
Introduction to Crypto Zombies

Brought to you by Wei Ren

What is
CryptoZombies?

3

● At the end of the sharing
session, you will be able to:

❑ Create a Zombie Factory
❑ Customise your own zombies
❑ Attack each other’s zombies
❑ Feed your own zombies to level

up

4

Preparation
https://cryptozombies.io/

5

6

7

8

Lesson 1 : Creating a Zombie Factory

1. Instantiate new zombies

2. Produce random zombies dna

3. Assign each created zombie with a random dna

9

Lesson 1 : Creating a Zombie Factory

pragma solidity ^0.4.25;

contract ContractName{

//Declare variables

//Implement functions

}

10

Characteristics of Zombies

Zombie DNA(16 integers):

44 | 24 | 47 | 521 | 258 | 4128

Head | Eye | Shirt | Skin Color | Eye Color | Clothes

11

Data Types

Unsigned Integers: uint256/uint, uint8

Strings : string

Structures: struct

Arrays: Objects[] public arrayname

Address

12

Function declaration
❑ Naming Convention: camelCase
❑ Syntax:

function functionname(datatype _parameter1, …)
private/public pure/view returns (datatype ...)

E.g. function _sayNumber(uint _num) private pure
returns(string){....}

13

Function Visibility

❑ Private
⤷ Callable from other functions in the contract

❑ Public
⤷ Callable from anywhere

❑ Internal
⤷ Like private + Callable from from functions in derived contracts

❑ External
⤷ Callable only from outside of the contract

14

Function Modifiers - State Modifiers

❑ Pure
⤷ No modifications + reading of data is done

❑ View
⤷ No modifications to the data is done

⤷ Reading data from the blockchain

15

Events

❑ A way for the contract to inform the app’s front end

that something has occurred on the blockchain.

1. Declare the event in the contract

2. Fire the event within some of the functions when

required

16

Events
contract ZombieFactory{

event NewZombie(uint zombieId, string name, uint dna); //Declare the event in
the contract

…

function createNewZombie(string _name, uint _dna) private {

//Some logic

uint id= … ;

emit NewZombie(id, _name, _dna) //Fire the event

}

}

17

Keccak256 & abi.encodePacked()

keccak256() : An in-built hash function which generates

256bit hexadecimal value (ZombieDna)

❑ Only takes in 1 parameter with a type bytes

abi.encodePacked(): Converts a data type to bytes

18

Lesson 2: Zombie Feeding

pragma solidity ^0.4.25;

import “./ContractA”;

contract ContractB is ContractA{

…

}

19

Inheritance

❑ Contract B will have access to some functions of

Contract A

❑ private functions will not be visible in Contract A

❑ Used to break up long lines of code into multiple

contracts

20

msg.sender

❑ Refers to the address of the person/smart that called

the current function

21

Mappings

❑ A store for key-value pairs

❑ Syntax:

mapping (datatype => datatype) [public/private] mappingname

E.g.

mapping (address => uint) ownerZombieCount;

❑ To access value: ownerZombieCount[msg.sender]

22

require

❑ Used to verify certain conditions before running the

function

❑ Syntax:

function MyFunction{

require(condition);

//Some logic

}

23

Storage vs Memory

Memory : Temporary (local variables in functions)

Storage : Stores data permanently on the blockchain

(State variables)

24

Lesson 3 : Advanced Solidity Concepts

❑ Ownable Contracts & Function modifiers

❑ Gas

❑ For Loops

25

Ownable Contract

❑ Taken from OpenZeppelin library

❑ Secure and Community-vetted smart contracts

❑ Link:
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contract
s/ownership/Ownable.sol

26

Function modifiers - Custom modifiers

❑ Restricts access to certain functions

❑ Only the owner of the contract could access

27

Function modifier

function _createZombie(string _name, uint _dna) internal

onlyowner{

…

}

28

Saving Gas - Struct packing

❑ For any uint state variable, 256 bits of storage will be

reserved.
⤷ Thus, declaring a uint8/ uint16/ uint32 state variable will NOT save

any gas

❑ Struct packing
⤷ Packing all uint variables into a struct to save on the storage space

29

Saving Gas - Memory

❑ Storing data in storage is expensive
⤷ Reason: Data is stored permanently on the blockchain

❑ Thus, an alternative way is to rebuild that data into

memory (temporary)
⤷ Very useful in sorting data in storage arrays

30

Saving Gas - View Functions

❑ External view functions incur no gas
⤷ However, internal view functions still incur gas since the calling

function still creates a transaction which need to be verified by the

nodes

31

Lesson 4: Zombie Battle System

❑ Payable

32

Function modifier - Payable modifier

❑ Allows us to call a function and pay Ether to the

contract simultaneously

❑ E.g.

function buy() external payable{

require(msg.value == 1 ether);

//Some logic to transfer ownership

}

Part 2. Let's make more Zombies
!

Brought to you by Kelvin

34

Ethereum Tokens ?

❑ A Token on Ethereum is a smart contract that adhere to

a standard set of function which all token contracts

share. (E.g. totalSupply, balanceOf…)

❑ Think of it like an “Interface” in programming.

35

Ethereum Tokens ?

❑ Within the smart contract itself, it contains a mapping

which stores the balances of each address has.

❑ Hence, a token also keep a records of who owns how

much of the token.

36

ERC 20

https://goo.gl/88kYXp

37

ERC 721

http://erc721.org/

http://erc721.org/

38

Difference Between ERC 721 & 20

● ERC 20
○ Ethereum coin can be broken down into smaller portion such as

0.000001 (decimal places).

○ Unable to distinguish the coin, since every token is the same.

● ERC 721
○ Cannot be broken down into smaller portions. Traded as whole unit.

○ Every token is unique in its own.

39

Why it matters in CryptoZombies

❑ Tokens that act as currencies is not suitable for

CryptoZombies.

❑ Not all zombie are equal.

Level 1 Zombie is not equal to

Level 35 Zombie

40

Why it matters in CryptoZombies

41

Why it matters in CryptoZombies

42

Contract Security; Overflow & Underflow

❑ Overflow & Underflow. What it means ?

43

Contract Security; Overflow & Underflow

❑ How to avoid this issue ?
⤷ OpenZeppelin is a library for secure smart contract development.

⤷ It has created a math library called SafeMath.

❑ How to use the library ?
⤷ import "./safemath.sol";

44

Contract Security; Overflow & Underflow

❑ How does it overcome the issue?
⤷ E.g. Addition And Subtraction function in SafeMath

45

Contract Security; Overflow & Underflow

❑ How does it overcome the issue?
⤷ Just like normal math arithmetic but with an addition of the assert

statement.

⤷ E.g. Addition, it would check the sum of the 2 uint against ‘a’

ensuring that the sum is greater than ‘a’. This would prevent the

sum from overflows.

⤷ Assert is similar to require, where it would return an error if the

condition is false. However, assert would not refund the user the

remaining gas when a function fails.

46

Contract Security; Overflow & Underflow

❑ When to use assert or require ?

https://ethereum.stackexchange.com/questions/15166/difference-between-require-and-assert-and-the-difference-between-revert-and-thro

47

Web3.js

❑ What is Web3.js
⤷ It a Javascript library which allow user to interact with a ethereum

node, using a HTTP connection.

(Interaction - query the function within the smart contract by

providing the following items)
◦ Address of the smart contract.
◦ Function name that the user want to call.
◦ Variables that user want to pass into the function.

48

Web3.js

https://goo.gl/d5hm7p

49

Web3.js

❑ How to use Web3.js
⤷ Since it is a Javascript library, you can import the library like any

javascript library in html by specifying the script within the

<head></head> tag in html.

⤷

50

Why the need for Web3.js

❑ Simplify the need for creating complex queries in

JSON-RPC.

51

Web3 Provider & Metamask

❑ A Web3 provider handle the incoming read and write

requests from the user and direct it to the specific node

that the user want to communicate with.

❑ Metamask manage Ethereum accounts and keys which

these account is use to interact with website running

with Web3.js. (Write & Read to the blockchain.

Including signing transaction with Private key)

52

Web3 Provider & Metamask

https://goo.gl/veKmtX

53

Using Metamask’s web3 provider.

❑ Add this boilerplate code to

the <script> tag within the

<body>

54

Communicate With Contracts

❑ 2 Things required to communicate with contracts
⤷ Contract Address.

⤷ ABI (Application Binary Interface).

55

Calling Contract Functions

❑ Web3.js has 2 methods to call the function on the

contracts.
⤷ Call (View & Pure function)

◦ Read Only.
◦ Do not incur any gas.

⤷ Send (Any other functions other than View & Pure)
◦ Create transaction.
◦ Change data on the blockchain.
◦ Require to pay gas and signing of the transaction with the user’s private key.

⤷ Syntax :

56

Calling Contract Functions 2

❑ Similar to the

structure as

getZombieDetails(id)

ZombieHelper.sol ZombieFactory.sol

57

Metamask & Account

❑ MetaMask allow user to manage multiple accounts.

❑ How to get the current active account ?

https://goo.gl/FYMUzW

❏ Check every 100 milliseconds if
userAccount is still equal
web3.eth.accounts[0.]

❏ If not, reassigns userAccount to
the currently active account, and
calls a function to update the
display.

58

Sending Transaction
❑ Requires a from address of who's calling the function. (Msg.sender)
❑ Cost gas.
❑ A significant delay after user sends a transaction

⤷ Wait for transaction to be included in the block.
⤷ Too little gas fees => Longer time to get included.

59

Sending Transaction 2
Solidity Code in Contract Call function in Web3.js using MetaMask

60

Calling Payable Function
❑ Function that can recieved ether.
❑ However, the unit in which the function received is terms of wei.

61

Test out here in the future.

https://remix.ethereum.org

