Introduction to Crypto Zombies @\/ﬁ‘.
S 4

BLOCKCHAIN
AT NTU

Brought to you by Wei Ren

A

What is
CryptoZombies?

‘A
% BLOC KCL—ITA&ITNU

UCO0OC

At the end of the sharing
session, you will be able to:

Create a Zombie Factory
Customise your own zombies
Attack each other’s zombies
Feed your own zombies to level

up

2 BLOCKCHAI
. 2 AT NTNU

Preparation

https://cryptozombies.io/

@\,g BLOCKCHAIN
2 AT NTU

&3 Loom

Contract.sol

Chapter 2: Contracts

Starting with the absolute basics:

Solidity's code is encapsulated in contracts. A contract is the fundamental
building block of Ethereum applications — all variables and functions
belong to a contract, and this will be the starting point of all your projects.

An empty contract named HelloWorld would look like this:

contract HelloWorld {

Version Pragma

All solidity source code should start with a "version pragma" — a
declaration of the version of the Solidity compiler this code should use.
This is to prevent issues with future compiler versions potentially
introducing changes that would break your code.

It looks like this: pragma solidity 70.4.25; (for the latest solidity version at
the time of this writing, 0.4.25).

Putting it together, here is a bare-bones starting contract — the first thing
you'll write every time you start a new project:

pragma solidity 70.4.25;

contract HelloWorld {

— Making the Zombie Factory

Ask Question

 BACK

0(: EN ~ Sign In

2/15

)2

NEXT)

BLOCKCHAIN
AT NTU

&3 Loom

Chapter 2: Contracts

Starting with the absolute basics:

Solidity's code is encapsulated in contracts. A contract is the fundamental
building block of Ethereum applications — all variables and functions
belong to a contract, and this will be the starting point of all your projects.

An empty contract named HellowWorld would look like this:

contract HelloWorld {

Version Pragma

All solidity source code should start with a "version pragma" — a
declaration of the version of the Solidity compiler this code should use.
This is to prevent issues with future compiler versions potentially
introducing changes that would break your code.

It looks like this: pragma solidity ~0.4.25; (for the latest solidity version at
the time of this writing, 0.4.25).

Putting it together, here is a bare-bones starting contract — the first thing
you'll write every time you start a new project:

pragma solidity 70.4.25;

contract HelloWorld {

— Making the Zombie Factory

Ask Question c@ EN ~
Contract.sol
idity aaaaaaa

4 EEEEEEE]

Hints

pragma solidiyfy aaaaaaa
—_— >

(BACK 2/15 NEXT >

} BLOCKCHAIN
X

AT NTU

&3 Loom

Contract.sol

Chapter 2: Contracts

Starting with the absolute basics:

2

Solidity's code is encapsulated in contracts. A contract is the fundamental
building block of Ethereum applications — all variables and functions
belong to a contract, and this will be the starting point of all your projects.

An empty contract named HelloWorld would look like this:

contract HelloWorld {

Version Pragma

All solidity source code should start with a "version pragma" — a
declaration of the version of the Solidity compiler this code should use.
This is to prevent issues with future compiler versions potentially
introducing changes that would break your code.

It looks like this: pragma solidity ~0.4.25; (for the latest solidity version at
the time of this writing, 0.4.25). pragma solidity

Putting it together, here is a bare-bones starting contract — the first thing
you'll write every time you start a new project:

pragma solidity 70.4.25;

1 pragma solidity

Ask Question

20

<

BLOCKCHAIN
AT NTU

Lesson 1: Creating a Zombie Factory*

1. Instantiate new zombies =
2. Produce random zombies dna %T
3. Assign each created zombie with a random dna

&

3:3 BLOCKCHAIN
X 8 #
% 'J\/‘—' C -mc 0 “\(\‘{S& R AT NTU

pragma solidity 70.4.25;

contract ContractName{
//Declare variables
@ //Implement functions
)
A5
@ & »

Nre £ 0 “\\\Sg’

Lesson 1: Creating a Zombie Factorysé

oy

BLOCKCHAIN
AT NTU

Characteristics of Zombies NS

Zombie DNA(16 integers): XS‘“&
4412447 |521|258|4128
Head | Eye | Shirt | Skin Color | Eye Color | Clothes

X BLOCKCHAIN
* 10
oA o 2 0 el L AT NTU

Data Types B> @
3
Unsigned Integers: uint256/uint, uint8 e %T

Strings : string
Structures: struct
Arrays: Objects[] public arrayname

. Address

\
@\

' BLOCKCHAIN

L AT NTU

Function declaration
d Naming Convention: camelCase
d Syntax:

function functionname(datatype parameterl, ...)
private/public pure/view returns (datatype ...)

E.g. function _sayNumber(uint _num) private pure
returns(string){....}

2 ABLOCKCHAI
12 'K:. AT NTNU

Function Visibility o &Y
Jd Private e

. Callable from other functions in the contract %
d Public

. Callable from anywhere
d Internal

. Like private + Callable from from functions in derived contracts

’@D External
(%\; . Callable only from outside of the contract
82

%@ﬁ 8 o - 23 BLOCKCHAIN

e O =i AT NTU

= 6D
Function Modifiers - State Modﬁmrsﬁ@
i

X

d Pure
. No modifications + reading of data is done 5
d View

L No modifications to the data is done
., Reading data from the blockchain

@ 714,,%- 2 BLOCKCHAIN
N e w ” B

AT NTU

A way for the contract to inform the app’s front end
that something has occurred on the blockchain.

. Declare the event in the contract

. Fire the event within some of the functions when
required

» BLOCKCHAIN
2 L AT NTU

VAV
2o°

5 63
Events .§

. 25N
contract ZombieFactoryf{ e

event NewZombie(uint zombield, string name, uint dna); //Declare the event in %
the contract

function createNewZombie(string _name, uint _dna) private {

//Some logic

,@, uint id=
\ emit NewZombie(id, name, _dna) //Fire the event

(%’\; @s
@ L%:: w . a3 BLOCKCHAIN

N c-me & =30 AT NTU

Keccak256 & abi.encodePacked()
08

=

v

2 LY
m@

keccak256() : An in-built hash function which generates
256bit hexadecimal value (ZombieDna)

A Only takesin 1 parameter with a type bytes

_. abi.encodePacked(): Converts a data type to bytes

»* BLOCKCHAIN
: AT NTU

17

Lesson 2: Zombie Feeding

pragma solidity 70.4.25;

import “./ContractA’;

contract ContractB is ContractA{
% }
A

.
@ (= . 23 BLOCKCHAIN

N c-me & =30 AT NTU

Inheritance o @
X
4 Contract B will have access to some functions of %

Contract A %

d private functions will not be visible in Contract A

1 Used to break up long lines of code into multiple
contracts

.
@ i.%: 4 o 2 BLOCKCHAIN

e e

o>

msg.sender

1 Refers to the address of the person/smart that called
the current function

= >

2 BLOCKCHAIN
p 20 K;
%)J\/‘-* C -mc 0 “\q\‘(@’ R AT NTU

DY 6D
Mappings > @
<)

N
N
A Astore for key-value pairs e %T
d Syntax:

mapping (datatype => datatype) [public/private] mappingname
E.g.
» mapping (address => uint) ownerZombieCount;

@D To access value: ownerZombieCount[msg.sender]

8
%@j 8 o 5 x2 BLOCKCHAIN

e O =i AT NTU

%

require 0>

v

6
(o) o

1 Used to verify certain conditions before running the
function
d Syntax:

function MyFunction{
require(condition);

//Some logic

@ e A BLOCKCHAI
A %: 7 22 5 b

AT NTU

Storage vs Memory =3 @
Y

Memory : Temporary (local variables in functions)

Storage : Stores data permanently on the blockchain
(State variables)

@ i@: & - 22 BLOCKCHAIN

%)J\/u c_a O mft . AT NTU

<

Lesson 3 : Advanced Solidity Concemts %

:
d Ownable Contracts & Function modifiers 5
d Gas %@9
d For Loops

9,
@ 7 ! A BLOCKCHAIN
A I*%: w 24 X;

AT NTU

Ownable Contract b &Y
d Taken from OpenZeppelin library %
A Secure and Community-vetted smart contracts v
d Link:

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contract
s/ownership/Ownable.sol

(%’\? @s
@ (Y & s 22 BLOCKCHAIN

/\-4 C -mc m\\&“&x AT NTU

4 ® gno oegmeo @aggﬁ
Function modifiers - Custom modlftevas@
/%% “

3
* @dev Throws if called by any account other than the owner. Z&

‘/ %ﬁ

modifier onlyOwner() {

require(isOwner());

U Restricts access to certain functions
@D Only the owner of the contract could access
2 7

3 BLOCKCHAIN
5

26 AT NTU

Function modifier

2 7
oy
) 1
N)
=

function _createZombie(string _name, uint _dna) internal
onlyowner{ v

@ I% & ., 23 BLOCKCHAIN

oA o 2 0 el ATNTU

Saving Gas - Struct packing

1 For any uint state variable, 256 bits of storage will be

reserved.

. Thus,declaring auint8/ uint16/ uint32 state variable will NOT save
any gas

A Struct packing

. Packing all uint variables into a struct to save on the storage space

B
2 7
@ L%_: & . a3 BLOCKCHAIN

% rec-m@ O m\‘{ﬁ AT NTU

Saving Gas - Memory 22 Q
 Storing data in storage is expensive e

.t Reason: Datais stored permanently on the blockchain %
A Thus, an alternative way is to rebuild that data into

memory (temporary)
. Very useful in sorting data in storage arrays

(%\; @s
B ey .

N c-me & =30 M

 BLOCKCHAIN
AT NTU

Saving Gas - View Functions

A External view functions incur no gas

. However, internal view functions still incur gas since the calling %5}
function still creates a transaction which need to be verified by the
nodes

BLOCKCHAIN
oy

30 AT NTU

Lesson 4: Zombie Battle System

A Payable

31

A

5

g 12
&)
o D

BLOCKCHAIN
AT NTU

Function modifier - Payable mOdIfI S
N
A Allows us to call a function and pay Ether to the 5
contract simultaneously v
Jd E.g.

function buy() external payable{
require(msg.yvalue == 1 ether);

//Some logic to transfer ownership

- 2 BLOCKCHAIN
% —j\/‘-* C -mc 0 '“\(\‘{S& > AT NTU

Part 2. Let's make more Zombies @\/g
|
<@

BLOCKCHAIN
AT NTU

Brought to you by Kelvin

Ethereum Tokens ? =3 @
3
d A Tokenon Ethereum is a smart contract that adhere to+ =

a standard set of function which all token contracts v
share. (E.g. totalSupply, balanceOf...)
d Think of it like an “Interface” in programming.

interface
A
| implements
I
B '
S class
4

@ . 2 ABLOCKCHAI
A i%: - 34 5 b

AT NTU

Ethereum Tokens ?

7D

S

O Within the smart contract itself, it contains a mapping

which stores the balances of each address has. %?

A Hence, a token also keep a records of who owns how
much of the token.

? QP
)

2 BLOCKCHAI
35 ‘K:n AT NTNU

oF

S

3\

: S
R

)

ERC 20 >

L1 /) e e e e e e e e e e e e e e
2 // ERC Token Standard #20 Interface

3 // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

b [/ e
5 contract ERC20Interface {

6 function totalSupply() public view returns (uint);

7 function balanceOf (address tokenOwner) public view returns (uint balance);

8 function allowance(address tokenOwner, address spender) public view returns (uint remaining);
9 function transfer(address to, uint tokens) public returns (bool success);

10 function approve(address spender, uint tokens) public returns (bool success);

11 function transferFrom(address from, address to, uint tokens) public returns (bool success);
12

13 event Transfer(address indexed from, address indexed to, uint tokens);

14 event Approval(address indexed tokenOwner, address indexed spender, uint tokens);

\

- 15 }
@ " https://go0.al/88KYXp

@% I.;%: ﬁ » 23 BLOCKCHAIN

AT NTU

ERC 721

ERC721
Transfer(address

{

_from, address

Approval(address _owner, address
ApprovalForAll{address
balanceOf(address _owner)

ownerOf(uint256 _tokenId)

_owner, address

_tokenId);
_approved, uint256 _tokenId);
_operator, bool _approved);

(uint256);

(address);

safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes data)

safeTransferFrom(address _from, address _

_tokenId)

transferFrom(address _from, address _to, uint256 _tokenId)
approve(address _approved, uint256 _tokenId)
setApprovalForAll(address _operator, bool _approved)
getApproved(uint256 _tokenId)

isApprovedForAll(address _owner, address _operator) (bool);

AT NTU

» BLOCKCHAIN
X

http://erc721.org/

K 63
Difference Between ERC 721 & 20 <> _ @
-
Y
e ERC20 e
o Ethereum coin can be broken down into smaller portion such as %5}
0.000001 (decimal places).
o Unable to distinguish the coin, since every token is the same.

e ERC /21

o Cannot be broken down into smaller portions. Traded as whole unit.
@ o Every token is unique in its own.

3 BLOCKCHAIN
5

38 AT NTU

s :‘f
Why it matters in CryptoZombies @
AN

d Tokens that act as currencies is not suitable for
CryptoZombies. g

3 Not all zombie are equal. 8 S=2 8
.. 0.666 ETH
Level 1 Zombie is not equal to
. Person A Person B
Level 35 Zombie il '

x
@ i%: 4 . 2 BLOCKCHAIN

N c-me & =30 T AT NTU

i i . @ e
Why it matters in CryptoZombies m@
S
e

1 Zombie

- X BLOCKCHAIN
’ AT NTU

/
;@’ Person A

. 2 BLOCKCHAIN
%) —j\/‘-* C -mc 0 “\(\‘(S& > AT NTU

Contract Security; Overflow & Underflow

d Overflow & Underflow. What it means ?

Number {uint8)
Bits | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 1 | Number
ol o]l o oo of ofo 0
1 1 1 1 1 1 1 255
£ | [P | T PR | T [P TE| 255
| ol ol ool ol ofo 1 1
, o [ol"al ol"al ol aloe 256
;@,
X P
‘P
@ I% 4 BLOCKCHAIN
42 zg
oA o 2 0 el 2 AT NTU

Contract Security; Overflow & Underflow == &

d How to avoid this issue ? e
. OpenZeppelinis alibrary for secure smart contract development. %
. It has created a math library called SafeMath.

d How tousethelibrary?

import "./safemath.sol";
using SafeMath for uint256;

uint256 a 9=
uint256 b = a.add(3); // 5 + 3 = 8

uint256 ¢ = a.mul(2); // 5 x 2 = 10

2 BLOCKCHAI
3% /MNH

Contract Security; Overflow & Underflow o

d How does it overcome the issue? e
. E.g. Addition And Subtraction function in SafeMath %

function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 ¢ = a + b;
assert(c >= a);
return c;

function sub(uint256 a, uint256 b) internal pure returns (uint256) {

,\ % assert(b <= a);
) return a - b;
Yo
.94‘
@ {%: A BLOCKCHAIN
oo %ﬁ a4 ¢ AT NTU

%§

Contract Security; Overflow & Underflow

d How does it overcome the issue? Z%

. Just like normal math arithmetic but with an addition of the assert %
statement.
. E.g. Addition, it would check the sum of the 2 uint against ‘a’
ensuring that the sum is greater than ‘a. This would prevent the
sum from overflows.
A . Assertis similar to require, where it would return an error if the
@ condition is false. However, assert would not refund the user the
(%\; @. remaining gas when a function fails.

@ (Y & . 2% BLOCKCHAIN

N c-me & =30 AT NTU

Contract Security; Overflow & Underflow

d When to use assert or require ?

Use require() to:

« Validate user inputs

« Validate the response from an external contract
ie. use require(external.send(amount))

» Validate state conditions prior to executing state changing
operations, for example in an owned contract situation

* Generally, you should use require more often,

« Generally, it will be used towards the beginning of a function.
Use assert() to:

« check for overflow/underflow

» check invariants

« validate contract state after making changes

« avoid conditions which should never, ever be possible.

« Generally, you should use assert less often

« Generally, it will be use towards the end of your function.
Basically, assert is just there to prevent anything really bad from

happening, but it shouldn't be possible for the condition to evaluate
to false.

0 wofS 46 AT NTU

3 BLOCKCHAIN
5

https://ethereum.stackexchange.com/questions/15166/difference-between-require-and-assert-and-the-difference-between-revert-and-thro

Web3.js
d Whatis Web3,js

. ItaJavascript library which allow user to interact with a ethereum %5}
node, using a HTTP connection.
(Interaction - query the function within the smart contract by

providing the following items)

o Address of the smart contract.
. o Function name that the user want to call.
@' > Variables that user want to pass into the function.

X
@ I% & - 23 BLOCKCHAIN

Nre £ “\\\Sg’

Web3.js

48

https://goo.gl/d5Shm7p

A

5

BLOCKCHAIN
AT NTU

Web3.js b &Y

d How touse Web3,js o

L Sinceitis aJavascript library, you can import the library like any %
javascript library in html by specifying the script within the
<head></head> tagin html.

o <head>
<meta charset="UTF-8">
<title>CryptoZombies front-end</title>
<script language="javascript" type="text/javascript"

) & src="https:cdnjs.cloudflare.com/ajax/1ibs/jquery/3.3.1/jquery.min.js"></scr
\ ipt>
) <script language="javascript" type="text/javascript"
(%\? ’4"». src="web3.min.js"></script>
'4
Y, </head>

@ e A BLOCKCHAI
A 2, 7 4 5 b

AT NTU

Why the need for Web3.js

A Simplify the need for creating complex queries in
JSON-RPC.

"jsonrpc":"2.0",

"method": "eth_sendTransaction",

"params":[O

{©
"from": "0xb60e8dd61c5d32be8058bb8eb970870f07233155"
"to": "0xd46e8dd67c5d32be8058bb8eb970870f07244567" ,
"gas":"0x76c0",
"gasPrice":"0x9184e72a000",
"value":"0x9184e72a",
Nt "data": "0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb8eb970870f072445675"

(.) }
@ \]:d . CryptoZombies.methods
".'l ":

.createRandomZombie("Vvitalik Nakamoto @")

-

.send({ from: "Oxb60e8dd61c5d32be8058bb8eb970876107233155", gas: "3000000"
B

2 BLOCKCHAIN
AT NTU

S0

d A Web3 provider handle the incoming read and write
requests from the user and direct it to the specific node
that the user want to communicate with.

d Metamask manage Ethereum accounts and keys which
these account is use to interact with website running
with Web3.js. (Write & Read to the blockchain.
Including signing transaction with Private key)

» BLOCKCHAIN
el 5 AT NTU

a |
m Known Ethereum provider
or views and v

interacts with

Provics Ethereum
blockchain
P Client's Browser MetaMask Plugin
Web3 provider
Y, .
!Qv. https://goo.al/iveKmtX

@ I%“ 4 - 2 BLOCKCHAIN
A

AT NTU

!

& Ky @& ;,\
Using Metamask’s web3 provider. @

window.addEventListener('load', function() { Q@ﬁ
O Add this boilerplate code to e .
if (typeof web3 l== 'undefined') { the <Scr|pt> tag Wlthln the
web3js = new Web3(web3.currentProvider); < body >
N
- «K:. BLOC KCIA-IT,A&ITNU

“X @ e
Communicate With Contracts D> @
Y

d 2 Things required to communicate with contracts

. Contract Address. %
. ABI (Application Binary Interface).

2 BLOCKCHAIN
’ 4 A
g'lg-f\/\—-F—mZ O ol > D AT NTU

Calling Contract Functions NS,
d Web3,js has 2 methods to call the function on the e .
contracts.
. Call (View & Pure function)
Read Only.

Do not incur any gas.

. Send (Any other functions other than View & Pure)

Create transaction.
@ o Change data on the blockchain.
Require to pay gas and signing of the transaction with the user’s private key.

myContract.methods.myMethod(123).call()

N
myContract.methods.myMethod().send() ’C. B LOC KCAIT%AK]ITNU

Calling Contract Functions 2

function getZombieDetails(id) {
return cryptoZombies.methods.zombies(id).call()
}

// 1. Define "zombieToOwner' here
function zombieToOwner(id) {
return cryptoZombies.methods

}

// 2. Define ‘getZombiesByOwner® here
function getZombiesByOwner(owner) {
return cryptoZombies.methods

}

er(address _owner) external view returns(uint[]) {
uint[] memory result = new uint[](ownerZombieCount[_owner]);

uint counter = 9;

for (uint i = @; i < zombies.length; i++) {

18 o .

d Similar to the
structure as
getZombieDetails(id)

Zombie[] public zombies;

mapping (uint => address) public zombieToOwner;
mapping (address => uint) ownerZombieCount;

Xi BLOCKCHAIN
<R AT NTU

Metamask & Account

d MetaMask allow user to manage multiple accounts.
d How to get the current active account ?

var account = web3.eth.accounts([@]; 1 Check every 100 milliseconds if

var accountInterval = setInterval(function() { userAccount is still equal
if (web3.eth.accounts[@] !== account) { web3.eth.accounts|0.]
account = web3.eth.accounts[0]; Q If not, reassigns userAccount to
Updatetoteracel): the currently active account, and
o : lls a function to update th
. }, 100); calls a tunction to upadaate the
’ display.

',"- https://goo.gl/FYMUzW
".IA
ﬁ S7

/L*F mC >

2 BLOCKCHAIN
/ AT NTU

Sending Transaction

A Requires a from address of who's calling the function. (Msg.sender)
d Costgas.

d Asignificant delay after user sends a transaction
. Wait for transaction to be included in the block.
. Too little gas fees => Longer time to get included.

oy
R

@ L%:: 4 2 BLOCKCHAIN

;IQJ\/\—- F:mc)‘Z 0 “\«\‘{@’ o8 3\/5:.

AT NTU

Sending Transaction 2

Solidity Code in Contract Call function in Web3.js using MetaMask

function createRandomZombie(_name) public { | function createRandomZombie(name) {
require(ownerZombieCount[msg.sender] == 0);

uint randDna = _generateRandomDna(_name);

randDna = randDna - randDna % ; $("#txStatus").text("Creating new zombie on the blockchain. This may take
_createZombie(_name, randDna); while...");

}

return cryptoZombies.methods.createRandomZombie(name)
({ from: userAccount })
.on("receipt”, function(receipt) {

$("#txStatus"”).text("Successfully created " + name + "!");

getZombiesByOwner(userAccount).then(displayZombies);
9

.on("error", function(error) {

$("#txStatus"”).text(error);
1)

2 BLOCKCHAIN
= . "
oA o 2 0 el > 2 AT NTU

Calling Payable Function 22 =&

d Function that can recieved ether. s
d However, the unit in which the function received is terms of wei. %

cryptoZombies.methods. levelUp()

.send({ from: userAccount, value: web3js.utils.toWei("9.001", "ether™) })

Unit Wei Value Wei

wei 1wei 1

Kwei (babbage) 1e3 wei 1,000
s Mwei (lovelace) 1e6 wei 1,000,000
@) Gwei (shannon) 1e9 wei 1,000,000,000
(%)\; ’4’0"‘ microether (szabo) 1e12 wei 1,000,000,000,000

'ﬂ‘ milliether (finney) 1e15 wei 1,000,000,000,000,000
1 ether 1e18 wei 1,000,000,000,000,000,000 A BLOCKCHAIN

oA o 20 efd o D AT NTU

Test out here In the future. mé»@
Y

https://remix.ethereum.org

@ e 2 BLOCKCHAIN
A L%: & 61 2

AT NTU

