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Abstract. This document describes a library for similarity searching.
Even though the library contains a variety of metric-space access meth-
ods, our main focus is on search methods for non-metric spaces. Because
there are fewer exact solutions for non-metric spaces, many of our meth-
ods give only approximate answers. Thus, the methods are evaluated in
terms of efficiency-effectiveness trade-offs rather than merely in terms of
their efficiency. Our goal is, therefore, to provide not only state-of-the-
art approximate search methods for both non-metric and metric spaces,
but also the tools to measure search quality. We concentrate on techni-
cal details, i.e., how to compile the code, run the benchmarks, evaluate
results, and use our code in other applications. Additionally, we explain
how to extend the code by adding new search methods and spaces.

1 Introduction

1.1 Motivation

The Non-Metric Space Library is a collection of similarity search methods and
a toolkit for their evaluation. Our software suit can also be used as a standalone
search library on Linux and Windows. Most search methods were implemented
by Bileg(saikhan) Naidan and Leo(nid) Boytsov.3 Additional contributors are
listed on the GitHub page.

The code written by Bileg and Leo is distributed under the business-friendly
Apache License. Some contributions are licensed differently. For more informa-
tion regarding licensing and acknowledging the use of the library resource, please
refer to § 9.

3 Leo(nid) Boytsov is a maintainer.

https://github.com/searchivarius/NonMetricSpaceLib
http://apache.org/licenses/LICENSE-2.0
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The design of the library was influenced by and superficially resembles the
design of the Metric Spaces Library [18]. Yet our approach is different in many
ways:

– We focus on approximate4 search methods and non-metric spaces.
– We simplify experimentation, in particular, through automatically measur-

ing and aggregating important parameters related to speed and accuracy.
In addition, we provide capabilities for testing in both single- and multi-
threaded modes to ensure that implemented solutions scale well with the
number of available CPUs.

– We care about overall efficiency and aim to implement methods that have
runtime comparable to an optimized production system.

Search methods for non-metric spaces are especially interesting. This domain
does not provide sufficiently generic exact search methods. We may know very
little about analytical properties of the distance or the analytical representation
may not be available at all (e.g., if the distance is computed by a black-box
device [29]). In many cases it is not possible to search exactly and instead one
has to resort to approximate search procedures.

This is why methods are evaluated in terms of efficiency-effectiveness trade-
offs rather than merely in terms of their efficiency. We believe that there is no
“one-size-fits-all” search method. Hence, it is important to being able to evaluate
the “goodness of fit” for a particular domain.

Our commitment to efficiency affected several design decisions:

– The library is implemented in C++;
– We focus on in-memory indices and, thus, do not require our methods to

materialize a disk-based version of an index (this also reduces programming
effort).

– We provide efficient implementations of many distance functions, which rely
on Single Instruction Multiple Data (SIMD) CPU commands and/or ap-
proximation of computationally intensive mathematical operations (see § 7).

It is often possible to demonstrate a substantial reduction in the number
of distance computations compared to sequential searching. However, such re-
ductions entail additional computations (i.e., extra book-keeping) and do not
always lead to improved overall performance [3]. To eliminate situations where
book-keeping costs are “masked” by inefficiencies of the distance function, we
pay special attention to distance function efficiency.

1.2 Problem Formulation

Similarity search is an essential part of many applications, which include, among
others, content-based retrieval of multimedia and statistical machine learning.

4 An approximate method may not return a true nearest-neighbor or all the points
within a given query ball.
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The search is carried out on a finite database of objects {oi} (we also used a term
data point or simply point), using a search query q and a dissimilarity measure.
The dissimilarity measure is typically represented by a distance function d(oi, q).
The ultimate goal is to answer a query by retrieving a subset of database objects
sufficiently similar to the query q. These objects will be called answers. Note
that we use the terms distance and the distance function in a broader sense
than usually: We do not assume that the distance is a true metric distance. The
distance can be asymmetric and is not constrained to be metric (i.e., it may not
satisfy the triangle inequality).

Two retrieval tasks are typically considered: a nearest neighbor and a range
search. The nearest neighbor search aims to find the least dissimilar object, i.e.,
the object at the smallest distance from the query. Its direct generalization is
the k-nearest neighbor search (the k-NN search), which looks for the k most
closest objects. Given a radius r, the range query retrieves all objects within a
query ball (centered at the query object q) with the radius r, or, formally, all
the objects {oi} such that d(oi, q) ≤ r. In generic spaces, the distance is not
necessarily symmetric. Thus, two types of queries can be considered. In a left
query, the object is the left argument of the distance function, while the query
is the right argument. In a right query, q is the first argument and the object is
the second, i.e., the right, argument.

The queries can be answered either exactly, i.e., by returning a complete
result set that does not contain erroneous elements, or, approximately, e.g.,
by finding only some answers. Thus, the methods are evaluated in terms of
efficiency-effectiveness trade-offs rather than merely in terms of their efficiency.
One common effectiveness metric is recall. In the case of the nearest neighbor
search, it is computed as an average fraction of true neighbors returned by the
method. If ground-truth judgements (produced by humans) are available, it is
possible to compute an accuracy of a k-NN based classification (see § 3.5.2).

In the current release, we focus on vector-space implementations, i.e., all the
distance functions are defined over real-valued vectors. Note that this is not a
principal limitation, because most methods do not access data objects directly.
Instead, they rely only on distance values. In the future, we plan to add more
complex spaces, in particular, string-based.

2 Getting Started

2.1 Prerequisites

The Non-Metric Space Library was developed and tested on 64-bit Linux. Yet,
almost all the code (except LSHKIT) can be built and run on 64-bit Windows.
Building the code requires a modern C++ compiler that supports C++11. Cur-
rently, we support GNU C++ (≥ 4.7), Intel compiler (≥ 14), Clang (≥ 4.2.1),
and Visual Studio (≥ 12; note that you can use the free express version). Under
Linux, the build process relies on CMake. Under Windows, one should use Visual
Studio projects stored in the repository.
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Note, however, that we do not have a portable code to measure memory
consumption: This part will work only for Linux (with PROCFS) and Windows.

More specifically, for Linux we require:

1. A 64-bit distributive (Ubuntu LTS is recommended);
2. GNU C++ (≥ 4.7), Intel Compiler (≥ 14), Clang (≥ 4.2.1);
3. Cmake (GNU make is also required);
4. Boost (dev version ≥ 48, Ubuntu package libboost1.48-all-dev);
5. GNU scientific library (dev version, Ubuntu package libgsl0-dev).

For Windows, we require:

1. A 64-bit distributive (we tested on Windows 8);
2. Visual Studio Express (or Professional) version 12 or later;
3. Boost is not required to build the core library and test utilities, but it is

needed by the main testing binary experiment.exe (see § 3.2).

Efficient implementations of many distance functions (see § 7) rely on SIMD
instructions, which operate on small vectors of integer or floating point numbers.
These instructions are available on most modern processors, but we support only
SIMD instructions available on recent Intel and AMD processors. Each distance
function has a pure C++ implementation, which can be less efficient than an op-
timized SIMD-based implementation. On Linux, SIMD-based implementations
are activated automatically for all sufficiently recent CPUs. On Windows, it is
necessary to update project settings manually (see §3.2).

Scripts to generate and process data sets are written in Python. We also
provide the Python script to plot performance graphs: genplot.py (see § 3.7). In
addition to Python, this plotting script requires Latex and PGF.

2.2 Installing C++11 Compilers

Installing C++11 compilers can be tricky, because they are not always provided
as a standard package. This is why we briefly review the installation process
here.

It is, perhaps, the easiest to obtain Visual Studio 12 by simply downloading
it from the Microsoft web-page. We were able to build and run the 64-bit code
using the free distributive of Visual Studio Express 12 (also called Express

2013). The professional (and expensive) version of Visual Studio is not required.
To install GNU C++ version 4.7 on some Linux distributions with the Debian

package management system, one can simply type:

sudo apt-get install gcc-4.7 g++-4.7

However, it did not work for us and we needed to use an experimental repository
as follows:

sudo add-apt-repository ppa:ubuntu-toolchain-r/test

sudo apt-get update

sudo apt-get install gcc-4.7 g++-4.7

https://en.wikipedia.org/wiki/Procfs
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_scripts/sample_scripts/genplot.py
http://www.microsoft.com/en-us/download/details.aspx?id=40787
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If the script add-apt-repository is missing, it can be installed as follows:

sudo apt-get install python-software-properties

More details can be found on the AskUbuntu web-site.
Similarly to the GNU C++ compiler, to install a C++11 version of Clang,

one may need to add a non-standard repository. For Debian and Ubuntu distri-
butions, it is easiest to add repositories from the LLVM web-site. For example,
if you have Ubuntu 12 (Precise), you need to add repositories as follows:5

sudo add-apt-repository \

"deb http://llvm.org/apt/precise/ llvm-toolchain-precise main"

sudo add-apt-repository \

"http://llvm.org/apt/precise/ llvm-toolchain-precise main"

sudo add-apt-repository \

"deb http://llvm.org/apt/precise/ llvm-toolchain-precise-3.4 main"

sudo add-apt-repository \

"http://llvm.org/apt/precise/ llvm-toolchain-precise-3.4 main"

sudo add-apt-repository \

"deb http://ppa.launchpad.net/ubuntu-toolchain-r/test/ubuntu \

precise main"

Then, Clang 3.4 (and LLDB debugger) can be installed by typing:

sudo apt-get install clang-3.4 lldb-3.4

The Intel compiler can be freely used for non-commerical purposes. It is
a part of C++ Composer XE for Linux and can be obtained from the Intel
web site. After downloading and running an installation script, one needs to
set environment variables. If the compiler is installed to the folder /opt/intel,
environment variables are set by a script as follows:

/opt/intel/bin/compilervars.sh intel64

One pitfall on Linux is that installing compilers does not necessarily make
them default compilers. One way to fix this is to set environment variables CXX

and CC. For the GNU 4.7 compiler:

export CXX=g++-4.7 CC=gcc-4.7

For the Clang compiler:

export CXX=clang++ CC=clang

For the Intel compiler:

export CXX=icc CC=icc

5 Do not forget to remove deb-src for source repositories. See the discussion here for
more details.

http://askubuntu.com/questions/113291/how-do-i-install-gcc-4-7
http://llvm.org/apt/
http://software.intel.com/en-us/non-commercial-software-development
http://software.intel.com/en-us/non-commercial-software-development
http://askubuntu.com/questions/160511/why-does-add-apt-repository-fail-to-add-source-repositories
http://askubuntu.com/questions/160511/why-does-add-apt-repository-fail-to-add-source-repositories
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2.3 Quick Start on Linux

To build the project, go to the directory similarity search and type:

cmake .

make

This creates several binaries in the directory similarity search/release, most
importantly, a benchmarking utility experiment, which carries out experiments,
and testing utilities bunit, test integer, and bench distfunc. Examples of
using this benchmarking utility can be found in the directory sample scripts.
Please, check the script sample run.sh.

A more detailed description of the build process on Linux is given in § 3.1.

2.4 Quick Start on Windows

Building on Windows is straightforward: One can simply use the provided Visual
Studio solution file. The solution file references several project (*.vcxproj) files:
NonMetricSpaceLib.vcxproj is the main project file that is used to build the
library itself. The output is stored in the folder similarity search\x64. Note
that the core library, the test utilities, as well as examples of the standalone
applications (projects sample standalone app1 and sample standalone app2)
can be built without installing Boost.

A more detailed description of the build process on Windows is given in § 3.2.

3 Building and running the code (in detail)

A build process creates several important binaries, which include:

– The Non-Metric Space Library library (on Linux libNonMetricSpaceLib.a),
which can be used in external applications;

– The main benchmarking utility experiment (experiment.exe on Windows)
that carries out experiments and saves evaluation results;

– A tuning utility tune vptree (tune vptree.exe on Windows) that finds
optimal VP-tree parameters (see § 5.1.1 and our paper for details [4]);

– A semi unit test utility bunit (bunit.exe on Windows);

– A utility bench distfunc that carries out integration tests (bench distfunc.exe

on Windows);

A build process is different under Linux and Windows. In the following sec-
tions, we consider these differences in more detail.

https://github.com/searchivarius/NonMetricSpaceLib/tree/master/similarity_search
https://github.com/searchivarius/NonMetricSpaceLib/tree/master/sample_scripts
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_scripts/sample_run.sh
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/NonMetricSpaceLib.sln
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/NonMetricSpaceLib.sln
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/src/NonMetricSpaceLib.vcxproj
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3.1 Building under Linux

Implementation of similarity search methods is in the directory similarity search.
The code is built using a cmake, which works on top of the GNU make. Before
creating the makefiles, we need to ensure that a right compiler is used. This
is done by setting two environment variables: CXX and CC. In the case of GNU
C++ (version 4.7), you need to type:

export CCX=g++-4.7 CC=gcc-4.7

In the case of the Intel compiler, you need to type:

export CXX=icc CC=icc

To create makefiles for a release version of the code, type:

cmake -DCMAKE_BUILD_TYPE=Release .

If you did not create any makefiles before, you can shortcut by typing:

cmake .

To create makefiles for a debug version of the code, type:

cmake -DCMAKE_BUILD_TYPE=Debug .

When makefiles are created, just type:

make

If cmake complains about the wrong version of the GCC, it is most likely that
you forgot to set the environment variables CXX and CC (as described above).
If this is the case, make these variables point to the correction version of the
compiler. Important note: do not forget to delete the cmake cache file, before
recreating the makefiles:

rm CMakeCache.txt

Also note that, for some reason, cmake may ignore environmental variables
CXX and CC. Then, you can specify the compiler directly through cmake argu-
ments. For example, in the case of the GNU C++ and the Release build, this
can be done as follows:

cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_COMPILER=g++-4.7 \

-DCMAKE_GCC_COMPILER=gcc-4.7 CMAKE_CC_COMPILER=gcc-4.7 .

The build process creates several binaries. Most importantly, the main bench-
marking utility experiment. The directory similarity search/release con-
tains release versions of these binaries. Debug versions are placed into the folder
similarity search/debug.

Important note: a shortcut command:
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cmake .

(re)-creates makefiles for the previously created build. When you type cmake .

for the first time, it creates release makefiles. However, if you create debug make-
files and then type cmake ., this will not lead to creation of release makefiles!

To use the library in external applications, which do not belong to the library
repository, one needs to install the library first. Assume that an installation loca-
tion is the folder NonMetrLibRelease in the home directory. Then, the following
commands do the trick:

cmake \

-DCMAKE_INSTALL_PREFIX=$HOME/NonMetrLibRelease \

-DCMAKE_BUILD_TYPE=Release .

make install

A directory sample standalone app contains two sample programs (see files
sample standalone app1.cc and sample standalone app2.cc) that use the Non-
Metric Space Library installed in the folder $HOME/NonMetrLibRelease.

3.1.1 Developing and Debugging on Linux There are several debuggers
that can be employed. Among them, some of the most popular are: gdb (a
command line tool) and a ddd (a GUI wrapper for gdb). For users who prefer
IDEs, one good option is Eclipse IDE for C/C++ developers. It is not the same
as Eclipse for Java and one needs to download this version of Eclipse separately..

After downloading and decompressing, e.g. as follows:

tar -zxvf eclipse-cpp-europa-winter-linux-gtk-x86_64.tar.gz

one can simply run the binary eclipse (in a newly created directory eclipse).
On the first start, Eclipse will ask you select a repository location. This would
be the place to store the project metadata and (optionally) actual project source
files.

After selecting the workspace, the user can import the Eclipse project stored
in the GitHub repository. Go to the menu File, sub-menu Import, category
General and choose to import an existing project into the workspace as shown
in Fig. 1. After that select a root directory. To this end, go to the direc-
tory where you checked out the contents of the GitHub repository and enter
a sub-directory similarity search. You should now be able to see the project
Non-Metric-Space-Library as shown in Fig 2. You can now finalize the import
by pressing the button Finish.

Next, we need to set some useful settings. Most importantly, we need to
enable indexing of source files. This would allow us to browse class hierarchies,
as well as find declarations of variables or classes. To this end, go to the menu
Window, sub-menu Preferences and select a category C++/indexing (see Fig. 3).
Then, check the box Index all files. Eclipse will start indexing your files with
the progress being shown in the status bar (right down corner).

The user can also change the editor settings. We would strongly encourage
to disable the use of tabs. Again, go the menu Window, sub-menu Preferences

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_standalone_app
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_standalone_app/sample_standalone_app1.cc
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_standalone_app/sample_standalone_app2.cc
http://www.eclipse.org/downloads/moreinfo/c.php
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Fig. 1: Selecting an existing project to import

and select a category General/Editors/Text Editors. Then, check the box
Insert spaces for tabs. In the same menu, you can also change the fonts
(use the category General/Appearance/Colors and Fonts).

It is possible to build the project from Eclipse ( see the menu Project).
However, one first needs to generate makefiles as described in § 3.1. The cur-
rent limitation is that you can build either release or the debug version at a
time. Moreover, to switch from one version to another, you need to recreate the
makefiles from the command line.

After building you can debug the project. To do this, you need to create
a debug configuration. As an example, one configuration can be found in the
project folder launches. Right click on the item sample.launch, choose the
option Debug as (in the drop-down menu), and click on sample (in the pop-up
menu). Note that you may need to edit command line arguments.

After switching to a debug perspective, the Eclipse may stop the debugger
in the file dl-debug.c as shown in Fig. 5. If this happened, simply, press the
continue icon a couple of times until the debugger enters the code belonging to
the library.

Additional configurations can be created by right clicking on the project
name (left pane), selecting Properties in the pop-up menu and clicking on
Run/Debug settings. The respective screenshot is shown in Fig. 4.
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Fig. 2: Importing an existing project

Note that this manual contains only a basic introduction to Eclipse. If the
user is new to Eclipse, we recommend reading additional documentation available
online.

3.2 Building under Windows

It is straightforward to build the project using the provided Visual Studio solu-
tion file. The solution file references several (sub)-project (*.vcxproj) files, which
can be built either separately or all together.

The main sub-project is NonMetricSpaceLib that is built before any other
sub-projects. Two sub-projects: sample standalone app1, sample standalone app2

are examples of using the library in a standalone mode. Unlike building under
Linux, we provide no installation procedure yet. In a nutshell, the installation
consists in copying the library binary as well as the directory with header files.

There are three possible configurations for the binaries: Release, Debug, and
RelWithDebInfo (release with debug information). The corresponding output
files are placed into the subdirectories:

similarity_search\x64\Release,

similarity_search\x64\Debug,

similarity_search\x64\RelWithDebInfo.

http://www.eclipse.org/downloads/moreinfo/c.php
http://www.eclipse.org/downloads/moreinfo/c.php
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/NonMetricSpaceLib.sln
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/NonMetricSpaceLib.sln
https://github.com/searchivarius/NonMetricSpaceLib/tree/master/similarity_search/include
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Fig. 3: Enabling indexing of the source code

If the user’s CPU supports AVX extensions, it is recommended to modify
code generation settings as shown in the screenshot in Fig. 6. This should be
done for all sub-projects. Unlike other compilers, there seems to be no way to
detect the CPU type in the Visual Studio automatically.6

The core library, the semi unit test binary as well as examples of the stan-
dalone applications can be built without installing Boost. However, Boost li-
braries are required for the binaries experiment and tune vptree. The installer
of the Boost libraries can be downloaded from this page. Note that one needs
64-bit binaries compiled with the same version of the Visual Studio as the Non-
Metric Space Library binaries. For Visual Studio 12, one can use the following
download link.

We recommend installing Boost into the folder c:\local\boost 1 55 0.64.
Then, no modifications of the project settings are required. Should you install
into a different folder, the location of Boost binaries and header file need to
be specified in the project settings for all three build configurations (Release,
Debug, RelWithDebInfo). An example of specifying the location of Boost li-
braries (binaries) is given in Fig. 7.

6 It is not also possible to opt for using only SSE4.

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
http://boost.teeks99.com/bin/1.55.0/
http://boost.teeks99.com/bin/1.55.0/boost_1_55_0-msvc-12.0-64.exe
http://en.wikipedia.org/wiki/SSE4


12 Bilegsaikhan Naidan and Leonid Boytsov

Fig. 4: Creating a debug/run configuration

3.3 Testing the Correctness of Implementations

We have two main testing utilities bunit and test integr (experiment.exe
and test integr.exe on Windows). Both utilities accept the single optional
argument: the name of the log file. If the log file is not specified, a lot of infor-
mational messages are printed to the screen.

The bunit verifies some basic functitionality akin to unit testing. In partic-
ular, it checks that an optimized version of, e.g., the Eucledian, distance returns
results that are very similar to the results returned by unoptimized and simpler
version. The utility bunit is expected to always run without errors.

The utility test integr runs complete implementations of many methods
and checks if several effectiveness and efficiency characteristics meet the ex-
pectations. The expectations are encoded as an array of instances of the class
MethodTestCase (see the code here). For example, we expect that the recall (see
§ 3.5.2) fall in a certain pre-recorded range. Because almost all our methods are
randomized, there is a great deal of variance in the observed performance char-
acteristics. Thus, some tests may fail infrequently, if e.g., the actual recall value
is slightly lower or higher than an expected minimum or maximum. From an
error message, it should be clear if the discrepancy is substantial, i.e., something
went wrong, or not, i.e., we observe an unlikely outcome due to randomization.
The exact search method, however, should always have an almost perfect recall.

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/test/test_integr.cc#L65
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Fig. 5: Starting a debugger

Fig. 6: Enabling SIMD Instructions in the Visual Studio
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Fig. 7: Specifying Location of Boost libraries

3.4 Running Benchmarks

There are no major differences in benchmarking on Linux and Windows. There is
a single benchmarking utility experiment (experiment.exe on Windows) that
includes implementation of all methods. It has multiple options, which specify,
among others, a space, a data set, a type of search, and a list of methods to
test (with parameters). These options and their use cases are described in the
following subsections.

3.4.1 Space and distance value type A distance function can return an
integer (int), a single-precision (float), or a double-precision (double) real
value. A type of the distance and its value is specified as follows:

-s [ --spaceType ] arg space type, e.g., l1, l2, lp:p=0.25

--distType arg (=float) distance value type:

int, float, double

A description of a space may contain parameters (parameters may not contain
whitespaces). In this case, there is colon after the space mnemonic name followed
by a comma-separated (not spaces) list of parameters in the format: <parameter
name>=<parameter value>. Currently, this is used only for Lp spaces. For in-
stance, lp:0.5 denotes the space L0.5. A detailed list of possible spaces and
respective distance functions is given in Table 2 in § 4.
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For real-valued distance functions, one can use either single- or double-
precision type. Single-precision is a recommended default.7 We do not have a
space with integer-valued distance function yet, but we plan to implement an
edit distance in the nearest future.

3.4.2 Input Data/Test Set There are three options that define the data to
be indexed:

-i [ --dataFile ] arg input data file

--maxNumData arg (=0) if non-zero, only the first

maxNumData elements are used

-d [ --dimension ] arg (=0) optional dimensionality

The input file can be indexed either completely, or partially. In the latter case,
the user can create the index using only the first --maxNumData elements. In
the case of vector-space data, the dimensionality is determined by the number
of columns in the data file. The user may choose to restrict the dimensionality
and use only the first --dimension columns.

For testing, the user can use a separate test set. It is, again, possible to limit
the number of queries:

-q [ --queryFile ] arg query file

--maxNumQuery arg (=1000) if non-zero, use maxNumQuery query

elements(required in the case

of bootstrapping)

If a separate test set is not available, it can be simulated by bootstrapping.
To this, end the --maxNumData elements of the original data set are randomly
divided into testing and indexable sets. The number of queries in this case is de-
fined by the option --maxNumQuery. A number of bootstrap iterations is specified
through an option:

-b [ --testSetQty ] arg (=0) # of sets created by bootstrapping;

Benchmarking can be carried out in either a single- or a multi-threaded mode.
The number of test threads are specified as follows:

--threadTestQty arg (=1) # of threads

3.4.3 Query Type Our framework supports the k-NN and the range search.
The user can request to run both types of queries:

-k [ --knn ] arg comma-separated values of k

for the k-NN search

-r [ --range ] arg comma-separated radii for range search

7 It is not clear yet, if having double-precision distance functions is essential. Yet, we
decided to keep them. Thanks to C++ templates, it requires very little additional
effort.
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For example, by specifying the options

--knn 1,10 --range 0.01,0.1,1

the user requests to run queries of five different types: 1-NN, 10-NN, as well
three range queries with radii 0.01, 0.1, and 1.

3.4.4 Methods The following is an option to specify search methods:

-m [ --method ] arg list of method(s) with parameters

Methods, similar to spaces, accept parameters (parameters may not contain
whitespaces). In this case, the name of the method is followed by a colon and
a comma-separated list (no-spaces) of parameters in the format: <parameter

name>=<parameter value>. For a detailed list of methods and their parameters,
please, refer to § 5.

3.4.5 Saving and Processing Benchmark Results The benchmarking
utility outputs a detailed report (including all the log entries) to the screen (we
plan to improve logging in the nearest future). To save benchmarking results to
a file, on needs to specify a parameter:

-o [ --outFilePrefix ] arg output file prefix

In fact, we create two files: a human-readable report (suffix .rep) and a tab-
separated data file (suffix .data). By default, the benchmarking utility creates
files from scratch. The following option can be used to make it work in the
append mode:

--appendToResFile arg (=0) append mode flag

For information on processing and interpreting results see § 3.5. A description
of the plotting utility is given in § 3.7.

Finally, one can redirect the output of the benchmarking utility to a log-file:

-l [ --logFile ] arg log file

The default behavior is to send all messages to the standard error stream.

3.4.6 Efficiency of Testing Except for measuring methods’ performance,
two expensive operations are computing ground truth answers and indexing.
Currently, we recompute ground truth data every time we benchmark, which
may take long time. However, substantial time savings can be achieved by bench-
marking several methods using a single invocation of the binary experiment. In
this case, ground truth data is computed once for all tested methods. To do this
one simply needs to provide several arguments --method with different method
names and/or parameters.
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The disadvantage, of course, is that the test binary experiment will use
more memory (as it has to keep several indices), which limits the size of the
data set that can be tested. In future versions, we plan to address this issue and
to compute ground truth data before any experimentation begins (and save it
to a file).

Additional time savings can be achieved by testing copies of the same method
that differ only in one or more query time parameter. In this case, we do not
need to recreate the index before each new test, but rather just change query
time parameters.

There are couple of gotchas here. First, all method descriptions (parameter
--method) that correspond to the same method should be adjacent in the com-
mand line. Second, one needs to explicitly specify all default values. Currently,
(though this needs to be fixed in the future) the main benchmarking utility
knows nothing about the default parameter values and cannot, therefore, set
them. If a default parameter is omitted, the system simply uses an arbitrary
explicitly specified value of the parameter.

In particular, for the list of clusters method § 5.1.4, specifying the default
value (2147483647) for the parameter maxLeavesToVisit is especially impor-
tant as the method uses a different (a special exact search algorithm) when
maxLeavesToVisit is equal to the default value.

3.5 Measuring Performance and Interpreting Results

3.5.1 Efficiency Three types of efficiency indicators are used: query runtime,
the number of distance computations, and the amount of memory used by the
index and the data. We also measure the improvement in runtime (improvement
in efficiency) with respect to a single-thread sequential search (i.e., brute force)
approach as well as an improvement in the number of distance computations. A
good method should carry out fewer distance computations and be faster than
the brute-force search, which compares all the objects directly with the query.

The amount of memory consumed by a search method is measured indirectly:
We record the overall memory usage of a benchmarking process before and after
creation of the index. Then, we add the amount of memory used by the data.
On Linux, we query a special file /dev/<process id>/status, which might not
work for all Linux distributives. Under Windows, we retrieve the working set size
using the function GetProcessMemoryInfo. Note that we do not have a truly
portable code to measure memory consumption of a process.

3.5.2 Effectiveness In the following description, we assume that a method
returns a set of points/objects {oi}. The value of pos(oi) represents a positional
distance from oi to the query, i.e., the number of database objects closer to the
query than oi plus one. Among objects with identical distances to the query,
the object with the smallest index is considered to be the closest. Note that
pos(oi) ≥ i.

Several effectiveness metrics are computed by the benchmarking utility:
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– A number of points closer to the query than the nearest returned point. This
metric is equal pos(o1) minus one. If o1 is always the true nearest object, its
positional distance is one and, thus, the number of points closer is always
equal to zero.

– A relative position error for point oi is equal to pos(oi)/i, an aggregate value
is obtained by computing the geometric mean over all returned oi;

– Recall, which is is equal to the fraction of all correct answers retrieved.

– Classification accuracy, which is equal to the fraction of labels correctly
predicted by a k-NN based classification procedure.

The first two metrics represent a so-called rank (approximation) error. The
closer the returned objects are to the query object, the better is the quality of
the search response and the lower is the rank approximation error.

Table 1: An example of a human-readable
report

===================================

vptree: triangle inequality

alphaLeft=2.0,alphaRight=2.0

===================================

# of points: 9900

# of queries: 100

------------------------------------

Recall: 0.954 -> [0.95 0.96]

ClassAccuracy: 0 -> [0 0]

RelPosError: 1.05 -> [1.05 1.06]

NumCloser: 0.11 -> [0.09 0.12]

------------------------------------

QueryTime: 0.2 -> [0.19 0.21]

DistComp: 2991 -> [2827 3155]

------------------------------------

ImprEfficiency: 2.37 -> [2.32 2.42]

ImprDistComp: 3.32 -> [3.32 3.39]

------------------------------------

Memory Usage: 5.8 MB

------------------------------------

Note: confidence intervals are in brackets

Recall is a classic metric. It was
argued, however, that recall does not
account for position information of
returned objects and is, therefore,
inferior to rank approximation error
metrics [1,7].

If we specify ground-truth object
classes (see § 8 for the description
of data set formats), it is possible
to compute an accuracy of a k-NN
based classification procedure. The
label of an element is selected as
the most frequent class label among
k closest objects returned by the
method (in the case of ties the class
label with the smallest id is chosen).

If we had ground-truth queries
and relevance judgements from hu-
man assessors, we could in princi-
ple compute other realistic effective-
ness metrics such as the mean av-
erage precision, or the normalized
discounted cumulative gain. This re-
mains for the future work.

Note that it is pointless to com-
pute the mean average precision
when human judgments are not
available, as the mean average preci-
sion is identical to the recall in this
case.

http://searchivarius.org/blog/when-average-precision-equal-recall
http://searchivarius.org/blog/when-average-precision-equal-recall
http://searchivarius.org/blog/when-average-precision-equal-recall
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3.6 Interpreting and Processing Benchmark Results

If the user specifies the option --outFilePrefix, the benchmarking results are
stored to the file system. A prefix of result files is defined by the parameter
--outFilePrefix while the suffix is defined by a type of the search procedure
(the k-NN or the range search) as well as by search parameters (e.g., the range
search radius). For each type of search, two files are generated: a report in a
human-readable format, and a tab-separated data file intended for automatic
processing. The data file contains only the average values, which can be used to,
e.g., produce efficiency-effectiveness plots as described in § 3.7.

An example of human readable report (confidence intervals are in square
brackets) is given in Table 1. In addition to averages, the human-readable report
provides 95% confidence intervals. In the case of bootstrapping, statistics col-
lected for several splits of the data set are aggregated. For the retrieval time and
the number of distance computations, this is done via a classic fixed-effect model
adopted in meta analysis [20]. When dealing with other performance metrics, we
employ a simplistic approach of averaging split-specific values and computing the
sample variance over spit-specific averages.8 Note for all metrics, except relative
position error, an average is computed using an arithmetic mean. For the relative
error, however, we use the geometric mean [22].

3.7 Plotting results

We provide the Python script to generate performance graphs from tab-separated
data file produced by the benchmarking utility experiment. The plotting script
is genplot.py. In addition to Python, it requires Latex and PGF. This script is
supposed to run only on Linux.

Consider the following example of using genplot.py:

../sample_scripts/genplot.py \

-i result_K\=1.dat -o plot_1nn \

-x 1~norm~Recall \

-y 1~log~ImprEfficiency \

-l "2~(0.96,-.2)" \

-t "ImprEfficiency vs Recall"

It aims to process the tab-separated data file result K=1.dat, which was
generated for 1-NN search, and save the plot to the file plot 1nn.pdf. Note
that one should not explicitly specify the extension of the output file (as .pdf

is always implied).
Parameters -x and -y define X and Y axis. Parameter values have the same

format. Each parameter has three tilda-separated values. The first should be 0 or
1. Specify 0, only if you do not want to print the axis label. The second value is

8 The distribution of many metric values is not normal. There are approaches to resolve
this issue (e.g., apply a transformation), but an additional investigation is needed to
understand which approaches work best.

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_scripts/sample_scripts/genplot.py
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either norm or log, which stands for a normal or logarithmic scale, respectively.
The last value defines a metric that we want to visualize: The metric should be
one of the names that appear in the header row of the output data file. The title
of the plot is defind by -t (specify -t "" if you do not want to print the title).

The parameter -l defines a plot legend. It is either a string none (to hide
the legend) or it contains two tilda-separated values. The first value gives the
number of columns in the legend, while the second value defines a position of the
legend. The position can be either absolute or relative. An absolute position is
defined by a pair of coordinates (in round brackets). A relative position is defined
by one of the following descriptors (quotes are for clarity only): “north west”,
“north east”, “south west”, “south east”. If the relative position is specified, the
legend is printed inside the main plotting area, e.g.:

../sample_scripts/genplot.py \

-i result_K\=1.dat -o plot_1nn \

-x 1~norm~Recall \

-y 1~log~ImprEfficiency \

-l "2~north west" \

-t "ImprEfficiency vs Recall"

4 Spaces

Currently we provide implementations only for vector spaces, but this is not a
principal limitation. The input files can come in either regular, i.e., dense, or
sparse variant (see § 8).

A detailed list of spaces, their parameters, and performance characteristics is
given in Table 2. The mnemonic name of the space is passed to the benchmarking
utility (see § 3.4). There can be more than one version of a distance function,
which have different space-performance trade-off. In particular, for distances
that require computation of logarithms we can achieve an order of magnitude
improvement (e.g., for the GNU C++ and Clang) by pre-computing logarithms
at index time. This comes at a price of extra storage. In the case of Jensen-
Shannon distance functions, we can pre-compute some of the logarithms and
accurately approximate those we cannot pre-compute. The details are explained
in § 4.1-4.4.

Straightforward slow implementations of the distance functions may have
the substring slow in their names, while faster versions contain the substring
fast. Fast functions that involve approximate computations contain additionally
the substring approx. For non-symmetric distance function, a space may have
two variants: one variant is for left queries (the data object is the first, i.e., left,
argument of the distance function while the query object is the second argument)
and another is for right queries (the data object is the second argument and the
query object is the first argument). In the latter case the name of the space ends
on rq. Separating spaces by query types, might not be the best approach. Yet,
it seems to be unavoidable, because, in many cases, we need separate indices to
support left and right queries [7].
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Distance computation efficiency was evaluated on a Core i7 laptop (3.4 Ghz
peak frequency) in a single-threaded mode (by the utility bench distfunc). It
is measured in millions of computations per second for single-precision floating
pointer numbers (double precision computations are, of course, more costly). The
code was compiled using the GNU compiler. Somewhat higher efficiency numbers
can be obtained by using the Intel compiler or the Visual Studio (Clang seems to
be equally efficient). In fact, performance is much better for distances relying on
“heavy” math functions: slow versions of KL- and Jensen-Shannon divergences
and Jensen-Shannon metrics, as well as for Lp spaces, where p 6∈ {1, 2,∞}.

In the efficiency test, all dense vectors have 128 elements. For all dense-vector
distances except the Jensen-Shannon divergence, their elements were generated
randomly and uniformly. For the Jensen-Shannon divergence, we first generate
elements randomly, and next we randomly select elements that are set to zero
(approximately half). Additionally, for KL-divergences and the JS-divergence,
we normalize vector elements so that they correspond a true discrete probability
distribution.

Sparse space distances were tested using sparse vectors from two sample files
in the sample data directory. Sparse vectors in the first and the second file on
average contain about 100 and 600 non-zero elements, respectively.

4.1 Lp-norms

The Lp distance between vectors x and y are given by the formula:

Lp(x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

(1)

In the limit (p→∞), the Lp distance becomes the Maximum metric, also known
as the Chebyshev distance:

L∞(x, y) =
n

max
i=1
|xi − yi| (2)

L∞ and all spaces Lp for p ≥ 1 are true metrics. They are symmetric, equal
to zero only for identical elements, and, most importantly, satisfy the triangle
inequality. However, the Lp norm is not a metric if p < 1.

In the case of dense vectors, we have reasonably efficient implementations
for Lp distances where p is either integer or infinity. The most efficient imple-
mentations are for L1 (Manhattan), L2 (Euclidean), and L∞ (Chebyshev). As
explained in the author’s blog, we compute exponents through square rooting.
This works best when the number of digits (after the binary digit) is small, e.g.,
if p = 0.125.

Any Lp space can have a dense and a sparse variant. Sparse vector spaces
have their own mnemonic names, which are different from dense-space mnemonic
names in that they contain a suffix sparse (see also Table 2). For instance l1

and l1 sparse are both L1 spaces, but the former is dense and the latter is

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/test/bench_distfunc.cc
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_data
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_data/sparse_5K.txt
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_data/sparse_wiki_5K.txt
http://searchivarius.org/blog/efficient-exponentiation-square-rooting
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Table 2: Description of implemented spaces

Space Mnemonic Name & Formula Efficiency

(million op/sec)

Metric Spaces

Hamming bit hamming 240∑n
i=1 |xi − yi|

L1 l1, l1 sparse 35, 1.6∑n
i=1 |xi − yi|

L2 l2, l2 sparse 30, 1.6√∑n
i=1 |xi − yi|2

L∞ linf, linf sparse 34 , 1.6

maxn
i=1 |xi − yi|

Lp (generic p ≥ 1) lp:p=..., lp sparse:p=... 0.1-3, 0.1-1.2(∑n
i=1 |xi − yi|

p
)1/p

Angular distance angulardist, angulardist sparse, angulardist sparse fast 13, 1.4, 3.5

arccos

(
1−

∑n
i=1 xiyi√∑n

i=1 x2
i

√∑n
i=1 y2

i

)
Jensen-Shan. metr. jsmetrslow, jsmetrfast, jsmetrfastapprox 0.3, 1.9, 4.8√

1
2

∑n
i=1

[
xi log xi + yi log yi − (xi + yi) log xi+yi

2

]
Non-metric spaces (symmetric distance)

Lp (generic p < 1) lp:p=..., lp sparse:p=... 0.1-3, 0.1-1(∑n
i=1 |xi − yi|

p
)1/p

Jensen-Shan. div. jsdivslow, jsdivfast, jsdivfastapprox 0.3, 1.9, 4.8
1
2

∑n
i=1

[
xi log xi + yi log yi − (xi + yi) log xi+yi

2

]
Cosine similarity cosinesimil, cosinesimil sparse, cosinesimil sparse fast 13, 1.4, 3.5

1−
∑n

i=1 xiyi√∑n
i=1 x2

i

√∑n
i=1 y2

i

Non-metric spaces (non-symmetric distance)

Regular KL-div. left queries: kldivfast 0.5, 27

right queries: kldivfastrq∑n
i=1 xi log xi

yi

Generalized KL-div. left queries: kldivgenslow, kldivgenfast 0.5, 27

right queries: kldivgenfastrq 27∑n
i=1

[
xi log xi

yi
− xi + yi

]
Itakura-Saito left queries: itakurasaitoslow, itakurasaitofast 0.2, 3, 14

right queries: itakurasaitofastrq 14∑n
i=1

[
xi
yi
− log xi

yi
− 1
]
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sparse. The mnemonic names of L1, L2, and L∞ spaces (passed to the bench-
marking utility) are l1, l2, and linf, respectively. Other generic Lp have the
name lp, which is used in combination with a parameter. For instance, L3 is
denoted as lp:p=3.

Distance functions for sparse-vector spaces are far less efficient, due to a
costly, branch-heavy, operation of matching sparse vector indices (between two
sparse vectors).

4.2 Scalar-product Related Distances

We have two distance function whose formulas include normalized scalar prod-
uct. One is the cosine similarity, which is equal to:

d(x, y) = 1−
∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

The cosine similarity is not a true metric, but it can be converted into one
by applying a monotonic transformation (i.e.., taking an inverse cosine). The
resulting distance function is a true metric that is called the angular distance.
The angular distance is computed using the following formula:

d(x, y) = arccos

(
1−

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

)

In the case of sparse spaces, to compute the scalar product, we need to ob-
tain an intersection of vector element ids corresponding to non-zero elements.
A classic text-book intersection algorithm (akin to a merge-sort) is not particu-
larly efficient, apparently, due to frequent branching. For single-precision floating
point vector elements, we provide a more efficient implementation that relies on
the all-against-all comparison SIMD instruction mm cmpistrm. This implemen-
tation (inspired by the set intersection algorithm of Schlegel et al. [28]) is about
2.5-3 times faster than a pure C++ implementation based on the merge-sort
approach.

4.3 Jensen-Shannon divergence

Jensen-Shannon divergence is a symmetrized and smoothed KL-divergence:

1

2

n∑
i=1

[
xi log xi + yi log yi − (xi + yi) log

xi + yi
2

]
(3)

This divergence is symmetric, but it is not a metric function. However, the square
root of the Jensen-Shannon divergence is a proper a metric [15], which we call
the Jensen-Shannon metric.

A straightforward implementation of Eq. 3 is inefficient for two reasons (at
least when one uses the GNU C++ compiler) (1) computation of logarithms is a
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slow operation (2) the case of zero xi and/or yi requires conditional processing,
i.e., costly branches.

A better method is to pre-compute logarithms of data at index time. It is also
necessary to compute logarithms of a query vector. However, this operation has
a little cost since it is carried out once for each nearest neighbor or range query.
Pre-computation leads to a 3-10 fold improvement depending on the sparsity of
vectors, albeit at the expense of requiring twice as much space. Unfortunately,
it is not possible to avoid computation of the third logarithm: it needs to be
computed in points that are not known until we see the query vector.

However, it is possible to approximate it with a very good precision, which
should be sufficient for the purpose of approximate searching. Let us rewrite
Equation 3 as follows:

1

2

n∑
i=1

[
xi log xi + yi log yi − (xi + yi) log

xi + yi
2

]
=

=
1

2

n∑
i=1

[xi log xi + yi log yi]−
n∑
i=1

[
(xi + yi)

2
log

xi + yi
2

]
=

=
1

2

n∑
i=1

xi log xi + yi log yi−

n∑
i=1

(xi + yi)

2

[
log

1

2
+ log max(xi, yi) + log

(
1 +

min(xi, yi)

max(xi, yi)

)]
(4)

We can pre-compute all the logarithms in Eq. 4 except for log
(

1 + min(xi,yi)
max(xi,yi)

)
.

However, its argument value is in a small range: from one to two. We can dis-
cretize the range, compute logarithms in many intermediate points and save the
computed values in a table. Finally, we employ the SIMD instructions to im-
plement this approach. This is a very efficient approach, which results in a very
little (around 10−6 on average) relative error for the value of the Jensen-Shannon
divergence.

Another possible approach is to use an efficient approximation for logarithm
computation. As our tests show, this method is about 1.5x times faster (1.5 vs
1.0 billions of logarithms per second), but for the logarithms in the range [1, 2],
the relative error is one order magnitude higher (i.e., around 3 · 10−4) than for
the table-based discretization approach.

4.4 Bregman Divergences

Bregman divergences are typically non-metric distance functions, which are equal
to a difference between some convex differentiable function f and its first-order
Taylor expansion [6,7]. More formally, given the convex and differentiable func-
tion f (of many variables), its corresponding Bregman divergence df (x, y) is
equal to:

df (x, y) = f(x)− f(y)− (f(y) · (x− y))

http://fastapprox.googlecode.com/svn/trunk/fastapprox/src/fastonebigheader.h
http://fastapprox.googlecode.com/svn/trunk/fastapprox/src/fastonebigheader.h
https://github.com/searchivarius/BlogCode/tree/master/2013/12/26
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where x · y denotes the scalar product of vectors x and y. In this library, we im-
plement the generalized KL-divergence and the Itakura-Saito divergence, which
correspond to functions f =

∑
xi log xi −

∑
xi and f = −

∑
log xi. The gener-

alized KL-divergence is equal to:

n∑
i=1

[
xi log

xi
yi
− xi + yi

]
,

while the Itakura-Saito divergence is equal to:

n∑
i=1

[
xi
yi
− log

xi
yi
− 1

]
.

If vectors x and y are proper probability distributions,
∑
xi =

∑
yi = 1. In this

case, the generalized KL-divergence becomes a regular KL-divergence:

n∑
i=1

[
xi log

xi
yi

]
.

Computing logarithms is costly: We can considerably improve efficiency of
Itakura-Saito divergence and KL-divergence by pre-computing logarithms at in-
dex time. The spaces that implement this functionality contain the substring
fast in their mnemonic names (see also Table 2).

5 Search Methods

Implemented search methods can be broadly divided into the following cate-
gories:

– Space partitioning methods (including a specialized method bbtree for Breg-
man divergences) § 5.1;

– Locality Sensitive Hashing (LSH) methods § 5.2;

– Filtering methods based on permutations § 5.3;

– Miscellaneous methods § 5.4, which also include a k-NN graph implementa-
tion § 5.4.1;

In the following subsections (§ 5.1-5.4), we describe implemented methods,
explain their parameters, and provide examples of their use via the benchmarking
utility experiment (experiment.exe on Windows). Note that a few parameters
are query time parameters, which means that they can be changed without
rebuilding the index see § 3.4.6. For the description of the utility experiment

see § 3.4.
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5.1 Space Partitioning Methods

Parameters of space partitioning methods are summarized in Table 3. Most of
these methods are hierarchical partitioning methods.

Hierarchical space partitioning methods create a hierarchical decomposition
of the space (often in a recursive fashion), which is best represented by a tree
(or a forest). There are two main partitioning approaches: pivoting and compact
partitioning schemes [11].

Pivoting methods rely on embedding into a vector space where vector ele-
ments are distances from the object to pivots. Partitioning is based on how far
(or close) the data points are located with respect to pivots. 9

Hierarchical partitions produced by pivoting methods lack locality: a single
partition can contain not-so-close data points. In contrast, compact partitioning
schemes exploit locality. They either divide the data into clusters or create,
possibly approximate, Voronoi partitions. In the latter case, for example, we can
select several centers/pivots πi and associate data points with the closest center.

If the current partition contains fewer than bucketSize (a method parame-
ter) elements, we stop partitioning of the space and place all elements belonging
to the current partition into a single bucket. If, in addition, the value of the
parameter chunkBucket is set to one, we allocate a new chunk of memory that
contains a copy of all bucket vectors. This method often halves retrieval time at
the expense of extra memory consumed by a testing utility (e.g., experiment)
as it does not deallocate memory occupied by the original vectors. 10

Classic hierarchical space partitioning methods are exact. It is possible to
make them approximate via an early termination technique, where we terminate
the search after exploring a pre-specified number of partitions. To implement
this strategy, we define an order of visiting partitions. In the case of clustering
methods, we first visit partitions that are closer to a query point. In the case of
hierarchical space partitioning methods such as the VP-tree, we greedily explore
partitions containing the query.

In the Non-Metric Space Library, the early termination condition is defined
in terms of the maximum number of buckets (parameter maxLeavesToVisit)
to visit before terminating the search procedure. By default, the parameter
maxLeavesToVisit is set to a large number (2147483647), which means that
no early termination is employed.

5.1.1 VP-tree A VP-tree [32,34] (also known as a ball-tree) is a pivoting
method. During indexing, a (random) pivot is selected and a set of data objects
is divided into two parts based on the distance to the pivot. If the distance

9 If the original space is metric, mapping an object to a vector of distances to pivots
defines the contractive embedding in the metric spaces with L∞ distance. That is,
the L∞ distance in the target vector space is a lower bound for the original distance.

10 Keeping original vectors simplifies the testing workflow. However, this is not nec-
essary for a real production system. Hence, storing bucket vectors at contiguous
memory locations does not have to result in a larger memory footprint.
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is smaller than the median distance, the objects are placed into one (inner)
partition. If the distance is larger than the median, the objects are placed into
the other (outer) partition. If the distance is exactly equal to the median, the
placement can be arbitrary.

The VP-tree in metric spaces is an exact search method, which relies on the
triangle inequality. It can be made approximate by applying the early termina-
tion strategy (as described in the previous subsection). Another approximate-
search approach, which is currently implemented only for the VP-tree, is based
on the relaxed version of the triangle inequality.

Assume that π is the pivot in the VP-tree, q is the query with the radius
r, and R is the median distance from π to every other data point. Due to the
triangle inequality, pruning is possible only if r ≤ |R − d(π, q)|. If this latter
condition is true, we visit only one partition that contains the query point. If
r > |R−d(π, q)|, there is no guarantee that all answers are in the same partition
as q. Thus, to guarantee retrieval of all answers, we need to visit both partitions.

The pruning condition based on the triangle inequality can be overly pes-
simistic. By selecting some α > 1 and opting to prune when r ≤ α|R− d(π, q)|,
we can improve search performance at the expense of missing some valid an-
swers. The efficiency-effectiveness trade-off is affected by the choice of α: Note
that for some (especially low-dimensional) data sets, a modest loss in recall (e.g.,
by 1-5%) can lead to an order of magnitude faster retrieval. Not only the triangle
inequality can be overly pessimistic in metric spaces, but it often fails to capture
the geometry of non-metric spaces. As a result, if the metric space method is
applied to a non-metric space, the recall can be too low or retrieval time can be
too long.

Yet, in non-metric spaces, it is often possible to answer queries, when using
α possibly smaller than one [4]. In this version, we would use different α for
different partitions. More generally, we assume that there exists an unknown
decision/pruning function D(R, d(π, q)) and that pruning is done when r ≤
D(R, d(π, q)). The decision function D(), which can be learned from data, is
called a search oracle. A pruning algorithm based on the triangle inequality is a
special case of the search oracle described by the formula:

Dπ,R(x) =

{
αleft|x−R|, if x ≤ R
αright|x−R|, if x ≥ R

(5)

Optimal αleft and αright are determined by the utility tune vptree (via a
grid search).11 The user can specify values of αleft and αright via parameters
alphaLeft and alphaRight, respectively. It is possible to implement new search
oracles and plug them into the implementation of the VP-tree.

The following is an example of testing the VP-tree with the benchmarking
utility experiment:

release/experiment \

11 To this end, we index a small subset of the data points and seek to obtain parameters
that give the shortest retrieval time at a specified recall threshold.
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--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method vptree:alphaLeft=2.0,alphaRight=2.0,maxLeavesToVisit=500,\

bucketSize=10,chunkBucket=1

5.1.2 Multi-Vantage Point Tree It is possible to have more than one pivot
per tree level. In the binary version of the multi-vantage point tree (MVP-tree),
which is implemented in Non-Metric Space Library, there are two pivots. Thus,
each partition divides the space into four parts, which are similar to partitions
created by two levels of the VP-tree. The difference is that the VP-tree employs
three pivots to divide the space into four parts, while in the MVP-tree two pivots
are used.

In addition, in the MVP-tree we memorize distances between a data object
and the first maxPathLen (method parameter) pivots on the path connecting the
root and the leaf that stores this data object. Because mapping an object to a
vector of distances (to maxPathLen pivots) defines the contractive embedding in
the metric spaces with L∞ distance, these values can be used to improve the
filtering capacity of the MVP-tree and, consequently to reduce the number of
distance computations.

The following is an example of testing the MVP-tree with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method mvptree:maxPathLen=4,maxLeavesToVisit=500,\

bucketSize=10,chunkBucket=1

Our implementation of the MVP-tree permits to answer queries both exactly
and approximately (by specifying the parameter maxLeavesToVisit). Yet, this
implementation should be used only with metric spaces.

5.1.3 GH-Tree A GH-tree [32] is a binary tree. In each node the data set
is divided using two randomly selected pivots. Elements closer to one pivot are
placed into a left subtree, while elements closer to the second pivot are placed
into a right subtree.

The following is an example of testing the GH-tree with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method ghtree:maxLeavesToVisit=10,\

bucketSize=10,chunkBucket=1
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Our implementation of the GH-tree permits to answer queries both exactly
and approximately (by specifying the parameter maxLeavesToVisit). Yet, this
implementation should be used only with metric spaces.

5.1.4 List of Clusters The list of clusters [10] is an exact search method for
metric spaces, which relies on flat (i.e., non-hierarchical) clustering. Clusters are
created sequentially starting by randomly selecting the first cluster center. Then,
close points are assigned to the cluster and the clustering procedure is applied
to the remaining points. Closeness is defined either in terms of the maximum
radius, or in terms of the maximum number (bucketSize) of points closest to
the center.

Next we select cluster centers according to one of the policies: random selec-
tion, a point closest to the previous center, a point farthest from the previous
center, a point that minimizes the sum of distances to the previous center, and
a point that maximizes the sum of distances to the previous center. In our ex-
perience, a random selection strategy (a default one) works well in most cases.

The search algorithm iterates over the constructed list of clusters and checks
if answers can potentially belong to the currently selected cluster (using the
triangle inequality). If the cluster can contain an answer, each cluster element
is compared directly against the query. Next, we use the triangle inequality to
verify if answers can be outside the current cluster. If this is not possible, the
search is terminated.

We modified this exact algorithm by introducing an early termination condi-
tion. The clusters are visited in the order of increasing distance from the query to
a cluster center. The search process stops after vising a maxLeavesToVisit clus-
ters. Our version is supposed to work for metric spaces (and symmetric distance
functions), but it can also be used with mildly-nonmetric symmetric distances
such as the cosine similarity.

An example of testing the list of clusters using the bucketSize as a parameter
to define the size of the cluster:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method list_clusters:useBucketSize=1,bucketSize=100,\

maxLeavesToVisit=5,strategy=random

An example of testing the list of clusters using the radius as a parameter to
define the size of the cluster:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method list_clusters:useBucketSize=0,radius=0.2,\

maxLeavesToVisit=5,strategy=random
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5.1.5 SA-tree The Spatial Approximation tree (SA-tree) [27] aims to approx-
imate the Voronoi partitioning. A data set is recursively divided by selecting
several cluster centers in a greedy fashion. Then, all remaining data points are
assigned to the closest cluster center.

A cluster-selection procedure first randomly chooses the main center point
and arranges the remaining objects in the order of increasing distances to this
center. It then iteratively fills the set of clusters as follows: We start from the
empty cluster list. Then, we iterate over the set of data points and check if there
is a cluster center that is closer to this point than the main center point. If no
such cluster exists (i.e., the point is closer to the main center point than to any
of the already selected cluster centers), the point becomes a new cluster center
(and is added to the list of clusters). Otherwise, the point is added to the nearest
cluster from the list.

After the cluster centers are selected, each of them is indexed recursively
using the already described algorithm. Before this, however, we check if there
are points that need to be reassigned to a different cluster. Indeed, because the
list of clusters keeps growing, we may miss the nearest cluster not yet added to
the list. To fix this, we need to compute distances among every cluster point and
cluster centers that were not selected at the moment of the point’s assignment
to the cluster.

Currently, the SA-tree is an exact search method for metric spaces without
any parameters. The following is an example of testing the SA-tree with the
benchmarking utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method satree

5.1.6 bbtree A Bregman ball tree (bbtree) is an exact search method for
Bregman divergences [7]. The bbtree divides data into two clusters (each cov-
ered by a Bregman ball) and recursively repeats this procedure for each cluster
until the number of data points in a cluster falls below bucketSize. Then, such
clusters are stored as a single bucket.

At search time, the method relies on properties of Bregman divergences to
compute the shortest distance to a covering ball. This is a rather expensive
iterative procedure that may require several computations of direct and inverse
gradients, as well as of several distances.

Additionally, Cayton [7] employed an early termination method: The algo-
rithm can be told to stop after processing a maxLeavesToVisit buckets. The
resulting method is an approximate search procedure.

Our implementation of the bbtree uses the same code to carry out the nearest-
neighbor and the range searching. Such an implementation of the range searching
is somewhat suboptimal and a better approach exists [8].

The following is an example of testing the bbtree with the benchmarking
utility experiment:
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release/experiment \

--distType float --spaceType kldivgenfast \

--testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method bbtree:maxLeavesToVisit=20,bucketSize=10

5.2 Locality-sensitive Hashing Methods

Locality Sensitive Hashing (LSH) [21] is a class of methods employing hash func-
tions that tend to have the same hash values for close points and different hash
values for distant points. It is a probabilistic method in which the probability
of having the same hash value is a monotonically decreasing function of the dis-
tance between two points (that we compare). A hash function that possesses this
property is called locality sensitive.

Our library embeds the LSHKIT which provides locality sensitive hash func-
tions in L1 and L2. It supports only the nearest-neighbor (but not the range)
search. Parameters of LSH methods are summarized in Table 4. The LSH meth-
ods are not available under Windows.

Random projections is a common approach to design locality sensitive hash
functions. These functions are composed from M binary hash functions hi(x). A
concatenation of the binary hash function values, i.e., h1(x)h2(x) . . . hM (x), is
interpreted as a binary representation of the hash function value h(x). Pointers
to objects with equal hash values (modulo H) are stored in same cells of the
hash table (of the size H). If we used only one hash table, the probability of
collision for two similar objects would be too low. To increase the probability of
finding a similar object multiple hash tables are used. In that, we use a separate
(randomly selected) hash function for each hash table.

To generate binary hash functions we first select a parameter W (called a
width). Next, for every binary hash function, we draw a value ai from a p-stable
distribution [12], and a value bi from the uniform distribution with the support
[0,W ]. Finally, we define hi(x) as:

hi(x) =

⌊
x · vi + ai

W

⌋
,

where bxc is the floor function and x · y denotes the scalar product of x and y.
For the L2 a standard Guassian distribution is p-stable, while for L1 distance

one can generate hash functions using a Cauchy distribution [12]. For L1, the
LSHKIT defines another (“thresholding”) approach based on sampling. It is
supposed to work best for data points enclosed in a cube [a, b]d. We omit the
description here and refer the reader to the papers that introduced this method
[33,24].

One serious drawback of the LSH is that it is memory-greedy. To reduce
the number of hash tables while keeping the collision probability for similar
objects sufficiently high, it was proposed to “multi-probe” the same hash table
more than once. When we obtain the hash value h(x), we check (i.e., probe) not
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only the contents of the hash table cell h(x) mod H, but also contents of cells
whose binary codes are “close” to h(x) (i.e, they may differ by a small number of
bits). The LSHKIT, which is embedded in our library, contains a state-of-the-art
implementation of the multi-probe LSH that can automatically select optimal
values for parameters M and W to achieve a desired recall (remaining parameters
still need to be chosen manually).

The following is an example of testing the multi-probe LSH with the bench-
marking utility experiment. We aim to achieve the recall value 0.25 (parameter
desiredRecall) for the 1-NN search (parameter tuneK):

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_multiprobe:desiredRecall=0.25,tuneK=1,T=5,L=25,\

H=16535

The classic version of the LSH for L2 can be tested as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_gaussian:W=2,L=5,M=40,H=16535

There are two ways to use LSH for L1. First, we can invoke the implemen-
tation based on the Cauchy distribution:

release/experiment \

--distType float --spaceType l1 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_cauchy:W=2,L=5,M=10,H=16535

Second, we can use L1 implementation based on thresholding. Note that it
does not use the width parameter W:

release/experiment \

--distType float --spaceType l1 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_threshold:L=5,M=60,H=16535

5.3 Permutation-based Filtering Methods

Rather than relying on distance values directly, we can assess similarity of objects
based on their relative distances to reference points (i.e., pivots). For each data
point x, we can arrange pivots π in the order of increasing distances from x
(for simplicity we assume that there are no ties). This arrangement is called a
permutation. The permutation is essentially a vector whose i-th element keeps
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an (ordinal) position of the i-th pivot (in the set of pivots sorted by a distance
from x).

Computation of the permutation is a mapping from a source vector space
with real coordinates to a target vector space with integer coordinates. In our
library, the distance between permutations is defined as either L1 or L2. Values
of the distance in the source space often correlates well with the distance in
the target space of permutations. This property is exploited in permutation
methods. An advantage of permutation methods is that they are not relying
on metric properties of the original distance and can be successfully applied to
non-metric spaces [4].

Note that there is no simple relationship between the distance in the target
space and the distance in the source space. In particular, the distance in the
target space is neither a lower nor an upper bound for the distance in the source
space. Thus, methods based on indexing permutations are filtering methods that
allow us to obtain only approximate solutions. In the first step, we retrieve a
certain number of candidate points whose permutations are sufficiently close to
the permutation of the query vector. For these candidate data points, we compute
an actual distance to the query, using the original distance function. For almost
all implemented permutation methods, the number of candidate records can be
controlled by a parameter dbScanFrac or minCandidate.

Permutation methods differ in how they index and process permutations. In
the following subsections, we briefly review implemented variants. Parameters
of these methods are summarized in Tables 5-6.

5.3.1 Sequential permutation search In the sequential search (i.e., brute-
force) approach, we scan the list of permutation methods and compute the dis-
tance between the permutation of the query and a permutation of every data
point. Then, we sort all data points in the order of increasing distance to the
query permutation. A fraction (dbScanFrac) of data points is compared directly
against the query. The mnemonic code of this method is permutation. Instead of
computing the complete ordering of permutations, one can resort to incremental
sorting [19]. The mnemonic code of this (faster) modification is perm incsort.

The following is an example of testing the incremental-sort permutation
method with the benchmarking utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_incsort:numPivot=4,dbScanFrac=0.2

5.3.2 Permutation Prefix Index (PP-Index) In a permutation prefix in-
dex (PP-index), permutation are stored in a prefix tree of limited depth [16].
A parameter prefixLength defines the depth. The filtering phase aims to find
minCandidate candidate data points. To this end, it first retrieves the data
points whose permutation prefix is exactly the same as that of the query. If we
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do not get enough candidate records, we shorten the prefix and repeat the pro-
cedure until we get a sufficient number of candidate entries. Note that we do not
the use the parameter dbScanFrac here.

The following is an example of testing the PP-index with the benchmarking
utility experiment.

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_prefix:numPivot=4,prefixLength=4,minCandidate=100

5.3.3 VP-tree index over permutations We can use a VP-tree to index
permutations. This approach is similar to that of Figueroa and Fredriksson [17].
We, however, rely on the approximate version of the VP-tree described in § 5.1.1,
while Figueroa and Fredriksson use an exact one. The “sloppiness” of the VP-
tree search is governed by the stretching coefficients alphaLeft and alphaRight

in Equation (5).
The following is an example of testing the VP-tree index over permutations

with the benchmarking utility experiment.

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_vptree:numPivot=4,alphaLeft=2,alphaRight=2,dbScanFrac=0.05

5.3.4 Inverted index over permutations Another approach relies on the
inverted index over permutations [2]. We select (a potentially large) subset of
pivots (parameter numPivot). Using these pivots, we compute a permutation for
every data point. Then, numPivotIndex most closest pivots are memorized in a
data file. If a pivot number i is the pos-th most distant pivot for the object x,
we add the pair (pos, x) to the posting list number i. All posting lists are kept
sorted in the order of the increasing first element (equal to the ordinal position
of the pivot in a permutation).

During searching, we compute the permutation of the query and select post-
ing lists corresponding to numPivotSearch most closest pivots. These posting
lists are processed as follows: Imagine that we selected posting list i and the po-
sition of pivot i in the permutation of the query is pos. Then, using the posting
list i, we retrieve all candidate records for which the position of the pivot i in
their respective permutations is from pos − maxPosDiff to pos + maxPosDiff.
This allows us to update the estimate for the L1 distance between retrieved can-
didate records’ permutations and the permutation of the query (see [2] for more
details).

Finally, we select at most dbScanFrac ·N objects (N is the total number of
indexed objects) with the smallest estimates for the L1 between their permu-
tations and the permutation of the query. These objects are compared directly
against the query.
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An example of testing this method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_inv_indx:numPivot=128,numPivotIndex=16,numPivotSearch=4,\

dbScanFrac=0.01

5.3.5 Pivot neighborhood index Recently it was proposed to index pivot
neighborhoods: For each data point, we select numPrefix � numPivot pivots
that are closest to the data point. Then, we associate these numPrefix closest
pivots with the data point via an inverted file [31]. One can hope that for similar
points two pivot neighborhoods will have a non-zero intersection.

To exploit this observation, our implementation of the pivot neighborhood
indexing method retrieves all points that share at least minTimes nearest neigh-
bor pivots (using an inverted file). Then, these candidates points are compared
directly against the query.

Note that our implementation is different from that of Tellez [31] in several
ways. First, we do not use a succinct inverted index. Second, we use a simple
posting merging algorithm based on counting (a ScanCount algorithm). Before
a query is processed, we zero-initialize an array that keeps one counter for every
data point. As we traverse a posting list and encounter an entry corresponding
to object i, we increment a counter number i. The ScanCount is known to be
efficient [23].

We also divide the index in chunks each accounting for at most chunkIndexSize
data points. The search algorithm processes one chunk at a time. The idea is to
make a chunk sufficiently small so that counters fit into L1 or L2 cache.

An example of testing this method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method pivot_neighb_invindx:numPivot=32,numPrefix=8,minTimes=8,\

chunkIndexSize=1024

5.3.6 Binarized permutation methods Instead of computing the L2 dis-
tance between two permutations, we can binarize permutations and computed
the Hamming distance between binarized permutations. To this end, we select
an adhoc binarization threshold binThreshold. All integer values smaller than
binThreshold become zeros, and values larger than or equal to binThreshold

become ones.
On a plus side, the Hamming distance between binarized permutations can

be computed much faster than L2 or L1 (see Table 2). This comes at a cost
though, as the Hamming distance appears to be a worse proxy for the original
distance than L2 or L1.
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The binarized permutation can be search sequentially. An example of testing
such a method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_incsort_bin:numPivot=32,\

dbScanFrac=0.05

Alternatively, binarized permutations can be indexed using the VP-tree. This
approach is usually more efficient than searching binarized permutations sequen-
tially, but one needs to tune additional parameters. An example of testing such
a method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_bin_vptree:numPivot=32,alphaLeft=2,alphaRight=2,\

dbScanFrac=0.05

5.4 Miscellaneous Methods

Parameters of miscellaneous methods are summarized in Table 7.

5.4.1 k-NN graph One efficient and effective approach relies on a graph,
where objects are graph nodes and edges connect sufficiently close objects. When
edges connect mostly near neighbors, such graph is called a k-NN graph (or a
nearest neighbor graph). This method implements only the nearest-neighbor,
but not the range search.

A search process is a series of sub-searches with (the number of sub-searches
is defined by the parameter initSearchAttempts). A sub-search starts at a
random node and proceeds to expanding the set of traversed nodes by following
neighboring links. The sub-search stops when we cannot find points that are
closer than already found NN nearest points (NN is a search parameter). Note
that the greedy search is only approximate and does not necessarily return all
NN nearest neighbors.

Indexing is a bottom-up procedure that relies on the previously described
greedy search algorithm. The number of restarts, though, is defined by a different
parameter, i.e., initIndexAttempts. We add points one by one. For each data
point, we find NN closest points using an already constructed index. Then, we
create an edge between a new graph node (representing a new point) and nodes
that represent NN closest points found by the greedy search. Empirically, it was
shown that this method often creates a navigable small world graph, where most
nodes are separated by only a few edges (roughly logarithmic in terms of the
overall number of objects) [26].

https://en.wikipedia.org/wiki/Nearest_neighbor_graph
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The indexing algorithm is rather expensive and we accelerate it by running
parallel searches in multiple threads. The number of threads is defined by the
parameter indexThreadQty. The graph updates are synchronized: If a thread
needs to add edges to a node or obtain the list of node edges, it first locks a
node-specific mutex. Because different threads rarely update and/or access the
same node simultaneously, such synchronization creates little contention and,
consequently, our parallelization approach is efficient. It is also necessary to
synchronize updates for the list of graph nodes, but this operation takes little
time compared to searching for NN neighboring points.

An example of testing this method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method small_world_rand:NN=3,initIndexAttempts=5,initSearchAttempts=2,\

indexThreadQty=4

5.4.2 Sequential searching The improvement in efficiency is measured with
respect to a single-thread sequential search method. To verify how the speed of
sequential searching scales with the number of threads, we provide a reference
implementation of the sequential searching.

For example, to benchmark sequential searching using two threads, one can
type the following command:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method seq_search --threadTestQty 2

5.4.3 Several copies of the same index type It is possible to generate
several copies of the same index using a meta method mult indx. This makes
sense for randomized indexing methods, e.g., for the VP-tree or the PP-index.12

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method mult_index:methodName=vptree,indexQty=5,maxLeavesToVisit=2

12 In fact, all of the methods except for the sequential, i.e., brute force, search are
randomized.
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6 Extending the code

It is possible to add new spaces and search methods. This is done in three steps,
which we only outline here. A more detailed description can be found in § 6.2
and § 6.3.

In the first step, the user writes the code that implements a functionality
of a method or a space. In the second step, the user writes a special helper file
containing methods that creates a class or a method. In this helper file, it is
normally necessary to include the method/space header. Please, use the angle
brackets in this include-directive here.

Because we tend to give the helper file the same name as the name of header
for a specific method/space, we should not include method/space headers using
quotes. Such code fails to compile under the Visual Studio. Here is an example
of a proper include-directive:

#include <method/vptree.h>

In the third step, the user adds the registration code to either the file
init spaces.h (for spaces) or to the file init methods.h (for methods). This step
has two sub-steps. First, the user includes the previously created helper file into
either init spaces.h or init methods.h. Finally the function initMethods or
initSpaces are extended by adding a macro call that actually registers the space
or method in a factory class. No modification of makefiles (or other configuration
files) is required.

Is is noteworthy that all implementations of methods and spaces are mostly
template classes parameterized by the distance value type. Recall that the dis-
tance function can return an integer (int), a single-precision (float), or a
double-precision (double) real value. The user may choose to provide specializa-
tions for all possible distance values or decide to focus, e.g., only on integer-valued
distances.

The user can also add new applications, which are meant to be a part of the
testing framework/library. However, adding new applications does require minor
editing of the meta-makefile CMakeLists.txt (and re-running cmake § 3.1). It
is also possible to create standalone applications that use the library. Please, see
§ 3.1 and § 3.2 for details.

In the following subsections, we consider extension tasks in more detail. For il-
lustrative purposes, we created a zero-functionality space (DummySpace), method
(DummyMethod), and application (dummy app). These dummy classes can also be
used as starting points to develop fully functional code.

6.1 Test Workflow

The main benchmarking utility experiment parses command line parameters.
Then, it creates a space and all required search methods using the space and the
method factories. Thus, when we create a class representing a search method,
the constructor of this class has to create an index in the memory. Both search

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/include/factory/init_spaces.h
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/include/factory/init_methods.h
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method and spaces can have parameters, which are passed to the method/space
in an instance of the class AnyParams. We consider this in detail in § 6.2 and
§ 6.3.

Depending on parameters, two test scenarios are possible. In the first sce-
nario, the user specifies separate data and test files. In the second scenario, a test
file is created by bootstrapping: The data set is randomly divided into training
and a test set. Then, we call the function RunAll and subsequently Execute for
all possible test sets.

The function Execute is a main workhorse, which creates queries, runs searches,
produces ground truth data, and collects execution statistics. There are two types
of queries: nearest-neighbor and range queries, which are represented by (tem-
plate) classes RangeQuery and KNNQuery. Both classes inherit from the class
Query. Similar to spaces, these template classes are parameterized by the type
of the distance value.

Both types of queries are similar in that they implement the Radius function
and the functions CheckAndAddToResult. In the case of the range query, the
radius of a query is constant. However, in the case of the nearest-neighbor query,
the radius typically decreases as we compare the query with previously unseen
data objects (by calling the function CheckAndAddToResult). In both cases, the
value of the function Radius is used to prune unpromising partitions and data
points.

This commonality between the RangeQuery and KNNQuery allows us in many
cases to carry out a nearest-neighbor query using an algorithm designed to an-
swer range queries. Thus, only a single implementation of a search method–that
answers queries of both types–can be used in many cases.

A query object proxies distance computations during the testing phase. Namely,
the distance function is accessible through the function IndexTimeDistance,
which is defined in the class Space. During the testing phase, a search method
can compute a distance only by accessing functions Distance, DistanceObjLeft
(for left queries) and DistanceObjRight for right queries, which are member
functions of the class Query. The function Distance accepts two parameters
(i.e., object pointers) and can be used to compare two arbitrary objects. The
functions DistanceObjLeft and DistanceObjRight are used to compare data
objects with the query. Note that it is a query object memorizes the number of
distance computations. This allows us to compute the variance in the number
of distance evaluations and, consequently, a respective confidence interval.

6.2 Creating a space

A space is a collection of data objects. In our library, objects are represented by
instances of the class Object. The functionality of this class is limited to creating
new objects and/or their copies as well providing access to the raw (i.e., unstruc-
tured) representation of the data (through functions data and datalength). We
would re-iterate that currently (though this may change in the future releases),
Object is a very basic class that only keeps a blob of data and blob’s size. For ex-
ample, the Object can store an array of single-precision floating point numbers,

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/include/experiments.h#L97
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/include/experiments.h#L225


40 Bilegsaikhan Naidan and Leonid Boytsov

but it has no function to obtain the number of elements. These are the spaces
that are responsible for reading objects from files, interpreting the structure of
the data blobs (stored in the Object), and computing a distance between two
objects.

For dense vector spaces the easiest way to create a new space, is to create
a functor (function object class) that computes a distance. Then, this function
should be used to instantiate a template VectorSpaceGen. A sample implemen-
tation of this approach can be found in sample standalone app1.cc.

To further illustrate the process of developing a new space, we created a
sample zero-functionality space DummySpace. It is represented by the header file
space dummy.h and the source file space dummy.cc. The user is encouraged to
study these files and read the comments. Here we focus only on the main aspects
of creating a new space.

The sample files describe a template class DummySpace, which is declared and
defined in the namespace similarity. It is a direct ancestor of the class Space:

template <typename dist_t>

class SpaceDummy : public Space<dist_t> {

public:

...

virtual void ReadDataset(ObjectVector& dataset,

const ExperimentConfig<dist_t>* config,

const char* inputfile,

const int MaxNumObjects) const;

protected:

virtual dist_t HiddenDistance(const Object* obj1,

const Object* obj2) const;

}

It is possible to provide the complete implementation of the DummySpace in the
header file. However, this would make compilation slower. Instead, we recom-
mend to use the mechanism of explicit template instantiation. To this end, the
user should instantiate the template in the source file for all possible combination
of parameters. In our case, the source file space dummy.cc contains the following
lines:

template class SpaceDummy<int>;

template class SpaceDummy<float>;

template class SpaceDummy<double>;

Most importantly, the user needs to implement the function ReadDataset,
which reads objects from a file, and the function HiddenDistance, which com-
putes the distance between objects. For a sample implementation of ReadDataset,
please, see the file space bit hamming.cc. Note that ReadDataset is supposed to
read at most MaxNumObjects from the file. If the file has more objects, only the
first maxNumData should be retrieved. The space is responsible for following this
convention, the library does not enforce this behavior.

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/include/space/space_vector_gen.h
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_standalone_app/sample_standalone_app1.cc#L114
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/include/space/space_dummy.h
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/src/space/space_dummy.cc
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/src/space/space_dummy.cc
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/src/space/space_bit_hamming.cc
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Remember that the function HiddenDistance should not be directly ac-
cessible by classes that are not friends of the Space. As explained in § 6.1,
during the indexing phase, HiddenDistance is accessible through the function
Space::IndexTimeDistance. During the testing phase, a search method can
compute a distance only by accessing functions Distance, DistanceObjLeft, or
DistanceObjRight, which are member functions of the Query.

Finally, we need to “tell” the library about the space, by registering the space
in the space factory. At runtime, the space is created through a helper function.
In our case, it is called CreateDummy. The function, accepts only one parameter,
which is a reference to an object of the type AllParams:

template <typename dist_t>

Space<dist_t>* CreateDummy(const AnyParams& AllParams) {

AnyParamManager pmgr(AllParams);

int param1, param2;

pmgr.GetParamRequired("param1", param1);

pmgr.GetParamRequired("param2", param2);

return new SpaceDummy<dist_t>(param1, param2);

}

To extract parameters, the user needs an instance of the class AnyParamManager
(see the above example). In most cases, it is sufficient to call two functions:
GetParamOptional and GetParamRequired. Parameter values specified in the
commands line are interpreted as strings. The GetParam* functions can convert
these string values to integer or floating-point numbers if necessary. A conversion
occurs, if the type of a receiving variable (passed as a second parameter to the
functions GetParam*) is different from a string. It is possible to use boolean
variables as parameters. In that, in the command line, one has to specify 1 (for
true) or 0 (for false). Note that the function GetParamRequired raises an
error, if the request parameter was not supplied in the command line.

The function CreateDummy is registered in the space factory using a special
macro. This macro should be used for all possible values of the distance function,
for which our space is defined. For example, if the space is defined only for integer-
valued distance function, this macro should be used only once. However, in our
case the space CreateDummy is defined for integers, single- and double-precision
floating pointer numbers. Thus, we use this macro three times as follows:

REGISTER_SPACE_CREATOR(int, SPACE_DUMMY, CreateDummy)

REGISTER_SPACE_CREATOR(float, SPACE_DUMMY, CreateDummy)

REGISTER_SPACE_CREATOR(double, SPACE_DUMMY, CreateDummy)

This macro should be placed into the function initSpaces in the file init spaces.h.
Last, but not least we need to add the include-directive for the helper function,
which creates the class, to the file init spaces.h as follows:

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/include/factory/init_spaces.h
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#include "factory/space/space_dummy.h"

6.3 Creating a method

To explain the basics of developing a new search method, we created a sam-
ple zero-functionality method DummyMethod. It is represented by the header file
dummy.h and the source file dummy.cc. The user is encouraged to study these
files and read the comments. Here we would omit certain minor details.

Similar to the space and query classes, a search method is implemented using
a template class, which is parameterized by the distance function value:

template <typename dist_t>

class DummyMethod : public Index<dist_t> {

public:

DummyMethod(const Space<dist_t>* space,

const ObjectVector& data,

AnyParamManager& pmgr)

: data_(data) {

pmgr.GetParamOptional("doSeqSearch", bDoSeqSearch_);

SetQueryTimeParamsInternal(pmgr);

}

~DummyMethod(){};

const std::string ToString() const;

void Search(RangeQuery<dist_t>* query);

void Search(KNNQuery<dist_t>* query);

virtual vector<string> GetQueryTimeParamNames() const;

private:

virtual void SetQueryTimeParamsInternal(AnyParamManager& );

const ObjectVector& data_;

// disable copy and assign

DISABLE_COPY_AND_ASSIGN(DummyMethod);

};

Note that it is the constructor that creates a search index (or calls a function
to create it)! Here it accepts the pointer to a space, a reference to an array of data
objects, and a parameter manager. The parameter manager is used to retrieve
too parameters: doSeqSearch, and dummyParam (the second one is a query time
parameter). When the first parameter is true, our dummy method will carry out
a sequential search. Otherwise, it does nothing useful.

Query time parameters can be changed without rebuilding the index. The
function GetQueryTimeParamNames returns the list of names of such parameters.
If this list is non-empty and the method is supposed to support query time
modification of some parameters, these modifications are carried out inside the
function SetQueryTimeParamsInternal.

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/include/method/dummy.h
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/src/method/dummy.cc
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The space object is typically used to compute the distance by calling the func-
tion IndexTimeDistance. Note again that IndexTimeDistance should not be
used in a function Search. If the user attempts to invoke IndexTimeDistance

during the test phase, the program will terminate. 13

Finally, we need to “tell” the library about the method, by registering the
method in the method factory, similarly to registering a space. At runtime, the
method is created through a helper function, which accepts several parameters.
One parameter is a reference to an object of the type AllParams. In our case,
the function name is CreateDummy:

#include <method/dummy.h>

namespace similarity {

template <typename dist_t>

Index<dist_t>* CreateDummy(bool PrintProgress,

const string& SpaceType,

const Space<dist_t>* space,

const ObjectVector& DataObjects,

const AnyParams& AllParams) {

AnyParamManager pmgr(AllParams);

return new DummyMethod<dist_t>(space, DataObjects, pmgr);

}

}

There is an include-directive preceding the creation function, which uses angle
brackets. As explained previously, if you opt to using quotes (in the include-
directive), the code may not compile under the Visual Studio.

Again, similarly to the case of the space, the method-creating function CreateDummy

needs to be registered in the method factory in two steps. First, we need to in-
clude dummy.h into the file init methods.h as follows:

#include "factory/method/dummy.h"

Then, this file is further modified by adding the following lines to the function
initMethods:

REGISTER_METHOD_CREATOR(float, METH_DUMMY, CreateDummy)

REGISTER_METHOD_CREATOR(double, METH_DUMMY, CreateDummy)

REGISTER_METHOD_CREATOR(int, METH_DUMMY, CreateDummy)

If we want our method to work only with integer-valued distances, we only
need the following line:

13 As noted previously, we want to compute the number of times the distance was
computed for each query. This allows us to estimate the variance. Hence, during the
testing phase, the distance function should be invoked only through a query object.

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/include/factory/init_methods.h
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REGISTER_METHOD_CREATOR(int, METH_DUMMY, CreateDummy)

When adding the method, please, consider expanding the test utility test integr.
This is especially important if for some combination of parameters the method
is expected to return all answers (and will have a perfect recall). Then, if we
break the code in the future, this will be detected by test integr.

To create a test case, the user needs to add one or more test cases to the
file test integr.cc. A test case is an instance of the class MethodTestCase. It
encodes the range of plausible values for the following performance parameters:
the recall, the number of points closer to the query than the nearest returned
point, and the improvement in the number of distance computations.

If you are using the script genplot.py (see § 3.7) to plot performances graphs,
you will need to modify it as well. The function methodNameAndStyle in this
script defines a mapping from the method name to a plot marker. Currently, we
provide markers for all the implemented methods. Yet, if you add a new one,
you need to provide the mapping yourself (by modifying methodNameAndStyle).
Note the name of the method is returned by the class member ToString.

6.4 Creating an application on Linux (inside the framework)

First, we create a hello-world source file dummy app.cc:

#include <iostream>

using namespace std;

int main(void) {

cout << "Hello world!" << endl;

}

Now we need to modify the meta-makefile similarity search/src/CMakeLists.txt
and re-run cmake as described in § 3.1.

More specifically, we do the following:

– by default, all source files in the similarity search/src/ directory are included
into the library. To prevent dummy app.cc from being included into the li-
brary, we use the following command:

list(REMOVE_ITEM SRC_FILES ${PROJECT_SOURCE_DIR}/src/dummy_app.cc)

– tell cmake to build an additional executable:

add_executable (dummy_app dummy_app.cc ${SRC_FACTORY_FILES})

– specify the necessary libraries:

target_link_libraries (dummy_app NonMetricSpaceLib lshkit

${Boost_LIBRARIES} ${GSL_LIBRARIES}

${CMAKE_THREAD_LIBS_INIT})

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/test/test_integr.cc#L65
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/sample_scripts/genplot.py#L222
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/src/dummy_app.cc
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/src/CMakeLists.txt
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/src/
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6.5 Creating an application on Windows (inside the framework)

Creating a new sub-project in the Visual Studio is rather straightforward.
In addition, one can use a provided sample project file dummy app.vcxproj

as a template. To this end, one needs to to create a copy of this sample project
file and subsequently edit it. One needs to do the following:

– Obtain a new value of the project GUI and put it between the tags
<ProjectGUID>...</ProjectGUID>;

– Add/delete new files;
– Add/delete/change references to the boost directories (both header files and

libraries);
– If the CPU has AVX extension, it may be necessary to enable them as

explained in § 3.2.
– Finally, one may manually add an entry to the main project file NonMetric-

SpaceLib.sln.

7 Notes on Efficiency

7.1 Efficiency of Distance Functions

Note that improvement in efficiency and in the number of distance computations
obtained with slow distance functions can be overly optimistic. That is, when
a slow distance function is replaced with a more efficient version, the improve-
ments over sequential search may become far less impressive. In some cases, the
search method can become even slower than the brute-force comparison against
every data point. This is why we believe that optimizing computation of a dis-
tance function is equally important (and sometimes even more important) than
designing better search methods.

In this library, we optimized several distance functions, especially non-metric
functions that involve computations of logarithms. An order of magnitude im-
provement can be achieved by pre-computing logarithms at index time and by
approximating those logarithms that are not possible to pre-compute (see § 4.3
and § 4.4 for more details). Yet, this doubles the size of an index.

The Intel compiler has a powerful math library, which allows one to efficiently
compute several hard distance functions such as the KL-divergence, the Jensen-
Shanon divergence/metric, and the Lp spaces for non-integer values of p more
efficiently than in the case of GNU C++ and Clang. In the Visual Studio’s fast
math mode (which is enabled in the provided project files) it is also possible
to compute some hard distances several times faster compared to GNU C++
and Clang. Yet, our custom implementations seems to be always twice as fast.
For example, in the case of the Intel compiler, the custom implementation of
the KL-divergence is 10 times faster than the standard one while the custom
implementation of the JS-divergence is two times faster. In the case of the Visual
studio, the custom KL-divergence is 7 times as fast as the standard one, while
the custom JS-divergence is 10 times faster. Therefore, doubling the size of the
data set by storing pre-computed logarithms seems to be worthwhile.

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/src/dummy_app.vcxproj
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/NonMetricSpaceLib.sln
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/similarity_search/NonMetricSpaceLib.sln
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Efficient implementations of some other distance functions rely on SIMD
instructions. These instructions, available on most modern Intel and AMD pro-
cessors, operate on small vectors. Some C++ implementations can be efficiently
vectorized by both the GNU and Intel compilers. That is, instead of the scalar op-
erations the compiler would generate more efficient SIMD instructions. Yet, the
code is not always vectorized by the Clang. And even the Intel compiler, fails
to efficiently vectorize computation of the KL-divergence (with pre-computed
logarithms).

There are also situations when we efficient automatic vectorization is hardly
possible. For instance, we provide an efficient implementation of the scalar prod-
uct for sparse single-precision floating point vectors. It relies on the all-against-
all comparison SIMD instruction mm cmpistrm. However, it requires keeping the
data in a special format, which makes automatic vectorization nearly impossible.

Intel SSE extensions that provide SIMD instructions are automatically de-
tected by compilers but the Visual Studio. If these SSE extensions are not avail-
able, the compilation process will produce warnings like the following one:

LInfNormSIMD: SSE2 is not available, defaulting to pure C++ implementation!

Because we do not know a good way to create/modify Visual Studio project
files that enable SSE extensions automatically (depending on whether hardware
supports them), the user need to enable these extensions manually. For the
instructions, the user is referred to § 3.2.

7.2 Cache-friendly Data Layout

In our previous report [3], we underestimated a cost of a random memory access.
A more careful analysis showed that, on a recent laptop (Core i7, DDR3), a truly
random access “costs” about 200 CPU cycles, which may be 2-3 times longer
than a computation of a cheap distance such as L2.

Many implemented methods use some form of bucketing. For example, in
the VP-tree or bbtree we recursively decompose the space until a partition con-
tains at most bucketSize elements. The buckets are searched sequentially, which
could be done much faster, if bucket objects were stored in contiguous memory
regions. Thus, to check elements in a bucket we would need only one random
memory access.

A number of methods support this optimized storage model. It is activated
by setting a parameter chunkBucket to 1. If chunkBucket is set to 1, indexing
is carried out in two stages. At the first stage, a method creates unoptimized
buckets, each of which is an array of pointers to data objects. Thus, objects are
not necessarily contiguous in memory. In the second stage, the method iterates
over buckets, allocates a contiguous chunk of memory, which is sufficiently large
to keep all bucket objects, and copies bucket objects to this new chunk.

Important note: Note that currently we do not delete old objects and do
not deallocate the memory they occupy. Thus, if chunkBucket is set to 1, the
memory usage is overestimated. In the future, we plan to address this issue.

http://searchivarius.org/blog/main-memory-similar-hard-drive
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8 Data Sets

Currently we provide only vector space data sets that come in either dense
or sparse format. For simplicity, these are textual formats where each row of
the file contains a single vector. If a row starts with a prefix in the form:
label:<non-negative integer value> <white-space>, the integer value is
interpreted as the identifier of a class. These identifiers can be used to compute
the accuracy of k-NN based classification procedure.

Aside from the prefix, the sparse and dense vectors are stored in a different
format. In the dense-vector format, each row contains the same number of vector
elements, one per each dimension. The values can be separated by spaces or
commas/columns. In the sparse format, each vector element is preceded by a
zero-based vector element id. The ids can be unsorted, but they should not
repeat. For example, the following line describes a vector with three explicitly
specified values, which represent vector elements 0, 25, and 257:

0 1.234 25 0.03 257 -3.4

The vectors are sparse and most values are not specified. It is up to a designer
of the space to decide on the default value for an unspecified vector element. All
existing implementations use zero as the default value. Again, elements can be
separated by spaces or commas/columns instead of spaces.

In addition, the directory sample scripts contains the full set of scripts
that can be used to re-produce our NIPS’13 and SISAP’13 results [3,4]. This
includes the software to generate plots (see also § 3.7). Additionally, to re-
produce our previous results, one needs to obtain a data set using the script
data/get data nips2013.sh. To get all data set sets available, please, use the
script data/get all data.sh.

The complete set contains the following:

– The data set created by Lawrence Cayton. To download, use the script data/-
download cayton.sh;

– The Colors data set, which comes with the Metric Spaces Library[18]. To
download, use the script data/download colors.sh;

– The Wikipedia tf-idf vectors in the sparse format. To download, use the
script data/download wikipedia sparse.sh;

– The Wikipedia dense 128-element vectors obtained from sparse vectors. Di-
mensionality is reduced via the singular value decomposition (SVD). To
download, use the script data/download wikipedia lsi128.sh;

– A synthetic, randomly generated, 64-dimensional data set, where each coor-
dinate is a real number sampled independently from U [0, 1]:
data/genunif.py -d 64 -n 500000 -o unif64.txt

Note that all data sets, except the Wikipedia tf-idf (sparse) vectors, are
vectors in the dense format (see § 4). If we use any of them, please consider
citing the sources (see Section 9) for details. Also note that, the data will be
downloaded in the compressed form. You would need the standard gunzip to

https://github.com/searchivarius/NonMetricSpaceLib/blob/master/data/get_data_nips2013.sh
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/data/get_all_data.sh
http://lcayton.com
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/data/download_cayton.sh
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/data/download_cayton.sh
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/data/download_colors.sh
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/data/download_wikipedia_sparse.sh
https://github.com/searchivarius/NonMetricSpaceLib/blob/master/data/download_wikipedia_lsi128.sh
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uncompress all the data except the Wikipedia (sparse and dense) vectors. The
Wikipedia data is compressed using 7z, which provides superior compression
ratios.

9 Licensing and Acknowledging the Use of Library
Resources

The code that was written entirely by the authors is distributed under the
business-friendly Apache License. The best way to acknowledge the use of this
code in a scientific publication is to provide the URL of the GitHub repository14

and to cite our engineering paper:

@incollection{Boytsov_and_Bilegsaikhan:sisap2013,

year={2013},

isbn={978-3-642-41061-1},

booktitle={Similarity Search and Applications},

volume={8199},

series={Lecture Notes in Computer Science},

editor={Brisaboa, Nieves and Pedreira, Oscar and Zezula, Pavel},

doi={10.1007/978-3-642-41062-8_28},

title={Engineering Efficient and Effective

\mbox{Non-Metric Space Library}},

url={http://dx.doi.org/10.1007/978-3-642-41062-8_28},

publisher={Springer Berlin Heidelberg},

keywords={benchmarks; (non)-metric spaces; Bregman divergences},

author={Boytsov, Leonid and Naidan, Bilegsaikhan},

pages={280-293}

}

Most provided data sets are created by Lawrence Cayton. Our implemen-
tation of the bbtree, an exact search method for Bregman divergences, is also
based on the code of Cayton. If you use any of these, please, consider citing:

@inproceedings{cayton2008,

title= {Fast nearest neighbor retrieval for bregman divergences},

author= {Cayton, Lawrence},

booktitle= {Proceedings of the 25th international conference on

Machine learning},

pages= {112--119},

year= {2008},

organization={ACM}

}

The Colors data set originally belongs to the Metric Spaces Library:

14 https://github.com/searchivarius/NonMetricSpaceLib

http://apache.org/licenses/LICENSE-2.0
https://github.com/searchivarius/NonMetricSpaceLib
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@misc{LibMetricSpace,

Author = {K.~Figueroa and G.{}~Navarro and E.~Ch\’avez},

Keywords = {Metric Spaces, similarity searching},

Lastchecked = {August 18, 2012},

Note = {Available at

{\url{http://www.sisap.org/Metric\_Space\_Library.html}}},

Title = {\mbox{Metric Spaces Library}},

Year = {2007}

}

The Wikipedia data sets were created with a help of the gensim library:

@inproceedings{rehurek_lrec,

title = {{Software Framework for Topic Modelling

with Large Corpora}},

author = {Radim {\v R}eh{\r u}{\v r}ek and Petr Sojka},

booktitle = {{Proceedings of the LREC 2010 Workshop on New

Challenges for NLP Frameworks}},

pages = {45--50},

year = 2010,

month = May,

day = 22,

publisher = {ELRA},

address = {Valletta, Malta},

note={\url{http://is.muni.cz/publication/884893/en}},

language={English}

}

Last, but not least, our library incorporates the efficient LSHKIT library.
Note that is is distributed under a different license: GNU General Public License
version 3 or later.

If you (re)-use it, please, consider citing the authors:

@inproceedings{Dong_et_al:2008,

author = {Dong, Wei and Wang, Zhe and Josephson, William

and Charikar, Moses and Li, Kai},

title = {Modeling LSH for performance tuning},

booktitle = {Proceedings of the 17th ACM conference on Information

and knowledge management},

series = {CIKM ’08},

year = {2008},

isbn = {978-1-59593-991-3},

location = {Napa Valley, California, USA},

pages = {669--678},
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Table 3: Parameters of space partitioning methods

Common parameters

bucketSize A maximum number of elements in a bucket/leaf.

chunkBucket Indicates if bucket elements should be stored contiguously in
memory (1 by default).

maxLeavesToVisit An early termination parameter equal to the maximum num-
ber of buckets (tree leaves) visited by a search algorithm
(2147483647 by default).

VP-tree (vptree) [32,34]

Common parameters bucketSize, chunkBucket, and
maxLeavesToVisit

alphaLeft A stretching coefficient αleft in Equation (5)

alphaRight A stretching coefficient αright in Equation (5)

Multi-Vantage Point Tree (mvptree) [5]

Common parameters bucketSize, chunkBucket, and
maxLeavesToVisit

maxPathLen the maximum number of top-level pivots for which we memorize
distances to data objects in the leaves

GH-tree (ghtree) [32]

Common parameters bucketSize, chunkBucket, and
maxLeavesToVisit

List of clusters (list clusters) [10]

Common parameters bucketSize, chunkBucket, and
maxLeavesToVisit. Note maxLeavesToVisit is a query
time parameter.

useBucketSize If equal to one, we use the parameter bucketSize to determine
the number of points in the cluster. Otherwise, the size of the
cluster is defined by the parameter radius.

radius The maximum radius of a cluster (used when useBucketSize

is set to zero).

strategy A cluster selection strategy. It is one of the follow-
ing: random, closestPrevCenter, farthestPrevCenter,
minSumDistPrevCenters, maxSumDistPrevCenters.

SA-tree (satree) [27]

No parameters

bbtree (bbtree) [7]

Common parameters bucketSize, chunkBucket, and
maxLeavesToVisit

Note: mnemonic method names are given in round brackets.
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Table 4: Parameters of LSH methods

Common parameters

W A width of the window [13].

M A number of atomic (binary hash functions), which are con-
catenated to produce an integer hash value.

H A size of the hash table.

L The number hash tables.

Multiprobe LSH: only for L2 (lsh multiprobe) [25,14,13]

Common parameters W, M, H, and L

T a number of probes

desiredRecall a desired recall

tuneK find optimal parameter for k-NN , search where k is defined by
this parameter

LSH Gaussian: only for L2 (lsh gaussian) [9]

Common parameters W, M, H, and L

LSH Cauchy: only for L1 (lsh cauchy) [9]

Common parameters W, M, H, and L

LSH thresholding: only for L1 (lsh threshold) [33,24]

Common parameters M, H, and L (W is not used)

Note: mnemonic method names are given in round brackets.
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Table 5: Parameters of permutation-based filtering methods

Common parameters

numPivot A number of pivots.

dbScanFrac A number of candidate records obtained during the filtering
step. It is specified as a fraction (not a percentage!) of the total
number of data points in the data set.

binThreshold Binarization threshold. If a value of an original permutation
vector is below this threshold, it becomes 0 in the binarized
permutation. If the value is above, the value is converted to 1.

Brute-force permutation search (permutation) [19]

Common parameters numPivot and dbScanFrac.

Brute-force permutation search with incremental sorting (perm incsort) [19]

Common parameters numPivot and dbScanFrac. Note that
dbScanFrac is a query time parameter.

PP-index (perm prefix) [16]

numPivot A number of pivots.

minCandidate a minimum number of candidates to retrieve (note that we do
not use dbScanFrac here.

prefixLength a maximum length of the tree prefix that is used to retrieve
candidate records.

chunkBucket 1 if we want to store vectors having the same permutation prefix
in the same memory chunk (i.e., contiguously in memory)

Inverted index over permutations (perm inv indx) [2]

Common parameters numPivot and dbScanFrac.

numPivotIndex a number of (closest) pivots to index

numPivotSearch a number of (closest) pivots to use during searching

maxPosDiff the maximum position difference permitted for searching in the
inverted file

Inverted index over pivot neighborhoods (pivot neighb invindx) [31]

Common parameter numPivot.

invProcAlg An algorithm to merge posting lists. In practice, only scan

worked well.

chunkIndexSize A number of documents in one index chunk. Select a small value
(in the order of several thousands) for better cache utilization.

indexThreadQty A number of indexhing threads.

minPrefix A number of most closest pivots to be indexed.

minTimes A candidate entry should share this number of pivots with the
query. This is a query time parameter.

Note: mnemonic method names are given in round brackets.
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Table 6: Parameters of permutation-based filtering methods (continued)

Brute-force search with incremental sorting for binarized permutations

(perm incsort bin) [30]

Common parameters numPivot, dbScanFrac, binThreshold.

VP-tree index over binarized permutations (perm bin vptree)

Similar to [30], but uses an approximate search in the VP-tree.

Common parameters numPivot, dbScanFrac, binThreshold.

VP-tree index over permutations (perm vptree)

Similar to [17], but uses an approximate search in the VP-tree.

Common parameters numPivot and dbScanFrac. Note that
dbScanFrac is a query time parameter.

alphaLeft A stretching coefficient αleft in Equation (5)

alphaRight A stretching coefficient αright in Equation (5)

Note: mnemonic method names are given in round brackets.

Table 7: Parameters of miscellaneous methods

k-NN graph (bottom-up and greedy index creation) (small world rand) [26]

NN A number of close entries returned by one sub-search.

initSearchAttempts A number of sub-searches to answer one query. This is a query
time parameter.

initIndexAttempts A number of sub-searches to add one data point during index-
ing.

indexThreadQty A number of indexing threads.

Several copies of the same index type (mult index)

indexQty A number of copies

methodName A mnemonic method name

Any other parameter that the method accepts. For instance,
if we create several copies of the VP-tree, we can specify the
parameters alphaLeft, alphaRight, maxLeavesToVisit, and so
on.

Exhaustive/sequential search (seq search)

No parameters.

Note: mnemonic method names are given in round brackets.
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