NXP Semiconductors Document identifier: KFSCIHAPIUG

Rev. 8, 06 August 2019

Kinetis FSCI Host Application Programming
Interface

User's Guide

h
P

Contents

Contents
Chapter 1 About This DOCUMENL...........ccoiiiiiimmii s ————— 4
T AU o 1= o Lo YRR 4
Chapter 2 Deploying Host Controlled Firmware...........cccovvriininnnnnnnsnssssssssssssnnns 5
2.1 Bluetooth LE application CONfIQUIALION..........iitiiiiiiiie ittt 5
Chapter 3 Host Software OVerview........... s 6
3.1 Kinetis wireless host software system blOCK didgram............coieiiiieiiiiiiet e 7
T2 B] (=T (o] Y =T ST RO PR 7
TR B 1V ToT= R o =1 (=T 1o o PRSP PR 9
3.4 Serial POrt CONTIGUIATION.coitiiiiie ettt h et bt e e it e b e e et e e b e e se bt e ae e sa bt e sbeeeaneesbneaneennneans 9
LG TR o T o = OO 10
Chapter 4 Linux OS Host Software Installation Guide.........cccccceeevveeeeeeeeeeenn. 11
L T T =V =T OO PSS PPRTRI 1
o e B (T (o [131 (T PP PPRO 1
o 2 [1= = 1= U1 o o T 11
2 I =Y o Vo T SR 11
2 B 1] = 1 = 4o) o PSPPI 11
Chapter 5 Windows OS Host Software Installation Guide...........cccccceeunnneee. 13
Lo I 1 T =V = OO R P UPRP 13
Lo I B (T (T U] (= PSP PU R OPRRTOTRRNS 13
Lo T2 = =T o OO PPRT PR 13
5.1.2.1 USING PrebUIt IDFAIY......oc.eeiiiee e s 13
5.1.2.2 UsiNg 10Cal DBUIIE IDFAIY......ooiiieeee et 13
L2 0 1T o o T RSP SPR SRR ORRIN 13
Chapter 6 Host APl C Bindings.......ccouuimmmmmmmmmmmmmnmnsssssssssssssssssssssssssses 14
(ST I T (=T o] YN == T PRSPPI 14
6.2 TESES ANU BXAMIPIES.eeiiiiie ettt et et e e s e e e s e e e e e st e e e s r e e e e e et e s R e e e e ea e e e e r e e e e e e e e e e e e 14
(SIS BTV =1 (o] o] g 0 T=T o | SO OPUR PRI 14
Chapter 7 Host APl Python Bindings.........cccooiirrnnninnnnnnnnnnnnnnnnnnnnnenneeeeeeeeeeeeees 18
A I (= (ST U LT C= PSP PP RO 18
2 =L (o1 4 T T=T (U o SO OTPOSRPRTPUP PRSP 18
2 TV D Q@ 1 F OSSPSR OPP T SPTOPPPRROPR 18
722 WINAOWS OS.... oottt sttt ettt b ettt e bt e bt e eh et e bt e ea e e e bt e e h et e bt e eab e oAb e e eas e e nhe e et e e ean e e beeenneanneean 18
A D 1 £=Te] (o) oV == PP OPR 18
A Vg e (1] g F=T I (=TT or o o] o OO UPRTPRRPR 20
QAT B L1V =1 (o] o] 0 T=T o | S OO PU R PRI PRI 20
AT B = 1= = £ OO P SRR 20
QAT =T o £ T SR ESTRRR 20
AR O o T=T =i o] o LT U U PR ST ROPR TSN 21
7.5.4 SYNCNIONOUS FEOUESES.c.utiiieiiitie ittt ettt ettt ekttt ettt e st b e s it e e bt ea et e ae e na bt e sae e eab e e she e e neesen e e nbeenaneenes 21

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
2 NXP Semiconductors

Contents

7.6 Bluetooth LE Heart Rate SEIVICE USE CASE.......ccuiiiiiiiiiiiie ittt ettt ettt et nee et e nes 21

7.6.1 USEr SYNC rEQUEST EXAMPIE.....ccieiiiiiiiie ittt st e e e e e s e e e e e e s re e e e nne e e nnnns 22

7.6.2 Sync request internal iMpIemMENtatioN...........ooii i e 22

7.6.3 Connect and diSCONNECT ODSEIVETS........cccuiiiiiiiiiii et 24

Chapter 8 How to Reprogram a Device Using the FSCI Bootloader............. 26
Chapter 9 Revision HiStory.......cccoiiiiiiiiisiissssissas 27

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 3

About This Document

Chapter 1
About This Document

This document provides a detailed description for the Kinetis Wireless Host Application Programming Interface (Host API)
implementing the Framework Serial Connectivity Interface (FSCI) on a peripheral port such as UART, USB, and SPI. The Host
API can be deployed from a PC tool or a host processor to perform control and monitoring of a wireless protocol stack running
on the Kinetis microcontroller. The software modules and libraries implementing the Host APl is the Kinetis Wireless Host Software
Development Kit (SDK).

This version of the document describes the Bluetooth® Low Energy stack running on Kinetis-W Series Wireless Connectivity
Microcontrollers (MCUs), which are interfaced from a high-level OS (Linux® OS, Windows® OS) by the Host API and the Host
SDK.

1.1 Audience

This document is for software developers who create tools and multichip partitioned systems using a serial interface to a Bluetooth
LE ‘black box’ firmware running on a Kinetis microcontroller.

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
4 NXP Semiconductors

Bluetooth LE application configuration

Chapter 2
Deploying Host Controlled Firmware

2.1 Bluetooth LE application configuration

To exercise the Host API, the Bluetooth LE ‘black box’ firmware is required to be flashed on a compatible platform. The Bluetooth
LE ‘black box’ is represented by the ‘ble_fsci_black_box’ application firmware that can be interfaced and configured with FSCI
commands over the serial interface. One could use the binary image provided in the package, tools\wireless\binaries
\ble fsci blackbox.bin, Which uses UART as serial interface with 115200 baud rate.

As an alternative, the user can compile the black box image of the ‘ble_fsci_black_box’ software application using IAR Embedded
Workbench for Arm (EWARM) or MCUXpresso IDE. For information on how to build the application see additional documentation
provided in the package.

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 5

Host Software Overview

Chapter 3

Host Software Overview

The FSCI (Framework Serial Communication Interface - Connectivity Framework Reference Manual) module allows interfacing
the Kinetis protocol stack with a host system or PC tool using a serial communication interface.

FSCI can be demonstrated using various host software, one being the set of Linux OS libraries exposing the Host API described
in this document. The NXP Test Tool for Connectivity Products PC application is another interfacing tool, running on the Windows
OS. Both the Thread and Bluetooth LE stacks make use of XML files which contain detailed meta-descriptors for commands and
events transported over the FSCI.

The FSCI module sends and receives messages as shown in the figure below. This structure is not specific to a serial interface
and is designed to offer the best communication reliability. The device is expecting messages in little-endian format and responds
with messages in little-endian format.

STX Opcode Group Message Type

Length

Payload Checksum

Y

Y
Header

Figure 1. Sending and receiving messages

Table 1. FSCI send receive message formats

FSCI Frame FormatSTX

1

Used for synchronization over the serial
interface.

The value is always 0x02.

Opcode Group

Distinguishes between different layers
(for example, GAP, GATT, GATTDB —
Bluetooth LE).

Message Type 1 Specifies the exact message opcode
that is contained in the packet.

Length 2 The length of the packet payload,
excluding the header and the checksum.
The length field content shall be
provided in little endian format.

Payload variable Payload of the actual message.

Checksum 1/2 Checksum field used to check the data

integrity of the packet. When virtual
interfaces are used to distinguish
between the Bluetooth LE and Thread
stacks when both run concurrently on
the same device, this field expands to
two bytes to embed the virtual interface
number.

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019

NXP Semiconductors

Kinetis wireless host software system block diagram

The Kinetis Wireless Host SDK consists in a set of cross-platform C language libraries which can be integrated into a variety of

user defined applications for interacting with Kinetis Wireless microcontrollers. On top of these libraries, Python bindings provide
easy development of user applications.

The Kinetis Wireless Host SDK is meant to run on Windows OS, Linux OS, Apple OS X® and OpenWrt. This version of the

document describes a subset of functionality related to interfacing with a Bluetooth LE stack instance from a Linux OS system,
with focus on Python language bindings.

3.1 Kinetis wireless host software system block diagram

Kinetis-W Host APl Wrappers — C, Python

FSCI Packets — User Defined Actions Upon
Structures/Objects Send Commands Events

dynamic linking for C ' ctypes for Python
Kinetis-W Host API —

Set of C Libraries

Device Detection Serial Communication Raw FSCI Packets FSCI over RNDIS

Operating System

Windows Linux OpenWrt OS X

Kinetis-W MCUs

Freedom platforms USB platforms

Figure 2. Kinetis host software system block diagram
3.2 Directory tree

— demo A set of programs to demonstrate functionality.

F—— GetKinetisDevices.c Outputs all Kinetis devices available on serial to the
console.

| — Makefile

— include All the headers used are present in this folder.

F—— physical Headers specific to the physical serial bus or PCAP interface
used by the NXP device.

F—— PhysicalDevice.h

— pcap

| L— pcapDevice.h

— ser

| F—— SPIConfiguration.h Handles SPI slave bus configuration (max speed Hz,

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 7

Host Software Overview

bits per word).

| | | L— sSpPIDevice.h Encapsulates an OS SPI device node into a well-
defined structure.
| L— UuaRT
| | |— UARTConfiguration.h Handles serial port configuration (baudrate,
parity) .
| | |— UARTDevice.h Encapsulates an OS UART device node into a well-
defined structure.
L — UARTDiscovery.h Handles the discovery of UART connected devices.
— protocol Headers specific to the transmission of frames.
|— Framer.h A state machine implementation for sending/
receiving frames.
L— FscI Headers specific to the FSCI protocol.
I— FSCIFrame.h
L— FSCIFramer.h
L— sys General purpose headers for interaction with the O0S,
message queues and more.
|— EventManager.h Handles event registering, notifying and callback
submission.
|— hsdk Macros for error reporting.
|— h Logger implementation for debugging.
— hsdkOSCommon.h Interaction with OS specifics.
|— MessageQueue.h A standard message queue implementation (linked list).
|— RawFrame.h Describes the format of a frame, independent of the
protocol.
L — utils.h Various functions to manipulate structures and byte arrays.
— ConnectivityLibrary.sln Microsoft Visual Studio 2013 solution file.
— Makefile
— physical Implementation of the physical UART/SPI serial bus or PCAP
interface module.
— pcap
| L— pcAPDevice.c
|— PhysicalDevice.c
— spr
| |— SPIConfiguration.c
| L— sPIDevice.c
L— UART
|— UARTConfiguration.c
— UARTDevice.c
L — UARTDiscovery.c
—— protocol Implementation of the protocol module relating to FSCI.
|— Framer.c
L— FscI
|— FSCIFrame.c
L — FSCIFramer.c
—— README .md
— res
|— 77-mm-usb-device-blacklist.rules Udev rules for disabling ModemManager.
L — nsdk.conf Configuration file to control FSCI-ACKs.
— sys Implementation of the system/OS portable base module.

— EventManager.c
—— hsdkEvent.c

— hsdkFile.c

— hsdkLock.c

— hsdkLogger.c
—— hsdkSemaphore.c
—— hsdkThread.c
—— MessageQueue.cC

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019

NXP Semiconductors

F—— RawFrame.c
L utils.c

3.3 Device detection

Device detection

The Kinetis Wireless Host SDK can detect every USB attached peripheral device to a PC. On Linux OS, this is done via udev.
Udev is the device manager for the Linux OS kernel and was introduced in Linux OS 2.5. Using the manager, the Kinetis Wireless
Host API can provide the Linux OS path for a device (for example, /dev/ttyACMO) and whether the device is a supported USB
device, based on the vendor ID/product ID advertised. Upon device insertion, the USB cdc_acm kernel module is triggered by the
kernel for interaction with TWR, USB and FRDM devices.

On Windows OS, attached peripherals are retrieved from the registry path HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP
\SERIALCOMM, resulting in names such as COMxx which must be used as input strings for the Python scripts which require a

device name.

3.4 Serial port configuration

The Host SDK configures a serial UART port with the following default values:

Table 2. Host SDK — UART default values

Configuration Value
Baudrate 115200
ByteSize EIGHTBITS
StopBits ONE_STOPBIT
PARITY NO_PARITY
HandleDSRControl 0
HandleDTRControl ENABLEDTR
HandleRTSControl ENABLERTS
InX 0
OutCtsFlow 1
OutDSRFlow 1

OutX 0

The library only allows the possibility to change the baudrate, as this is the most common scenario.

For Kinetis devices using a USB connection interfaced directly (where the USB stack runs on the Kinetis device

NOTE

and the system is NOT using an OpenSDA UART to USB converter), the baudrate is not necessary and setting it

has no effect.

The Host SDK configures a serial SPI port with the following default values:

Table 3. Host SDK — SPI default values

Configuration

Value

Transfer Mode

SPI_MODE_0

Table continues on the next page...

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019

NXP Semiconductors

Host Software Overview

Table 3. Host SDK — SPI default values (continued)

Configuration Value
Maximum SPI transfer speed (Hz) 1 MHz
Bits per word 8

The library only allows the possibility to change the maximum SPI transfer speed.

3.5 Logger

The Host SDK implements a logger functionality which is useful for debugging. Adding the compiler flag USE_LOGGER enables

this functionality.

When running programs that make use of the Host SDK, a file named hsdk.log appears in the working directory. This is an excerpt

from the log:
HSDK_INFO - [6684] [PhysicalDevice]InitPhysicalDevice:Allocated memory for PhysicalDevice
HSDK INFO - [6684] [PhysicalDevice]InitPhysicalDevice:Initialized device's message queue
HSDK INFO - [6684] [PhysicalDevice]InitPhysicalDevice:Created event manager for device
HSDK _INFO - [6684] [PhysicalDevice]InitPhysicalDevice:Created threadStart event
HSDK_INFO - [6684] [PhysicalDevice]InitPhysicalDevice:Created stopThread event
HSDK_INFO - [6684] [PhysicalDevice]AttachToConcreteImplementation:Attached to a concrete
implementation
HSDK_INFO - [6684] [PhysicalDevice]InitPhysicalDevice:Created and start device thread
HSDK INFO - [6684] [Framer]InitializeFramer:Allocated memory for Framer
HSDK_INFO - [6684] [Framer]InitializeFramer:Created stopThread event
HSDK _INFO - [6684] [Framer]InitializeFramer:Initialized framer's message queue
HSDK_INFO - [6684] [Framer]InitializeFramer:Created event manager for framer

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
10 NXP Semiconductors

Libraries

Chapter 4
Linux OS Host Software Installation Guide

4.1 Libraries

4.1.1 Prerequisites

Packages: build-essential, libudev, libudev-dey, libpcap, libpcap-dev. Use apt-get install on Debian-based distributions.

The Linux OS kernel version must be greater than 3.2.

4.1.2 Installation

S pwd
/home/user/hsdk

$ make

$ find build/ -name "*.so"
build/libframer.so
build/libsys.so
build/libphysical.so
build/libuart.so
build/librndis.so
build/libfsci.so
build/libspi.so

$ sudo make install

By default, make generates shared libraries (having .so extension). The step make install (superuser privileges required) copies
these libraries to /usr/local/lib, which is part of the default Linux OS library path. The installation prefix may be changed by passing
the variable PREFIX, e.g. make install PREFIX=/usr/lib. The user is responsible for making sure that PREFIX is part of the system's
LD_LIBRARY_PATH. On low-resource systems where libudev or libpcap are not present, the user may opt to not link against them
by passing the variables UDEV and RNDIS respectively, i.e. make UDEV=n RNDIS=n. Lastly, support for the SPI physical layer
may be disabled in the same manner by passing the variable SPI=n.

Static libraries can be generated instead, by modifying the LIB_OPTION variable in the Makefile from dynamic to static (.a
extension).

make install also disables the ModemManager control for the connected Kinetis devices. Otherwise, the daemon starts sending
AT commands that affect the responsiveness of the afore-mentioned devices in the first 20 seconds after plug in.

4.2 Demos

4.2.1 Installation

$ pwd
/home/user/hsdk/demo
S make

$ 1s bin/
GetKinetisDevices

These demos are provided in this package:

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 1

http://www.freedesktop.org/wiki/Software/ModemManager/

Linux OS Host Software Installation Guide

* GetKinetisDevices: this program detects the Kinetis boards connected to the serial line and outputs the path to the console:

$./GetKinetisDevices
NXP Kinetis-W device on /dev/ttyACMO.
NXP Kinetis-W device on /dev/ttyACMl.

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
12 NXP Semiconductors

Libraries

Chapter 5
Windows OS Host Software Installation Guide

5.1 Libraries

5.1.1 Prerequisites

Microsoft Visual Studio® 2013 is required to build the host software. Open the solution file ConnectivityLibrary.sin and build it for
either Win32 or x64, depending on your setup requirements. The output directory contains a file named HSDK.dII, which can be
thought of as a bundle of all the shared libraries from Linux OS, except for SPI and RNDIS (in other words, libspi.so, librndis.so).
Currently, SPI and RNDIS interfaces to the board are not supported by the Windows host software.

Prebuilt HSDK.dII files are available under directory hsdk-python\lib.

5.1.2 Installation

The host software for the Windows OS is designed to work in a Python environment by contrast to the Linux OS where standalone
C demos also exist.

Download and install the latest Python 2.7.x package from www.python.org/downloads/. When customizing the installation options,
check Add python.exe to Path.

5.1.2.1 Using prebuilt library

1. Depending on your Python environment architure (not Windows architecture) copy the appropriate HSDK.dIl from hsdk-
python\lib\[x86Ix64] to <Python Directory>\DLLs, which defaults to C:\Python27\DLLs when using the default Python
installation settings.

2. Download and install Visual C++ Redistributable Packages for Microsoft Visual Studio 2013, depending on the Windows
architecture of your system (vcredist_x86.exe or vcredist_x64.exe) from www.microsoft.com/en-us/download/
details.aspx?id=40784.

3. Download and install the Microsoft Visual C++ Compiler for Python 2.7 from the download center .

5.1.2.2 Using local built library

1. Depending on your Python environment architure (not Windows architecture), build the appropriate Microsoft Visual
Studio 2013 solution configuration and then copy HSDK.dIl to <Python Directory>\DLLs (which defaults to C:
\Python27\DLLs when using the default Python installation settings).

2. Download and install the Microsoft Visual C++ Compiler for Python 2.7 from the download center .

Optionally, copy the hsdk\res\hsdk.conf to <Python Directory>\DLLs to control the behavior of the FSCI-ACK synchronization
mechanism.

5.2 Demos

See Host API Python Bindings.

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 13

https://www.microsoft.com/en-us/download/details.aspx?id=44266
https://www.microsoft.com/en-us/download/details.aspx?id=44266

Host API C Bindings

Chapter 6
Host API C Bindings

Starting with version 1.8.0, the Host SDK includes a set of C bindings to interface with a Kinetis-W black-box. Bindings are
generated from the matching FSCI XML file that is available in the stack software package under tools\wireless\xml_fsci. The
bindings are designed to be platform agnostic, with a minimal set of OS abstraction symbols required for building. Thus, the files
can be easily integrated on a wide range of host platforms.

6.1 Directory Tree

hsdk-c/
I— demo
| F—— HeartRateSensor.c Source file that implements the Bluetooth LE Heart Sensor Profile
| L— Makefile
F— inc
| — ble sig defines.h Standard Bluetooth SIG UUID values
| F— cmd <name>.h Generated from the matching FSCI <name>.xml file.
| L os_abstraction.h Provides OS dependent symbols for building the interface.
— README.md
L— src
F—— cmd <name>.c Generated from the matching FSCI <name>.xml file.
F—— evt <name>.c Generated from the matching FSCI name.xml file.
L evt printer <name>.c Generated from the matching FSCI <name>.xml file.

6.2 Tests and examples

Tests and examples that make use of the C bindings are placed in the hsdk-c/demo directory. Example of usage:

$ cd hsdk-c/demo/

$ make

$./HeartRateSensor /dev/ttyACMO

loooll

--> Setup finished, please open IoT Toolbox -> Heart Rate -> HSDK HRS

6.3 Development

Header file cmd_<names>.h is generated from the corresponding <name>.xml FSCI XML file.

- Enumerations

/* Indicates whether the connection request is issued for a specific device or for all the devices in
the White List - default specific device */
typedef enum GAPConnectRequest FilterPolicy tag {
GAPConnectRequest FilterPolicy gUseDeviceAddress c = 0x00,
GAPConnectRequest FilterPolicy gUseWhiteList c = 0x01
} GAPConnectRequest FilterPolicy t;

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
14 NXP Semiconductors

Development

- Structures

typedef PACKED STRUCT GAPConnectRequest tag {

uintl6_t ScanInterval; // Scanning interval - default 10ms
uintl6_t ScanWindow; // Scanning window - default 10ms
GAPConnectRequest FilterPolicy t FilterPolicy; // Indicates whether the connection request is

issued for a specific device or for all the devices in the White List - default specific device
GAPConnectRequest OwnAddressType t OwnAddressType; // Indicates whether the address used in

connection requests will be the public address or the random address - default public address
GAPConnectRequest PeerAddressType t PeerAddressType; // When connecting to a specific device,

this indicates that device's address type - default public address

uint8 t PeerAddress[6]; // When connecting to a specific device, this indicates that device's
address

uintl6_t ConnIntervalMin; // The minimum desired connection interval - default 100ms

uintl6_t ConnIntervalMax; // The maximum desired connection interval - default 200ms

uintl6_t ConnlLatency; // The desired connection latency (the maximum number of consecutive
connection events the Slave is allowed to ignore) - default O
uintl6_t SupervisionTimeout; // The maximum time interval between consecutive over-the-air

packets; if this timer expires, the connection is dropped - default 10s
uintl6_t ConnEventLengthMin; // The minimum desired connection event length - default Oms
uintl6é t ConnEventLengthMax; // The maximum desired connection event length - default maximum
possible, ~41 s
bool t usePeerIdentityAddress; // TRUE if the address defined in the peerAddressType and
peerAddress is an identity address
} GAPConnectRequest t;

Container for all possible event types

typedef struct bleEvtContainer tag
{

uintlé_t id;

union {

locol
GAPConnectionEventConnectedIndication t GAPConnectionEventConnectedIndication;
locol
} Data
} bleEvtContainer t;

- Prototypes for sending commands
memStatus_t GAPConnectRequest (GAPConnectRequest t *req, void *arg, uint8 t fscilnterface);

Header file os_abstraction.h provides the required symbols for building the generated interface. When integrating in a project
different that Host SDK, the user needs to provide the implementation for

void FSCI_ transmitPayload(void *arg, /* Optional argument passed to the
function */
uint8 t og, /* FSCI operation group */
uint8 t oc, /* FSCI operation code */
void *msg, /* Pointer to payload */
uintl6é_t msglen, /* Payload length */
uint8 t fscilnterface /* FSCI interface ID */

);

that creates and sends a FSCI packet (0x02 | og | oc | msgLen | msg | crc +- fscilnterface) on the serial interface. Source files
cmd_<names>.c, evt_<name>.c and evt_printer_<name>.c are generated from the correspondent <NAME>.xml FSCI XML file.

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 15

Host API C Bindings

- Functions that handle command serialization in cmd_<name>.c

memStatus t GAPConnectRequest (GAPConnectRequest t *req, void *arg, uint8 t fscilnterface)
{
/* Sanity check */
if (!req)
{
return MEM UNKNOWN ERROR c;

FSCI_transmitPayload(arg, 0x48, 0x1C, req, sizeof (GAPConnectRequest t), fscilInterface);
return MEM SUCCESS c;
- Event dispatcher in evt_<name>.c

void KHC_BLE_RX MsgHandler (void *pData, void *param, uint8_ t fscilnterface)
{

if (!pData || !param)
{
return;
}
fsciPacket_t *frame = (fsciPacket_t *)pData;
bleEvtContainer t *container = (bleEvtContainer t *)param;
uint8 t og = frame->opGroup;
uint8 t oc = frame->opCode;
uint8 t *pPayload = frame->data;
uintl6é t id = (og << 8) + oc, i;
for (1 = 0; 1 < sizeof (evtHandlerTbl) / sizeof (evtHandlerTbl[0]); i++)

{
if (evtHandlerTbl[i].id == id)
{
evtHandlerTbl[i] .handlerFunc (container, pPayload);
break;

- Handler functions to perform event de-serialization in evt_<name>.c

static memStatus_t Load GAPConnectionEventConnectedIndication(bleEvtContainer t *container, uint8 t
*pPayload)
{

GAPConnectionEventConnectedIndication t *evt = &(container-
>Data.GAPConnectionEventConnectedIndication) ;

uint32 t idx = 0;

/* Store (0G, OC) in ID */
container->id = 0x489D;

evt->Deviceld = pPayload[idx]; idx++;

FLib MemCpy (& (evt->ConnectionParameters.Connlnterval), pPayload + idx, sizeof (evt-
>ConnectionParameters.ConnInterval)); idx += sizeof (evt->ConnectionParameters.ConnInterval) ;

FLib MemCpy (& (evt->ConnectionParameters.ConnLatency), pPayload + idx, sizeof (evt-
>ConnectionParameters.ConnLatency)); idx += sizeof (evt->ConnectionParameters.ConnLatency) ;

FLib MemCpy (& (evt->ConnectionParameters.SupervisionTimeout), pPayload + idx, sizeof (evt-—

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
16 NXP Semiconductors

Development

>ConnectionParameters.SupervisionTimeout)); idx += sizeof (evt-
>ConnectionParameters.SupervisionTimeout) ;

evt->ConnectionParameters.MasterClockAccuracy =
(GAPConnectionEventConnectedIndication ConnectionParameters MasterClockAccuracy t)pPayload[idx]; idx+
+;

evt->PeerAddressType = (GAPConnectionEventConnectedIndication PeerAddressType t)pPayload[idx]; idx
++;

FLib MemCpy (evt->PeerAddress, pPayload + idx, 6); idx += 6;

evt->peerRpaResolved = (bool t)pPayload[idx]; idx++;

evt->localRpaUsed = (bool t)pPayload[idx]; idx++;

return MEM SUCCESS c;

- Event status console printer in evt_printer_<name>.c

void SHELL BleEventNotify(void *param)
{
bleEvtContainer_ t *container = (bleEvtContainer t *)param;

switch (container->id) {
[...]
case 0x489D:
shell write ("GAPConnectionEventConnectedIndication");
shell write(" -> ");
switch (container->Data.GAPConnectionEventConnectedIndication.PeerAddressType)
{
case GAPConnectionEventConnectedIndication PeerAddressType gPublic c:
shell write(gPublic c);
break;
case GAPConnectionEventConnectedIndication PeerAddressType gRandom c:
shell write(gRandom c);
break;
default:
shell printf ("Unrecognized status 0x%02X", container-
>Data.GAPConnectionEventConnectedIndication.PeerAddressType) ;
break;

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 17

Host API Python Bindings

Chapter 7
Host API Python Bindings

7.1 Prerequisites
Python 2.7.x is necessary to run the Python bindings. If Python 3.x is needed, the 2to3 code translator can be used, yet the user
is requested to fix the possible remaining issues from the translation.

The bindings use the Host API C libraries. On Linux and OS X operating systems, these are called from the installation location
which is /usr/local/lib, while on Windows OS the library file is loaded in <Python Install Directory>\DLLs.

7.2 Platform setup

To run scripts from the command line, the PYTHONPATH must be set accordingly, so that the interpreter can find the imported
modules.

7.2.1 Linux OS
Adding the source folder to the PYTHONPATH can be done by editing ~/.bashrc and adding the following line:

export PYTHONPATH=$PYTHONPATH:/home/.../hsdk-python/src

Most of the Python scripts operate on boards connected on a serial bus and superuser privileges must be employed to access
the ports. After running a command prefixed with sudo, the environment paths become those of root, so the locally set
PYTHONPATH is not visible anymore. That is why /etc/sudoers is modified to keep the environment variable when changing user.

Edit /etc/sudoers with your favorite text editor. Modify:

Defaults env_reset -> Defaults env_keep="PYTHONPATH"

As an alternative to avoid modifying the :sudoers file, the PYTHONPATH can be adjusted programmatically, as in the example
below:

import sys
if sys.platform.startswith('linux'):
sys.path.append (‘/home/user/hsdk-python/src’)

7.2.2 Windows OS

Add the source folder to the PYTHONPATH by following these steps:
1. Navigate to My Computer > Properties > Advanced System Settings > Environment Variables > System Variables.

2. Modify existing or create new variable named PYTHONPATH, with the absolute path of tools\wireless\host_sdk\hsdk-
python\src.

7.3 Directory Tree

1lib/ Compiled host SDK libraries for Windows.
— README.md

F—— x64

| L— HSDK.dll

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
18 NXP Semiconductors

Directory Tree

L— x86
L HSDK.d1ll

nxp

l— commands

I— ble Generated files for Bluetooth LE support.
|— ble sig defines.py

|— enums .py

}— events.py

I— frames.py
l— gatt database dynamic.py

I— heart rate interface.py
F— init .py

I— operations.py

— spec.py

L sync_requests.py
comm.py

firmware Generated files for OTA/FSCI bootloader support.
— enums.py

I— events.py

}— frames.py

I— __init .py

l— operations.py

I— spec.py

L— sync_requests.py

fsci data packet.py

fsci frame description.py

T 711

fsci operation.py
— fsci parameter.py

I— __init .py

sdk

}— CFscilibrary.py

I— config.py Configuration file for the Python Host SDK subsystem.
l— CUartLibrary.py

— device

|— device manager.py

I— __init .py

L— physical device.py

|
|
|
I— framing
|
|

}_
| wireless connectivity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

=5

— fsci command.py
I— fsci framer.py
L— init .py

I— __init .py

}— library loader.py

I— ota_server.py

— singleton.py

I— sniffer.py
L utils.py

init .py

I

o |
()

st Test and proof of concept scripts.
bootloader

T

l— fsci bootloader.py Details How to Reprogram a Device Using the FSCI
| L— init .py

| | | }— hrs.py Script implementing a Bluetooth LE Heart Sensor profile .

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 19

Host API Python Bindings

| | | F—— __init .py

| | L __init .py
| L— init .py
L— init .py

7.4 Functional description

The interaction between Python and the C libraries is made by the ctypes module. Ctypes provides C compatible data types, and
allows calling functions in DLLs or shared libraries. It can be used to wrap these libraries in pure Python. Because the use of
shared libraries is a requirement, the LIB_OPTION variable must remain set on "dynamic" in hsdk/Makefile. Ctypes made into
mainline Python starting with version 2.5.

The Python Bindings expose Thread and Bluetooth LE familiar API in the com.

nxp.wireless_connectivity.commands package. Such a package contains the following modules:

thread | bluetooth le | firmware

F—— enums.py — Classes that resemble enums, constants are generated here.

F—— events.py - Observer classes that can build an object from a byte array and deliver it to the user.
F—— frames.py - Classes that map on the Thread THCI or Bluetooth LE/Firmware FSCI messages.

F—— operations.py - Each Operation class encapsulates a request and one or multiple events that are to
be generated by the request.

F—— spec.py — This file describes the name, size, order and relationship between the command parameters.
L— sync_requests.py — Each Synchronous Request is a method which sends a request and returns the
triggered event.

7.5 Development

7.5.1 Requests
Sending a request consists of three steps: opening a communication channel, customizing the request, and sending the bytes.

comm = Comm('/dev/ttyACM0')-Linux or comm = Comm('COM42')-Windows
request = SocketCreateRequest (
SocketDomain=SocketCreateRequestSocketDomain.AF INET6,
SocketType=SocketCreateRequestSocketType.Datagram,
SocketProtocol=SocketCreateRequestSocketProtocol.UDP

)

comm. send (Spec () .SocketCreateRequestFrame, request)

7.5.2 Events

To obtain the event triggered by the request, an observer and callback must be added to the program logic.

def callback (devName, expectedEvent) :

print 'Callback for ' + str(type (expectedFrame))
observer = SocketCreateConfirmObserver ()

comm. fsciFramer.addObserver (observer, callback)

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
20 NXP Semiconductors

Bluetooth LE Heart Rate Service use case
NOTE
1. If the callback argument is not present, by default the program outputs the received frame in the console.

2. The callback method must have two parameters (devName and expectedEvent in the example above)
which are used to gain access to the event object and identify the serial port.

7.5.3 Operations
An operation consists in sending a request and obtaining the events via observers, automatically.

request = SocketCreateRequest (
SocketDomain=SocketCreateRequestSocketDomain.AF INET6,
SocketType=SocketCreateRequestSocketType.Datagram,
SocketProtocol=SocketCreateRequestSocketProtocol.UDP

)
operation = SocketCreateOperation ('/dev/ttyACM0', request)
operation.begin ()

This sends the request and prints the SocketCreateConfirm to the console. Adding a custom callback is easy:

operation = SocketCreateRequest ('/dev/ttyACM0', request, [callback])

The third argument (callbacks) when defining an operation is expected to be a list. The reason is that a single request can trigger
multiple events, let's assume a confirmation and an indication. When it is known that two or more events should occur (inspect
self.observers of each class from operations.py for the specific events that are to occur), multiple callbacks must be added. If one
event is not to be processed via a callback, None must be added, and the event gets printed to console. The order in which
callbacks are entered is important, that is the first callback is executed by the first observer, and so on.

7.5.4 Synchronous requests
These methods greatly reduce the code needed for certain operations. For example, starting a Thread device resumes to:

confirm = THR CreateNwk (device=’/dev/ttyACMO’, InstanceID=0)

This removes the need for adding a custom callback to obtain the triggered event, since it is already returned by the method.

7.6 Bluetooth LE Heart Rate Service use case

The Heart Rate Service is presented as use case for using the API of a Bluetooth LE black box, located in the example hsdk-
python/src/com/nxp/wireless_connectivity/test/hrs.py.

The example populates the GATT Database dynamically with the GATT, GAP, heart rate, battery and device information services.
It then configures the Bluetooth LE stack and starts advertising. There are also two connect and disconnect observers to handle
specific events.

The user needs to connect to the Bluetooth LE or hybrid black box through a serial bus port that is passed as a command line
argument, for example, ‘dev/ttyACMO:

python hrs.py -h
usage: hrs.py [-h] [-p] serial port

Bluetooth LE demo app which implements a ble fsci heart rate sensor.

positional arguments:
serial port Kinetis-W system device node.

optional arguments:

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 21

Host API Python Bindings

-h, --help show this help message and exit
-p, -—pair Use pairing

It is important to first execute a CPU reset request to the Bluetooth LE black box before performing any other configuration to
reset the Buetooth LE stack. This is done by the following command:

FSCICPUReset (serial port, protocol=Protocol.BLE)

7.6.1 User sync request example

It is recommended for the user to access the Bluetooth LE API through sync requests.

GATTDBDynamicAddCharacteristicDeclarationAndvalue API is used as an example:

def gattdb dynamic add cdv(self, char uuid, char prop, maxval len, initval, val perm) :

Declare a characteristic and assign it a value.

@param char_uuid: UUID of the characteristic

@param char prop: properties of the characteristic

@param maxval len: maximum length of the value

@param initval: initial value

@param val perm: access permissions on the value

@return: handle of the characteristic

Vi

ind = GATTDBDynamicAddCharacteristicDeclarationAndValue (
self.serial port,
UuidType=UuidType.Uuidl6Bits,
Uuid=char uuid,
CharacteristicProperties=char prop,
MaxValueLength=maxval len,
InitialValueLength=len (initval),
InitialValue=initval,
ValueAccessPermissions=val perm,
protocol=self.protocol

if ind is None:
return self.gattdb dynamic_add cdv(char uuid, char prop, maxval len, initval, val perm)

print '\tCharacteristic Handle for UUID 0x%04X ->' % char uuid, ind.CharacteristicHandle
self.handles[char uuid] = ind.CharacteristicHandle
return ind.CharacteristicHandle

7.6.2 Sync request internal implementation

As an example, for the GATTDBDynamicAddCharacteristicDeclarationAndValue API, the command is executed through a
synchronous request. The sync request code creates an object of the following class:

class GATTDBDynamicAddCharacteristicDeclarationAndValueRequest (object) :

def init (self,
UuidType=GATTDBDynamicAddCharacteristicDeclarationAndValueRequestUuidType.Uuidl6Bits, Uuid=[],
CharacteristicProperties=GATTDBDynamicAddCharacteristicDeclarationAndValueRequestCharacteristicPropert
ies.gNone c, MaxValuelLength=bytearray(2), InitialValueLength=bytearray(2), InitialValue=[],
ValueAccessPermissions=GATTDBDynamicAddCharacteristicDeclarationAndValueRequestValueAccessPermissions.

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
22 NXP Semiconductors

Bluetooth LE Heart Rate Service use case

gPermissionNone c):
T
@param UuidType: UUID type
@param Uuid: UUID value
@param CharacteristicProperties: Characteristic properties

@param MaxValueLength: If the Characteristic Value length is variable, this is the maximum

length; for fixed lengths this must be set to 0

@param InitialValuelLength: Value length at initialization; remains fixed if maxValueLength is

set to 0, otherwise cannot be greater than maxValueLength
@param InitialValue: Contains the initial value of the Characteristic
@param ValueAccessPermissions: Access permissions for the value attribute
Vi
self.UuidType = UuidType
self.Uuid = Uuid
self.CharacteristicProperties = CharacteristicProperties
self.MaxValueLength = MaxValueLength
self.InitialValuelLength = InitialValueLength
self.InitialValue = InitialValue
self.ValueAccessPermissions = ValueAccessPermissions

An operation is represented by an object of the following class:
class GATTDBDynamicAddCharacteristicDescriptorOperation (FsciOperation) :

def subscribeToEvents (self) :
self.spec = Spec.GATTDBDynamicAddCharacteristicDescriptorRequestFrame

self.observers = [GATTDBDynamicAddCharacteristicDescriptorIndicationObserver (

'GATTDBDynamicAddCharacteristicDescriptorIndication'),]

super (GATTDBDynamicAddCharacteristicDescriptorOperation, self).subscribeToEvents ()

The Spec object is initialized and set to zero in the FSCI packet any parameter not passed through the object of a class, depending
on its length. Also, when defining such an object, the parameters may take simple integer, boolean or even list values instead of

byte arrays, the values are serialized as a byte stream.

The observer is an object of the following class:

class GATTDBDynamicAddCharacteristicDeclarationAndValueIndicationObserver (Observer) :
opGroup = Spec.GATTDBDynamicAddCharacteristicDeclarationAndValueIndicationFrame.opGroup
opCode = Spec.GATTDBDynamicAddCharacteristicDeclarationAndvValueIndicationFrame.opCode

Qoverrides (Observer)
def observeEvent (self, framer, event, callback, sync request):
Call super, print common information
Observer.observeEvent (self, framer, event, callback, sync request)
Get payload
fsciFrame = cast (event, POINTER (FsciFrame))

data = cast (fsciFrame.contents.data, POINTER (fsciFrame.contents.length * c uint8))
packet = Spec.GATTDBDynamicAddCharacteristicDeclarationAndValuelIndicationFrame.

getFsciPacketFromByteArray (data.contents, fsciFrame.contents.length)
Create frame object
frame = GATTDBDynamicAddCharacteristicDeclarationAndValueIndication ()

frame.CharacteristicHandle = packet.getParamValueAsNumber ("CharacteristicHandle")

framer.event queue.put (frame) if sync request else None

if callback is not None:

callback (frame)
else:

print event (self.deviceName, frame)
fscilibrary.DestroyFSCIFrame (event)

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019

NXP Semiconductors

23

Host API Python Bindings

The status of the request is printed at the console by the following general status handler:

def subscribe to _async ble events from(device, ack policy=FsciAckPolicy.GLOBAL) :
ble events = [
L2CAPConfirmObserver ('L2CAPConfirm'),
GAPConfirmObserver ('GAPConfirm'),
GATTConfirmObserver ('GATTConfirm'),
GATTDBConfirmObserver ('GATTDBConfirm'),
GAPGenericEventInitializationCompleteIndicationObserver (
'GAPGenericEventInitializationCompletelIndication'),
GAPAdvertisingEventCommandFailedIndicationObserver (
'GAPAdvertisingEventCommandFailedIndication'),
GATTServerErrorIndicationObserver ('GATTServerErrorIndication'),
GATTServerCharacteristicCccdWrittenIndicationObserver (
'GATTServerCharacteristicCccdWrittenIndication')

]

for ble_event in ble_events:
FsciFramer (device, FsciAckPolicy.GLOBAL, Protocol.BLE, Baudrate.BR115200) .addObserver (ble event)

7.6.3 Connect and disconnect observers

The following code adds observers for the connect and disconnect events in the user class:

class BLEDevice (object) :
v
Class which defines the actions performed on a generic Bluetooth 1E device.
Services implemented: GATT, GAP, Device Info.
Vi
self.framer.addObserver (
GAPConnectionEventConnectedIndicationObserver (
'GAPConnectionEventConnectedIndication'),
self.cb gap conn event connected cb)
self.framer.addObserver (
GAPConnectionEventDisconnectedIndicationObserver (
'GAPConnectionEventDisconnectedIndication'),
self.cb gap conn event disconnected cb)

where the callbacks are:

def cb _gap_ conn_event connected cb(self, event):
Callback executed when a smartphone connects to this device.
@param event: GAPConnectionEventConnectedIndication
T
print event (self.serial port, event)
self.client device id = event.DevicelId
self.gap event connected.set ()

def cb gap conn event disconnected cb(self, event):
T
Callback executed when a smartphone disconnects from this device.
@param event: GAPConnectionEventdisConnectedIndication
print event (self.serial port, event)
self.gap event connected.clear ()

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
24 NXP Semiconductors

Bluetooth LE Heart Rate Service use case

From an Android™ or iOS-based smartphone, the user can use the Kinetis Bluetooth LE Toolbox application in the Heart Rate
profile. Random heart rate measurements in the range 60-100 are displayed every second, while battery values change every 10
seconds.

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
NXP Semiconductors 25

How to Reprogram a Device Using the FSCI Bootloader

Chapter 8
How to Reprogram a Device Using the FSCI
Bootloader

To deploy a Bluetooth LE application with FSCI bootloader support, build the FSCI Bootloader application using an IDE from the
projects located at boards\ [board] \wireless examples\framework\bootloader fsci and flash it to the board using J-Link.

The Bluetooth LE application that is deployed via FSCI bootloader needs to be configured as a bootloader-compatible application.
This is done by adding the gUseBootloaderLink_d=1 flag to the linker options of the application project and select the output of
the build as binary. By default, the bootloader mode for a Bluetooth LE application is entered by connecting the board while holding
the reset switch.

Host functionality is provided by the script: \tools\wireless\host_sdk/hsdk-python/src/com/nxp/wireless_connectivity/test/
bootloader/fsci_bootloader.py providing as command line arguments the device serial port and a binary firmware file compatible
with the bootloader.

$ python fsci bootloader.py -h

usage: fsci bootloader.py [-h] [-s CHUNK SIZE] [-d] [-e]
serial port binary file

Script to flash a binary file using the FSCI bootloader.

positional arguments:

serial port Kinetis-W system device node.
binary file The binary file to be written.
optional arguments:
-h, --help show this help message and exit
-s CHUNK SIZE, --chunk-size CHUNK SIZE
Push chunks this large (in bytes). Defaults to 2048.
-d, --disable-crc Disable the CRC check on commit image.
-e, ——erase-nvm Erase the non-volatile memory.
For example,

export PYTHONPATH=$PYTHONPATH:<hsdk-path>/hsdk-python/src/
python fsci bootloader.py /dev/ttyACMO ble fsci black box -e
The script does the following:
* Sends the command to cancel an image as a safety check and to verify the bootloader is responsive.
¢ Sends the command to start firmware update for a new image.

* Pushes chunks of the firmware images file sequentially until the full firmware is programmed and display intermediate
progress as percent of binary file content loaded.

* Sets the flags to commit the image as valid.

Resets the device, so it boots to the new firmware.

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019
26 NXP Semiconductors

Chapter 9

Revision History

This table summarizes revisions to this document.

Table 4. Revision history

Revision number Date Substantive changes
0 08/2016 Initial release
1 09/2016 Updates for KW41 GA Release
2 12/2016 Updates for KW24 GA Release
3 03/2017 Updates for KW41 Maintenance Release
4 01/2018 Updates for KW41 Maintenance Release
5 03/2018 Updated ZigBee support
6 07/2019 Updated for K32W and QN90xx
7 04/2019 Updates for Thread KW41Z Maintenance Release 3
8 08/2019 Updates for the Bluetooth LE KW37A PRC1 Release

Kinetis FSCI Host Application Programming Interface, Rev. 8, 06 August 2019

NXP Semiconductors

27

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2016-2019. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses @ nxp.com

Date of release: 06 August 2019
Document identifier: KFSCIHAPIUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 About This Document
	1.1 Audience

	2 Deploying Host Controlled Firmware
	2.1 Bluetooth LE application configuration

	3 Host Software Overview
	3.1 Kinetis wireless host software system block diagram
	3.2 Directory tree
	3.3 Device detection
	3.4 Serial port configuration
	3.5 Logger

	4 Linux OS Host Software Installation Guide
	4.1 Libraries
	4.1.1 Prerequisites
	4.1.2 Installation

	4.2 Demos
	4.2.1 Installation

	5 Windows OS Host Software Installation Guide
	5.1 Libraries
	5.1.1 Prerequisites
	5.1.2 Installation
	5.1.2.1 Using prebuilt library
	5.1.2.2 Using local built library

	5.2 Demos

	6 Host API C Bindings
	6.1 Directory Tree
	6.2 Tests and examples
	6.3 Development

	7 Host API Python Bindings
	7.1 Prerequisites
	7.2 Platform setup
	7.2.1 Linux OS
	7.2.2 Windows OS

	7.3 Directory Tree
	7.4 Functional description
	7.5 Development
	7.5.1 Requests
	7.5.2 Events
	7.5.3 Operations
	7.5.4 Synchronous requests

	7.6 Bluetooth LE Heart Rate Service use case
	7.6.1 User sync request example
	7.6.2 Sync request internal implementation
	7.6.3 Connect and disconnect observers

	8 How to Reprogram a Device Using the FSCI Bootloader
	9 Revision History

