fx@*l(y))

dg

-1
= S tx 7 W)

Non-linear Functions of Random Variables

Let Y = g(X), where X := (X1, X2, -+) with mean
vector . Then, in order to find the mean and variance
of Y, first take the Taylor expansion of g(X),

Y = g(X)

9g(p)
(9:E1

9g(p)
69:2

~ g(p) + (X1 — p1)

Then, E[Y] ~ g(p), and

+(Xa = pa) 2y

Var(Y) ~ Var(g(p) + (X1 — u1) - -

Consider for example, X .= (X1, X2). Then

Var(X) ~ 0%, (850(6’1‘))2 +

2 (0g(w)\?
7Xa < oy ) T

o (500) (5)

Simple Random Sampling

Simple random sampling without replacement means
that each sample is not independent of another. While
the mean of the simple random sample is still unbiased,
that is E[X] = p,

Cov(Xi, X;) = —o /(N — 1)

for two different simple random samples, i.e.
The variance of the sample mean then becomes

i # g



Var(X) = %2 (%:’;)

The variance of the sample total is

Var(T) = N? (Uj>

For both expressions above, however, ¢ is unknown and
must be estimated. Therefore, we have also the unbi-
ased estimates for Var(X) and Var(T)

2
9 s n
s% — (1= =
X n( N)

sg- = st%(
where 52 = L3 (X — X)? is the unbiased sam-
ple variance.
Method of Moments Estimators
The method of moments estimates the parameter 6 by
finding expressions for it in terms of the lowest possible
order moments and then substituting sample moments
into these expressions.

N —n
N -1

Maximum Likelihood Estimators
The MLE estimator finds an estimate of the parameter
6o which maximises the probability of having observed
the sample. The likelihood function is

n
L(0) = [ f(=il0)
i=1
Often, this function is difficult to maximise. Since log
is a monotonic increasing function, we may simplify
this problem by finding the maximum of the loglikeli-
hood function instead

1(0) = > log f(x:]0)
i=1

Consistency

Let 6, be an estimate of a parameter 6y based on a
sample of size n. theta, is said to be consistent in
probability if 0, converges in probability to 6p as n
approaches infinity. That is, for € > 0,

P(|0,, — o] > €) = 0 as n — oo

Fisher Information
The fisher information, I(0) is defined as

106) = B [ 55 108 7 (x16)| ’

82
=—-E l:@ 10gf(X|9):|

Large Sample Theory for MLE

Let 6 denote the MLE of 6. The probability distribu-
tion of

nI(60)(6 — o)

tends to a standard normal distribution.
the asymptotic variance of the MLE is

Therefore,

o1
nI(0) ~  E["”(60)]

Approximate Confidence Intervals

Confidence intervals can be approximated through the
large sample theory for MLE by taking /nl(00)(0 —
0p) — N(0,1), as n — oo.

P <7z(oz/2) < A/nI(0)(0 —0p) < z(a/2)> ~Xl—a



