

 במדעים .B.Scמעשי לתואר פרויקט

 מתכנתים ממאדים ומהנדסות מנגה

Male programmers from Mars and female

engineers from Venus

318274099 מימון ושירן 308465434נעם בסט מגישות:

ד"ר יהונתן שלר בהנחיית:

2021.0782.תאריך הגשה:

2

Table Of Content

Introduction .. 3

Project tools .. 4

Python Libraries .. 5

Project planning and structure ...10

Generic Flow ...10

Web Crawling flow: ...13

Web Crawling Description: ...14

Initial Features: ...20

Percentage of genders ...22

Syntax Features flow: ...24

Syntax Features Description: ..25

Commands features: ...25

Variable names features:...27

Normalized, Regular and High Distance Features DataFrames:28

Bar Graphs of the differences between the genders in each

language. ..29

Modeling Flow: ..36

Modeling Flow Description: ..37

Results and discussion ..41

Extract Models Coefficients by language: ...43

Conclusions and future research recommendations:51

Figures ...53

Bibliography ...56

3

Introduction

Studies have shown that there is a difference between male and

female in a wide range of fields: biological, physical, mental and

intellectual.

Past researches have shown that there is a difference in the manner of

expression and writing between the genders.

This project examines wether there are similar differences in writing

code between men and women.

The main goal is to answer our research question – which is – Can we

predict the programmer’s gender from a given code?

The project’s data was collected from the Coderbyte website. The data

was processed and analyzed in advance, features were added to it

according to the programming language and modeled using machine

learning algorithms.

4

Project tools

Integrated development environment – We used Jupyter notebook,

by Anaconda IDE as our main environment. “The Jupyter Notebook

application allows you to create and edit documents that display the

input and output of a Python or R language script. Once saved, you

can share these files with others.” [1]

Programming Language – Python. The python programming

language provides a lot of ready to use libraries and methods.

“Python is an interpreted high-level general-purpose programming

language. Python's design philosophy emphasizes code readability

with its notable use of significant indentation. Its language constructs

as well as its object-oriented approach aim to help programmers

write clear, logical code for small and large-scale projects.” [2]

Data source web – For our mission, we chose to focus on the

Coderbyte website, which provides free challenges and users

solutions.

 “Coderbyte is an online collection of 300+ algorithm and full-

stack coding challenges and interview kits. ... They take an

5

assessment to be rated on their skills in programming language

abilities, data structures, and algorithms. Users can move through the

ranks by solving challenges correctly. “ [3]

CoderByte link - https://coderbyte.com/

Python Libraries

Pandas – The ‘DataFrame’ collection in Pandas, makes it easier to

work with big data and organize it. “Pandas is a software library

written for the Python programming language for data manipulation

and analysis. In particular, it offers data structures and operations for

manipulating numerical tables and time series. It is free software

released under the three-clause BSD license. “ [4]

NumPy – “NumPy is the fundamental package for scientific

computing in Python. It is a Python library that provides a

multidimensional array object, various derived objects (such as

masked arrays and matrices), and an assortment of routines for fast

operations on arrays, including mathematical, logical, shape

manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic

linear algebra, basic statistical operations, random simulation and

much more.” [5]

https://coderbyte.com/

6

Seaborn – “Seaborn is a library for making statistical graphics in

Python. It builds on top of matplotlib and integrates closely with

pandas data structures.

Seaborn helps you explore and understand your data. Its plotting

functions operate on dataframes and arrays containing whole

datasets and internally perform the necessary semantic mapping and

statistical aggregation to produce informative plots. Its dataset-

oriented, declarative API lets you focus on what the different

elements of your plots mean, rather than on the details of how to

draw them.” [6]

Matplotlib - “Matplotlib is a cross-platform, data visualization and

graphical plotting library for Python and its numerical extension

NumPy. As such, it offers a viable open source alternative to MATLAB.

Developers can also use matplotlib’s APIs (Application Programming

Interfaces) to embed plots in GUI applications.

A Python matplotlib script is structured so that a few lines of code are

all that is required in most instances to generate a visual data plot.”

[8]

BeautifulSoup – We used BeautifulSoup in order to web-crawl in

order to obtain our codes. “Beautiful Soup is a Python library for

getting data out of HTML, XML, and other markup languages. Say

you’ve found some webpages that display data relevant to your

7

research, such as date or address information, but that do not provide

any way of downloading the data directly. Beautiful Soup helps you

pull particular content from a webpage, remove the HTML markup,

and save the information. It is a tool for web scraping that helps you

clean up and parse the documents you have pulled down from the

web.” [10]

Selenium – In order to select languages and free codes from the site,

we used the selenium library. “Selenium is a free (open-source)

automated testing framework used to validate web applications

across different browsers and platforms. You can use multiple

programming languages like Java, C#, Python etc to create Selenium

Test Scripts. Testing done using the Selenium testing tool is usually

referred to as Selenium Testing.” [9]

OpenCV – In order to compare the user’s image with the available

emoji’s, we used the openCV library. “OpenCV (Open Source

Computer Vision Library) is an open source computer vision and

machine learning software library. OpenCV was built to provide a

common infrastructure for computer vision applications and to

accelerate the use of machine perception in the commercial products.

8

Being a BSD-licensed product, OpenCV makes it easy for businesses

to utilize and modify the code.” [7]

Gender Guesser – In order to detect the user’s gender, we used the

gender- guesser library, which can detect the gender from a name

string. “The program Gender Guesser is a program for determining

the gender of a given first name. The program "gender.c" uses the

dictionary file "nam_dict.txt" as a data source. This file contains a list

of more than 40,000 first names and gender, plus some 600 pairs of

"equivalent" names. This list should be able to cover the vast majority

of first names in all European contries and in some overseas countries

(e.g. China, India, Japan, U.S.A.) as well.” [11]

Scikit-learn – We used Scikit-learn in order to use machine learning

algorithms, compare the models and predict new examples. “Scikit-

learn is a free software machine learning library for the Python

programming language. It features various classification, regression

and clustering algorithms including support vector machines, random

forests, gradient boosting, k-means and DBSCAN, and is designed to

interoperate with the Python numerical and scientific libraries NumPy

and SciPy.” [12]

Re – When it came to formatting and text-manipulation, we used re in

order to extract the specific regular expression we wanted to check in

each syntax. “A regular expression is a special sequence of characters

9

that helps you match or find other strings or sets of strings, using a

specialized syntax held in a pattern. Regular expressions are widely

used in UNIX world. The Python module re provides full support for

Perl-like regular expressions in Python. The re module raises the

exception re.error if an error occurs while compiling or using a regular

expression.” [13]

Scipy – We used SciPy for t testing. “SciPy in Python is an open-

source library used for solving mathematical, scientific, engineering,

and technical problems. It allows users to manipulate the data and

visualize the data using a wide range of high-level Python commands.

SciPy is built on the Python NumPy extention.” [14]

10

Project planning and structure

Generic Flow

Extract Codes

Clean and format data + Feature enrichment

Train the models and predict the gender

Figure 1 Generic System’s Flow

11

This project was divided into three main sections:

1. Section 1: - Web_Crawling_Gender_Detection.ipynb

In this section, we focused on obtaining the data and detecting

the user’s gender, in order to label and classify each record.

https://github.com/noambassat/Male-programmers-from-

Mars-and-female-engineers-from-

Venus/blob/main/Web_Crawling_Gender_Detection.ipynb

2. Section 2 - Syntaxes.ipynb:

This section is mainly about data preprocessing and enrichment:

cleaning the raw data, dropping duplicate records, reformatting

each column, and normalizing units. In addition, we added

many features for each record that represent the code’s details.

a. Langs_Syntax

b. CountVectorize

https://github.com/noambassat/Male-programmers-from-

Mars-and-female-engineers-from-

Venus/blob/main/Syntaxes.ipynb

https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Web_Crawling_Gender_Detection.ipynb
https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Web_Crawling_Gender_Detection.ipynb
https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Web_Crawling_Gender_Detection.ipynb
https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Web_Crawling_Gender_Detection.ipynb
https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Syntaxes.ipynb
https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Syntaxes.ipynb
https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Syntaxes.ipynb

12

3. Section 3 - Modeling Data.ipynb:

Training different Machine Learning models, comparing and

testing.

a. Grid search

b. Cross validation

c. Comparing by accuracies and f1_score

i. DT

ii. RF

iii. KNN

iv. SVM

v. NB

https://github.com/noambassat/Male-programmers-from-

Mars-and-female-engineers-from-

Venus/blob/main/Modeling%20Data.ipynb

https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Modeling%20Data.ipynb
https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Modeling%20Data.ipynb
https://github.com/noambassat/Male-programmers-from-Mars-and-female-engineers-from-Venus/blob/main/Modeling%20Data.ipynb

13

Web Crawling flow:

For each identified user gender –

web crawl his/her profile in order

to gain more codes

Figure 2 Web crawling flow

14

Web Crawling Description:

Obtaining the codes from the Coder-Byte website, detecting the

writer’s gender, and re-crawling each user’s profile in order to gain

more code solutions.

a. Crawl free challenges solutions:

Our main tool for web crawling was “BeautifulSoup” library, but

in order to select only the free challenges and select specific

code languages, we also used the Selenium library.

Figure 3 BeautifulSoup & Selenium

15

We chose to focus on nine main programming languages -

Java, Python, JavaScript, PHP, Csharp, Swift, C, Ruby and Go.

We saved all the data in a data-frame structure, which initially

contained the following columns:

User Name, User image, User profile URL link, Challenge Name,

Programming Language, Solution Code, User Score and User's

Comments.

Figure 4. The web-crawling process

16

Figure 5 Data Extraction

17

b. Gender Detection:

Sequence detection steps:

 Detect by first name

At first, the program checks if there is a name in the user’s

profile, if there is – try to detect the first name (first string

until the ‘space’ char or non-alpha char) by the dictionary

detector. Else, continue to the next step.

 Detect by username

If the first name was missing, or the detector could not

recognize the gender, try to detect the gender by username,

in the following sequence:

a. Slice the name by capital letter (As long as the capital

letter is not the first letter).

There is a

first name,

slice and

check the

gender

No first name in

this profile,

continue to the

next step

Figure 6. First Name Examples

18

b. Slice name by non-alpha character

c. Slice last letter each time. Continue as long as the

gender is not recognized and the username’s length is

greater than three letters.

(Step b)

Figure 7. Username Example

Figure 8. Slice by non-alpha example

Figure 9. Slice last letter

19

Detect by emoji image

C. Crawl more codes for detected users

Figure 11. Gain more codes

Figure 10. Compare user's emoji

20

Initial Features:

 User_Name

 User_img

 User_url – user’s profile link

 Challange_Name

 Programming_Lang

 Sol_Code

21

 User_Score

 User's_Comments

 User_Gender – After gender detection:

Male or Female

22

 Name_or_Image - whether the gender was detected by the

user's name or image:

 0 Means detected by name, 1 means by image.

Percentage of genders





















Figure 12. Pie chart: Percentage of genders in each challenge

23

Figure 13. Pie chart: Percentage of genders in each programming language

24

Syntax Features flow:

Figure 14. Syntax Features flow

25

Syntax Features Description:

Commands features:

After conducting a background research on the syntax of the various

programming languages, we created a table where the rows

represent some basic commands while the columns represent each

language. Based on this syntax table, we created additional features:

 Code length

 Number of comments

 The location of comments in code

 The amount of variables in code

 The amount of FOR and WHILE loops used

 Number of functions

 Number of uses in IF and ELSE conditions

 Number of rows

 Number of capital letters in variable names

 The use of permissions (Public, private, protected)

 The use of ‘static’

 Number of blank lines

 Number of default comments (whether the user deleted or

left them)

26

 Print / output commands count

 Counting the different ways to write comments (e.g. in Java,

you can write / * comment * / or write // comment).

Figure 15. The Syntax Table Data Frame

Figure 16. Data Frame after adding features

27

Variable names features:

In order to count the existence of each variable name, we used

CountVectorizer.

“CountVectorizer is a great tool provided by the scikit-learn library in

Python. It is used to transform a given text into a vector on the basis

of the frequency (count) of each word that occurs in the entire text.

This is helpful when we have multiple such texts, and we wish to

convert each word in each text into vectors (for using in further text

analysis).” [15]

Figure 17. CountVectorizer Features Example

28

Normalized vs. Regular DataFrames:

In order to examine the best performance for our mission, we created

two types of the main DataFrame:

1. A normalized dataframe – where each value is divided by the

specific challenge’s code average length.

2. The original dataframe.

29

Bar Graphs of the differences between the genders in each

language.

Figure 18. Conditions uses by gender

Figure 19.Number of comments by gender

30

Figure 20. Average comments length by gender

Figure 21. Average Code length by gender

31

Figure 23. Average for loops uses by gender

Figure 22. Average number of empty lines by gender

32

Figure 25. Average number of default comments by gender

Figure 24. Average number of total lines by gender

33

Figure 27. Average number of Capital letters uses by gender

Figure 26. Average number of inline comments by gender

34

Figure 28. Average lines length by gender

Figure 29. Average Variable’s decleration by gender

35

Figure 30. Average number of while loop uses by gender

Figure 31. Average variables names length by gender

36

Modeling Flow:

Figure 32. The Modeling Flow

37

Modeling Flow Description:

 The main steps in the modeling stage:

1. Divide the DataFrames by each of the programming languages.

The total number of codes belonging to men was 2317 while the

number of codes written by women was 887, which makes sense

for the current programmer population.

2. Because of the unbalanced data – Create two different

‘proportion DataFrames’ for each of the language dataframe

chosen randomly so that for each challenge there will be the

same proportion of genders.

a. The first one is a Dataframe that contains 50% female

codes and 50% male codes.

b. The second contains 33% female codes and 66% male

codes.

Finally, we had to test a total number of 36 DataFrames: Two

types of DataFrames that were divided into 9 languages. For

each one we tried scaled and non-scaled dataframe.

3. Examine five different machine learning models from the scikit-

learn library:

 Decision Tree

 Random Forest

38

 KNN

 Naïve Bayes

 SVM

Test all models above and compare their performances by their

accuracy and f1 score rates.

4. In order to find the best-fitted hyper-parameters, use grid

search with multiple parameters options and choose the best

one.

“Hyper-parameters are parameters that are not directly learnt

within estimators. In scikit-learn they are passed as arguments

to the constructor of the estimator classes. Typical examples

include C, kernel and gamma for Support Vector Classifier,

alpha for Lasso, etc.

It is possible and recommended to search the hyper-parameter

space for the best cross validation score.

Any parameter provided when constructing an estimator may

be optimized in this manner” [16].

Figure 33. KNN’s Hyper Parameters

39

Figure 34. Decision Tree's Hyper Parameters

Figure 35. Random Forest's Hyper Parameters

40

After finding the best parameters, we trained and tested the models

using two ways of evaluating estimator performance:

1. Cross validation score using cv = 10:

2. Cross validation score using cv = Leave On Out:

Figure 36. SVM's Hyper Parameters

Figure 37. Cross validation – find the best scores

41

Results and discussion

After training and testing the models, we summarized the best

performance for each language:

We noticed that most models rely on the "Image_or_Name" column,

(described in page 21) which does not contribute to our research

question, but refers to how the data was extracted. Following this, we

decided to remove this column and examine the performance of the

various models without it:

Figure 38. Best Performances table

42

As we expected, the performances decreased, but the models can

still predict the user’s gender with an average accuracy of about

73%, and f1_score of about 70%, which is encouraging.

 For all languages, the division by 66% men and 33% women

seems to be the most appropriate for predictive purposes.

 For most languages, the decision tree model gained the best

performance.

 There seem to be some differences in code writing between

male and female, but for each language, the features that

influence the differences are not the same.

 In all of the languages beside Java, males used more Capital

letters than females did.

 The model performances yielded a good initial result for further

research.

Figure 39. Best performances table without "Image_or_Name" column

43

Extract Models Coefficients by language:

Java

Figure 40 Java coefs

Figure 41 Java decision tree nodes

44

Csharp

Figure 42 Csharp coefs

Figure 43 Csharp decision tree nodes

45

JavaScript

Figure 44 Java Script coefs

Figure 45. JavaScript decision tree nodes

46

Python

Figure 46. Python coefs

Figure 47. Python decision tree nodes

47

Ruby

Figure 48. Ruby coefs

Figure 49. Ruby decision tree nodes

48

PHP

Figure 50. PHP coefs

Figure 51. PHP decision tree nodes

49

Go

Figure 52. Go Coefs

Figure 53. Go decision tree nodes

50

Swift

Figure 54. Swift coefs

Figure 55. Swift decision tree

51

Conclusions and future research recommendations:

Our Research question was - "Can we predict the programmer’s

gender from a given code?"

We think that our project shows a promising start in the direction of

detecting the gender from a given programming code. A strong proof

for this assumption can be seen through the rating of the models -

which means they actually learned and did not guess. This shows that

we succeeded in our major challenge, which was - translating the

programming code into countable and meaningful features, so that

we can distinct between females and males.

The fact that we initially selected unlabeled data, which means we did

not know the genders of the writers for sure, may be one of the

problematic factors for the results. This fact also forced us to use less

data records than we could have used, because most of the users did

not give their real name, or the detector could not detect their

gender.

In order to answer the important and more detailed question – 'how

well can a machine detect the gender of the writer from a given

code?'- further work should include more research about each

52

language in order to find more features along with using gender

labeled or supervised data.

53

Figures

Figure 1 Generic System’s Flow .. 10

Figure 2 Web crawling flow .. 13

Figure 3 BeautifulSoup & Selenium.. 14

Figure 4. The web-crawling process ... 15

Figure 5 Data Extraction ... 16

Figure 6. First Name Examples .. 17

Figure 7. Username Example.. 18

Figure 8. Slice by non-alpha example .. 18

Figure 9. Slice last letter ... 18

Figure 10. Compare user's emoji ... 19

Figure 11. Gain more codes ... 19

Figure 12. Pie chart: Percentage of genders in each challenge 22

Figure 13. Pie chart: Percentage of genders in each programming language 23

Figure 14. Syntax Features flow .. 24

Figure 15. The Syntax Table Data Frame .. 26

Figure 16. Data Frame after adding features .. 26

Figure 17. CountVectorizer Features Example ... 27

Figure 18. Conditions uses by gender ... 29

Figure 19.Number of comments by gender ... 29

Figure 20. Average comments length by gender ... 30

Figure 21. Average Code length by gender ... 30

Figure 22. Average number of empty lines by gender .. 31

Figure 23. Average for loops uses by gender .. 31

Figure 24. Average number of total lines by gender .. 32

Figure 25. Average number of default comments by gender .. 32

file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397543
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397544
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397545
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397546
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397547
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397548
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397549
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397550
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397551
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397552
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397553
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397554
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397555
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397556
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397557
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397558
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397559
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397560
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397561
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397562
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397563
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397564
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397565
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397566
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397567

54

Figure 26. Average number of inline comments by gender .. 33

Figure 27. Average number of Capital letters uses by gender 33

Figure 28. Average lines length by gender.. 34

Figure 29. Average Variable’s decleration by gender ... 34

Figure 30. Average number of while loop uses by gender .. 35

Figure 31. Average variables names length by gender.. 35

Figure 32. The Modeling Flow ... 36

Figure 33. KNN’s Hyper Parameters ... 38

Figure 34. Decision Tree's Hyper Parameters ... 39

Figure 35. Random Forest's Hyper Parameters ... 39

Figure 36. SVM's Hyper Parameters ... 40

Figure 37. Cross validation – find the best scores .. 40

Figure 38. Best Performances table .. 41

Figure 39. Best performances table without "Image_or_Name" column 42

Figure 40 Java coefs ... 43

Figure 41 Java decision tree nodes ... 43

Figure 42 Csharp coefs ... 44

Figure 43 Csharp decision tree nodes ... 44

Figure 44 Java Script coefs.. 45

Figure 45. JavaScript decision tree nodes .. 45

Figure 46. Python coefs .. 46

Figure 47. Python decision tree nodes .. 46

Figure 48. Ruby coefs .. 47

Figure 49. Ruby decision tree nodes .. 47

Figure 50. PHP coefs .. 48

Figure 51. PHP decision tree nodes .. 48

Figure 52. Go Coefs .. 49

file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397568
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397569
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397570
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397571
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397572
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397573
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397574
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397575
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397576
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397577
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397578
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397579
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397580
file:///C:/Users/Noam/Desktop/Hit/פרויקט%20עם%20שירן%20ויהונתן/Project%20book.docx%23_Toc78397581

55

Figure 53. Go decision tree nodes ... 49

Figure 54. Swift coefs .. 50

Figure 55. Swift decision tree... 50

56

Bibliography

[1] https://docs.anaconda.com/ae-notebooks/user-guide/basic-

tasks/apps/jupyter/

[2] https://en.wikipedia.org/wiki/Python_(programming_language)

[3] https://www.pathrise.com/guides/a-review-of-coderbyte-as-a-software-

engineer-interview-prep-tool/

[4] https://en.wikipedia.org/wiki/Pandas_(software)

[5] https://numpy.org/doc/stable/user/whatisnumpy.html

[6] https://seaborn.pydata.org/introduction.html

[7] https://opencv.org/about/

[8] https://www.activestate.com/resources/quick-reads/what-is-matplotlib-in-

python-how-to-use-it-for-plotting/

[9] https://www.guru99.com/introduction-to-selenium.html

[10] https://programminghistorian.org/en/lessons/intro-to-beautiful-soup#what-

is-beautiful-soup

[11] https://autohotkey.com/board/topic/20260-gender-verification-by-

forename-cmd-line-tool-db/

[12] https://en.wikipedia.org/wiki/Scikit-learn

[13] https://www.tutorialspoint.com/python/python_reg_expressions.htm

[14] https://www.guru99.com/scipy-tutorial.html

[15] https://www.geeksforgeeks.org/using-countvectorizer-to-extracting-

features-from-text/

https://docs.anaconda.com/ae-notebooks/user-guide/basic-tasks/apps/jupyter/
https://docs.anaconda.com/ae-notebooks/user-guide/basic-tasks/apps/jupyter/
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.pathrise.com/guides/a-review-of-coderbyte-as-a-software-engineer-interview-prep-tool/
https://www.pathrise.com/guides/a-review-of-coderbyte-as-a-software-engineer-interview-prep-tool/
https://en.wikipedia.org/wiki/Pandas_(software)
https://numpy.org/doc/stable/user/whatisnumpy.html
https://seaborn.pydata.org/introduction.html
https://opencv.org/about/
https://www.activestate.com/resources/quick-reads/what-is-matplotlib-in-python-how-to-use-it-for-plotting/
https://www.activestate.com/resources/quick-reads/what-is-matplotlib-in-python-how-to-use-it-for-plotting/
https://www.guru99.com/introduction-to-selenium.html
https://programminghistorian.org/en/lessons/intro-to-beautiful-soup#what-is-beautiful-soup
https://programminghistorian.org/en/lessons/intro-to-beautiful-soup#what-is-beautiful-soup
https://autohotkey.com/board/topic/20260-gender-verification-by-forename-cmd-line-tool-db/
https://autohotkey.com/board/topic/20260-gender-verification-by-forename-cmd-line-tool-db/
https://en.wikipedia.org/wiki/Scikit-learn
https://www.tutorialspoint.com/python/python_reg_expressions.htm
https://www.guru99.com/scipy-tutorial.html
https://www.geeksforgeeks.org/using-countvectorizer-to-extracting-features-from-text/
https://www.geeksforgeeks.org/using-countvectorizer-to-extracting-features-from-text/

57

[16] https://scikit-learn.org/stable/modules/grid_search.html

https://scikit-learn.org/stable/modules/grid_search.html

