
1

Join Our Telegram

https://t.me/ntublockchain

Lecture 3:

Derek Chin

Ethereum

Who Are We

Education | R&D | Consulting

What We Do

Revision

6

Recap
❑ Proof of Work (Nakamoto Consensus)

❑ 51% Attack

7

Consensus in Bitcoin
1. New TX broadcasted to all nodes (gradually)
2. Miners collect all new TXs, verifies them and put them into the

next block he is building.
3. Each round, one “random” lucky miner gets to proposed his block.
4. Other miners verify the proposed block*
5. Other miners (implicitly) express their acceptance by building

their next block on top of the proposed block

8

51% Attack
❑ Editing previous blocks on the chain
❑ If attacker has 51% attack, eventually malicious chain will

become the longest (canonical) chain
⤷ Pay for commodity, wait for TX included in green block
⤷ Secretly build another red block excluding the payment tx
⤷ Once commodity is delivered, broadcast a longer red chain
⤷ History Reverted !!

9

Agenda
❑ Motivation: Bitcoin Limitations

❑ Ethereum: UTXO vs. State

❑ Under the Hood: Ethereum Virtual Machine

Motivation

11

Bitcoin Limitations
❑ UTXO model requires large

amounts of space
⤷ Transactions of ‘large’ BTC sums

require references and signatures
from multiple accounts

⤷ User’s perception of “one
transaction” is actually many more
perceptions under the hood

12

Bitcoin Script
❑ Bitcoin Script: Simple stack-based language (FIFO)
❑ Script is used for ALL transactions

❑ Basic understanding - script has two parts
⤷ Programmatic logic
⤷ User input (eg. signature)

❑ After resolution, if output is TRUE transaction is valid

13

Bitcoin Script
❑ Example: Pay-to-Public Key Hash (P2PKH)

⤷ ScriptSig : <Signature> <pubkey>
⤷ ScriptPubKey : OP_DUP OP_HASH160 <pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG
❑ P2PKH allows users to redeem BTC belonging to them

(Remember: BTC is UTXO)

14

P2PKH Example

A B C

❑ Alice to Bob to Charlie

Creates smart contract
(UTXO) which only B
can unlock

Proves smart contract
(UTXO)belongs to B to
pay to C

15

P2PKH Example
❑ Alice sending to Bob - Creating ScriptPubKey which can only

be redeemed by Bob
⤷ ScriptPubKey : OP_DUP OP_HASH160 <Bob pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG

❑ Bob sending to Charlie - Creating ScriptSig to show BTC
belongs to him
⤷ ScriptSig : <Bob Signature> <Bob pubkey>

16

P2PKH Example
❑ Code is placed in stack in order

⤷ ScriptSig : <Bob Signature> <Bob pubkey>
⤷ ScriptPubKey : OP_DUP OP_HASH160 <Bob pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG

<PubKey>

<Signature>

17

P2PKH Example
❑ Code is placed in stack in order

⤷ ScriptSig : <Bob Signature> <Bob pubkey>
⤷ ScriptPubKey : OP_DUP OP_HASH160 <Bob pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG

❑ OP_DUP duplicates
top-stack item

<PubKey>

<PubKey>

<Signature>

<PubKey>

<Signature>

18

P2PKH Example
❑ Code is placed in stack in order

⤷ ScriptSig : <Bob Signature> <Bob pubkey>
⤷ ScriptPubKey : OP_DUP OP_HASH160 <Bob pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG

❑ OP_HASH hashes the top
item on stack
⤷ First with SHA-256, then

RIPEMD-160

<PubKeyHash>

<PubKey>

<Signature>

<PubKey>

<PubKey>

<Signature>

19

P2PKH Example
❑ Code is placed in stack in order

⤷ ScriptSig : <Bob Signature> <Bob pubkey>
⤷ ScriptPubKey : OP_DUP OP_HASH160 <Bob pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG

❑ Place Bob’s pubKeyHash on
top of the stack

<PubKeyHash>

<PubKeyHash>

<PubKey>

<Signature>

<PubKeyHash>

<PubKey>

<Signature>

20

P2PKH Example
❑ Code is placed in stack in order

⤷ ScriptSig : <Bob Signature> <Bob pubkey>
⤷ ScriptPubKey : OP_DUP OP_HASH160 <Bob pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG

❑ OP_EQUALVERIFY
⤷ Part 1: Pops 2 items off a

stack to check whether they
are equal. Returns boolean

TRUE

<PubKey>

<Signature>

<PubKeyHash>

<PubKeyHash>

<PubKey>

<Signature>

21

P2PKH Example
❑ Code is placed in stack in order

⤷ ScriptSig : <Bob Signature> <Bob pubkey>
⤷ ScriptPubKey : OP_DUP OP_HASH160 <Bob pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG

❑ OP_EQUALVERIFY
⤷ Part 2: Mark transaction as

invalid if top stack value is not
True. Pop top stack value

<PubKey>

<Signature>

TRUE

<PubKey>

<Signature>

22

P2PKH Example
❑ Code is placed in stack in order

⤷ ScriptSig : <Bob Signature> <Bob pubkey>
⤷ ScriptPubKey : OP_DUP OP_HASH160 <Bob pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG

❑ OP_CHECKSIG
⤷ Checks that Bob’s signature

corresponds to his public keyTRUE
<PubKey>

<Signature>

23

P2PKH Example
❑ Can observe this in any transaction

(https://www.blockchain.com/btc/tx/)

https://www.blockchain.com/btc/tx/

24

Lack of Turing Completeness
❑ Turing Completeness - System is able to:

⤷ Solve any computational problem
⤷ Implement any computable algorithm

❑ Bitcoin is not Turing complete - unable to run loops [eg.
while(True)]

25

Lack of Turing Completeness
❑ WHY is Bitcoin not Turing complete?

⤷ Simplicity: Only simple operations
⤷ Halting problem: Unable to determine from input and algorithm how

long it takes for it to complete
⤷ Malicious users can DDOS nodes by sending them on a wild goose chase

through infinite loops!

❑ Bitcoin is completely deterministic, however is unable to
implement feature-rich smart contracts

26

More Design Weaknesses
❑ Value Blindness

⤷ Transactions require additional complexity due to UTXO model
⤷ Alice (2 BTC) sends 1 BTC to Bob results in

◦ a) 1 BTC sent to Bob

◦ b) 1 BTC sent to herself

❑ Blockchain Blindness
⤷ Bitcoin script is blind to blockchain data (eg. nonce, timestamp, previous

block hash etc.)
⤷ Unable to incorporate these values within programs

Ethereum

28

A Little History
❑ In January 2014, Ethereum was formally announced by Vitalik

at North America Bitcoin Conference in Miami, Florida, USA

29

UTXO vs State
❑ Global state transitions in Ethereum

30

UTXO vs State
❑ Bitcoin user’s balance is sum of unspent transaction outputs

that they own the private key to
❑ Ethereum user’s balance is contained within an Account

Bitcoin:
Bob owns private keys to

UTXOs

Ethereum
Bob owns private keys to

an Account

1 BTC → Bob

2 BTC → Bob

3 BTC → Bob

address: 0xd3adb33f…

balance: 1 ETH

code: z := a + b

31

Benefits of State-Model
❑ Space savings - Nodes update account’s balance instead of

storing every UTXO
❑ More intuitive - Easier to program smart contract which keeps

track of a single account vs computing whole UTXO data sets

32

UTXO vs State
❑ Global state of Ethereum contains many Accounts which are

able to interact with each other through a message-parsing
framework

❑ Two types of accounts:
⤷ Externally owned - Controlled by private keys with no internal code
⤷ Contract Accounts - Controlled by code

❑ Why? Contract code should contain programmatic language
and not directly executable by a human

33

UTXO vs State

❑ Address
⤷ identity of account

❑ Nonce
⤷ no. of transactions sent from external

account / no. of contracts created by
contract account

❑ StorageRoot
⤷ hash of root node of Merkle-Patricia

Trie

❑ CodeHash
⤷ Hash of code if this is contract acct

Ethereum Account

address: 0xd3adb33f

nonce: 5

balance: 1000 wei

storageRoot: 0ad3..

34

UTXO vs State
❑ Merkle Tree → Merkle-Patricia Tree

35

Merkle-Patricia Tree

36

Mining on Ethereum
❑ Mechanism: Proof-of-work
❑ Hash-puzzle: “memory-hard problem”
❑ Average block time: 12 seconds

37

Mining on Ethereum
❑ Greedy Heaviest Observed Subtree (GHOST)

⤷ 7 generations limit
⤷ Uncle block

◦ Uncle blocks are not ancestor of mined block

◦ Uncle must have valid block header but does not need to be verified/valid

⤷ For every uncle block, miner gets an additional 3.125% added to
coinbase reward, uncle block gets 93.75%

◦

38

Mining on Ethereum
❑ Greedy Heaviest Observed Subtree (GHOST)

Ethereum
Virtual Machine

40

Ethereum Virtual Machine

❑ EVM is a system designed to
operate as a runtime
environment for smart
contracts

❑ High level programming
(smart contract) languages:
⤷ Solidity
⤷ Vyper
⤷ Serpent

41

Ethereum Virtual Machine

❑ EVM allows for stateful smart contracts which stores an
internal state
⤷ Support loops and recursion

❑ The internal state of an account can be changed through
⤷ Computations
⤷ Transactions

42

Ethereum Virtual Machine

❑ State of accounts are updated with every new block
⤷ Block takes previous states and runs transactions to produce state

in new block

❑ All nodes in Ethereum will generally agree on the network
state (incl. balance, smart contract variables, contract
bytecode etc.)

❑ Ethereum uses PoW right now

43

Transactions

❑ Transactions can only be sent from an externally owned
account
⤷ Call (read)
⤷ Send (write)

❑ Messages (internal transactions)
⤷ Invoked by transactions
⤷ Not explicitly published on the blockchain

Externally
owned account Transaction Contract

account
Internal

Transaction
Contract
account

44

Transactions

45

Gas

❑ Every computation and transaction incurs a gas fee
❑ Fee prevents:

⤷ Infinite Loops (remember that EVM is Turing Complete)
⤷ Denial of Service (disincentivises network spamming)

❑ Gas is the unit used to measure fees
⤷ Measured in gwei - 1 Eth = 1,000,000,000 gwei

46

Gas

❑ User sets gas limit and gas price in each transaction
⤷ gas fee = gas limit * gas price
⤷ Higher prices incentivises miners to include transaction in next block
⤷ Unused gas is refunded
⤷ During computation if gas runs out, only tx value is refunded, not gas

fee

Sender
Start

Transactio
n

Operation

Start gas: 250 - 100 gas

Operation

- 50 gas End
Transactio

n

Receiver

Refund
150 gas

47

Gas

❑ User sets gas limit and gas price in each transaction
⤷ gas fee = gas limit * gas price
⤷ Higher prices incentivises miners to include transaction in next block
⤷ Unused gas is refunded
⤷ During computation if gas runs out, only tx value is refunded, not gas

fee

Sender
Start

Transactio
n

Operation

Start gas: 120 - 100 gas

Operation

- 50 gas

Receiver

OUT OF
GAS:

REVERT
STATE

48

Gas

❑ Gas is also used to pay for storage (stored on all nodes)
⤷ Proportional to storage size
⤷ Incentivises users to keep data small
⤷ If tx frees data space, gas will be refunded

49

Gas Price

❑ Gas Price varies based on demand and block frequency

50

Conclusion
❑ Bitcoin Script (and its limitations)
❑ Ethereum State Model

⤷ What is stored in each state?

❑ Ethereum Virtual Machine
❑ Gas

51

Assignment
❑ Reviewing:

⤷ Understand differences between Ethereum and Bitcoin

❑ Explore:
⤷ EthGasStation - Live gas statistics

❑ Reading:
⤷ Ethereum White Paper - General description of Ethereum
⤷ Vitalik Blog Series - Part 1 , Part 2 , Part 3
⤷ What is a Patricia Tree?

https://ethgasstation.info/
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/
https://blog.ethereum.org/2015/04/27/visions-part-2-the-problem-of-trust/
https://blog.ethereum.org/2014/11/13/scalability-part-3-metacoin-history-multichain/
https://github.com/ethereum/wiki/wiki/Patricia-Tree

Thank you!

Derek Chin

https://t.me/ntublockchain

