
1

Welcome Back,
Chainsmokers in the House!

Ethereum WDTDS:

Alex Xiong

Abstraction & Mental Representation

3

Review & Preview
● L1: Bitcoin Overview & Cryptography Basics

⤷ Bitcoin motivation, digital signatures, hash functions, data structure (hash pointer, UTXO model, Merkle Tree)
⤷ Identity on Blockchain (pseudonymity)

● L2: Nakamoto Consensus & Bitcoin Protocol
⤷ Distributed consensus → Proof of Work (PoW) → Bitcoin Protocol (mining + longest-chain win)
⤷ Security analysis, incentive of miners, mining pool and forks

● L3: Ethereum
⤷ Bitcoin script, limitations → Ethereum: account-based model, EVM, Gas

● L4: Smart Contract & Solidity
⤷ Smart contract: why, what and so what
⤷ Solidity basic syntax & live example

4

Review & Preview
“... too many theories!! Doesn’t seem I’m learning anything applicable... ”

→ more emphasis on hands-on practice during weekly sharing sessions

“... I don’t have particular strong CS backgrounds, find many concepts hard to capture… ”

→ 1. Education department prepares “questions board”;

 2. Slack channel : #quora, #stackoverflow, #research, please raise questions and requests;

 3. Event calendar (soon available on website)

“... So many new concepts, protocols, I don’t know what they are, or why should I care about them...”

→ 1. SoK sharing sessions, covering research frontiers (scalability, security, privacy, formal methods, p2p
network, consensus algorithms, key managements etc.)

 2. READ!! Publish what you’ve learned and your thought!! GET A BLOCKCHAIN JOB!

5

Review & Preview
Lecture:
● Ethereum: WDTDS
● Truffle Framework & Testing
● Blockchain Sharding by Zilliqa
● Smart Contract Security
● Web3 library
● ...

Weekly Sharing:
● Basic DevTool
● Smart Contract Lab Sessions

(cryptozombies etc.)
● EthFoundation sharing
● Research SoK
● Hacking Smart Contract

(ethernaut)
● ...

6

“
Any fool can know,
the point is to understand
-- Albert Einstein

7

Goals for today

Mental Representation Macro ↔ Micro View

Source: Quizlet ; Giphy ; Enchanting Marketing

Concrete Example

8

Satellite-level View: a blockchain?

A distributed, p2p software

9

Satellite-level View: a blockchain?

A distributed, p2p softwareA distributed, p2p software

● Dispersedly located, rather
than on a single machine.

● Coordinate through
passing message across the
network.

● Each instance is called a
node/peer/client.

10

Satellite-level View: a blockchain?

A distributed, p2p softwareA distributed, p2p software

Same piece of code on each
node for all distributed
softwares?

Not necessarily.
E.g. Hadoop or MongoDB
master-slave model.

11

Hadoop: everyone doing different jobs
Master & Slave/Worker model:

Source: https://blogs.msdn.microsoft.com/avkashchauhan/2012/02/24/master-slave-architecture-in-hadoop/

12

Satellite-level View: a blockchain?

A distributed, p2p softwareA distributed, p2p software

All nodes have the same “view”?

Nope, almost always no! Take a snapshot!

1. Each node could run different
code, thus in charge of different
subset of data.

2. Even all are running the same
code, some could be out of sync
(e.g. by going offline).

3. Any update takes time to transmit
across the network, thus induce a
delay.

13

BitTorrent: everyone storing different data
One or few resource holders for each file, no one stores everything:

Source: https://www.researchgate.net/figure/Classical-BitTorrent-P2P-Protocol-Sequence_fig1_241972547

14

Satellite-level View: a blockchain?

A distributed, p2p softwareA distributed, p2p software

Good, what about Ethereum?

Everyone running the “same” 1 software,
responsible for storing the same set of
data, but still possibly share different
views.

1. Same specs, could vary in actual code
implementation. (Geth v.s. Trinity)

15

Satellite-level View: a blockchain?

A distributed, p2p software

● Not Client-Server paradigm
● Everyone doing the same job:

○ listening to TXs,
○ verifying them,
○ mining new blocks
○ broadcast to the rest
○ verify others’ block

● Everyone keeps track of the same
data
○ All transaction history

(blockchain/ledger)

16

Zooming in to
Continent-level View now…

17

What is a node exactly?
A State Machine, that’s all … → State + State transition

Source: https://medium.com/@brianray_7981/tutorial-write-a-finite-state-machine-to-parse-a-custom-language-in-pure-python-1c11ade9bd43

18

What does a node do?
A State Machine, that’s all … → State + State transition
● READ: look up some states.
● WRITE: apply state transition and update the state.

19

What does a node do?
A State Machine, that’s all … → State + State transition
● READ: look up some states.
● WRITE: apply state transition and update the state.

What can be read?

1. Everything related to every account (e.g. balance,
nonce, address etc.).

2. Every transactions included.
3. Every transaction receipts.
4. Some general global blockchain data in block

headers (e.g. previousHash, blockHeight, difficulty
level etc.)

In what format should I read them?

Mostly through a JSON wrapper, defined by the
JSON_RPC spec.

i.e. web3.eth.blockNumber
 web3.eth.getBalance(‘0x12..a’)

What’s actually been stored on blockchain are
strings of bytes, but most developer tool will parse
them into Json object.

https://www.google.com/search?q=json&client=ubuntu&hs=CwS&channel=fs&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjkoKz-iY7gAhWGknAKHTlhA-wQ_AUIDigB&biw=1920&bih=928#imgrc=Es54uJGos85JEM:
https://github.com/ethereum/wiki/wiki/JSON-RPC

20

Demo time!

21

Demo :: reading data from blockchain
● Block Explore: https://etherscan.io
● Geth: command line tool
● Ganache-cli: your local blockchain for testing

https://etherscan.io
https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options
https://github.com/trufflesuite/ganache-cli

22

What does a node do?
A State Machine, that’s all … → State + State transition
● READ: look up some states.
● WRITE: apply state transition and update the state.

How to modify/write to blockchain?

Command for State Transition is done via “transactions”
which contains all necessary parameters.

Transaction is no longer just for balance update, but
arbitrary state update.

Requirement for a legitimate WRITE?

● Clearly specify “which state to modify” (e.g. Alice
and Bob’s balances), “changes or new values”, gas
payment, valid signature(s)

23

Zooming in to
City-level View now…

24

All kinds of states, and where to find them.
“ To find 5th Ave, you first need to understand the grid system of Manhattan. ”

Source: https://www.6sqft.com/204-years-ago-today-the-manhattan-street-grid-became-official/; https://i.stack.imgur.com/afWDt.jpg

25

Now, let’s break it down
https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture

Or

http://bit.ly/lazyasme

https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture
http://bit.ly/lazyasme

26

Demo: two types of account
Always refer to the web3.js@1.0 API document

Ex 1. Create a new Externally-owned Account (EOA)

 → read balance, read nonce

Ex 2. Create a new contract account

→ contract address (how to compute),

https://web3js.readthedocs.io/en/1.0/index.html
https://ethereum.stackexchange.com/questions/760/how-is-the-address-of-an-ethereum-contract-computed

27

Demo: WRITE to blockchain
Ex 1: Simple Payment

Ex 2: Contract Creation (both Truffle & Remix)

Ex 3: Contract Function Call
→ Remix
→ (optional) abi encoding, function selectors, parameters encoding.

https://medium.com/@libertylocked/what-are-abi-encoding-functions-in-solidity-0-4-24-c1a90b5ddce8

28

holistic understanding,
Yo!

29

🔨 with 💙 by

��

��

Thank You!

Alex Xiong

@ALuoyuan
Or https://t.me/ntublockchain

Attendance
Passphrase: deeep

