
1

Join Our Telegram

https://t.me/ntublockchain



Lecture 4:

Phang Jun Yu

Smart Contracts & Solidity



Revision



4

Recap
❑ Transaction & Messages

❑ Gas



5

Ethereum Blockchain

❑ A blockchain is a “cryptographically secure 
transactional singleton machine with shared state”

❑ Cryptographically secure
⤷ Digital signatures, Hashes, etc

❑ Transactional Singleton Machine
⤷ Single instance of the machine for all transactions (global truth)

❑ Shared State
⤷ Open and shared by everybody



6

Ethereum Virtual Machine

❑ Transaction-based state machine. 
❑ A state machine refers to something that will read a series 

of inputs and, based on those inputs, will transition to a 
new state.



7

Ethereum Virtual Machine

❑ EVM is a system designed to 
operate as a runtime 
environment for smart 
contracts

❑ High level programming 
(smart contract) languages:
⤷ Solidity
⤷ Vyper
⤷ Serpent



8

Transactions

❑ Transactions can only be sent from an externally owned 
account
⤷ Call (read)
⤷ Send (write)

❑ Messages (internal transactions)
⤷ Invoked by transactions
⤷ Not explicitly published on the blockchain

Externally 
owned account Transaction Contract 

account
Internal 

Transaction
Contract 
account



9

Transactions



10

Gas

❑ Every computation and transaction incurs a gas fee
❑ Fee prevents:

⤷ Infinite Loops (remember that EVM is Turing Complete)
⤷ Denial of Service (disincentivises network spamming)

❑ Gas is the unit used to measure fees
⤷ Measured in gwei - 1 Eth = 1,000,000,000 gwei



11

Gas

❑ User sets gas limit and gas price in each transaction
⤷ gas fee = gas limit * gas price
⤷ Higher prices incentivises miners to include transaction in next block
⤷ Unused gas is refunded
⤷ During computation if gas runs out, only tx value is refunded, not gas 

fee

Sender Start 
Transaction Operation

Start gas: 250 - 100 gas

Operation

- 50 gas
End 

Transaction

Receiver

Refund
100 gas



12

Gas

❑ User sets gas limit and gas price in each transaction
⤷ gas fee = gas limit * gas price
⤷ Higher prices incentivises miners to include transaction in next block
⤷ Unused gas is refunded
⤷ During computation if gas runs out, only tx value is refunded, not gas 

fee

Sender Start 
Transaction Operation

Start gas: 120 - 100 gas

Operation

- 50 gas

Receiver

OUT OF 
GAS: 

REVERT 
STATE



13

Gas

❑ Gas is also used to pay for storage (stored on all nodes)
⤷ Proportional to storage size
⤷ Incentivises users to keep data small
⤷ If tx frees data space, gas will be refunded



14

Agenda
❑ Motivation: Smart Contracts

❑ Solidity: Syntax & Data Structures

❑ Practice: Simple Contracts



Smart Contracts



16

Smart Contracts - What are they?
Let’s say you want to sell a house

❑ Trust with payment issues
❑ Complex Paperwork
❑ Hire real estate agent
❑ Commission fees

Smart Contract:

❑ If-Then
❑ Escrow Service



17

Smart Contracts

Trust

Safety

Autonomy

Savings

Efficiency



18

Smart Contracts - Trust and Safety
❑ A Program on the Ethereum Blockchain - executed by the EVM

❑ Violation of contract requires subverting the entire network

❑ Allows for secure Peer-to-Peer agreements that can stay on the 
blockchain forever 



19

Smart Contracts - Why?
❑ Honest Computing (Honest)
❑ Tamper-Proof
❑ No single point of failure

⤷ Decentralized

❑ Autonomous code
⤷ AWS?



20

Smart Contracts
❑ React to external world when “triggered” by transactions that 

call functions
❑ Have direct control over:

⤷ Internal ether balance
⤷ Internal contract state
⤷ Permanent storage



21

Smart Contracts
What can they do?

❑ Store and maintain data
❑ Manage contract or relationship between untrusting parties
❑ Provide functions to other contracts
❑ Complex authentication



22

Applications of Smart Contracts?
https://www.stateofthedapps.com/rankings



Solidity



24

What is Solidity?
❑ Solidity is a statically typed, contract programming language that has 

similarities to Javascript and C.
❑  Like objects in OOP, each contract contains state variables, functions, and 

common data types. 
❑ Contract-specific features include modifier (guard) clauses, event notifiers for 

listeners, and custom global variables.



25

Let’s look at a simple Bank contract?

What does a bank need to do?

❑ Deposit funds
❑ Withdraw funds
❑ Check balances

https://learnxinyminutes.com/docs/solidity/



26

Integers



27

Integers
Integers



28

Quick Demo
http://remix.ethereum.org



29

Type Casting and Booleans



30

Addresses



31

Addresses



32

Bytes



33

Bytes & Type Casting



34

Function Assignments & Delete



35

Data Structures - Arrays



36

Data Structures - Mapping



37

Data Structures - Nested Mappings



38

Data Structures - Structs



39

Data Structures - Enums



40

Data Storage

Data locations: Memory vs. storage vs. stack- all complex types 
(arrays, structs) have a data location

❑ Memory does not persist, storage does
⤷ RAM vs Hard Disk

❑ Default is storage for local and state variables; memory for func 
params

❑ Stack holds small local variables
⤷ Useful for values in intermediate calculations

Find out more here

https://ethereum.stackexchange.com/questions/23720/usage-of-memory-storage-and-stack-areas-in-evm


41

Data Storage
❑ State variables are always in storage
❑ Function arguments are in memory
❑ Local variables of struct, array or mapping type reference are 

stored in storage by default.

❑ Local variables of a value type (uint, int etc) are stored in the 

stack.



42

Data Storage
❑ Private: Only called by functions within the contract itself

❑ Internal: Can be called by functions within the contract and descendants of 

this contract

❑ External: Can only be called by functions from outside of this contract

❑ Public: Can be called by functions within or outside of the contract

❑ Link: https://solidity.readthedocs.io/en/v0.4.25/contracts.html?highlight=protected#visibility-and-getters 

https://solidity.readthedocs.io/en/v0.4.25/contracts.html?highlight=protected#visibility-and-getters


43

Oh!



Practice Time!



http://remix.ethereum.org/



46

Let’s Practice!
Using the Remix IDE:

❑ Write a “Greeter” Contract with a “greet” method that returns 
the string “Hello NTU!”

❑ Bonus: Allow the user to change the greeting string without 
re-deploying the contract



47

Let’s Practice!
Using the Remix IDE:

❑ Output the Fibonacci sequence - iteratively
⤷ The function should have a method that takes the value’s position in the 

Fibonacci sequence as an input
⤷ For example: 1, 1, 2, 3, 5, 8, 13, ….
⤷ function fib_seq (6) should return 8



48

Let’s Practice!
Using the Remix IDE:

❑ Write an “XOR” function
⤷ Inputs should be either 1 or 0
⤷ Should not require bitwise operations
⤷ Example: given an input of 1 and 0, the function should return 1
⤷ Given an input of 0 and 0, return 0
⤷ Given an input of 0 and 1, return 1
⤷ Given an input of 1 and 1, return 0

❑ Bonus: Input a string of 1’s and 0’s e.g. “100001010”



49

Let’s Practice!
Using the Remix IDE:

❑ Write a function to concatenate two strings
⤷ You can import a module
⤷ Example: Given “abc” and “def”, the function should return “abcdef”

❑ Bonus: Try it without importing a module!



50

Conclusion
❑ Smart Contracts
❑ Solidity

⤷ Integers
⤷ Bytes
⤷ Addresses
⤷ Functions
⤷ Arrays
⤷ Mappings

❑ Exercises
⤷ Greeting, Fibonacci, XOR, Concatenate



51

Bonus



52

Bonus



53

Assignment
❑ Reviewing:

⤷ Understand basic Solidity syntax

❑ Explore:
⤷ ReadTheDocs - Solidity
⤷ LearnXInYMinutes - Solidity 
⤷ Diagrammatic Interpretation of Ethereum

❑ Homework:
⤷ Upload your Solidity code for the Practice Tasks in the feedback form!

https://solidity.readthedocs.io
https://learnxinyminutes.com/docs/solidity/
https://i.stack.imgur.com/afWDt.jpg


Thank you!

Phang Jun Yu

https://t.me/ntublockchain

Quiz

Feedback


