

Lecture 4:
Smart Contracts & Solidity

AR

BLOCKCHAIN
Phang Jun Yu AN

A

Revision

A

Xa

BLOCKCHAIN
AT NTU

Recap
Q Transaction & Messages

d Gas

A

Xa

BLOCKCHAIN
AT NTU

Ethereum Blockchain 25 &
k
&
d Ablockchainis a “cryptographically secure e
transactional singleton machine with shared state” 5

d Cryptographically secure

. Digital signatures, Hashes, etc

d Transactional Singleton Machine
. Single instance of the machine for all transactions (global truth)

A Shared State

@ . Open and shared by everybody
'e@'

@ i%: ﬁ 2 BLOCKCHAIN
N e s O nfs 5 N ATNTU

Ethereum Virtual Machine NS

d Transaction-based state machine. e

A state machine refers to something that will read a series %
of inputs and, based on those inputs, will transition to a

new state.

A
% BLOCKC/H/?\\'ITI\LIJ

Ethereum Virtual Machine oo &
-
S

d EVMis asystem designed to e

operate as aruntime
environment for smart
contracts

d High level programming
(smart contract) languages:

,;@' . Solidity
\ . Vyper

X . Serpent
£, 2R

Solidity

compiles to

executed by
Y

A
% BLOC KC/IA_'IrAr\\IITI\LIJ

Transactions =3 @

N
d Transactions can only be sent from an externally owned X
account %

. Call(read)

L Send (write)

A Messages (internal transactions)

. Invoked by transactions
. Not explicitly published on the blockchain

N/
Externally »| Transaction : Contract : Interna_l : Contract
(%)\; owned account account Transaction account
=

Y
@ i%: 4 N BLOCKCHAIN
%J\/‘* F:rr\cxZ 0 “\(\‘(SS“ 8 @\/5:. AT NTU

Transactions

Transaction
nonce How many timﬁ: r:g:c?;?]der has sent a
to Address of account this money is going to
value Amount of ether to send to the target address
gasPrice Amount of ether the sender is willing to pay per

unit gas to get this transaction processed

startGas/gasLimit | Units of gas that this transaction can consume

Cryptographic pieces of data that can be used

r to generate the senders account address.
DX/ Generated from the sender’s private key.
ey
Q
S
</ -

AT NTU

@ L%l' w B @gBLOCKCHAIN

=5
Gas 22 Q
Q7.
d Every computation and transaction incurs a gas fee g

d Feeprevents:
L Infinite Loops (remember that EVM is Turing Complete)
. Denial of Service (disincentivises network spamming)
A Gasis the unit used to measure fees
. Measuredingwei-1Eth=1,000,000,000 gwei

2
@ L%’: 4 . 2 BLOCKCHAIN

AT NTU

Gas &
Q) g
N
[User sets gas limit and gas price in each transaction e

L gasfee =gaslimit * gas price

. Higher prices incentivises miners to include transaction in next block
- Unused gas is refunded
G

During computation if gas runs out, only tx value is refunded, not gas

fee
Start gas: 250

- 100 gas - 50 gas
Start : :
’@, Sender Operation P Operation P

End
Transaction

>/ i
(%)\; '4@»‘ 100 gas Receiver

: Refund |«g
@ 2. o . 2 BLOCKCHAIN
N

@(5:. AT NTU

Gas >
o@;" ;
A User sets gas limit and gas price in each transaction Dt
L gasfee =gaslimit * gas price %

. Higher prices incentivises miners to include transaction in next block
- Unused gas is refunded
G

During computation if gas runs out, only tx value is refunded, not gas

fee
Start gas: 120

- 100 gas - 50 gas OuT OF
Start . , GAS:
@, Sender Operation > Operation ¥ LpeVERT
)/ STATE

> i
(%)\; 1@'}‘ Receiver

2
@ N 4 2 BLOCKCHAIN

; 12
oA o 2 0 el Xy AT NTU

Gas 0> @
s “Q%:@:
A Gasisalso used to pay for storage (stored on all nodes) e

. Proportional to storage size
.t Incentivises users to keep data small
L If tx frees data space, gas will be refunded

@ h%: 4 5 2 BLOCKCHAIN

AT NTU

v

Agenda oo &
e
d Motivation: Smart Contracts e

d Solidity: Syntax & Data Structures

d Practice: Simple Contracts

N
GloY
f%\? S5

7 4
]

%) Ao E =mc” 0 “\(\‘{S&

A

Smart Contracts

A

Xa

BLOCKCHAIN
AT NTU

& K @3 ;,\
Smart Contracts - What are they? @

Let’s say you want to sell a house

J

X%
Trust with payment issues %
Complex Paperwork
Hire real estate agent
Commission fees

Iy Wy Ny N

Smart Contract:

7 d Escrow Service
@ I@: 4 2 BLOCKCHAIN

16
Npec-me& © “\\‘{S& @\/5:‘ AT NTU

Smart Contracts

Autonomy
Savings

Efficiency

GXoY/
o
‘j\ X

Ao E =mc”

m@

Y

§
Trust
Safety

A
% BLOCKC/IJ/?\\'ITI\LIJ

R 63
Smart Contracts - Trust and Safety »«° .§

d A Program on the Ethereum Blockchain - executed by the EVM =

e é&‘

d Violation of contract requires subverting the entire network

A Allows for secure Peer-to-Peer agreements that can stay on the
@ blockchain forever

b
e >
@ ﬁ . 22 BLOCKCHAIN

Nre £ “\\\SEEL

Smart Contracts - Why? S
9
d Honest Computing (Honest) X}E

d Tamper-Proof

d Nosingle point of failure
- Decentralized

d Autonomous code
. AWS?

N
Y
f%\> -

B e
| A
N > 7 19 Q BLOCKCHAIN

% Ao E =mc” é'ﬂ\\\\‘ﬁ

%

S
O React to external world when “triggered” by transactions that =
call functions

d Havedirect control over:
. Internal ether balance
. Internal contract state
., Permanent storage

2°° % |
Smart Contracts o @

7
@ i@: %4 . 2 BLOCKCHAIN

AT NTU

Smart Contracts %~ &

What can they do? %@
AV

d Store and maintain data %

d Manage contract or relationship between untrusting parties

d Provide functions to other contracts

d Complex authentication

@ i%: 4 . 2 BLOCKCHAIN

AT NTU

1 P PRA Candy Box
2 ¢ EOS Knights

4 .ﬁ. BetDice
. @

6 X X2invest
7 "‘ ForkDelta
8 Q EOSBet Dice
9 (> 333ETH

10 EOS Lucky Games

Precision advertising platform

Save the village from the goblins!

A gambling gaming eco-platform

EOS Betting platform

Distributed exchange made of smart contracts

Ethereum Fund X2invest.Org

ERC20 tokens exchange

Betting platform

ETH distribution project

Gambling games

22

20

W Karma
. Lucky Plaza

> The Token Store
v

E Easylnvest
2} Etheremon

W CryptokKitties
P S

@ HyperDragons

E EOS Poker
9 Bancor
80 OmiseGO

ETH 4% daily. no fees.

Social good incentivisation

Slots game

Exchange platform supporting trading by contract
address

Capture, train, evolve and trade Etheremons. Send
Etheremons to explore the world and battle with others.

Collect and breed digital cats
Cute dragons collectible game

EOS poker game

Built-in price discovery and a liquidity mechanism for
tokens

Unbank the banked

A
% BLOC KCAHTAI:IITI\lIJ

A

Solidity

‘A
% BLOCKC/I_ITA&ITNU

What is Solidity? 2L

O Solidity is a statically typed, contract programming language that has & X&“&
similarities to Javascript and C. %

d Like objects in OOP, each contract contains state variables, functions, and
common data types.

A Contract-specific features include modifier (guard) clauses, event notifiers for
listeners, and custom global variables.

B e
| A
N > 7 24 Q BLOCKCHAIN

Let’s look at a simple Bank contract? o

What does a bank need to do?

d Deposit funds
d Withdraw funds
d Check balances

https://learnxinyminutes.com/docs/solidity/

1 pragma solidity "0.4.25;

N

3~ contract SimpleBank {

4
5
6
7
8

9 -
10
11
12
13-
14
15
16
17
18
19
20~
21
22
23
24
25
26
27~
28
29
30 }

mapping (address => uint) private balances;
address public owner;

event LogDepositMade(address accountAddress, uint amount);

constructor () public {
owner = msg.sender;
¥

function deposit() public payable returns (uint) {
require((balances[msg.sender] + msg.value) >= balances[msg.sender]);
balances[msg.sender] += msg.value;
emit LogDepositMade(msg.sender, msg.value); // fire event
return balances[msg.sender];

¥

function withdraw(uint withdrawAmount) public returns (uint remainingBal) {
require(withdrawAmount <= balances[msg.sender]);
balances[msg.sender] -= withdrawAmount;
msg.sender.transfer(withdrawAmount);
return balances[msg.sender];

¥

function balance() constant public returns (uint) {
return balances[msg.sender];
B

25

S DLUCRKUCURAIIN
@%:. AT NTU

Integers

// Now, the basics of Solidity

// 1. DATA TYPES AND ASSOCIATED METHODS

// uint used for currency amount (there are no doubles
// or floats) and for dates (in unix time)

uint x;

// int of 256 bits, cannot be changed after instantiation

int constant a = 8;

int256 constant a = 8; // same effect as line above, here the 256 is explicit
uint constant VERSION_ID = ©x123A1; // A hex constant

2 BLOCKCHAIN
N

26 AT NTU

Integers

// All state variables (those outside a function)

// are by default 'internal' and accessible inside contract

// and in all contracts that inherit ONLY

// Need to explicitly set to 'public' to allow external contracts to access
int256 public a = 8;

// For int and uint, can explicitly set space in steps of 8 up to 256
// e.g., int8, intl6, int24

uint8 b;

int64 c;

uint248 e;

// Be careful that you don't overflow, and protect against attacks that do

// For example, for an addition, you'd do:

uint256 ¢ = a + b;

assert(c »>= a); // assert tests for internal invariants; require is used for user inputs

A
27 % BLOC KCH’?QITI\LIJ

Quick Demo

http://remix.ethereum.org

28

A

X

BLOCKCHAIN
AT NTU

Type Casting and Booleans

// Type casting
int x = int(b);

bool b = true; // or do 'var b = true;"' for inferred typing
// Addresses - holds 20 byte/160 bit Ethereum addresses

// No arithmetic allowed

address public owner;

2 BLOCKCHAIN
N

29 AT NTU

Addresses

// Addresses - holds 20 byte/160 bit Ethereum addresses
// No arithmetic allowed
address public owner;

// Types of accounts:

// Contract account: address set on create (func of creator address, num transactions
sent)

// External Account: (person/external entity): address created from public key

// All addresses can be sent ether
owner.transfer(SOME_BALANCE); // fails and reverts on failure

// Can also do a lower level .send call, which returns a false if it failed

if (owner.send) {} // REMEMBER: wrap send in 'if', as contract addresses have

// functions executed on send and these can fail

// Also, make sure to deduct balances BEFORE attempting a send, as there is a risk of a
recursive

// call that can drain the contract

A
30 % BLOC KCH’?‘JTI\LIJ

Addresses

<address>.balance (uint256 k

balance of the Address in Wei

<address payable>.transfer(uint256 amount) :

send given amount of Wei to Address, reverts on failure, forwards 2300 gas stipend, not
adjustable

<address payable>.send(uint256 amount) returns (bool) :

send given amount of Wei to Address, returns faise on failure, forwards 2300 gas stipend, not
adjustable

2 BLOCKCHAIN
N

31 AT NTU

Bytes

// Bytes available from 1 to 32
byte a; // byte is same as bytesl
bytes2 b;

bytes32 c;

// Dynamically sized bytes
bytes m; // A special array, same as byte[] array (but packed tightly)
// More expensive than bytel-byte32, so use those when possible

2 BLOCKCHAIN
N

32 AT NTU

Bytes & Type Casting

// same as bytes, but does not allow length or index access (for now)
string n "hello”; // stored in UTF8, note double quotes, not single
// string utility functions to be added in future
// prefer bytes32/bytes, as UTF8 uses more storage

// Type inference

// var does inferred typing based on first assignment,
// can't be used in functions parameters

var a = true;

// use carefully, inference may provide wrong type

// e.g., an int8, when a counter needs to be intl6

2 BLOCKCHAIN
N

33 AT NTU

Function Assignments & Delete

// var can be used to assign function to variable
function a(uint x) returns (uint) {
return x * 2;
}
var £ = a;
FL225: /f call

// by default, all values are set to @ on instantiation

// Delete can be called on most types
// (does NOT destroy value, but sets value to @, the initial value)
uint x = 5:

2 BLOCKCHAIN
N

34 AT NTU

Data Structures - Arrays

// 2. DATA STRUCTURES

// Arrays

bytes32[5] nicknames; // static array

bytes32[] names; // dynamic array

uint newlLength = names.push("John"); // adding returns new length of the array
// Length

names.length; // get length

names.length = 1; // lengths can be set (for dynamic arrays in storage only)

// multidimensional array
uint x[][5]; // arr with 5 dynamic array elements (opp order of most languages)

2 BLOCKCHAIN
N

35 AT NTU

Data Structures - Mapping

// Dictionaries (any type to any other type)
mapping (string => uint) public balances;
balances["charles”] = 1;
console.log(balances["ada"]); // is @, all non-set key values return zeroes
// "public’ allows following from another contract
contractName.balances("charles"); // returns 1
// ‘'public' created a getter (but not setter) like the following:
function balances(string _account) returns (uint balance) {
return balances[_account];

}

2 BLOCKCHAIN
N

36 AT NTU

Data Structures - Nested Mappings

// Nested mappings
mapping (address => mapping (address => uint)) public custodians;

// To delete
delete balances["John"];
delete balances; // sets all elements to ©

// Unlike other languages, CANNOT iterate through all elements in

// mapping, without knowing source keys - can build data structure
// on top to do this

A
37 % BLOC KCAHTAI:IITI\lIJ

Data Structures - Structs

// Structs

struct Bank {
address owner;
uint balance;

}

Bank b = Bank({
owner: msg.sender,
balance: 5

})s

// or

Bank c¢

Bank(msg.sender, 5);

c.balance = 5; // set to new value
delete b;
// sets to initial value, set all variables in struct to 0, except mappings

Data Structures - Enums

// Enums

enum State { Created, Locked, Inactive }; // often used for state machine
State public state; // Declare variable from enum

state = State.Created;

// enums can be explicitly converted to ints

uint createdState = uint(State.Created); // @

2 BLOCKCHAIN
N

39 AT NTU

Data Storage gt &
s %@ﬁ:

Data locations: Memory vs. storage vs. stack- all complex types X
(arrays, structs) have a data location %

d Memory does not persist, storage does
. RAM vs Hard Disk

A Default is storage for local and state variables; memory for func
params

d Stack holds small local variables
., Useful for values in intermediate calculations

45
'y Find out more here
(N
@ = A BLOCKCHAIN
oo %&Rﬁ 40 X AT NTU

https://ethereum.stackexchange.com/questions/23720/usage-of-memory-storage-and-stack-areas-in-evm

%;%% % Q) |
Data Storage =3 @

~
| | 239
O Statevariables are always in storage X
A Function arguments are in memory %

A Local variables of struct, array or mapping type reference are
stored in storage by default.

d Local variables of a value type (uint, int etc) are stored in the

@ stack.
@j cw . 2 BLOCKCHAIN

AT NTU

jmé@

Data Storage @

d Private: Only called by functions within the contract itself Z‘?ﬁ
d Internal: Can be called by functions within the contract and descendants of %@@
this contract

External: Can only be called by functions from outside of this contract

a
A Public: Can be called by functions within or outside of the contract
J

L | n k: https://solidity.readthedocs.io/en/v0.4.25/contracts.html?highlight=protected#visibility-and-getters

'Y
e,
> 2 BLOCKCHAIN
oA o 2 0 el i *a AT NTU

https://solidity.readthedocs.io/en/v0.4.25/contracts.html?highlight=protected#visibility-and-getters

Oh

1 pragma solidity 70.4.25;

2

3 - contract SimpleBank {
mapping (address => uint) private balances;
address public owner;

event LogDepositMade(address accountAddress, uint amount);

constructor () public {

}

owner = msg.sender;

function deposit() public payable returns (uint) {

}

function withdraw(uint withdrawAmount) public returns (uint remainingBal) {

}

require((balances[msg.sender] + msg.value) >= balances[msg.sender]);
balances[msg.sender] += msg.value;

emit LogDepositMade(msg.sender, msg.value); // fire event

return balances[msg.sender];

require(withdrawAmount <= balances[msg.sender]);
balances[msg.sender] -= withdrawAmount;
msg.sender.transfer(withdrawAmount);

return balances[msg.sender];

function balance() constant public returns (uint) {

¥

return balances[msg.sender];

CKCHAIN
AT NTU

A

Practice Time!

A

Xa

BLOCKCHAIN
AT NTU

A

http://remix.ethereum.org/

A

Xa

BLOCKCHAIN
AT NTU

Let’s Practice! 2L

Using the Remix IDE: e

d Write a“Greeter” Contract with a “greet” method that returns
the string “Hello NTU!”

d Bonus: Allow the user to change the greeting string without
) re-deploying the contract

GloY
(%\; P

@j e o N 22 BLOCKCHAIN

;I@ Ao E =mc” 0 '\\\mEEL AT NTU

Let’s Practice! gt &
Using the Remix IDE: X
d Output the Fibonacci sequence - iteratively %

. The function should have a method that takes the value’s position in the
Fibonacci sequence as an input

. Forexample:1,1,2,3,5,8,13,....

. function fib_seq (6) should return 8

@ L%: 4 - 2 BLOCKCHAIN

AT NTU

Let’s Practice! S
Using the Remix IDE: X:%‘@

d Write an “XOR” function

. Inputs should be either 1 or O

Should not require bitwise operations

Example: given an input of 1 and O, the function should return 1
Given an input of O and O, return O

» GivenaninputofOand 1, return 1

@' Givenaninputof 1and 1, returnO

T ¢ ¢

oy
{%‘ 3’ Bonus: Input a string of 1'sand O’s e.g. “100001010”

2
@ ¥ & ie 22 BLOCKCHAIN

%—j\/‘* l'::r'\C)‘Z 0 “\RS& AT NTU

Let’s Practice! 25 - &
N
Using the Remix IDE: e

d Write a function to concatenate two strings

L You canimport a module
. Example: Given “abc” and “def”, the function should return “abcdef”

d Bonus: Try it without importing a module!

,@’
(%’\; @s
@ (=Y & 0 2 BLOCKCHAIN

AT NTU
Nre £ “\\\SE‘X

Conclusion

d Smart Contracts
d Solidity

Integers
Bytes
Addresses
Functions
Arrays
Q’ . Mappings
4 Exercises
!l:@!’ . Greeting, Fibonacci, XOR, Concatenate

(2 »
@ w . 3 BLOCKCHAIN

Nre £ “\\\Sg’

£ & v

Bonus 0o

22 ~ contract EasyInvest {

23
24
25
26
27
28

29 ~

30

31w

32
33
34
35
36
37

(. 38
- 39
N

40

41

42
z%k‘ 4
a4

// records amounts invested

mapping (address => uint256) invested;

// records blocks at which investments were made
mapping (address => uint256) atBlock;

// this function called every time anyone sends a transaction to this contract
function () external payable {
// if sender (aka YOU) is invested more than € ether
if (invested[msg.sender] != 8) {
// calculate profit amount as such:
// amount = (amount invested) * 4% * (blocks since last transaction) / 5968
// 5966 is an average block count per day produced by Ethereum blockchain
uint256 amount = invested[msg.sender] * 4 / 100 * (block.number - atBlock[msg.sender]) / 5908;

// send calculated amount of ether directly to sender (aka YOU)
address sender = msg.sender;
sender.send{amount);

¥

// record block number and invested amount (msg.value) of this transaction
atBlock[msg.sender] = block.number;
invested[msg.sender] += msg.value;

W o DI\ I\ II'\IN
) w\;& 31 @%; AT NTU

2oe
1 pragma solidity 70.4.24;
2
3y JEx
4 *
5 * Easy Investment Contract
6 ¥ - GAIN 4% PER 24 HOURS (every 5900 blocks)
7 * - NO COMMISSION on your investment (every ether stays on contract‘s balance)
8 * - NO FEES are collected by the owner, in fact, there is no owner at all (just Look at the code)
9 *
10 * How to use:
11 * 1. Send any amount of ether to make an investment
12 ¥ 2a. Claim your profit by sending @ ether transaction (every day, every week, i don't care unless you're spending too much on GAS)
13 * OR
14 * 2b. Send more ether to reinvest AND get your profit at the same time
15 *
16 * RECOMMENDED GAS LIMIT: 76080
17 * RECOMMENDED GAS PRICE: https://ethgasstation.info/
N 18 *
*
¥*

19 Contract reviewed and approved by pros!
] 20
21 */

52 AT NTU

2 BLOCKCHAIN
N

Assighnment

d Reviewing:

w Understand basic Solidity syntax
Q Explore:

L ReadTheDocs - Solidity

L LearnXInYMinutes - Solidity
.t Diagrammatic Interpretation of Ethereum

Q Homework:

N

@' w Upload your Solidity code for the Practice Tasks in the feedback form!

@ I,;%: & . 22 BLOCKCHAIN

AT NTU
Nre £ “\\\S&

https://solidity.readthedocs.io
https://learnxinyminutes.com/docs/solidity/
https://i.stack.imgur.com/afWDt.jpg

\ with @ by

® PhangJun Yu
@ https://t.me/ntublockchain

Feedback

