
January 23rd 2022 — Quantstamp Verified

Boba Network

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Optimistic Rollup (Layer 2 blockchain)

Auditors Sebastian Banescu, Senior Research Engineer

Kacper Bąk, Senior Research Engineer

Marius Guggenmos, Senior Research Engineer

Martin Derka, Senior Research Engineer

Timeline 2021-11-15 through 2021-12-21

EVM Altair

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification Liquidity Pools

Documentation Quality Medium

Test Quality Medium

Diff/Fork information The repository which was in scope for this audit is

a fork of the Optimism Monorepo available at

https://github.com/ethereum-optimism/optimism

Source Code
Repository Commit

optimism-v2 (initial audit) 426234d

optimism-v2 (reaudit) 898dfb6

Total Issues 23 (17 Resolved)

High Risk Issues 1 (1 Resolved)

Medium Risk Issues 2 (2 Resolved)

Low Risk Issues 10 (7 Resolved)

Informational Risk Issues 8 (5 Resolved)

Undetermined Risk Issues 2 (2 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/omgnetwork/optimism-v2/blob/develop/packages/boba/contracts/contracts/LP/README.md
https://github.com/omgnetwork/optimism-v2
https://github.com/omgnetwork/optimism-v2/commit/426234da9b4da4f4fddc9da683f07deec487a27c
https://github.com/omgnetwork/optimism-v2
https://github.com/omgnetwork/optimism-v2/commit/898dfb6e3f0139a1d5e5562867179ee28df10593

Summary of Findings

Quantstamp has performed an audit of the Boba optimism-v2 repository with a focus on the Boba-specific smart contracts such as the fast bridge and its associated

liquidity pools on L1 and L2. During the course of this audit, Quantstamp was also asked to review the . The audit resulted in a total of 23 findings and an

additional 9 best practice violations, described below. We confirm that none of the Boba-specific tests are failing when executed on our end, but we do note that computing code coverage

for these contracts was not facilitated and remains undetermined. We recommend that all issues reported in this document be addressed.

Quantstamp has checked the commit hash and has determined that 17 issues have been resolved (that is either fixed or mitigated) and 6 issues have been

acknowledged by the Boba team. More details regarding each of the issues are provided in the update messages below each issue recommendation.

After initial audit:

Boba Fixed Savings Contract

After reaudit: 898dfb6

ID Description Severity Status

QSP-1 Missing Reconciliation After Chain Reorgs High Mitigated

QSP-2 Liquidity Provider Funds May Be Locked Medium Fixed

QSP-3 Frozen Funds Medium Fixed

QSP-4 Critical Updates Are Single Step Low Acknowledged

QSP-5 Undocumented Precision Low Fixed

QSP-6 Missing Input Validation Low Mitigated

QSP-7 Losing Gas Funds When Moving From L2 To L1 Low Acknowledged

QSP-8 Ambiguous Checks When Adding Liquidity Low Fixed

QSP-9 Possible Zero Address Owner for L1LiquidityPool Low Fixed

QSP-10 Functions Callable Before Initialization Low Fixed

QSP-11 Violation of Checks-Effects-Interactions Pattern Low Fixed

QSP-12 Lacking Precision In Rewards Calculation Low Acknowledged

QSP-13 Pools Registered Only On L1 May Lead To Loss Of Funds Low Fixed

QSP-14 Variable In Liquidity Pools May Be SimplifiedrewardDebt Informational Acknowledged

QSP-15 Outdated Comments Informational Fixed

QSP-16 Insufficient Documentation For replyNeeded Informational Fixed

QSP-17 Unlocked Pragma Informational Acknowledged

QSP-18 Privileged Roles and Ownership Informational Acknowledged

QSP-19 Transaction Order Dependence Between Andclose() expire() Informational Mitigated

QSP-20 May Be Called Multiple TimesstopStakingContract() Informational Fixed

QSP-21 Insufficient Events Emitted Informational Mitigated

QSP-22 Functions Missing ModifieronlyInitialized Undetermined Fixed

QSP-23 Potential Gas Cost Manipulation Undetermined Mitigated

https://github.com/omgnetwork/optimism-v2/pull/234/files

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.1• Slither

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Missing Reconciliation After Chain Reorgs

Severity: High Risk

MitigatedStatus:

,File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

This vulnerability is based on the assumption that a short-lived 51% attack on the Ethereum mainnet is feasible, and targets the liquidity providers of the Boba fast bridge with

double-spending. This is a valid assumption as 51% on mainnet should cost about $2M/hour (referencing , possibly with 80% discount). We briefly researched the

validity of this claim about cost, and it may be mildly outdated, however the concept of the attack remains valid and the attack can be executed in the presence of bridges from other chains

with weaker security guarantees than mainnet, and the attack can still damage the liquidity held in Boba’s mainnet bridge. Boba’s bridge contract currently holds about $3M in assets as per

Etherscan’s calculation, (see the value is taken at).

Description:

https://www.crypto51.app/

block 13809310

The attack works as follows. Mallory starts a 51% attack on mainnet. Then she takes some substantial liquidity and bridges it to Boba, using either the regular or fast bridge,

within transaction . This in practice takes 5 - 10 minutes. As soon as she receives the liquidity on Boba, she bridges it back to mainnet using the fast bridge feature. This will result in a cross-

domain entity calling the method on the aforementioned contract (it is a proxy, the implementation source code is deployed on

https://etherscan.io/address/0x9dadbc52d12e24b7d7de68477c8478aed4468da6#code). This will transfer funds into Mallory’s account on mainnet in transaction . This in practice takes

around 20 minutes. Finally, Mallory cancels her 51% attack and invalidates the transaction . By invalidation, we mean that Mallory replaces the chain with a longer chain that includes all

transactions except for , which she produced using the 51% mining power. The result is the state where Mallory never spent her original funds in , but received funds from Boba’s fast

bridge in . The attack should take roughly 30 minutes, with the cost between $200,000 and $1,000,000 (as per the referenced source) on mainnet.

Exploit Scenario:

tx1
clientPayL1

tx2
tx1

tx1 tx1
tx2

https://github.com/crytic/slither
https://www.crypto51.app/
https://etherscan.io/address/0x1a26ef6575b7bbb864d984d9255c069f6c361a14

The vulnerability is enabled by the fact that the method is completely decoupled from the deposit methods: the parameters only specify how many tokens

should be transferred to whom. A possible mitigation strategy would need to account for L1 chain reorgs that would affect the deposits or transfers from L1 to L2.

Recommendation: clientPayL1

The dev team has done the following to mitigate this issue:Update:

A running was added for both the Standard and Fast bridge deposits/swap-ons, along with having a provision for the relayer to specify the while relaying

a transaction. To enable this, the method on the was also made exclusive to a permissioned actor.

depositHash lastHash
relayMessage CrossDomainMessengerFast

Quantstamp only acknowledges this to be a valid mitigation under the assumptions that:

The Boba Network actively detects a re-org on mainnet (so that if anyone has ETH bridged from mainnet on Boba, and the bridging transaction and the respective
hash disappears, the ETH will disappear on Boba)

•

The relayer bridging ETH from Boba is trusted and honest (so it always executes the method with the latest hash, which will make the release of ETH on mainnet fail
if the latest hash disappeared)

•

There is proper synchronization between the mainnet re-org resolution and the trusted relayer acting (goes in hand with the first point - if ETH should not be present
on Boba, the relayer will know that some mitigation is in progress and will not release ETH on mainnet until the resolution is finished and the validity of the exit is
confirmed)

•

The hash on mainnet takes into account the amounts that are being bridged to Boba (so that instead of rolling the entire transfer back via 51% attack, I cannot drop
the number from 1000 ETH to 0.1 ETH and receive the same bridging hash)

•

Everything is implemented correctly.•

Quantstamp has not checked these assumptions as some elements are out of scope for this audit (particularly the off-chain elements) and has asked the Boba team to confirm these

assumptions. The Boba team has indicated that they believe the assumptions hold partially, not fully.

QSP-2 Liquidity Provider Funds May Be Locked

Severity: Medium Risk

FixedStatus:

,File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

The function on L1 allows the owner to move liquidity that is present in the contract to L2. The funds are moved from to

and the function that an L1 liquidity provider would use to remove liquidity assumes that the funds are with . There is

currently no equivalent on the L2 side, which means any rebalancing is currently permanent and cannot be brought back on L1.

If the L1 liquidity pool for the fast bridge is empty, then any attempts from L1 liquidity providers to withdraw their funds will result in failed transactions since the contract

will not have sufficient funds. Therefore, there is no guarantee for L1 liquidity providers regarding when they would be able to withdraw their funds from the L1 pool.

A similar issue also happens on L2 in case there are too many users who transfer funds from L1 to L2 via the fast bridge, then the could be depleted and L2 liquidity

providers do not have any guarantees as to when they can withdraw their funds from the .

Description: rebalanceLP() L1LiquidityPool L1LiquidityPool
L1StandardBridge withdrawLiquidity() L1LiquidityPool

L1LiquidityPool

L2LiquidityPool
L2LiquidityPool

This issue can be exemplified using the following steps:Exploit Scenario:

1. Alice deposits 100 ETH in the as a liquidity provider by calling and the L1 pool balance is now 100 ETHL1LiquidityPool addLiquidity(100 ETH)

2. Bob deposits 100 ETH in the as a liquidity provider by calling and the L1 pool balance is now 200 ETHL1LiquidityPool addLiquidity(100 ETH)

3. The owner calls and the L1 pool balance is now 100 ETHL1LiquidityPool rebalanceLP(100 ETH)

4. Alice withdraws her liquidity by calling and the L1 pool balance is now 0 ETH.withdrawLiquidity(100 ETH)

At this point Bob cannot withdraw his ETH in any way. Bob is forced to wait for either:

new liquidity providers who deposit at least 100 ETH in the• L1LiquidityPool

new end-users who want to use the fast bridge from L1 to L2 for a total of at least 100 ETH.•

There should be a guarantee that liquidity providers can withdraw their funds within a certain period of time from when they request the withdraw. If this is not possible,

consider implementing a mechanism for this purpose and/or try to provide incentives so users will want to rebalance naturally. For instance, implement an equivalent operation as

from L2 to L1. Additionally, this risk should be documented clearly when providing liquidity.

Recommendation:

rebalanceLP

A method was added to the as well to enable L2 to L1 rebalancing.Update: rebalanceLP L2LiquidityPool

QSP-3 Frozen Funds

Severity: Medium Risk

FixedStatus:

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol

The function does not check if the value is different from . This means that even after the

function is called, the function will continue to work. However, the function will no longer work due to an underflow on L113:

.

Description: BobaFixedSavings.stake() stakingCloseTimestamp 0
stopStakingContract() stake() unstake() uint256
noOfPeriods = ((finalTimestamp - stakeData.depositTimestamp)/(LOCK_TIME + UNSTAKE_TIME)) + 1;

Add a statement to ensure that: inside of .Recommendation: require() stakingCloseTimestamp == 0 BobaFixedSavings.stake()

A statement to ensure was added to .Update: require stakingCloseTimestamp == 0 BobaFixedSavings

QSP-4 Critical Updates Are Single Step

Severity: Low Risk

AcknowledgedStatus:

,File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

Critical updates such as changing the owner of the contract can be executed in a single step, potentially leaving the contract unrecoverable if a mistake has been made in the

transaction.

Description:

Consider implementing a two-step process where the current owner proposes a new owner and the new owner has to claim the ownership in a separate transaction. This

makes sure ownership is not accidentally transferred to an inactive account.

Recommendation:

The Boba team acknolwedged this issue by saying:Update:

Considering the existing contracts deployed, a new var - was not added as of now to keep the process single step - the contract is under a proxy pattern which could

enable updates in the extreme case of mistaken ownership transfer.

pendingOwner

QSP-5 Undocumented Precision

Severity: Low Risk

FixedStatus:

,File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

The and variables implicitly use as their denominator but this is never explicitly documented in the code. This could lead to

miscalculations in case (new) developers are not aware or forget the exact precision and assume a different precision.

Description: userRewardFeeRate ownerRewardFeeRate 10**3

Document these assumptions and consider using a named constant in case the precision ever changes.Recommendation:

Documented the assumptions on contracts.Update:

QSP-6 Missing Input Validation

Severity: Low Risk

MitigatedStatus:

, ,

, ,

, ,

, ,

, ,

, ,

,

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol
packages/contracts/contracts/standards/L2StandardERC20.sol packages/boba/contracts/contracts/libraries/Lib_ResolvedDelegateProxy.sol
packages/contracts/contracts/L1/messaging/L1StandardBridge.sol packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.sol
packages/boba/contracts/contracts/L1CrossDomainMessengerFast.sol packages/boba/contracts/contracts/bridges/L1NFTBridge.sol
packages/boba/contracts/contracts/bridges/L2NFTBridge.sol packages/boba/contracts/contracts/standards/L2StandardERC721.sol
packages/boba/contracts/contracts/standards/L2GovernanceERC20.sol packages/contracts/contracts/L2/messaging/L2CrossDomainMessenger.sol
packages/contracts/contracts/L2/messaging/L2StandardBridge.sol packages/boba/contracts/contracts/BobaFixedSavings.sol

All functions should perform input validation of their input parameters, especially if those functions may be called by (malicious) end-users. We have identified the following

instances where functions do not properly validate their input parameters:

Description:

1. The function does not check if is different from . However, throughout the code, there is an assumption that
is different from if a pool is registered, which is not enforced in case the is different from .

registerPool() _l2TokenAddress address(0)

l2TokenAddress address(0) l1TokenAddress address(0)

2. The following functions have similar issues:
L2StandardERC20.constructor()•

Lib_ResolvedDelegateProxy.constructor()•

L2LiquidityPool.initialize()•

L1StandardBridge.initialize()•

L1CrossDomainMessenger.initialize()•

L1CrossDomainMessengerFast.initialize()•

L1NFTBridge.initialize()•

L2NFTBridge.initialize()•

L2StandardERC721.constructor()•

L2GovernanceERC20.constructor()•

L2CrossDomainMessenger.constructor()•

L2StandardBridge.constructor()•

BobaFixedSavings.initialize()•

Recommendation:

1. Check if is different from inside the function._l2TokenAddress address(0) registerPool()

2. Add relevant checks inside the list of functions specified in the description.

This issue was partially fixed. Input validation was added wherever possible, except for:Update:

1. Upstream contracts to maintain consistency,

2. L2 token contract to maintain consistency with future such deployments, which also can be deployed in any numbers for the use case.

QSP-7 Losing Gas Funds When Moving From L2 To L1

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: packages/boba/gas-price-oracle/README.md

Exits from L2 to L1 require paying gas to submit a transaction on L1. When users want to exit their funds, they get a gas fee estimate. The estimate is based, however, on the previous

interval. Users may be able to take advantage and submit their transactions below the required fee if gas prices go up beyond the estimate.

Description:

Perform careful analysis to estimate how much buffer is needed to offset the gas cost.Recommendation:

The Boba team acknowledged this issue by saying:Update:

The estimate amount is based on the average cost of the last 100 exits, depending on the operating expenses we could adjust the amount of offset for the estimate.extraGas

QSP-8 Ambiguous Checks When Adding Liquidity

Severity: Low Risk

FixedStatus:

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

If an end-user wants to add an ERC20 token amount as liquidity by calling , but accidentally also sends any amount of ETH along with this

call, then the amount of ETH is deposited and the ERC20 token amount is ignored. This may happen to beginners who are not familiar with certain wallet interfaces.

This happens due to the statement on L331: , which uses a logical-OR instead of

a logical-XOR to combine the 2 Boolean conditions.

It is important to note that if and , then the value should be required to be greater than . This check is missing and should be

explicitly added to avoid any ambiguity.

Description: L1LiquidityPool.addLiquidity()

require require(msg.value != 0 || _tokenAddress != address(0), "Amount Incorrect");

msg.value == 0 _tokenAddress != address(0) _amount 0

It is recommended to replace the logical-OR in the aforementioned statement with a logical-XOR. However, since Solidity does not have a native operator you need

to implement a logical XOR formula using AND and OR. The error message should also be updated to say: "Either amount incorrect or token address incorrect".

Recommendation: require

Another statement was added to form logical XOR in combination with the previous to reduce user-side errors.Update: require require

QSP-9 Possible Zero Address Owner for L1LiquidityPool

Severity: Low Risk

FixedStatus:

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

The function allows setting the address of the to the zero address because there is no check on the input

parameter similar to that in the . This is problematic because the modifier would always pass in case the , which is undesirable due

to anyone being able to call functions such as: , , and .

Description: L1LiquidityPool.transferOwnership() owner _newOwner
L2LiquidityPool onlyOwner() owner == address(0)

ownerRecoverFee() rebalanceLP() pause() unpause()

Add a check to that prevents the being set to .Recommendation: transferOwnership() owner address(0)

A validation check was added to .Update: transferOwnership

QSP-10 Functions Callable Before Initialization

Severity: Low Risk

FixedStatus:

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol

There are several functions that may be called before the contract function is called, namely:Description: initialize()

• transferOwnership()

• stopStakingContract()

Remove the custom condition from the modifier to disallow from being considered as an owner. Also remove the

modifier from the function declaration.

Recommendation: onlyOwner() owner == address(0) onlyOwner
initialize()

The custom condition was removed from on .Update: onlyOwner BobaFixedSavings

QSP-11 Violation of Checks-Effects-Interactions Pattern

Severity: Low Risk

FixedStatus:

, ,

, ,

,

File(s) affected: packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.sol contracts/L1/rollup/CanonicalTransactionChain.sol
contracts/L1/messaging/L1CrossDomainMessenger.sol contracts/L2/messaging/L2CrossDomainMessenger.sol
packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

The Checks-Effects-Interactions coding pattern is meant to mitigate any chance of other contracts manipulating the state of the blockchain in unexpected and possibly malicious

ways before control is returned to the original contract. As the name implied, only after checking whether appropriate conditions are met and acting internally on those conditions should any

external calls to, or interactions with, other contracts be done. The Checks-Effects-Interactions pattern is violated inside the following functions:

Description:

1. where state variables such as and are witten after the call to an external contract, i.e.
.

L1LiquidityPool.addLiquidity() pool.userDepositAmount user.amount

IERC20(_tokenAddress).safeTransferFrom()

2. where an event is emitted after direct () and indirect external contract calls.L1LiquidityPool.clientDepositL1() IERC20(_tokenAddress).safeTransferFrom()

3. where an event is emitted after external contract calls including external calls sending ETH.L1LiquidityPool.clientPayL1()

4. where an event is emitted after external contract calls including external calls sending ETH.L1LiquidityPool.clientPayL1Settlement()

5. where an event is emitted after external contract calls including external calls sending ETH.L1LiquidityPool.ownerRecoverFee()

6. where an event is emitted after external contract calls including external calls sending ETH.L1LiquidityPool.rebalanceLP()

7. where an event is emitted after external contract calls including external calls sending ETH.L1LiquidityPool.withdrawLiquidity()

8. where an event is emitted after external contract calls including external calls sending ETH.L1LiquidityPool.withdrawReward()

9. where an event is emitted after external contract calls.L2LiquidityPool.addLiquidity()

10. where an event is emitted after external contract calls.L2LiquidityPool.clientDepositL2()

11. where an event is emitted after external contract calls including external calls sending ETH.L2LiquidityPool.clientPayL2()

12. where an event is emitted after external contract calls including external calls sending ETH.L2LiquidityPool.clientPayL2Settlement()

13. where an event is emitted after external contract calls including external calls sending ETH.L2LiquidityPool.ownerRecoverFee()

14. where an event is emitted after external contract calls including external calls sending ETH.L2LiquidityPool.withdrawLiquidity()

15. where an event is emitted after external contract calls including external calls sending ETH.L2LiquidityPool.withdrawReward()

Always call functions from external contracts after all state variables have been assigned and all events emitted.Recommendation:

Events were emitted before external calls to methods wherever possible to comply with the checks-effects-interaction pattern.Update:

QSP-12 Lacking Precision In Rewards Calculation

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

The reward calculation is based on increasing a global value that denotes the amount of rewards per token deposited in the pool. The formula for this is basicallyDescription:

rewardsPerShare += rewardDelta * SHARE_PRECISION / totalDeposits

is in the current implementation, which will very likely lead to rounding errors and fewer rewards paid out than intended, locking them in the contract.SHARE_PRECISION 1e12

Increase the share precision to minimize the rounding error. For accurate results, the share precision should have as many decimals as the expected total deposits.Recommendation:

The Boba team has acknowledged this issue by saying:Update:

In order to avoid chances of inaccuracy with modifying precision in existing deployed contracts, the precision has been unchanged. With the current numbers, the improvements with

increased precision looks minimal, however we can address these improvements in subsequent versions of the network.

QSP-13 Pools Registered Only On L1 May Lead To Loss Of Funds

Severity: Low Risk

FixedStatus:

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

In case a pool is not registered on L2, but only on L1, a settlement payment will be triggered with token address , which means the refund will be paid out in ether.

Since most tokens are less valuable than ether, this can lead to an attacker stealing funds from the contract.

Description: address(0)

Check that the pool is registered in . To properly issue a refund, the token address on the originating pool's side might have to be passed across layers.Recommendation: clientPayL2

A token registration check was added to the method. In case a fails due to the token not being registered on the pool. The message can be relayed

manually again after a registration takes place.

Update: ClientPayL2 relayMessage

QSP-14 Variable In Liquidity Pools May Be SimplifiedrewardDebt

Severity: Informational

AcknowledgedStatus:

,File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

The usage of the variable is hard to understand, especially due to the misleading name (there is no debt involved). The variable is only used to keep track of how many

rewards have been claimed already and the computation can be simplified.

Description: rewardDebt

Simplify the computation by replacing the variable with one named that is updated each time the current is.

Replace all instances of with .

The pending reward computation can then be simplified to the following

Recommendation: rewardDebt lastAccUserRewardPerShare rewardDebt
user.rewardDebt = ... user.lastAccUserRewardPerShare = pool.accUserRewardPerShare

// use SafeMath methods for the actual implementation
user.pendingReward += user.amount

* (pool.accUserRewardPerShare - user.lastAccUserRewardPerShare)
/ 1e12

This change should result in improved readability and a slight decrease in contract size and gas used.

The Boba team has acknowledged this issue by saying:Update:

With the current deployments, devs/users might be familiar with the term , however this is a great suggestion, and can be simplified in the subsequent versions of the

network.

rewardDebt

QSP-15 Outdated Comments

Severity: Informational

FixedStatus:

,File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

There are several lines of old code that are commented out and no longer relevant in the affected contracts. Examples include but are not limited to the and

functions, as well as an outdated comment present that looks like an artifact from older code.

Description: clientPayL1
clientPayL1Settlement

// Construct calldata for L1LiquidityPool.depositToFinalize(_to, receivedAmount)
bytes memory data = abi.encodeWithSelector(

iL2LiquidityPool.clientPayL2.selector,
msg.sender,
_amount,
pool.l2TokenAddress

);

Update/remove the comments so that they are aligned with the current implementation.Recommendation:

Comments were updated, outdated comments removed.Update:

QSP-16 Insufficient Documentation For replyNeeded

Severity: Informational

FixedStatus:

,File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

and make use of a function local variable called . It is a boolean variable that is used to store whether a message needs to be sent to

the other layer due to not enough funds being available for the requested transfer. The current name does not reflect that and there are no comments explaining what it is for.

Description: clientPayL1 clientPayL2 replyNeeded

Rename the variable to something more meaningful like and provide some inline comments that explain that a message needs to be sent to the

other layer to revert the deposit.

Recommendation: hasInsufficientFunds

Added inline comments for , the variable hasn’t been renamed to maintain familiarity with existing devs/users.Update: replyNeeded

QSP-17 Unlocked Pragma

Severity: Informational

AcknowledgedStatus:

File(s) affected: All contracts

Every Solidity file specifies in the header a version number of the format . The caret () before the version number implies an unlocked pragma,

meaning that the compiler will use the specified version , hence the term "unlocked".

Description: pragma solidity (^)0.*.* ^
and above

For consistency and to prevent unexpected behavior in the future, it is recommended to remove the caret to lock the file onto a specific Solidity version. Alternatively, possible

mitigation of this issue is to at least fix the middle number to the latest version, e.g. 0.8, which ensures that the latest version of the compiler will be used.

Recommendation:

The Boba team has acknowledged this issue by saying:Update:

To avoid inconsistencies with deployed contracts, pragma has been still kept unlocked, this improvement can be addressed in subsequent versions of the network.

QSP-18 Privileged Roles and Ownership

Severity: Informational

AcknowledgedStatus:

, ,

, ,

, ,

, ,

, ,

,

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol packages/boba/contracts/contracts/LP/L2LiquidityPool.sol
packages/boba/contracts/contracts/LP/L1LiquidityPool.sol packages/contracts/contracts/libraries/resolver/Lib_AddressManager.sol
packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.sol packages/boba/contracts/contracts/L1CrossDomainMessengerFast.sol
packages/boba/contracts/contracts/ERC721Genesis.sol packages/boba/contracts/contracts/TokenPool.sol
packages/contracts/contracts/chugsplash/L1ChugSplashProxy.sol packages/contracts/contracts/L2/predeploys/OVM_DeployerWhitelist.sol
packages/contracts/contracts/L2/predeploys/OVM_GasPriceOracle.sol packages/boba/contracts/contracts/DAO/governance/Timelock.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart contract. In the smart

contract, only the owner can pause, unpause and stop the staking contract. The other affected contracts offer similar capabilities to the address.

Description: owner BobaFixedSavings
owner

This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.Recommendation:

The Boba team has indicated that:Update:

Privileged roles and ownership of contracts including Dao permissions to be made clear through docs/website.

QSP-19 Transaction Order Dependence Between Andclose() expire()

Severity: Informational

MitigatedStatus:

File(s) affected: packages/boba/contracts/contracts/AtomicSwap.sol

There is a TOD between the functions and , i.e., the opening user may submit whereas the closing user may submit in the same block. The

outcome depends on the ordering of the transactions.

Description: close() expire() expire() close()

Inform users that this TOD could affect the outcome of these function calls.Recommendation:

Documented the assumptions on contracts, however it is not yet documented in end-user facing documentation.Update:

QSP-20 May Be Called Multiple TimesstopStakingContract()

Severity: Informational

FixedStatus:

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol

It is probably intended that the be callable only once. Otherwise, the amounts unstaked would be unfairly higher for those who unstaked after the

was called later.

Description: stopStakingContract()
stopStakingContract()

Add a statement that ensures at the beginning of .Recommendation: require() stakingCloseTimestamp != 0 stopStakingContract()

A statement to ensure was added at the beginning of the method .Update: require stakingCloseTimestamp == 0 stopStakingContract

QSP-21 Insufficient Events Emitted

Severity: Informational

MitigatedStatus:

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol

No events are emitted by the staking and unstaking functions. Normally all state-changing functions should emit an event indicating some information about the state change. This

facilitates proper monitoring of the smart contract and easy integration. Examples include, but are not limited to:

Description:

1. should emit an event if the is changed successfully.L1LiquidityPool.transferOwnership() owner

2. should emit an event after a successful initialization.L1LiquidityPool.initialize()

3. should emit an event if the new gas fee and stipend are set.L1LiquidityPool.configureGas()

4. should emit an event if the is changed successfully.L2LiquidityPool.transferOwnership() owner

5. should emit an event after a successful initialization.L2LiquidityPool.initialize()

6. should emit an event after the pool address, , and addresses were set.L2LiquidityPool.transferDAORole() owner DAO

7. should emit an event if the extra gas is set.L2LiquidityPool.configureExtraGasRelay()

8. should emit an event if the gas fee is configured.L2LiquidityPool.configureGas()

Declare and emit events for all state-changing functions.Recommendation:

This issue has been partially fixed by adding more events to the indicated methods, but not to all of them.Update:

QSP-22 Functions Missing ModifieronlyInitialized

Severity: Undetermined

FixedStatus:

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

and do not have the modifier like their L2 equivalents. It is unclear if this was implemented intentionally or not.Description: clientPayL1 clientPayL1Settlement onlyInitialized

Clarify why the modifier is not needed in this contract, otherwise, add it to to the functions.Recommendation: onlyInitialized

The Boba team has provided the following explanation as to why is not needed:Update: onlyInitialized

and can work without the modifier - since they cannot be called before the contract is initialised with the

address. This is due to the modifier , which checks if the call comes from a , and before initialisation it

is set to .

ClientPayL1 ClientPayL1Settlement onlyInitialized
relayerMessenger onlyFromCrossDomainAccount relayerMessenger

address(0)

QSP-23 Potential Gas Cost Manipulation

Severity: Undetermined

MitigatedStatus:

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

Gas costs on Boba L2 are computed by observing the balances of the different nodes and attempting to adjust the gas cost to reflect the actual ETH spent. According to the docs,

this adjustment happens gradually and has limits on how fast it can change. By crafting transactions that will cost significantly more than a typical transaction, a malicious actor might be able

to drive up the gas cost for all users while hemorrhaging ether from the boba nodes.

An example of an expensive transaction is depositing some amount on L2 that should then become available on L1 but does not have enough liquidity on L1 to be paid out. This will:

Description:

1. lock the amount on the L2 side, trigger a message from L2 to L1

2. on L1 the contract will notice there is not enough liquidity and will have to send a message from L1 to L2

3. on L2 the user will be credited with the amount they attempted to withdraw.

Since the gas price is adjusted gradually, it might be possible to push up the gas price significantly without the attacker having to spend a lot of ether. While there is a mechanism that tries to

discourage such an attack by having to pay a fee on the settlement, it does not prevent an attacker from using very low amounts in an empty pool due to the fee being percentage-based.

Clarify if this attack has a mitigation in place and if not, add a mitigation.Recommendation:

The Boba team has indicated that this issue is mitigated by:Update:

The calculation of our gas price is mostly weighted around the L2 fee, making the effect of the L1 sec fee lesser in the total amount. The L2 part of the fee is fixed and adjusted by us

based on our revenue.

Automated Analyses

Slither

Slither reported 342 results on the Boba-specific contracts. We filtered out the false positives and included the rest of the findings in the report.

Adherence to Specification

The Boba technical specs were extremely limited. Therefore, we have mainly relied on documentation related to Optimism for this audit. We recommend improving the

existing technical specification to facilitate the maintainability and auditability of the code.

Code Documentation

1. There are some grammatically wrong revert messages present in the following contracts:

replace "Register" with "Registered"packages/boba/contracts/contracts/LP/L2LiquidityPool.sol•

576: require(pool.l2TokenAddress != address(0), "Token Address Not Register");

replace "Register" with "Registered"packages/boba/contracts/contracts/LP/L1LiquidityPool.sol•

342: require(pool.l2TokenAddress != address(0), "Token Address Not Register");

397: require(pool.l2TokenAddress != address(0), "Token Address Not Register");

444: require(pool.l2TokenAddress != address(0), "Token Address Not Register");

492: require(pool.l2TokenAddress != address(0), "Token Address Not Register");

529: require(pool.l2TokenAddress != address(0), "Token Address Not Register");

572: require(L2LiquidityPoolAddress != address(0), "L2 Liquidity Pool Not Register");

573: require(pool.l2TokenAddress != address(0), "Token Address Not Register");

Adherence to Best Practices

1. Hardhat tests should make use of typechain to have a fully typed contract deployment and interaction, which would allow for easier and faster test development.

2. Event parameters of type should be in order to faciliate event filtering. None of the events in are .address indexed L1LiquidityPool.sol indexed

3. Several contracts are importing Solidity files from the library, however, this library is not in the list of dependencies in
.

@openzeppelin/contracts-upgradeable

package.json

4. Magic numbers should be replaced by named constants. There are several magic numbers in and , which are not clearly
documented, e.g. and in the function.

L1LiquidityPool L2LiquidityPool

_configureFee(35, 15); configureGas(1400000, 2300); initialize()

5. There exist automatic Github Workflow scripts that are used to run static analyzers such as Slither. However, the script is not updated to include the
subfolder.packages/boba/contracts

6. There are several skipped tests and TODOs in the test files. TODOs should be properly addressed before releasing code in production.

7. Unused imports should be removed. For example inLib_RLPReader packages/contracts/contracts/libraries/bridge/Lib_CrossDomainUtils.sol

8. Code clones present in and
should be avoided. Code reuse is preferred.

packages/boba/contracts/contracts/LP/L2LiquidityPool.sol packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

9. Dead code should be removed. The following instances were identified:

In , the funciton calls which always
reverts. It does not look like any other contract inherits from .

packages/boba/contracts/contracts/L1CrossDomainMessengerFast.sol replayMessage() _sendXDomainMessage()

L1CrossDomainMessengerFast
•

In .packages/boba/contracts/contracts/TokenPool.sol•

Test Results

Test Suite Results

The Boba project has an integration test suite comprising of 126 tests. When running the tests on our end we confirm that 122 tests pass and 4 tests remain pending. Of the

pending tests, 2 tests are skipped explicitly with the following code comment: "SKIP: until we decide what should be done in this case". The remaining 2 tests are skipped

because we do not have the mnemonic of the pool contracts deployer to be able to play the role of the owner.

NFT Test

✓ should have a name (89676 gas)
✓ should generate a new ERC721 and transfer it from Bob (a1a) to Alice (a2a) (736731 gas)
✓ should derive an NFT Factory from a genesis NFT (2826784 gas)
✓ should register the NFTs address in users wallet (426219 gas)

Basic L1<>L2 Communication
L2 => L1

✓ should be able to perform a withdrawal from L2 -> L1 (91020 gas)
L1 => L2

✓ should deposit from L1 -> L2 (181000 gas)
✓ should have a receipt with a status of 1 for a successful message (181012 gas)
- should have a receipt with a status of 0 for a failed message

System setup
✓ should use the recently deployed ERC20 TEST token and send some from L1 to L2 (286511 gas)
✓ should transfer ERC20 TEST token to Kate (390850 gas)

Fee Payment Integration Tests
✓ should return eth_gasPrice equal to OVM_GasPriceOracle.gasPrice (83258 gas)
✓ Paying a nonzero but acceptable gasPrice fee (165402 gas)
✓ should compute correct fee (169568 gas)
✓ should not be able to withdraw fees before the minimum is met (29700 gas)
✓ should be able to withdraw fees back to L1 once the minimum is met (183888 gas)

Liquidity Pool Test
✓ should deposit 10000 TEST ERC20 token from L1 to L2 (295186 gas)
✓ should transfer L2 ERC20 TEST token from Bob to Alice and Kate (290759 gas)
✓ should add 1000 ERC20 TEST tokens to the L2 token pool (151222 gas)
✓ should register L1 the pool (53536 gas)
✓ should register L2 the pool (156384 gas)
✓ shouldn't update the pool (137208 gas)
✓ should add L1 liquidity (34360 gas)
✓ should add L2 liquidity (345658 gas)
✓ should fast exit L2 (282743 gas)

(node:20) DeprecationWarning: expectEvent.inLogs() is deprecated. Use expectEvent() instead.
(Use `node --trace-deprecation ...` to show where the warning was created)

✓ should withdraw liquidity (235743 gas)
✓ shouldn't withdraw liquidity (130355 gas)
✓ should withdraw reward from L2 pool (103261 gas)
✓ should withdraw reward from L1 pool (66543 gas)
✓ shouldn't withdraw reward from L2 pool (110140 gas)
✓ should fast onramp (241152 gas)
✓ should revert unfulfillable swap-offs (543378 gas)
✓ should revert unfulfillable swap-ons (370960 gas)

✓ Should rebalance ERC20 (364320 gas)
✓ Should revert rebalancing LP (152867 gas)
✓ Should rebalance OMGLikeToken (305734 gas)
✓ should be able to pause L1LiquidityPool contract (152867 gas)
✓ should be able to pause L2LiquidityPool contract (279411 gas)
- the DAO should be able to configure fee for L2LP
✓ should fail configuring L2LP fee for non DAO (26175 gas)
- the DAO should be able to configure fee for L1LP
✓ should fail configuring L1LP fee for non DAO (26175 gas)
OVM_ETH tests

✓ should add L1 liquidity (26175 gas)
✓ should add L2 liquidity (272681 gas)
✓ should fast exit L2 (217186 gas)
✓ Should rebalance ETH (276310 gas)
✓ Should revert rebalancing LP (152411 gas)
✓ should withdraw liquidity (231803 gas)
✓ should withdraw reward from L2 pool (133390 gas)
✓ should fast onramp (229294 gas)
✓ should revert unfulfillable swap-offs (444493 gas)
✓ should revert unfulfillable swap-ons (348483 gas)

Relay gas burn tests
✓ should not allow updating extraGasRelay for non-owner (203221 gas)
✓ should allow updating extraGasRelay for owner (291407 gas)
✓ should be able to fast exit with correct added gas (568905 gas)

Fast Messenge Relayer Test
✓ should send message from L1 to L2 (155201 gas)
✓ should QUICKLY send message from L2 to L1 using the fast relayer (227412 gas)

Native ETH value integration tests
✓ should allow an L2 EOA to send to a new account and back again (295574 gas)
calls between OVM contracts with native ETH value and relevant opcodes

✓ should allow ETH to be sent (31901 gas)
✓ should revert if a function is nonpayable
✓ should allow ETH to be sent and have the correct ovmCALLVALUE
✓ should have the correct ovmSELFBALANCE which includes the msg.value (167351 gas)
✓ should have the correct callvalue but not persist the transfer if the target reverts
✓ should look like the subcall reverts with no data if value exceeds balance
✓ should preserve msg.value through ovmDELEGATECALLs (99657 gas)
✓ should have correct address(this).balance through ovmDELEGATECALLs to another account (99657 gas)
✓ should have correct address(this).balance through ovmDELEGATECALLs to same account
✓ should allow delegate calls which preserve msg.value even with no balance going into the inner call (221162 gas)

Native ETH Integration Tests
✓ receive (373513 gas)
✓ depositETH (305363 gas)
✓ depositETHTo (321024 gas)
✓ deposit passes with a large data argument (1913471 gas)
✓ depositETH fails with a TOO large data argument (1745459 gas)
✓ withdraw (1883110 gas)
✓ withdrawTo (275809 gas)
✓ deposit, transfer, withdraw (449941 gas)
estimateGas

✓ Should estimate gas for ETH withdraw (137711 gas)

NFT Bridge Test
✓ should deposit NFT to L2 (1995870 gas)

OVM Context: Layer 2 EVM Context
✓ enqueue: L1 contextual values are correctly set in L2 (963275 gas)
✓ should set correct OVM Context for `eth_call` (105000 gas)
✓ should return same timestamp and blocknumbers between `eth_call` and `rollup_getInfo`

Dao Action Test
Config fee L2 LP

✓ should delegate voting rights (330480 gas)
0x01

✓ should create a new proposal to configure fee (1775557 gas)
waiting for voting period to end...

✓ should cast vote to the proposal and wait for voting period to end (5578539 gas)
✓ should queue the proposal successfully (343750 gas)
✓ should execute the proposal successfully (312141 gas)

Config fee L1 LP
✓ should create a new proposal to configure fee (1879834 gas)
waiting for voting period to end...

✓ should cast vote to the proposal and wait for voting period to end (5625777 gas)
✓ should queue the proposal successfully (346548 gas)
✓ should execute the proposal successfully (391229 gas)

Queue Ingestion
✓ should order transactions correctly (645754 gas)

Basic RPC tests
eth_sendRawTransaction

✓ should correctly process a valid transaction (157933 gas)
✓ should not accept a transaction with the wrong chain ID (21000 gas)
✓ should not accept a transaction without a chain ID (21000 gas)
✓ should accept a transaction with a value (42000 gas)
✓ should reject a transaction with higher value than user balance (21000 gas)
✓ should correctly report OOG for contract creations (21000 gas)

eth_call
✓ should correctly identify call out-of-gas (21000 gas)
✓ should correctly return solidity revert data from a call (21000 gas)
✓ should produce error when called from ethers (21000 gas)
✓ should correctly return revert data from contract creation (21000 gas)
✓ should correctly identify contract creation out of gas (21000 gas)
✓ should allow eth_calls with nonzero value (273008 gas)

eth_getTransactionReceipt
✓ correctly exposes revert data for contract calls (173924 gas)
✓ correctly exposes revert data for contract creations (83737 gas)
✓ includes L1 gas price and L1 gas used (83164 gas)

eth_getTransactionByHash
✓ should be able to get all relevant l1/l2 transaction data (42000 gas)

eth_getBlockByHash
✓ should return the block and all included transactions (42000 gas)

eth_getBlockByNumber
✓ should return the same result when new transactions are not applied (21000 gas)

eth_getBalance
✓ should get the OVM_ETH balance (21000 gas)

eth_chainId
✓ should get the correct chainid (21000 gas)

eth_estimateGas
✓ gas estimation is deterministic (21000 gas)
✓ should return a gas estimate for txs with empty data (21000 gas)
✓ should fail for a reverting call transaction (21000 gas)
✓ should fail for a reverting deploy transaction (21000 gas)

rollup_gasPrices
- should return the L1 and L2 gas prices

stress tests
L1 => L2 stress tests

✓ 10 L1 => L2 transactions (serial) (1194388 gas)
✓ 10 L1 => L2 transactions (parallel) (1194508 gas)

L2 => L1 stress tests
✓ 10 L2 => L1 transactions (serial) (910080 gas)
✓ 10 L2 => L1 transactions (parallel) (910080 gas)

L2 transaction stress tests
✓ 10 L2 transactions (serial) (418780 gas)
✓ 10 L2 transactions (parallel) (418780 gas)

C-C-C-Combo breakers
✓ 10 L2 transactions, L1 => L2 transactions, L2 => L1 transactions (txs serial, suites parallel) (2474132 gas)
✓ 10 L2 transactions, L1 => L2 transactions, L2 => L1 transactions (all parallel) (2474168 gas)

Whitelist
when the whitelist is disabled

✓ should be able to deploy a contract (112612 gas)
when the whitelist is enabled

✓ should fail if the user is not whitelisted (112612 gas)
✓ should succeed if the user is whitelisted (112612 gas)

·--|---------------------------|---------------|----------------------------·
| Solc version: 0.8.9 · Optimizer enabled: true · Runs: 10000 · Block limit: 6718946 gas │
···|···························|···············|·····························
| Methods · 100 gwei/gas · 4694.34 usd/eth │
··················|······················|·············|·············|···············|··············|··············
| Contract · Method · Min · Max · Avg · # calls · usd (avg) │
··················|······················|·············|·············|···············|··············|··············
| ERC20 · approve · 24938 · 44174 · 39874 · 8 · 18.72 │
··················|······················|·············|·············|···············|··············|··············
| ERC20 · transfer · 53524 · 53536 · 53533 · 8 · 25.13 │
··················|······················|·············|·············|···············|··············|··············
| SimpleStorage · setValueNotXDomain · 36958 · 86158 · 41644 · 42 · 19.55 │
··················|······················|·············|·············|···············|··············|··············
| ValueCalls · simpleSend · - · - · 31901 · 2 · 14.98 │
··················|······················|·············|·············|···············|··············|··············
| Deployments · · % of limit · │
···|·············|·············|···············|··············|··············
| OVMContextStorage · - · - · 226434 · 3.4 % · 106.30 │
···|·············|·············|···············|··············|··············
| OVMMulticall · - · - · 416898 · 6.2 % · 195.71 │
···|·············|·············|···············|··············|··············
| Reverter · - · - · 136933 · 2 % · 64.28 │
···|·············|·············|···············|··············|··············
| SendETHAwayAndDelegateCall · - · - · 221162 · 3.3 % · 103.82 │
···|·············|·············|···············|··············|··············
| SimpleStorage · - · - · 237770 · 3.5 % · 111.62 │

···|·············|·············|···············|··············|··············
| ValueCalls · - · - · 496209 · 7.4 % · 232.94 │
···|·············|·············|···············|··············|··············
| ValueContext · - · - · 99657 · 1.5 % · 46.78 │
·--|-------------|-------------|---------------|--------------|-------------·

122 passing (15m)
4 pending

Code Coverage

The repository that was in scope for this audit does have code coverage enabled for the smart contracts specific to Optimism. However, the contracts specific to Boba do

not have code coverage enabled when running tests. Therefore, we cannot include any coverage data in this report. We recommend that code coverage is enabled for the

Boba-specific contracts and be kept above 90% at all times.

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

4122f5e08bd25a4968a71ccbb45b01b2b8a8f48e3a26bf85b295ad69c9be516c ./packages/message-relayer/test/test-contracts/MockL2CrossDomainMessenger.sol

e9c6cc8d8a80db9c62d2f1c474e105a5755974e924b415ce8efd8ecffcafa668 ./packages/contracts/contracts/standards/AddressAliasHelper.sol

81dd25226789a2e075543f01478f132936454f81b080b7d1eda7285c588503ae ./packages/contracts/contracts/standards/L2StandardERC20.sol

d530eb5975c9ccebfb4cc754e98e4f04ac4444b4f03e12fd767f8710ec2b8a4b ./packages/contracts/contracts/standards/IL2StandardERC20.sol

c0fd4f5a1de60e24725510cbddd763f1c806d44dd404cc0b6509801287cbc30f ./packages/contracts/contracts/L1/messaging/IL1StandardBridge.sol

dc6a660a357c4f755a9e2b41d9181e69450826ee37e65bfe5c0405a7111031f4 ./packages/contracts/contracts/L1/messaging/L1MultiMessageRelayer.sol

ad1265c3f40fc347b1a568e80ddd1b2c5bdba9d15d37f5968c50a75d8d9175cd ./packages/contracts/contracts/L1/messaging/L1StandardBridge.sol

7dad4feed34ef8b868ac55fe52e339cfd0eaa061590540236ea62c95c22592c5 ./packages/contracts/contracts/L1/messaging/IL1CrossDomainMessenger.sol

a82eed000b8cdbfd9856923f6f25e1d69f5167545d4cf9b1e347a8959baf6d03 ./packages/contracts/contracts/L1/messaging/IL1ERC20Bridge.sol

d8f97fbcc57e856d5f195a994a29119ac01bde28a0f9301b4dffbce62ecc6b37 ./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.sol

fe3860c8049b75ee705ba25b7038e4bf4fc1949db5db147911ce13b796b0573a ./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol

4c159074e7a14115a2bee61236637f2464f09305684dd3912b325d57f70d1f1d ./packages/contracts/contracts/L1/rollup/IChainStorageContainer.sol

ad4bac982deff3e4c1005d7016f49d178c5c4b30f6fe87ddca999863eb0cfb1e ./packages/contracts/contracts/L1/rollup/IStateCommitmentChain.sol

ed07a12750e7938106ebfc14d6c517cb361465322c9abeb06752faab77e2d142 ./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.sol

951758ddeeb7eeb71e22ae3075b727c3b5018946b8b5770b37892700ec36942c ./packages/contracts/contracts/L1/rollup/ChainStorageContainer.sol

3282a9edbab97cb4d19842095ad211de4b921d1132a1bf6262fa9d88ec8ddc28 ./packages/contracts/contracts/L1/rollup/ICanonicalTransactionChain.sol

7b63d08c4651ade0b6e6324d84163571eed88d9490a19aa37b1707429501ad19 ./packages/contracts/contracts/L1/verification/IBondManager.sol

ab9a9f566a07bb95464f30df70259a58e1989afeba3860830a6ccbbba75fb9a1 ./packages/contracts/contracts/L1/verification/BondManager.sol

79e225483c8ecf2c488ab96d138ee73e5abd352d7c310059a20f75fc8f55af8b ./packages/contracts/contracts/test-
libraries/standards/TestLib_AddressAliasHelper.sol

808d452fefea5faf4cbb990a3b11decfb190384e6299e0c4003a7f08c8fd5f61 ./packages/contracts/contracts/test-libraries/trie/TestLib_MerkleTrie.sol

bf20e17519a7be6ff3fff4cae2dabe05d37889e82b501ab89eb6ee2c7a353859 ./packages/contracts/contracts/test-
libraries/trie/TestLib_SecureMerkleTrie.sol

28956d2dd741dc4196651a88a212a3ae94a95279ed2203573f78c4e04666d58e ./packages/contracts/contracts/test-libraries/rlp/TestLib_RLPWriter.sol

5ffa03d7bcbdbd9e249423ec015ee841f778a61c476553261f4ad0b6f31afc0c ./packages/contracts/contracts/test-libraries/rlp/TestLib_RLPReader.sol

edfb4bd4668e403648ef1cb5a1df71d3e2124d2f75e240be027e8a056282a42b ./packages/contracts/contracts/test-libraries/utils/TestLib_MerkleTree.sol

ea56d12bc50cb0d490916cecae191de0435775e249f47d8fee1cda429ec200b6 ./packages/contracts/contracts/test-libraries/utils/TestLib_BytesUtils.sol

510b918ec84f04a126d36d08ec5f26684a909ce0aa0a585a9eef0b5e0881f87e ./packages/contracts/contracts/test-libraries/utils/TestLib_Buffer.sol

7d825d8f068890434da157004cca8d22552838231ba3d73d76092c60510a1145 ./packages/contracts/contracts/test-libraries/utils/TestLib_Bytes32Utils.sol

0806a93d7228bac1c81701cec20ca666b38fd59013dbde81bf4298a7bd0cf8d8 ./packages/contracts/contracts/test-libraries/codec/TestLib_OVMCodec.sol

5e30f9eec56d7144924e6bb0af8db2587f900cd995a3771b06abd2051b7f4c4f ./packages/contracts/contracts/test-helpers/Helper_SimpleProxy.sol

0d55e723d2670abcb96516dcc8c6e8c9dc78892c1b992b47d7198d9b36f032b6 ./packages/contracts/contracts/test-helpers/Helper_GasMeasurer.sol

b32736b43813349028afeee3a34deb4ebd5f731fa098f57cc6ab9f7dcf50b519 ./packages/contracts/contracts/test-helpers/TestERC20.sol

05301fa6f3d722b5a568ceb11ef6cb07112ccbee8d1dfd5cbd44b01b6ba8fc63 ./packages/contracts/contracts/chugsplash/L1ChugSplashProxy.sol

8fbceb93e5c2d37af11fa7f88f36c92921601869c3a95a9f0f5c380707d0ad9d
./packages/contracts/contracts/chugsplash/interfaces/iL1ChugSplashDeployer.sol

47bd49404be8d5a2498589f39148302baa5c652ae70d2205f6402600f84d13d6 ./packages/contracts/contracts/libraries/resolver/Lib_AddressManager.sol

63397cb1c3369a584be65649880bdccff2fc3df3b0d473dbf13eff7b1a837de3 ./packages/contracts/contracts/libraries/resolver/Lib_AddressResolver.sol

4968ef7974ee0546007e16f55c45c16a782d93601ea2632558145deae66db461
./packages/contracts/contracts/libraries/resolver/Lib_ResolvedDelegateProxy.sol

f82b762788c2f81837e66aab2006c0e546650bd6f1e74ce6b3fd7606e4adea76 ./packages/contracts/contracts/libraries/trie/Lib_SecureMerkleTrie.sol

430dab67285eaf172d624a7bc739a6cf63cd2f55d4c1d2acde4bee7337fcb541 ./packages/contracts/contracts/libraries/trie/Lib_MerkleTrie.sol

99c2f549e3eed3bfa955258e8fe3ddf89166620b8b0c5640ec0cc131e442f85e ./packages/contracts/contracts/libraries/rlp/Lib_RLPReader.sol

925953c2a09f8ebfbe1a0a6a0a0c6b8503314f69fb08b92a06673ade7de974ba ./packages/contracts/contracts/libraries/rlp/Lib_RLPWriter.sol

980bbe077572b8ba8384eda744debe801b52b4fc7b1606cb56655736d30c66b3 ./packages/contracts/contracts/libraries/utils/Lib_Bytes32Utils.sol

86103e721bef621752b40f38829865812aae205fa84fe9eb02cb890359b4f8b2 ./packages/contracts/contracts/libraries/utils/Lib_BytesUtils.sol

6c2c0051ee56b0da93718fc0406fbc07419d9e4d3c08403d393297440c909840 ./packages/contracts/contracts/libraries/utils/Lib_Buffer.sol

8b07c2cb5d4bc8e938b0587cfdfe7d7fe56a3f86b4f1d1e14e7f7dc6f432ab79 ./packages/contracts/contracts/libraries/utils/Lib_MerkleTree.sol

1446870b2ef35d6fbef8f4e8b52cec4503822659b43f27b3747b9e6b09054923 ./packages/contracts/contracts/libraries/codec/Lib_OVMCodec.sol

f1cc2103875b0ef9dc9818942c090765c7ed510f76ecb7a71d34dcad7c76576e ./packages/contracts/contracts/libraries/constants/Lib_DefaultValues.sol

63b3a1a3d396d7c707b11499891ba02ac0cf9aa2666536e12f1cbc21f8df0ddc ./packages/contracts/contracts/libraries/constants/Lib_PredeployAddresses.sol

d50d07398366719cee9e0c2d65d013ad141fa1213c72a33dcfec161d9dc4574d ./packages/contracts/contracts/libraries/bridge/ICrossDomainMessenger.sol

0e51e416dc508d6e4bd8448fd23e859475013bd0569a2f6f92deb8b34cfd45a3 ./packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol

27e870780b12d9d2160870513902e6ab468f88e75ba277d1b213a7f0034107c8 ./packages/contracts/contracts/libraries/bridge/Lib_CrossDomainUtils.sol

5e4f9d61baab05f06e83026e92c363ba36850df62b18a2fbf052876c714052a8 ./packages/contracts/contracts/L2/messaging/L2StandardTokenFactory.sol

a124ba86a7d7b0fac26b1981213b7e88ea9eac0e5491e4bb54d18ae4ad156f57 ./packages/contracts/contracts/L2/messaging/L2CrossDomainMessenger.sol

a2096f4a0d4d0e7418ee0f8628d866e486bfc9d5fbfa98639deb5c0e4de91bc3 ./packages/contracts/contracts/L2/messaging/IL2ERC20Bridge.sol

a775463a4ad4f800325442fe6ee63872ddc318909a942ba23c3dcbd5df3b097d ./packages/contracts/contracts/L2/messaging/IL2CrossDomainMessenger.sol

10c6dc18573d2f08ca0e33dfcfb818c92e54d611687eb2fb51b8097d7b3f26e9 ./packages/contracts/contracts/L2/messaging/L2StandardBridge.sol

d645cdfd1d4ac0053e014dd93df34064444bdad3f65b7d4188173d2bd955823d ./packages/contracts/contracts/L2/predeploys/WETH9.sol

5f2b1695a90d4f9fa99c53a03b8b111fbf98ac473ae84d0b3c757858645a59dd ./packages/contracts/contracts/L2/predeploys/OVM_SequencerFeeVault.sol

04dc799cd221282f1f3ca48a8d1125ee35bfcf1feb4028f63a21e75750ad42ef ./packages/contracts/contracts/L2/predeploys/OVM_L2ToL1MessagePasser.sol

37513c5d16e0730d4a7688bc787473d72e7450b41b849b47b699ab6154e3e7a8 ./packages/contracts/contracts/L2/predeploys/iOVM_L1BlockNumber.sol

b28965b9a5e2e00c69522910af7a94c36a88198aba79b542cdf28d33e77e7731 ./packages/contracts/contracts/L2/predeploys/iOVM_L2ToL1MessagePasser.sol

e97611e08234b70e90b0daaacfde014a9bea8b44755263d3edd2abe88c7ed4f2 ./packages/contracts/contracts/L2/predeploys/OVM_ETH.sol

b3e18156e13b518f6eca38cc08813c83d3b6f87dee740badec13c8a6c67d7225 ./packages/contracts/contracts/L2/predeploys/OVM_GasPriceOracle.sol

1c62c433ae59a1d667ce5b368861e1c9c1a4454b17e2bea2fdffda0e3cc81338 ./packages/contracts/contracts/L2/predeploys/OVM_DeployerWhitelist.sol

295af1061e14fd15dfd7754a35b4b5f4da873fd2337eaeae0360b9a8a1be6e29 ./packages/boba/contracts/contracts/ERC721Registry.sol

4fb4077354559b7c4a5d34ad8f9c09da4549326cc3a03103fa8ae369e713552d ./packages/boba/contracts/contracts/ERC2470.sol

3c6d9984b463d0d83a0fd95efd60e1aaac59419b6d7dfcb2c3f10c900f3fd73d ./packages/boba/contracts/contracts/TokenPool.sol

4c572303ae9d838c6a653b65665de03e60df2657a529c94a5f13c03f00d9f052 ./packages/boba/contracts/contracts/L1MultiMessageRelayerFast.sol

2694724def47a9ceb4399a772ecef47c9b113a70200f160f19ff76041a5f557c ./packages/boba/contracts/contracts/L1CrossDomainMessengerFast.sol

eaa997a930929003b32ea8d8cf7b87e80c43c6676acb2b73e879f5da237f3df0 ./packages/boba/contracts/contracts/ERC721Genesis.sol

a2ee848e302070a1428563b3f9bea1e5f93437b56d6101f8bc0a176045cadeda ./packages/boba/contracts/contracts/AtomicSwap.sol

b6fe574d1712038122a0e7f67c47f127b27ba7148b9f3c603b30175e29815d87 ./packages/boba/contracts/contracts/standards/L2GovernanceERC20.sol

2f482bad31bc0bbc500ac730f0a2eb0c70da55a0cc19717486b628e73499a487 ./packages/boba/contracts/contracts/standards/IL2StandardERC721.sol

c87c75fec33109ef936ad629ee8b2ac7ec44d379fd413f2239e571e402455054 ./packages/boba/contracts/contracts/standards/L2StandardERC721.sol

80b35ca5fa8b2f4bb4a886aa9e4c17ea9952997214b6e7ee75241254828707e4 ./packages/boba/contracts/contracts/test-helpers/OMGLikeToken.sol

3b3a550a81c0fa8e5808bc24676c5e1b46475ff9653282c70ee485293ed76e57 ./packages/boba/contracts/contracts/test-helpers/L1ERC20.sol

06a225c00e6b783cb66eef8cb1b03bf9aba457e474fefa1647b95e88b4be4546 ./packages/boba/contracts/contracts/test-helpers/L1ERC721.sol

2d949d5b7ad84e84325f8ad16cac82392b2b75fdf48f452204dc986295b2709f ./packages/boba/contracts/contracts/test-helpers/Message/L2Message.sol

87cea07526430288cff806abce927eac2c5189d1bc9bebeb8585f62cd04cb7e3 ./packages/boba/contracts/contracts/test-helpers/Message/L1Message.sol

0d3dce416fbd8290f4b88b8460d2bb7cb7673c3033f416dd064b2136195ffc5d ./packages/boba/contracts/contracts/bridges/L1NFTBridge.sol

88fa3226a81482edabcaa4a8b781a27177a90c86549aae277d444d08a7aad66d ./packages/boba/contracts/contracts/bridges/L2NFTBridge.sol

20d024aca4a027fe8f5deab7d874ddff63c2bef5bbc59272ea8e10765c059c9e ./packages/boba/contracts/contracts/bridges/interfaces/iL1NFTBridge.sol

204f93554b3ffaea1488ab40a3374f02cb6357709b6b025f5ba281ab6a4482d7 ./packages/boba/contracts/contracts/bridges/interfaces/iL2NFTBridge.sol

31f68149ca0ab27ad96a815a1b35dbcfe4410e610c5ca86afc7d96963abe1137 ./packages/boba/contracts/contracts/libraries/CrossDomainEnabledFast.sol

e660ad44787d6a13028cea42fdfbf05cf6dbc94dff2df9c4ad68944fc733af57 ./packages/boba/contracts/contracts/libraries/Lib_ResolvedDelegateProxy.sol

c73fcff372d8199b723463fbb403c43a7ed99a80dc0ec64a245516492e02e94b ./packages/boba/contracts/contracts/DAO/governance/SafeMath.sol

32675f996dcf2367569c426a9e23f14109580361c43628e83eff35648ff2ebc1 ./packages/boba/contracts/contracts/DAO/governance/Timelock.sol

73f3e78d9dde5d5a41a779d789d3e6bbeb115328aa6484d49b4fab78703b15e1
./packages/boba/contracts/contracts/DAO/governance/GovernorBravoInterfaces.sol

c1adf18448eb8e071ed05d2b0a50037a76a83f2e60c235471c9fcd5371123766 ./packages/boba/contracts/contracts/DAO/governance/GovernorBravoDelegate.sol

489be8a9c67a544ed7538d1ffb5e53cd6440ef4c33ce40e1fa27d3e5f722b09c ./packages/boba/contracts/contracts/DAO/governance/GovernorBravoDelegator.sol

08c65a08274fe8228b4221653686187562265ce16cdf1c99026dd2b52cc8b373 ./packages/boba/contracts/contracts/DAO/governance-token/BOBA.sol

518aad3fc2767ee5896d2d9a14361e99bc3cf6823727c37b719594397c17988f ./packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

554867f0b64e26cf59153926869b5f0775587e2eea813197cfea2087750a0e8f ./packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

60230cf3aaaa8e3543d8bd1de922440cbaca3cc591c4a4d1f0bd9822212c1afc ./packages/boba/contracts/contracts/LP/interfaces/iL2LiquidityPool.sol

02cf8d6300a4b14796e247d7be5d051b198228ec3ae0c6e1f833c268b7b4afc8 ./packages/boba/contracts/contracts/LP/interfaces/iL1LiquidityPool.sol

Tests

e978d46089dfd91eec7a50fe068f491203fcf1da05597d547983a5783b85ae78 ./integration-tests/.eslintrc.js

937ef704e4ecab548e4c56ee3a21bf387bb3c240592bf9b21150d3db5ba097ac ./integration-tests/hardhat.config.ts

7fbb4f9fadee7ecc76c5300cfec295838e608e188e9d114dfab29f5ab43ea3c8 ./integration-tests/sync-tests/1-sync-verifier.spec.ts

669f50ddda95c1f0614e8678d991d6df9e2407e5dd1c68e03ffe5d1b89e332f4 ./integration-tests/sync-tests/2-sync-replica.spec.ts

a000a489cdfaed89176c213789dd1ecfb9e62c99c6513341ac3afd7d85549f9f ./integration-tests/contracts/TestOOG.sol

2b7cdeaa04dd84aaee351defd57b581406cbe373b6299e72fe7816da5eb94c75 ./integration-tests/contracts/ERC20.sol

1ca3ea3ac83ce6ce53f51b953d498b3f3113b9666e2a6307b7614db13c0b366b ./integration-tests/contracts/OVMMulticall.sol

61d557943ce34018551fdd0a836525ff70f224b9445a1caf2f56fd9c19bc8be5 ./integration-tests/contracts/SimpleStorage.sol

e07dce0fb57295020654c809654dadf778a1a395823582de379ab912cb2d63cc ./integration-tests/contracts/Proxy.sol

79eecd2f5307cb98c8d3b8776c14f5bad6469f046fe1c7eddc888e137d88ae2b ./integration-tests/contracts/OVMContextStorage.sol

6d6c3e5c3c1fedaa0208461431b05d59d849d66821a1c1237c0dd5def75542a9 ./integration-tests/contracts/Reverter.sol

0b899b5c342ff8ffaf407611b2ea3c8d264d66390f7d27a359a389f1d693f8b5 ./integration-tests/contracts/ValueCalls.sol

d69c071086eb4b56ebb7f2923d695d1c8a15e0c9f223a81037ba8122306249af ./integration-tests/contracts/ConstructorReverter.sol

97e44358b64b7c4c3ab1f5d73b4a7ccaf002e08d7f6d42ba2c9eb7cbf83d2f17 ./integration-tests/test/native-eth-ovm-calls.spec.ts

551ff0ce04a0a4d2d1b2fc01dfc09bcebc589da1cb8a0e5587bcf9f684995eb7 ./integration-tests/test/basic-l1-l2-communication.spec.ts

a6eaf2e75eb9737a9e65dd41b835e9165a1cf96c29bb3d697fc9e21164e04c06 ./integration-tests/test/stress-tests.spec.ts

07861a63f51ef69610d1a09282fe03f103e97d45f7aaefa432236848e041666c ./integration-tests/test/fee-payment.spec.ts

2d866043b55cea8879f1e3095e6131dbecb02ab3015dbe82f2f2c150031d83a4 ./integration-tests/test/pool_dao_actions.spec.ts

f9189051dad321b22db843cec5f38b76f9f12b3c5459392749bacc100eda410a ./integration-tests/test/native-eth.spec.ts

76c110758a6ed38627b2af49e23f4598d98dc143ac54a71e7037c1f73c2cf299 ./integration-tests/test/erc20.spec.ts

e1b825c97bd25e908799048a1d0d522cba3848f5834e4fcb2d2e7d06bf2e4790 ./integration-tests/test/setup-docker-compose-network.js

3e956b1225ea16b845151d7c41d195868eac66eb0659fcf7f1ee7c61230364ee ./integration-tests/test/nft_bridge.spec.ts

4e5da0eb06a579295e3f53fd440434486ae6ecd6390e476e77a41da7d7b06ca8 ./integration-tests/test/basic_nft.spec.ts

5188ae1effeb39e4360f18576aa6a41ecfa8ee5d56961d8574a78b4f6ca68683 ./integration-tests/test/whitelist.spec.ts

90f4442d2e37ec36770ee654b9c9337034f4870ac462d352429ba1429df04955 ./integration-tests/test/rpc.spec.ts

1616a318add8e7a1b8cc690942a798b82a92ff3052a138e528f2dd348a697981 ./integration-tests/test/ovmcontext.spec.ts

15abf5c76035633b19434d3c901798bf348111416f8dc3058693c9f1f2704c12 ./integration-tests/test/mrf_lp.spec.ts

7a4e850c4b5f05afe2fd2661225da5b5cdf0e2fd3037ae8c3d769a4df19817d7 ./integration-tests/test/mrf_message.spec.ts

938c75523dbad4ba33c957f7c83ee62addd2980c989dda05ff7b47bd2a0f3407 ./integration-tests/test/queue-ingestion.spec.ts

850eee0265c46d5c2e11d2265ca7704127b913900edf3d840736aebd4f46b2c9 ./integration-tests/test/shared/stress-test-helpers.ts

b434d8889c63f315827e07bcf43ed8cc3a0005b89efdce75c629c0871dccf0e8 ./integration-tests/test/shared/utils.ts

b4e1f9ac83bf657f9281e535257c8bd237bc198fe2479fa573c90d1a4bde2a53 ./integration-tests/test/shared/watcher-utils.ts

1a6017eb2c32673dc54b38560c908b6e16f130a11368dda43e8a3410a1189c29 ./integration-tests/test/shared/env.ts

d615b7d0acc9805f90fab29c1d4f0e4da78f50ef5a3033e5e79d49ba677b2ab5 ./integration-tests/test/shared/docker-compose.ts

Changelog

2021-12-21 - Initial report•

2022-01-21 - Reaudit report•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Boba Network Audit

