
PySBD
Pragmatic Sentence Boundary Disambiguation

2nd Workshop for
Natural Language Processing Open Source Software (NLP-OSS)

@
EMNLP 2020

Authors

Mark Neumann

 Senior Research Engineer @

Nipun Sadvilkar

Senior Data Scientist @

SBD : A Solved Problem?

1. SBD is a key underlying task for natural language processing &
acts as primary input for downstream tasks such as:

a. Machine Translation
b. Named Entity Recognition
c. Coreference Resolution

2. SBD seems trivial though it complex as per domain
e.g medical reports, legal documents, academic literature

3. Treating - “?!:;.” - as end of sentence (EOS)
markers won't suffice

4. An ideal SBD system should be able to disambiguate
between edge cases and false EOS markers

SBD Approaches

1. Rules-based
Requires hand crafted
rules/heuristics
syntok , Stanford CoreNLP

2. Supervised Machine Learning
Requires annotated datasets
Palmer and Hearst, 1997
Evang et al., 2013

3. Unsupervised Machine Learning
Requires distributional statistics
derived from
raw text corpus
Kiss and Strunk, 2006

https://github.com/fnl/syntok
https://stanfordnlp.github.io/CoreNLP/ssplit.html
https://www.aclweb.org/anthology/J97-2002
https://www.aclweb.org/anthology/D13-1146
https://www.aclweb.org/anthology/J06-4003.pdf

Golden Rules Set over PTB/WSJ corpora

● Benchmarking with respect to Penn Treebank/Wall Street Journal corpora

○ Majority sentences end with a regular followed by typical punctuation

■ PTB corpus: ~90% same EOS pattern
■ WSJ corpus: ~53% same EOS pattern

○ Less end of sentence marker variation

 Q. What would be a better way?

➔ Introducing Golden Rules Set (GRS)

◆ Hand constructed rules designed to cover sentence boundaries across a variety of domains.
◆ Keeps track of edge case scenarios

PySBD Python API: Building Blocks

Four key components:

1. Segmenter
Public API to tweak PySBD as per user needs

2. Processor
Core rules engine

3. Language
Makes PySBD multilingual

4. Cleaner
Handles noisy text

Segmenter

Setup segmenter as per user needs:

➢ language
2 character ISO 639-1 code

➢ doc_type
Plain text / text obtained from OCRed pdf

➢ clean
To handle noisy input text

➢ char_span
Retrieve indices of sentences

Processor

● Core rules engine processes text in 3 stages:

○ Preprocess

○ Segment

○ Postprocess

● Purpose-driven segregated rules set like:

○ ListItemReplacer

○ AbbreviationReplacer

○ ExclamationWords

○ BetweenPunctuation, etc.

Language

● Accommodates 22 languages:
Amharic, Arabic, Armenian,
Bulgarian, Burmese, Chinese, Danish,
Deutsch, Dutch, French, Greek,
Hindi, Italian, Japanese, Kazakh,
Marathi, Persian, Polish, Russian,
Spanish, Urdu

● Each language is inherited
from two sub-components:

○ Common

○ Standard

Common Rules Set

AM-PM regex set

Numbers regex set

Generic Sentence Boundary regex

Quotation regex

Parenthesis regex

Standard Rules Set

Generic Punctuations

Default Abbreviations

Geolocation reference regex

Fileformat mentions regex

Ellipsis regex set

Cleaner

Text in the wild can be noisy: extraneous line breaks, unicode characters,
uncommon spacing and hangovers from document structure.

● Set of text cleaning rules such as:
○ Irregular newline characters/spacing
○ Table of contents
○ URLs, HTML tags
○ Sentences delimited without any space

● Cleaner is enabled through Segmenter
● Disables char_span functionality

Benchmarks & Results

English GRS:
comprising 48 rules

GENIA Corpus:
Linguistically
annotated biomedical
papers

Speed benchmark:
on the entire text of

‘The adventures of Sherlock Holmes’

https://www.semanticscholar.org/paper/GENIA-corpus-a-semantically-annotated-corpus-for-Kim-Ohta/da6c3fdf8ef9aae979a5dd156e074ba6691b2e2c
https://github.com/allenai/genia-dependency-trees

Multilingual Support

Accuracy of PySBD’s multilingual modules* on the
OPUS 100 multilingual corpus test sets, containing
2000 sentences per language.

*Each language module build with respect to its own GRS.

http://opus.nlpl.eu/opus-100.php

Contributing Guidelines

1. Add a new rule to existing Golden Rules Set (GRS)

Existing rules in GRS are by no means exhaustive.
Contribute by reporting a new rule by an opening an issue on our GitHub repo.

2. Add support for a new Language

We would be more than happy to assist you in
adding new Language support to PySBD.

Refer to docs to know more in details.

https://github.com/nipunsadvilkar/pySBD/blob/master/CONTRIBUTING.md#add-a-new-rule-to-existing-golden-rules-set-grs
https://github.com/nipunsadvilkar/pySBD/blob/master/CONTRIBUTING.md#submitting-issues
https://github.com/nipunsadvilkar/pySBD/blob/master/CONTRIBUTING.md#add-new-language-support
https://github.com/nipunsadvilkar/pySBD/blob/master/CONTRIBUTING.md#add-new-language-support

Why PySBD?

● Built by considering various domain edge cases

● Package Development with Test-Driven Development (TDD) ♻

to ensure robustness 💪🏼

● Non-Destructive Segmentation 👌🏼

● Multilingual Support 🌏

Conclusion

● PySBD has interpretable rules and are easy to modify

● Highly accurate - 97% English GRS - irrespective of domain ✅

● Robust codebase with 98% test coverage 💚

● Lightweight, easy to integrate with existing NLP pipelines

● Extensible in community driven way

● Already being used by 71 projects*

*as of 22 October 2020

