n QI.ICI ntStCImp Security Assessment Certificate

January 23rd 2022 — Quantstamp Verified

Boba Network

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type

Auditors

Timeline
EVM
Languages

Methods

Specification
Documentation Quality
Test Quality

Diff/Fork information

Source Code

Total Issues

High Risk Issues

Medium Risk Issues

Low Risk Issues
Informational Risk Issues

Undetermined Risk Issues

Optimistic Rollup (Layer 2 blockchain)
A High Risk

Sebastian Banescu, Senior Research Engineer
Kacper Bgk, Senior Research Engineer

Marius Guggenmos, Senior Research Engineer
Martin Derka, Senior Research Engineer

2021-11-15 through 2021-12-21
~ Medium Risk

Altair

Solidity

Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual Low Risk
Review

Liquidity Pools

Medium

Medium Informational

The repository which was in scope for this audit is
a fork of the Optimism Monorepo available at

https://github.com/ethereum-optimism/optimism ? Undetermined

Repository Commit
O Unresolved
optimism-v2 (initial audit) 4L26234d
optimism-v2 (reaudit) 898dfbé6
Acknowledged
23 (17 Resolved)
1 (1 Resolved)
2 (2 Resolved) O Unresolved
10 (7 Resolved) 6 Acknowledged
17 Resolved
8 (5 Resolved)
2 (2 Resolved)
Resolved
° Mitigated

The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

The impact of the issue is uncertain.

Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/omgnetwork/optimism-v2/blob/develop/packages/boba/contracts/contracts/LP/README.md
https://github.com/omgnetwork/optimism-v2
https://github.com/omgnetwork/optimism-v2/commit/426234da9b4da4f4fddc9da683f07deec487a27c
https://github.com/omgnetwork/optimism-v2
https://github.com/omgnetwork/optimism-v2/commit/898dfb6e3f0139a1d5e5562867179ee28df10593

. Eindi

After initial audit: Quantstamp has performed an audit of the Boba optimism-v2 repository with a focus on the Boba-specific smart contracts such as the fast bridge and its associated
liquidity pools on L1 and L2. During the course of this audit, Quantstamp was also asked to review the Boba Fixed Savings Contract. The audit resulted in a total of 23 findings and an

additional 9 best practice violations, described below. We confirm that none of the Boba-specific tests are failing when executed on our end, but we do note that computing code coverage

for these contracts was not facilitated and remains undetermined. We recommend that all issues reported in this document be addressed.

After reaudit: Quantstamp has checked the commit hash 898dfb6 and has determined that 17 issues have been resolved (that is either fixed or mitigated) and 6 issues have been

acknowledged by the Boba team. More details regarding each of the issues are provided in the update messages below each issue recommendation.

ID Description Severity Status

QSP-1 Missing Reconciliation After Chain Reorgs A High Mitigated
QSP-2 Liquidity Provider Funds May Be Locked A Medium Fixed

QSP-3 Frozen Funds A Medium Fixed

QSP-4 Critical Updates Are Single Step Acknowledged
QSP-5 Undocumented Precision Fixed

QSP-6 Missing Input Validation Mitigated
QSP-7 Losing Gas Funds When Moving From L2 To L1 Acknowledged
QSP-8 Ambiguous Checks When Adding Liquidity Fixed

QSP-9 Possible Zero Address Owner for L1LiquidityPool Fixed

QSP-10 Functions Callable Before Initialization Fixed

QSP-11 Violation of Checks-Effects-Interactions Pattern Fixed

QSP-12 Lacking Precision In Rewards Calculation Acknowledged
QSP-13 Pools Registered Only On L1 May Lead To Loss Of Funds Fixed

QSP-14 rewardDebt Variable In Liquidity Pools May Be Simplified Acknowledged
QSP-15 Outdated Comments Fixed

QSP-16 Insufficient Documentation For replyNeeded Fixed

QSP-17 Unlocked Pragma Acknowledged
QSP-18 Privileged Roles and Ownership Acknowledged
QSP-19 Transaction Order Dependence Between close() And expire() Mitigated
QSP-20 stopStakingContract() May Be Called Multiple Times Fixed

QSP-21 Insufficient Events Emitted Mitigated
QSP-22 Functions Missing onlyInitialized Modifier ? Undetermined Fixed

QSP-23 Potential Gas Cost Manipulation ? Undetermined Mitigated

https://github.com/omgnetwork/optimism-v2/pull/234/files

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

 Transaction-ordering dependence

« Timestamp dependence

« Mishandled exceptions and call stack limits

« Unsafe external calls

« Integer overflow / underflow

« Number rounding errors

» Reentrancy and cross-function vulnerabilities
« Denial of service / logical oversights

 Access control

« Centralization of power

 Business logic contradicting the specification
« Code clones, functionality duplication

« Gas usage

* Arbitrary token minting

Methodology
The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp

describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the

established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.
Setup

Tool Setup:

e Slither v0.8.1

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

Cind:

QSP-1 Missing Reconciliation After Chain Reorgs

Severity: High Risk

Status: Mitigated

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

Description: This vulnerability is based on the assumption that a short-lived 51% attack on the Ethereum mainnet is feasible, and targets the liquidity providers of the Boba fast bridge with

double-spending. This is a valid assumption as 51% on mainnet should cost about S2M/hour (referencing https://www.crypto51.app/, possibly with 80% discount). We briefly researched the

validity of this claim about cost, and it may be mildly outdated, however the concept of the attack remains valid and the attack can be executed in the presence of bridges from other chains
with weaker security guarantees than mainnet, and the attack can still damage the liquidity held in Boba’s mainnet bridge. Boba’s bridge contract currently holds about S3M in assets as per

Etherscan’s calculation, (see the value is taken at block 13809310).

Exploit Scenario: The attack works as follows. Mallory starts a 51% attack on mainnet. Then she takes some substantial liquidity and bridges it to Boba, using either the regular or fast bridge,
within transaction tx1. This in practice takes 5 - 10 minutes. As soon as she receives the liquidity on Boba, she bridges it back to mainnet using the fast bridge feature. This will result in a cross-
domain entity calling the method clientPayLl on the aforementioned contract (it is a proxy, the implementation source code is deployed on
https://etherscan.io/address/0x9dadbc52d12e24b7d7de68477c8478aed4t68dabtcode). This will transfer funds into Mallory’s account on mainnet in transaction tx2. This in practice takes
around 20 minutes. Finally, Mallory cancels her 51% attack and invalidates the transaction tx1. By invalidation, we mean that Mallory replaces the chain with a longer chain that includes all
transactions except for tx1, which she produced using the 51% mining power. The result is the state where Mallory never spent her original funds in tx1, but received funds from Boba’s fast
bridge in tx2. The attack should take roughly 30 minutes, with the cost between $200,000 and $1,000,000 (as per the referenced source) on mainnet.

https://github.com/crytic/slither
https://www.crypto51.app/
https://etherscan.io/address/0x1a26ef6575b7bbb864d984d9255c069f6c361a14

Recommendation: The vulnerability is enabled by the fact that the clientPayL1l method is completely decoupled from the deposit methods: the parameters only specify how many tokens
should be transferred to whom. A possible mitigation strategy would need to account for L1 chain reorgs that would affect the deposits or transfers from L1 to L2.

Update: The dev team has done the following to mitigate this issue:

A running depositHash was added for both the Standard and Fast bridge deposits/swap-ons, along with having a provision for the relayer to specify the LastHash while relaying
a transaction. To enable this, the rel ayMessage method on the CrossDomainMessengerFast was also made exclusive to a permissioned actor.

Quantstamp only acknowledges this to be a valid mitigation under the assumptions that:

« The Boba Network actively detects a re-org on mainnet (so that if anyone has ETH bridged from mainnet on Boba, and the bridging transaction and the respective

hash disappears, the ETH will disappear on Boba)

* The relayer bridging ETH from Boba is trusted and honest (so it always executes the method with the latest hash, which will make the release of ETH on mainnet fail

if the latest hash disappeared)

 There is proper synchronization between the mainnet re-org resolution and the trusted relayer acting (goes in hand with the first point - if ETH should not be present
on Boba, the relayer will know that some mitigation is in progress and will not release ETH on mainnet until the resolution is finished and the validity of the exit is

confirmed)

« The hash on mainnet takes into account the amounts that are being bridged to Boba (so that instead of rolling the entire transfer back via 51% attack, | cannot drop
the number from 1000 ETH to 0.1 ETH and receive the same bridging hash)

» Everything is implemented correctly.

Quantstamp has not checked these assumptions as some elements are out of scope for this audit (particularly the off-chain elements) and has asked the Boba team to confirm these
assumptions. The Boba team has indicated that they believe the assumptions hold partially, not fully.

QSP-2 Liquidity Provider Funds May Be Locked

Severity: Medium Risk

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

Description: The rebal ancelL.,P() function on L1 allows the owner to move liquidity that is present in the L1LiquidityPool contract to L2. The funds are moved from L1LiquidityPool to
L1StandardBridge and the withdrawLiquidity() function that an L1 liquidity provider would use to remove liquidity assumes that the funds are with L1LiquidityPool. There is
currently no equivalent on the L2 side, which means any rebalancing is currently permanent and cannot be brought back on L1.

If the L1 liquidity pool for the fast bridge is empty, then any attempts from L1 liquidity providers to withdraw their funds will result in failed transactions since the L1LiquidityPool contract

will not have sufficient funds. Therefore, there is no guarantee for L1 liquidity providers regarding when they would be able to withdraw their funds from the L1 pool.

A similar issue also happens on L2 in case there are too many users who transfer funds from L1 to L2 via the fast bridge, then the L2LiquidityPool could be depleted and L2 liquidity
providers do not have any guarantees as to when they can withdraw their funds from the L2LiquidityPool.

Exploit Scenario: This issue can be exemplified using the following steps:
1. Alice deposits 100 ETH in the L1LiquidityPool as a liquidity provider by calling addLiquidity(10@ ETH) and the L1 pool balance is now 100 ETH
2. Bob deposits 100 ETH in the L1LiquidityPool as a liquidity provider by calling addLiquidity (100 ETH) and the L1 pool balance is now 200 ETH

3. The L1LiquidityPool owner calls rebalancelL,P(100 ETH) and the L1 pool balance is now 100 ETH

4. Alice withdraws her liquidity by calling withdrawLiquidity (100 ETH) and the L1 pool balance is now O ETH.

At this point Bob cannot withdraw his ETH in any way. Bob is forced to wait for either:

* new liquidity providers who deposit at least 100 ETH in the L1LiquidityPool

» new end-users who want to use the fast bridge from L1 to L2 for a total of at least 100 ETH.

Recommendation: There should be a guarantee that liquidity providers can withdraw their funds within a certain period of time from when they request the withdraw. If this is not possible,
consider implementing a mechanism for this purpose and/or try to provide incentives so users will want to rebalance naturally. For instance, implement an equivalent operation as

rebalancelLP from L2 to L1. Additionally, this risk should be documented clearly when providing liquidity.

Update: A rebal ancelLP method was added to the L2LiquidityPool as well to enable L2 to L1 rebalancing.

QSP-3 Frozen Funds

Severity: Medium Risk

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol

Description: The BobaFixedSavings.stake() function does not check if the stakingCloseTimestamp value is different from 0. This means that even after the
stopStakingContract() function is called, the stake() function will continue to work. However, the unstake() function will no longer work due to an underflow on L113: uint256
noOfPeriods = ((finalTimestamp - stakeData.depositTimestamp)/(LOCK TIME + UNSTAKE TIME)) + 1;.

Recommendation: Add a require() statement to ensure that: stakingCloseTimestamp == 0 inside of BobaFixedSavings.stake().

Update: A require statement to ensure stakingCloseTimestamp == 0O was added to BobaFixedSavings.

QSP-4 Critical Updates Are Single Step

Status: Acknowledged

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

Description: Critical updates such as changing the owner of the contract can be executed in a single step, potentially leaving the contract unrecoverable if a mistake has been made in the

transaction.

Recommendation: Consider implementing a two-step process where the current owner proposes a new owner and the new owner has to claim the ownership in a separate transaction. This

makes sure ownership is not accidentally transferred to an inactive account.

Update: The Boba team acknolwedged this issue by saying:

Considering the existing contracts deployed, a new var - pendingOwner was not added as of now to keep the process single step - the contract is under a proxy pattern which could

enable updates in the extreme case of mistaken ownership transfer.

QSP-5 Undocumented Precision

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

Description: The userRewardFeeRate and ownerRewardFeeRate variables implicitly use 10**3 as their denominator but this is never explicitly documented in the code. This could lead to

miscalculations in case (new) developers are not aware or forget the exact precision and assume a different precision.
Recommendation: Document these assumptions and consider using a named constant in case the precision ever changes.

Update: Documented the assumptions on contracts.

QSP-6 Missing Input Validation

Status: Mitigated

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol,
packages/contracts/contracts/standards/L2StandardERC20. sol, packages/boba/contracts/contracts/libraries/Lib_ResolvedDelegateProxy.sol,
packages/contracts/contracts/Ll/messaging/L1StandardBridge.sol, packages/contracts/contracts/Ll/messaging/L1CrossDomainMessenger. sol,
packages/boba/contracts/contracts/L1CrossDomainMessengerFast.sol, packages/boba/contracts/contracts/bridges/LINFTBridge. sol,
packages/boba/contracts/contracts/bridges/L2NFTBridge. sol, packages/boba/contracts/contracts/standards/L2StandardERC721.sol,
packages/boba/contracts/contracts/standards/L2GovernanceERC20. sol, packages/contracts/contracts/L2/messaging/L2CrossDomainMessenger.sol,
packages/contracts/contracts/L2/messaging/L2StandardBridge. sol, packages/boba/contracts/contracts/BobaFixedSavings.sol

Description: All functions should perform input validation of their input parameters, especially if those functions may be called by (malicious) end-users. We have identified the following

instances where functions do not properly validate their input parameters:

1. The registerPool () function does not check if 12TokenAddress is different from address(0). However, throughout the code, there is an assumption that

L 2TokenAddress is different from address (@) if a pool is registered, which is not enforced in case the 11TokenAddress is different from address(9).

2. The following functions have similar issues:

. L2StandardERC20.constructor()

. Lib_ResolvedDelegateProxy.constructor()
. L2LiquidityPool .initialize()

. L1StandardBridge.initialize()

. L1CrossDomainMessenger.initialize()

. L1CrossDomainMessengerFast.initialize()
. LINFTBridge.initialize()

. L2ZNFTBridge.initialize()

. L2StandardERC721.constructor()

. L2ZGovernanceERC20.constructor()

. L2ZCrossDomainMessenger.constructor()

. L2StandardBridge.constructor()

. BobaFixedSavings.initialize()

Recommendation:

1. Check if 12TokenAddress is different from address(0) inside the registerPool () function.

2. Add relevant checks inside the list of functions specified in the description.

Update: This issue was partially fixed. Input validation was added wherever possible, except for:

1. Upstream contracts to maintain consistency,

2. L2 token contract to maintain consistency with future such deployments, which also can be deployed in any numbers for the use case.

QSP-7 Losing Gas Funds When Moving From L2 To L1

Status: Acknowledged

File(s) affected: packages/boba/gas-price-oracle/README.md

Description: Exits from L2 to L1 require paying gas to submit a transaction on L1. When users want to exit their funds, they get a gas fee estimate. The estimate is based, however, on the previous

interval. Users may be able to take advantage and submit their transactions below the required fee if gas prices go up beyond the estimate.
Recommendation: Perform careful analysis to estimate how much buffer is needed to offset the gas cost.

Update: The Boba team acknowledged this issue by saying:

The extraGas estimate amount is based on the average cost of the last 100 exits, depending on the operating expenses we could adjust the amount of offset for the estimate.

QSP-8 Ambiguous Checks When Adding Liquidity

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

Description: If an end-user wants to add an ERC20 token amount as liquidity by calling L1LiquidityPool .addLiquidity(), but accidentally also sends any amount of ETH along with this

call, then the amount of ETH is deposited and the ERC20 token amount is ignored. This may happen to beginners who are not familiar with certain wallet interfaces.

This happens due to the require statement on L331: require(msg.value != 0 || _tokenAddress != address(@), "Amount Incorrect");, which uses alogical-OR instead of

a logical-XOR to combine the 2 Boolean conditions.

It is important to note that if mnsg.value == 0 and tokenAddress != address(0), thenthe amount value should be required to be greater than 0. This check is missing and should be
explicitly added to avoid any ambiguity.

Recommendation: It is recommended to replace the logical-OR in the aforementioned require statement with a logical-XOR. However, since Solidity does not have a native operator you need
to implement a logical XOR formula using AND and OR. The error message should also be updated to say: "Either amount incorrect or token address incorrect".

Update: Another require statement was added to form logical XOR in combination with the previous require to reduce user-side errors.

QSP-9 Possible Zero Address Owner for LiLiquidityPool

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

Description: The L1LiquidityPool .transferOwnership() function allows setting the address of the owner to the zero address because there is no check on the _newOwner input
parameter similar to that in the L2LiquidityPool. This is problematic because the onl yOwner () modifier would always pass in case the owner == address(0), which is undesirable due
to anyone being able to call functions such as: ownerRecoverkFee(), rebalanceLP(), pause() and unpause().

Recommendation: Add a check to transferOwnership() that prevents the owner being set to address(9).

Update: A validation check was added to transferOwnership.

QSP-10 Functions Callable Before Initialization

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol
Description: There are several functions that may be called before the contract initialize() function is called, namely:

* transferOwnership()

e stopStakingContract()

Recommendation: Remove the custom condition from the onlyOwner () modifier to disallow owner == address(@) from being considered as an owner. Also remove the onlyOwner

modifier from the initialize() function declaration.

Update: The custom condition was removed from onl yOwner on BobaFixedSavings.

QSP-11 Violation of Checks-Effects-Interactions Pattern

Status: Fixed

File(s) affected: packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.sol, contracts/L1l/rollup/CanonicalTransactionChain.sol,
contracts/Ll/messaging/L1CrossDomainMessenger.sol, contracts/L2/messaging/L2CrossDomainMessenger.sol,
packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

Description: The Checks-Effects-Interactions coding pattern is meant to mitigate any chance of other contracts manipulating the state of the blockchain in unexpected and possibly malicious
ways before control is returned to the original contract. As the name implied, only after checking whether appropriate conditions are met and acting internally on those conditions should any
external calls to, or interactions with, other contracts be done. The Checks-Effects-Interactions pattern is violated inside the following functions:

1. L1lLiquidityPool.addLiquidity() where state variables such as pool .userDepositAmount and user.amount are witten after the call to an external contract, i.e.
TERC20(_tokenAddress).safeTransferFrom().

2. LilLiquidityPool.clientDepositL1() where an event is emitted after direct (IERC20(_tokenAddress).safeTransferFrom()) and indirect external contract calls.
3. LilLiquidityPool.clientPayL1() where an event is emitted after external contract calls including external calls sending ETH.

4. Li1LiquidityPool.clientPayL1Settlement() where an event is emitted after external contract calls including external calls sending ETH.

5. L1LiquidityPool .ownerRecoverFee() where an event is emitted after external contract calls including external calls sending ETH.

6. LlLiquidityPool.rebalanceLP() where an event is emitted after external contract calls including external calls sending ETH.

/. LlLiquidityPool .withdrawLiquidity() where an event is emitted after external contract calls including external calls sending ETH.

8. LlLiquidityPool .withdrawReward() where an event is emitted after external contract calls including external calls sending ETH.

Q. L2LiquidityPool .addLiquidity() where an event is emitted after external contract calls.

10. L2LiquidityPool.clientDepositL2() where an event is emitted after external contract calls.

11. L2LiquidityPool.clientPayL2() where an event is emitted after external contract calls including external calls sending ETH.

12. L2LiquidityPool .clientPayL2Settlement() where an event is emitted after external contract calls including external calls sending ETH.
13. L2LiquidityPool .ownerRecoverFee() where an event is emitted after external contract calls including external calls sending ETH.

4. L2LiquidityPool .withdrawLiquidity() where an event is emitted after external contract calls including external calls sending ETH.

15. L2LiquidityPool .withdrawReward() where an event is emitted after external contract calls including external calls sending ETH.

Recommendation: Always call functions from external contracts after all state variables have been assigned and all events emitted.

Update: Events were emitted before external calls to methods wherever possible to comply with the checks-effects-interaction pattern.

QSP-12 Lacking Precision In Rewards Calculation

Status: Acknowledged

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol
Description: The reward calculation is based on increasing a global value that denotes the amount of rewards per token deposited in the pool. The formula for this is basically

rewardsPerShare += rewardDelta * SHARE_PRECISION / totalDeposits

SHARE_PRECISION is 1el12 in the current implementation, which will very likely lead to rounding errors and fewer rewards paid out than intended, locking them in the contract.
Recommendation: Increase the share precision to minimize the rounding error. For accurate results, the share precision should have as many decimals as the expected total deposits.

Update: The Boba team has acknowledged this issue by saying:

In order to avoid chances of inaccuracy with modifying precision in existing deployed contracts, the precision has been unchanged. With the current numbers, the improvements with

increased precision looks minimal, however we can address these improvements in subsequent versions of the network.

QSP-13 Pools Registered Only On L1 May Lead To Loss Of Funds

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

Description: In case a pool is not registered on L2, but only on L1, a settlement payment will be triggered with token address address(0), which means the refund will be paid out in ether.
Since most tokens are less valuable than ether, this can lead to an attacker stealing funds from the contract.

Recommendation: Check that the pool is registered in clientPayL2. To properly issue a refund, the token address on the originating pool's side might have to be passed across layers.

Update: A token registration check was added to the ClientPayL2 method. In case a rel ayMessage fails due to the token not being registered on the pool. The message can be relayed
manually again after a registration takes place.

QSP-14 rewardpebt Variable In Liquidity Pools May Be Simplified

Status: Acknowledged

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

Description: The usage of the variable rewardDebt is hard to understand, especially due to the misleading name (there is no debt involved). The variable is only used to keep track of how many

rewards have been claimed already and the computation can be simplified.

Recommendation: Simplify the computation by replacing the rewardDebt variable with one named LastAccUserRewardPerShare that is updated each time the current rewardDebt is.

Replace all instances of user.rewardDebt = ... withuser.lastAccUserRewardPerShare = pool.accUserRewardPerShare.

The pending reward computation can then be simplified to the following

// use SafeMath methods for the actual implementation
user.pendingReward += user.amount
* (pool.accUserRewardPerShare - user.lastAccUserRewardPerShare)
/ lel2

This change should result in improved readability and a slight decrease in contract size and gas used.
Update: The Boba team has acknowledged this issue by saying:

With the current deployments, devs/users might be familiar with the term rewardDebt, however this is a great suggestion, and can be simplified in the subsequent versions of the
network.

QSP-15 Outdated Comments

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

Description: There are several lines of old code that are commented out and no longer relevant in the affected contracts. Examples include but are not limited to the clientPayL1 and

clientPayLlSettlement functions, as well as an outdated comment present that looks like an artifact from older code.

// Construct calldata for LlLiquidityPool .depositToFinalize(_to, receivedAmount)
bytes memory data = abi.encodeWithSelector(
iL.2LiquidityPool.clientPayL2.selector,
msg.sender,
_amount,
pool .l2TokenAddress
)5

Recommendation: Update/remove the comments so that they are aligned with the current implementation.

Update: Comments were updated, outdated comments removed.

QSP-16 Insufficient Documentation For reptyNeeded

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol

Description: clientPayLl and clientPayL2 make use of a function local variable called replyNeeded. It is a boolean variable that is used to store whether a message needs to be sent to
the other layer due to not enough funds being available for the requested transfer. The current name does not reflect that and there are no comments explaining what it is for.

Recommendation: Rename the variable to something more meaningful like hasInsufficientFunds and provide some inline comments that explain that a message needs to be sent to the

other layer to revert the deposit.

Update: Added inline comments for replyNeeded, the variable hasn’t been renamed to maintain familiarity with existing devs/users.

QSP-17 Unlocked Pragma

Status: Acknowledged

File(s) affected: ALL contracts

Description: Every Solidity file specifies in the header a version number of the format pragma solidity (*)0.*.*.The caret (*) before the version number implies an unlocked pragma,

meaning that the compiler will use the specified version and above, hence the term "unlocked".

Recommendation: For consistency and to prevent unexpected behavior in the future, it is recommended to remove the caret to lock the file onto a specific Solidity version. Alternatively, possible

mitigation of this issue is to at least fix the middle number to the latest version, e.g. 0.8, which ensures that the latest version of the compiler will be used.

Update: The Boba team has acknowledged this issue by saying:

To avoid inconsistencies with deployed contracts, pragma has been still kept unlocked, this improvement can be addressed in subsequent versions of the network.

QSP-18 Privileged Roles and Ownership

Status: Acknowledged

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol, packages/boba/contracts/contracts/LP/L2LiquidityPool.sol,
packages/boba/contracts/contracts/LP/L1LiquidityPool.sol, packages/contracts/contracts/libraries/resolver/Lib_AddressManager.sol,
packages/contracts/contracts/Ll/messaging/L1CrossDomainMessenger.sol, packages/boba/contracts/contracts/L1CrossDomainMessengerFast. sol,
packages/boba/contracts/contracts/ERC721Genesis. sol, packages/boba/contracts/contracts/TokenPool.sol,
packages/contracts/contracts/chugsplash/L1ChugSplashProxy.sol, packages/contracts/contracts/L2/predeploys/0OVM DeployerWhitelist.sol,
packages/contracts/contracts/L2/predeploys/0OVM_GasPriceOracle.sol, packages/boba/contracts/contracts/DAO/governance/Timelock.sol

Description: Smart contracts will often have owner variables to designate the person with special privileges to make modifications to the smart contract. In the BobaFixedSavings smart
contract, only the owner can pause, unpause and stop the staking contract. The other affected contracts offer similar capabilities to the owner address.

Recommendation: This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.

Update: The Boba team has indicated that:

Privileged roles and ownership of contracts including Dao permissions to be made clear through docs/website.

QSP-19 Transaction Order Dependence Between cilose() And expire()

Status: Mitigated

File(s) affected: packages/boba/contracts/contracts/AtomicSwap.sol

Description: There is a TOD between the functions close() and expire(), i.e., the opening user may submit expire() whereas the closing user may submit close() in the same block. The

outcome depends on the ordering of the transactions.
Recommendation: Inform users that this TOD could affect the outcome of these function calls.

Update: Documented the assumptions on contracts, however it is not yet documented in end-user facing documentation.

QSP-20 stopstakingContract() May Be Called Multiple Times

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol

Description: It is probably intended that the stopStakingContract() be callable only once. Otherwise, the amounts unstaked would be unfairly higher for those who unstaked after the
stopStakingContract() was called later.

Recommendation: Add a require() statement that ensures stakingCloseTimestamp != 0 atthe beginning of stopStakingContract().

Update: A require statement to ensure stakingCloseTimestamp == 0 was added at the beginning of the method stopStakingContract.

QSP-21 Insufficient Events Emitted

Status: Mitigated

File(s) affected: packages/boba/contracts/contracts/BobaFixedSavings.sol

Description: No events are emitted by the staking and unstaking functions. Normally all state-changing functions should emit an event indicating some information about the state change. This

facilitates proper monitoring of the smart contract and easy integration. Examples include, but are not limited to:

1. LlLiquidityPool.transferOwnership() should emit an event if the owner is changed successfully.

2. L1lLiquidityPool.initialize() should emit an event after a successful initialization.

3. LilLiquidityPool.configureGas() should emit an event if the new gas fee and stipend are set.

4. L2LiquidityPool.transferOwnership() should emit an event if the owner is changed successfully.

5. L2LiquidityPool.initialize() should emit an event after a successful initialization.

6. L2LiquidityPool .transferDAORole() should emit an event after the pool address, owner, and DAO addresses were set.
/. L2LiquidityPool .configureExtraGasRelay() should emit an event if the extra gas is set.

8. L2LiquidityPool.configureGas() should emit an event if the gas fee is configured.

Recommendation: Declare and emit events for all state-changing functions.

Update: This issue has been partially fixed by adding more events to the indicated methods, but not to all of them.

QSP-22 Functions Missing ontyInitialized Modifier

Status: Fixed

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol
Description: clientPayLl and clientPayLlSettlement do not have the onlyInitial ized modifier like their L2 equivalents. It is unclear if this was implemented intentionally or not.
Recommendation: Clarify why the onlyInitial ized modifier is not needed in this contract, otherwise, add it to to the functions.

Update: The Boba team has provided the following explanation as to why onlyInitialized is not needed:

ClientPayLl and ClientPayL1Settlement can work without the onlyInitial ized modifier - since they cannot be called before the contract is initialised with the
relayerMessenger address. This is due to the modifier onlyFromCrossDomainAccount, which checks if the call comes from a rel ayerMessenger, and before initialisation it
is set to address(0).

QSP-23 Potential Gas Cost Manipulation

Status: Mitigated

File(s) affected: packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

Description: Gas costs on Boba L2 are computed by observing the balances of the different nodes and attempting to adjust the gas cost to reflect the actual ETH spent. According to the docs,
this adjustment happens gradually and has limits on how fast it can change. By crafting transactions that will cost significantly more than a typical transaction, a malicious actor might be able

to drive up the gas cost for all users while hemorrhaging ether from the boba nodes.

An example of an expensive transaction is depositing some amount on L2 that should then become available on L1 but does not have enough liquidity on L1 to be paid out. This will:

1. lock the amount on the L2 side, trigger a message from L2 to L1
2. on L1the contract will notice there is not enough liquidity and will have to send a message from L1to L2

3. on L2 the user will be credited with the amount they attempted to withdraw.

Since the gas price is adjusted gradually, it might be possible to push up the gas price significantly without the attacker having to spend a lot of ether. While there is a mechanism that tries to

discourage such an attack by having to pay a fee on the settlement, it does not prevent an attacker from using very low amounts in an empty pool due to the fee being percentage-based.
Recommendation: Clarify if this attack has a mitigation in place and if not, add a mitigation.

Update: The Boba team has indicated that this issue is mitigated by:

The calculation of our gas price is mostly weighted around the L2 fee, making the effect of the L1 sec fee lesser in the total amount. The L2 part of the fee is fixed and adjusted by us

based on our revenue.

Automated Analyses

Slither

Slither reported 342 results on the Boba-specific contracts. We filtered out the false positives and included the rest of the findings in the report.

Adherence to Specification

The Boba technical specs were extremely limited. Therefore, we have mainly relied on documentation related to Optimism for this audit. We recommend improving the

existing technical specification to facilitate the maintainability and auditability of the code.

1. There are some grammatically wrong revert messages present in the following contracts:

. packages/boba/contracts/contracts/LP/L2LiquidityPool.sol replace "Register" with "Registered"

576: require(pool.l2TokenAddress != address(©@), "Token Address Not Register");

. packages/boba/contracts/contracts/LP/L1LiquidityPool. sol replace "Register" with "Registered”

342: require(pool .l2TokenAddress != address(@), "Token Address Not Register");
397: require(pool .l2TokenAddress != address(@), "Token Address Not Register");
444 : require(pool.l2TokenAddress != address(@), "Token Address Not Register");
492: require(pool.l2TokenAddress != address(@), "Token Address Not Register");
529: require(pool.l2TokenAddress != address(©@), "Token Address Not Register");
572: require(L2LiquidityPoolAddress != address(@), "L2 Liquidity Pool Not Register");

573: require(pool.l2TokenAddress != address(@), "Token Address Not Register");

Adherence to Best Practices

1. Hardhat tests should make use of typechain to have a fully typed contract deployment and interaction, which would allow for easier and faster test development.
2. Event parameters of type address should be indexed in order to faciliate event filtering. None of the events in L1LiquidityPool .sol are indexed.

3. Several contracts are importing Solidity files from the gopenzeppelin/contracts-upgradeable library, however, this library is not in the list of dependencies in

package. json.

4. Magic numbers should be replaced by named constants. There are several magic numbers in L1LiquidityPool and L2LiquidityPool, which are not clearly

documented, e.g. _configureFee(35, 15); and configureGas(1400000, 2300); in the initialize() function.

5. There exist automatic Github Workflow scripts that are used to run static analyzers such as Slither. However, the script is not updated to include the

packages/boba/contracts subfolder.
6. There are several skipped tests and TODOs in the test files. TODOs should be properly addressed before releasing code in production.
/. Unused imports should be removed. For example Lib_RLPReader in packages/contracts/contracts/libraries/bridge/Lib_CrossDomainUtils.sol

8. Code clones present in packages/boba/contracts/contracts/LP/L2LiquidityPool.sol and packages/boba/contracts/contracts/LP/L1LiquidityPool.sol

should be avoided. Code reuse is preferred.
9. Dead code should be removed. The following instances were identified:

. In packages/boba/contracts/contracts/L1CrossDomainMessengerFast.sol, the funciton replayMessage() calls _sendXDomainMessage() which always

reverts. It does not look like any other contract inherits from L1CrossDomainMessengerFast.

. In packages/boba/contracts/contracts/TokenPool.sol.

Test Results

Test Suite Results

The Boba project has an integration test suite comprising of 126 tests. When running the tests on our end we confirm that 122 tests pass and 4 tests remain pending. Of the
pending tests, 2 tests are skipped explicitly with the following code comment: "SKIP: until we decide what should be done in this case". The remaining 2 tests are skipped

because we do not have the mnemonic of the pool contracts deployer to be able to play the role of the owner.

NFT Test

should have a name (89676 gas)

should generate a new ERC721 and transfer it from Bob (ala) to Alice (a2a) (736731 gas)
should derive an NFT Factory from a genesis NFT (2826784 gas)

should register the NFTs address in users wallet (426219 gas)

NS SS

Basic L1<>L2 Communication
L2 => L1
v should be able to perform a withdrawal from L2 -> L1 (91020 gas)
L1 => L2
v/ should deposit from L1 -> L2 (181000 gas)
v/ should have a receipt with a status of 1 for a successful message (181012 gas)
- should have a receipt with a status of @ for a failed message

System setup
v should use the recently deployed ERC20 TEST token and send some from L1 to L2 (286511 gas)
v/ should transfer ERC20 TEST token to Kate (390850 gas)

Fee Payment Integration Tests

should return eth_gasPrice equal to OVM_GasPriceOracle.gasPrice (83258 gas)
Paying a nonzero but acceptable gasPrice fee (165402 gas)

should compute correct fee (169568 gas)

should not be able to withdraw fees before the minimum is met (29700 gas)
should be able to withdraw fees back to L1 once the minimum is met (183888 gas)

NSNS S

Liquidity Pool Test

should deposit 10000 TEST ERC20 token from L1 to L2 (295186 gas)

should transfer L2 ERC20 TEST token from Bob to Alice and Kate (290759 gas)
should add 1000 ERC20 TEST tokens to the L2 token pool (151222 gas)

should register L1 the pool (53536 gas)

should register L2 the pool (156384 gas)

shouldn't update the pool (137208 gas)

should add L1 liquidity (34360 gas)

should add L2 liquidity (345658 gas)

should fast exit L2 (282743 gas)

(node:20) DeprecationWarning: expectEvent.inLogs() is deprecated. Use expectEvent() instead.
(Use "node --trace-deprecation ... to show where the warning was created)

should withdraw liquidity (235743 gas)

shouldn't withdraw liquidity (130355 gas)

should withdraw reward from L2 pool (103261 gas)

should withdraw reward from L1 pool (66543 gas)

shouldn't withdraw reward from L2 pool (110140 gas)

should fast onramp (241152 gas)

should revert unfulfillable swap-offs (543378 gas)

should revert unfulfillable swap-ons (370960 gas)

NSNSSSNSNSASANS

SNSSSSSNAS S

Should rebalance ERC20 (364320 gas)
Should revert rebalancing LP (152867 gas)
Should rebalance OMGLikeToken (305734 gas)
should be able to pause LlLiquidityPool contract (152867 gas)
should be able to pause L2LiquidityPool contract (279411 gas)
- the DAO should be able to configure fee for L2LP
v/ should fail configuring L2LP fee for non DAO (26175 gas)
- the DAO should be able to configure fee for LI1LP
v/ should fail configuring L1LP fee for non DAO (26175 gas)
OVM_ETH tests
should add L1 liquidity (26175 gas)
should add L2 liquidity (272681 gas)
should fast exit L2 (217186 gas)
Should rebalance ETH (276310 gas)
Should revert rebalancing LP (152411 gas)
should withdraw liquidity (231803 gas)
should withdraw reward from L2 pool (133390 gas)
should fast onramp (229294 gas)
should revert unfulfillable swap-offs (444493 gas)
should revert unfulfillable swap-ons (348483 gas)
Relay gas burn tests
v should not allow updating extraGasRelay for non-owner (203221 gas)
v/ should allow updating extraGasRelay for owner (291407 gas)
v should be able to fast exit with correct added gas (568905 gas)

NSNS SN

AN NN Y YN N N

Fast Messenge Relayer Test
v/ should send message from L1 to L2 (155201 gas)
v should QUICKLY send message from L2 to L1 using the fast relayer (227412 gas)

Native ETH value integration tests

v/ should allow an L2 EOA to send to a new account and back again (295574 gas)

calls between 0OVM contracts with native ETH value and relevant opcodes

should allow ETH to be sent (31901 gas)
should revert if a function is nonpayable
should allow ETH to be sent and have the correct ovmCALLVALUE
should have the correct ovmSELFBALANCE which includes the msg.value (167351 gas)
should have the correct callvalue but not persist the transfer if the target reverts
should look like the subcall reverts with no data if value exceeds balance
should preserve msg.value through ovmDELEGATECALLs (99657 gas)
should have correct address(this).balance through ovmDELEGATECALLs to another account (99657 gas)
should have correct address(this).balance through ovmDELEGATECALLs to same account
should allow delegate calls which preserve msg.value even with no balance going into the inner call (221162 gas)

SNSSNSSSSNASNASNSS

Native ETH Integration Tests
receive (373513 gas)
depositETH (305363 gas)
depositETHTo (321024 gas)
deposit passes with a large data argument (1913471 gas)
depositETH fails with a TOO large data argument (1745459 gas)
withdraw (1883110 gas)
withdrawTo (275809 gas)
deposit, transfer, withdraw (449941 gas)
estimateGas
v/ Should estimate gas for ETH withdraw (137711 gas)

SNSNSSSSSS S

NFT Bridge Test
v/ should deposit NFT to L2 (1995870 gas)

OVM Context: Layer 2 EVM Context
v/ enqueue: L1 contextual values are correctly set in L2 (963275 gas)
v/ should set correct OVM Context for ‘eth_call’® (105000 gas)
v/ should return same timestamp and blocknumbers between ‘eth _call’® and "rollup_getInfo’

Dao Action Test

Config fee L2 LP

v/ should delegate voting rights (330480 gas)
0x01

v/ should create a new proposal to configure fee (1775557 gas)
waiting for voting period to end...
v should cast vote to the proposal and wait for voting period to end (5578539 gas)
v/ should queue the proposal successfully (343750 gas)
v/ should execute the proposal successfully (312141 gas)

Config fee L1 LP
v/ should create a new proposal to configure fee (1879834 gas)
waiting for voting period to end...
v should cast vote to the proposal and wait for voting period to end (5625777 gas)
v/ should queue the proposal successfully (346548 gas)
v/ should execute the proposal successfully (391229 gas)

Queue Ingestion
v/ should order transactions correctly (645754 gas)

Basic RPC tests
eth_sendRawTransaction

should correctly process a valid transaction (157933 gas)
should not accept a transaction with the wrong chain ID (21000 gas)
should not accept a transaction without a chain ID (21000 gas)
should accept a transaction with a value (42000 gas)
should reject a transaction with higher value than user balance (21000 gas)
should correctly report 00G for contract creations (21000 gas)
eth_call
should correctly identify call out-of-gas (21000 gas)
should correctly return solidity revert data from a call (21000 gas)
should produce error when called from ethers (21000 gas)
should correctly return revert data from contract creation (21000 gas)
should correctly identify contract creation out of gas (21000 gas)
should allow eth_calls with nonzero value (273008 gas)
eth_getTransactionReceipt

v/ correctly exposes revert data for contract calls (173924 gas)

v correctly exposes revert data for contract creations (83737 gas)

v/ includes L1 gas price and L1 gas used (83164 gas)
eth_getTransactionByHash

v should be able to get all relevant l1/l2 transaction data (42000 gas)
eth_getBlockByHash

v should return the block and all included transactions (42000 gas)
eth_getBlockByNumber

v should return the same result when new transactions are not applied (21000 gas)
eth_getBalance

v/ should get the OVM_ETH balance (21000 gas)
eth_chainId

v/ should get the correct chainid (21000 gas)
eth_estimateGas

v/ gas estimation is deterministic (21000 gas)

v/ should return a gas estimate for txs with empty data (21000 gas)

v/ should fail for a reverting call transaction (21000 gas)

v/ should fail for a reverting deploy transaction (21000 gas)
rollup_gasPrices

- should return the L1 and L2 gas prices

NEN NN

AN NN NN

stress tests

L1 => L2 stress tests
v/ 10 L1 => L2 transactions (serial) (1194388 gas)
v/ 10 L1 => L2 transactions (parallel) (1194508 gas)

L2 => L1 stress tests
v/ 10 L2 => L1 transactions (serial) (910080 gas)
v/ 10 L2 => L1 transactions (parallel) (910080 gas)

L2 transaction stress tests
v/ 10 L2 transactions (serial) (418780 gas)
v/ 10 L2 transactions (parallel) (418780 gas)

C-C-C-Combo breakers
v/ 10 L2 transactions, L1 => L2 transactions, L2 => L1 transactions (txs serial, suites parallel) (2474132 gas)
v/ 10 L2 transactions, L1 => L2 transactions, L2 => L1 transactions (all parallel) (2474168 gas)

Whitelist
when the whitelist is disabled
v/ should be able to deploy a contract (112612 gas)
when the whitelist is enabled
v/ should fail if the user is not whitelisted (112612 gas)
v/ should succeed if the user is whitelisted (112612 gas)

[Solc version: 0.8.9 Optimizer enabled: true Runs: 10000 Block limit: 6718946 gas
i. MethOds | 1@@gwel/gas| | 469434u5d/eth 60000 |

i. Contract | MethOd | Mln | Max | Avg | #Calls | USd(avg) |

i. ERCZ@ | approve | 24938 | 44174 | 39874 | 8 | 1872 |

i. ERCZ@ | transfer | 53524 | 53536 | 53533 | 8 | 2513 |

i. Slmplestorage o | o SetvalueNOtXDomaln | 36958 | 86158 | 41644 | 42 | 1955 |

i. VaLuecaLLS | 51mplesend | _ | _ | 31901 | 2 | 1498 |
.................. ||||||
| Deployments % of limit

i..évﬁéégéé;éééégééé [coeeeenn ;..| ;..! ééé4é4..l 2.4.%..| iéé.éé..i
i..éthgiéié;ii [oo eemmenes ;..| ;..! 4iéééé..l é.é.%..| iég.%i..i
i..éé;é££é£ [coeeeenn ;..| ;..! iééééé..l é.%..l é4.éé..i
i..éégééfﬁAQ;;Aﬁébéiéé;ééé;ii [oo eenmnenes ;..| ;..! ééiiéé..l é.é.%"l iéé.éé..i

| SimpleStorage . = o = o 237770 - 3.5% - 111.62 |

122 passing (15m)
4 pending

Code Coverage

The repository that was in scope for this audit does have code coverage enabled for the smart contracts specific to Optimism. However, the contracts specific to Boba do

not have code coverage enabled when running tests. Therefore, we cannot include any coverage data in this report. We recommend that code coverage is enabled for the

Boba-specific contracts and be kept above 90% at all times.

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

4122£5e08bd25a4968a71ccbb45b01b2b8a8£48e3a26bf85b295ad69¢c9be516¢
e9c6cc8d8a80db9c62d2f1c4/4e105a5755974e924b415ce8efd8ecffcafab68
81dd25226789a2e075543£01478£132936454£81b080b7d1leda7285c588503ae
d530eb5975c9ccebfb4cc754e98e4f04ac4444b4£03e12£d767£8710ec2b8a4b
cOfd4f5alde60e24725510cbddd763£1c806d44dd404ccOb6509801287cbc30f
dc6ab660a357c4£755a9e2b41d9181e69450826ee3/7e65bfe5c0405a7111031£4
ad1265c3£f40£fc347b1a568e80ddd1b2c5bdba9d15d37£5968¢c50a75d8d9175¢cd
/dad4feed34ef8b868ac55fe52e339cfd0eaal61590540236€a62c95¢c22592c5
a82eed000b8cdbfd9856923f6£25e1d69£5167545d4cf9b1e347a8959baf6d03
d8f97fbcc57e856d5£195a994a29119ac@1bde28a0£f9301b4dffbceb2eccbb37/
fe3860c8049b75ee705ba25b7038e4bf4£c1949db5db147911cel3b796b0573a
4c159074e7a14115a2beeb61236637£2464£09305684dd3912b325d57£70d1£1d
ad4bac982deff3e4c1005d7016£49d178c5c4b30f6fe87ddca999863ebdctfble
ed07al12750e7938106ebfcl14d6c517cb361465322c9abeb6752faab77e2d142
951758ddeeb7eeb71e22ae3075b727c3b5018946b8b5770b37892700ec36942c
3282a9edbab97cb4d19842095ad211de4b921d1132a1bf6262£a9d88ec8ddc28
7b63d08c4651adePbb6e6324d84163571eed88d9490a19aa37b1707429501ad19
ab9a9f566a07bb95464£30df70259a58e1989afeba3860830abcecbbba/5fb9al

79e225483c8ecf2c488ab96d138ee/73e5abd352d7¢c310059a20f75fc8£55af8b
libraries/standards/TestLib AddressAliasHelper.sol

808d452fefea5faf4cbb990a3bl1dectb190384e6299e0c4003a7£08c8fd5f61

bf20el/7519a/beb6ff3fff4cae2dabed5d3/889e82b501ab89ebbee2c7a353859
Llibraries/trie/TestLib_SecureMerkleTrie.sol

28956d2dd741dc4196651a88a212a3ae94a95279ed2203573£78c4e04666d58e
5ffa03d7bcbdbd9e249423ec015ee841£778a61c476553261f4addb6f31afcOc
edfb4bd4668e403648eflcb5aldf71d3e2124d2f75e240be027e8a056282a42b
ea56d12bc50cb0d490916cecael91de®435775e249f47d8feelcda429ec200bb
510b918ec84f04a126d36d08ec5£26684a909ceaala585a9eefdb5e0881£f8 /e
7d825d8£068890434dal57004cca8d22552838231ba3d73d76092c60510a1145
0806a93d7228baclc817/01cec20cab66b38£fd59013dbde81bf4298a/7bd0cf8d8
5e30f9eec56d7144924e6bb0atf8db2587£900cd995a3771b06abd2051b7f4c4f
0d55e723d2670abcb96516dcc8c6e8c9dc78892c1b992b47d7198d9b36£032b6
b32736b43813349028afeee3a34deb4ebd5£731£a0@98£57¢cc6ab9f7dcf50b519
05301fa6£3d722b5a568cebllefb6cbd7112ccbee8dldfd5cbd44b01bbba8fcé3

8fbceb93e5c2d37af11fa7£88£36c92921601869c3a95a9f0f5¢c380707d0ad9d

./packages/message-relayer/test/test-contracts/MockL2CrossDomainMessenger. sol
./packages/contracts/contracts/standards/AddressAliasHelper.sol
./packages/contracts/contracts/standards/L2StandardERC20. sol
./packages/contracts/contracts/standards/IL2StandardERC20. sol
./packages/contracts/contracts/Ll1/messaging/IL1StandardBridge.sol
./packages/contracts/contracts/Ll/messaging/L1MultiMessageRelayer.sol
./packages/contracts/contracts/Ll/messaging/L1StandardBridge. sol
./packages/contracts/contracts/Ll/messaging/IL1CrossDomainMessenger. sol
./packages/contracts/contracts/L1l/messaging/IL1ERC20Bridge. sol
./packages/contracts/contracts/Ll1/messaging/L1CrossDomainMessenger.sol
./packages/contracts/contracts/Ll1/rollup/StateCommitmentChain.sol
./packages/contracts/contracts/Ll/rollup/IChainStorageContainer.sol
./packages/contracts/contracts/Ll1/rollup/IStateCommitmentChain.sol
./packages/contracts/contracts/Ll1/rollup/CanonicalTransactionChain. sol
./packages/contracts/contracts/Ll1/rollup/ChainStorageContainer.sol
./packages/contracts/contracts/L1l/rollup/ICanonicalTransactionChain. sol
./packages/contracts/contracts/Ll/verification/IBondManager.sol
./packages/contracts/contracts/Ll/verification/BondManager. sol

./packages/contracts/contracts/test-

./packages/contracts/contracts/test-libraries/trie/TestLib_ MerkleTrie.sol

./packages/contracts/contracts/test-

./packages/contracts/contracts/test-libraries/rlp/TestLib_ RLPWriter.sol
./packages/contracts/contracts/test-libraries/rlp/TestLib_ RLPReader.sol
./packages/contracts/contracts/test-libraries/utils/TestLib_MerkleTree.sol
./packages/contracts/contracts/test-libraries/utils/TestLib_ BytesUtils.sol
./packages/contracts/contracts/test-libraries/utils/TestLib Buffer.sol
./packages/contracts/contracts/test-libraries/utils/TestLib Bytes32Utils.sol
./packages/contracts/contracts/test-libraries/codec/TestLib_0VMCodec. sol
./packages/contracts/contracts/test-helpers/Helper SimpleProxy.sol
./packages/contracts/contracts/test-helpers/Helper GasMeasurer.sol
./packages/contracts/contracts/test-helpers/TestERC20. sol

./packages/contracts/contracts/chugsplash/L1ChugSplashProxy.sol

./packages/contracts/contracts/chugsplash/interfaces/iL1ChugSplashDeployer. sol

47bd49404be8d5a2498589£39148302baa5c652ae70d2205£6402600£84d13d6

63397cblc3369a584be65649880bdccff2fc3df3b0d473dbfl3eff7/bla837de3

4968ef7974ee0546007e16£55c45c16a782d93601ea2632558145deaeb6db461

./packages/contracts/contracts/libraries/resolver/Lib_AddressManager.sol

./packages/contracts/contracts/libraries/resolver/Lib_AddressResolver.sol

./packages/contracts/contracts/libraries/resolver/Lib_ResolvedDelegateProxy.sol

£82b762788c2£81837e66aab2006ce546650bd6fle/4cebb3fd/606e4adea’/b

430dab67285eafl72d624a7bc/739a6cf63cd2f55d4cld2acdedbee/337£fcb541

99c2£f549e3eed3bfa955258e8fe3ddf89166620b8b0c5640echccl31e442£85e

925953¢c2a09f8ebfbelablab6alalcbt6b8503314f69fb0O8b92ab6673ade/de974ba

980bbed/7572b8ba8384eda/44debe801b52b4£fc/bl606cb56655736d30c66b3

./packages/contracts/contracts/libraries/trie/Lib_SecureMerkleTrie.sol
./packages/contracts/contracts/libraries/trie/Lib_MerkleTrie.sol
./packages/contracts/contracts/libraries/rlp/Lib_RLPReader.sol
./packages/contracts/contracts/libraries/rlp/Lib_RLPWriter.sol

./packages/contracts/contracts/libraries/utils/Lib_ Bytes32Utils.sol

86103e721bef621752b40£38829865812aae205fa84£e9eb02cb89035904£8b2

6c2c0051ee56b0da93/18£c0406£tbc0/7419d9e4d3c08405d393297440c909840

8b07/c2cb5d4bc8e938b0587cfdfe/d/fe56a3£86b4f1ldlel4e/f/7/dc6£432ab/9

144687/0b2e£35d6fbef8f4e8b52cec4503822659043£27b3747b9e6b09054923

f1cc2103875b0ef9dc9818942¢c090/65c/ed510f/7/6ecb/7a/1d34dcad/c/6576e

63b3ala3d396d/c/07b11499891bab2acOct9aa2666536el2f1cbc21£8dfAddc

d50d073983667/19cee9e0c2d65d013adl41fal213c/2a33dctecl61d9dc4574d

Pe51e416dc508d6e4bd8448£d23e859475013bd0569a2£6£92deb8b34cfd45a3

27e870780b12d9d2160870513902e6ab468£88e/5ba2/77d1b213a/£0034107c3

5e4£9d61baab05£06e83026€92¢c363ba36850df62b18a2fbf0528/6c/14052a8

al24ba86a/d/b0fac26b1981213b7e88ea9eace5491e4bb54d18ae4adl156£57

a2096£4a0d4d0e/418ee0f8628d866e486bfc9d5fbfa98639deb5cle4de91bc3

a/75463a4ad4£800325442febeeb63872ddc318909a942ba23c3dcbd5df3b097d

10c6dc18573d2£08cale33dfctb818c92e54d611687eb2fb51b8097/d/b3£26€9

d645cdfd1d4ac0053e014dd93df34064444bdad3£65b7d4188173d2bd955823d

5£2b1695a90d4£9£a99¢c53a03b8b111£fbf98ac4/73ae84d0b3c/57858645a59dd

04dc/799cd221282f1f3ca48a8d1125ee35bfcfl1feb4028f63a21le/5750ad42et

37513c5d16e0730d4a/7688bc/78/7/473d72e7450b41b84904/b699ab6154e3e7a8

b28965b9a5e2e00c69522910af/a94c36a88198aba/9b542cdf28d33e/77e7731

e97611e08234b70e90b0daaactded14a9beal8b44/55263d3edd2abe88c/7ed4£2

b3e18156e13b518f6eca38ccB8813c83d3b6E8/dee/40badeclic8abec6/d/7225

1c62c433ae59a1d66/ce5b368861elc9cla4454bl/e2bea2fdffdale’3cc81338

295af1061e14fd15dfd/7754a35b4b5f4da8/3£fd2337eacacd360b9a8albebe29

4fb4077354559b7c4a5d34ad8£9c09dad4549326cc3a03103fa8ae369e/13552d

3c6d9984b463d0d83a0fd95efdb60elaaac59419p6d/dfcb2¢c3£10c900£3£d7 3d

4c572303ae9d838c6ab653b65665de03e60df2657a529¢c94a5£13¢c03£00d9£052

2694724def47a9ceb4399a772ecef4/c9p113a70200£160£19f£76041a5£557¢

€aa997a930929003b32ea8d8ct/b87e80c43c66/6acb2b/3e879f5da237£3df0

a2ee848e30207/0a1428563b3f9beale5£93437/b56d6101£8bcBal/6045cadeda

b6fe574d1712038122a0e/7£67c47£127b27ba/7148b9£3c603b301/5€29815d87

2f482bad31bcObbc500ac/30f0al2ebdc/0da55a0cc19717486b628e73499a487

c8/7c/5fec33109ef936ad629ee8b2ac/ec44d37/9£d413£2239e571e402455054

80b35ca5fa8b2f4bb4a886aa9e4cl/ea9952997214b6e/ee/75241254828707e4

3b3a550a81c0fa8e5808bc24676c5el1b464/5££9653282¢c/0ee485293ed/6e57

06a225c00eb6b/83cbbb6eef8cblbO3bf9abad457e4/74fefal64/b95e88b4be4546

2d949d5b7ad84e84325£8ad16cac82392b2b/75£df48£452204dc986295b2709f

87ceald/526430288cff806abce927eac2c5189d1bc9bebeb8585£62cdd4cb/e3

0d3dce416fbd8290f£4b88b8460d2bb/cb/673¢c3033£416dd064b2136195ffc5d

88fa3226a81482edabcaa4a8b/81a27177a90c86549aae2/7d444d08a/aad66d

20d024aca4a02/fe8f5deab/d874ddff63c2bef5bbc59272ea8e10/7/65c059¢c9%e

204£93554b3ffaeal488ab40a33/7/4£02cb6357709b6b025£5ba281abbad4482d7/

31£68149calab2/ad96a815alb35dbcfe4410e610c5ca86afc/d96963abell37/

e660ad44/87/d6al3028cead42fdfbf@5cf6dbc94dff2df9c4ad68944£fc/33at57

c/3fcff372d8199b723463fbb403c43a/ed99a80dchec64a245516492e02e94b

32675£996dcf2367569c426a9e23£14109580361c43628e83eff35648ff2ebcl

/3£3e78d9dde5d5a41a779d789d3eb6bbebl115328aa6484d49pb4£fab/8703b15el

./packages/contracts/contracts/libraries/utils/Lib_BytesUtils.sol
./packages/contracts/contracts/libraries/utils/Lib_Buffer.sol
./packages/contracts/contracts/libraries/utils/Lib_MerkleTree.sol
./packages/contracts/contracts/libraries/codec/Lib_0VMCodec. sol
./packages/contracts/contracts/libraries/constants/Lib_DefaultValues.sol
./packages/contracts/contracts/libraries/constants/Lib_PredeployAddresses.sol
./packages/contracts/contracts/libraries/bridge/ICrossDomainMessenger.sol
./packages/contracts/contracts/libraries/bridge/CrossDomainEnabled. sol
./packages/contracts/contracts/libraries/bridge/Lib_CrossDomainUtils.sol
./packages/contracts/contracts/L2/messaging/L2StandardTokenFactory.sol
./packages/contracts/contracts/L2/messaging/L2CrossDomainMessenger.sol
./packages/contracts/contracts/L2/messaging/IL2ERC20Bridge. sol
./packages/contracts/contracts/L2/messaging/IL2CrossDomainMessenger. sol
./packages/contracts/contracts/L2/messaging/L2StandardBridge. sol
./packages/contracts/contracts/L2/predeploys/WETH9. sol
./packages/contracts/contracts/L2/predeploys/0OVM_SequencerFeeVault.sol
./packages/contracts/contracts/L2/predeploys/0OVM L2ToL1MessagePasser.sol
./packages/contracts/contracts/L2/predeploys/i0VM_L1BlockNumber. sol
./packages/contracts/contracts/L2/predeploys/i0OVM L2ToL1MessagePasser.sol
./packages/contracts/contracts/L2/predeploys/0OVM ETH. sol
./packages/contracts/contracts/L2/predeploys/0OVM_GasPriceOracle.sol
./packages/contracts/contracts/L2/predeploys/0OVM DeployerWhitelist.sol
./packages/boba/contracts/contracts/ERC/721Registry.sol

. /packages/boba/contracts/contracts/ERC2470.sol

. /packages/boba/contracts/contracts/TokenPool .sol

. /packages/boba/contracts/contracts/L1MultiMessageRelayerFast.sol
./packages/boba/contracts/contracts/L1CrossDomainMessengerFast.sol

. /packages/boba/contracts/contracts/ERC721Genesis.sol
./packages/boba/contracts/contracts/AtomicSwap.sol
./packages/boba/contracts/contracts/standards/L2GovernanceERC20. sol
./packages/boba/contracts/contracts/standards/IL2StandardERC721.sol
./packages/boba/contracts/contracts/standards/L2StandardERC721.sol
./packages/boba/contracts/contracts/test-helpers/OMGLikeToken. sol
./packages/boba/contracts/contracts/test-helpers/L1ERC20.sol
./packages/boba/contracts/contracts/test-helpers/L1ERC721.sol
./packages/boba/contracts/contracts/test-helpers/Message/L2Message.sol
./packages/boba/contracts/contracts/test-helpers/Message/L1Message.sol
./packages/boba/contracts/contracts/bridges/LINFTBridge.sol
./packages/boba/contracts/contracts/bridges/L2NFTBridge. sol
./packages/boba/contracts/contracts/bridges/interfaces/iLINFTBridge. sol
./packages/boba/contracts/contracts/bridges/interfaces/iL2NFTBridge. sol
./packages/boba/contracts/contracts/libraries/CrossDomainEnabledFast. sol
./packages/boba/contracts/contracts/libraries/Lib_ResolvedDelegateProxy.sol
./packages/boba/contracts/contracts/DAO/governance/SafeMath. sol

./packages/boba/contracts/contracts/DAO/governance/Timelock. sol

./packages/boba/contracts/contracts/DAO/governance/GovernorBravoInterfaces. sol

cladf18448eb8e0/1edd5d2b0a5003/a/76a83f£2e60c235471c9fcd5371123766
489be8a9c6b/7a544ed/538d1ffb5e53cd6440ef4c33ced40elfa2/d3e5£722b0O9¢c
08c65a08274£e8228b422165368618/562265celb6cdf1c99026dd2b52cc8b373
518aad3fc2/767ee5896d2d9al14361e99bc3cf6823727c37/b71959439/c1/7988¢%
5548671£0b64e26cf5915392686905£07/5587e2eea81319/cfea2087/50a0e8f
60230cf3aaaa8e3543d8bd1lde922440cbaca3cc591c4a4d1£0bd9822212clafc

02c£8d6300a4b14/96e24/d/be5d051b198228ec3aelcb6elf833c268b/b4atcs

Tests

e978d46089dfd91eec7a50£e068£491203fc£1da®5597d547983a5783b85ae78
937ef704e4ecab548e4c56ee3a21bf387bb3c240592b£9b21150d3db5bal97ac
/fbb4f9fadee/ecc/76c5300cfec295838e608e188e9d114dfab29f5ab43ea3c8
669£50ddda95c1£0614e8678d991d6df9e2407e5dd1c68e03ffe5d1b89e332f4
a000a489cdfaed89176c213789ddlectb9e62c99c6513341ac3afd/d85549£9f

2b7cdeaab4dd84aaece’351defd57b581406cbe373b6299e72fe7816da5eb94c7/5

./packages/boba/contracts/contracts/DAO/governance/GovernorBravoDelegate. sol
. /packages/boba/contracts/contracts/DAO/governance/GovernorBravoDelegator. sol
. /packages/boba/contracts/contracts/DAO/governance-token/BOBA. sol
./packages/boba/contracts/contracts/LP/L2LiquidityPool.sol
./packages/boba/contracts/contracts/LP/L1LiquidityPool.sol
./packages/boba/contracts/contracts/LP/interfaces/iL2LiquidityPool.sol

./packages/boba/contracts/contracts/LP/interfaces/iL1LiquidityPool.sol

./integration-tests/.eslintrc.js
./integration-tests/hardhat.config.ts
./integration-tests/sync-tests/l-sync-verifier.spec.ts
./integration-tests/sync-tests/2-sync-replica.spec.ts
./integration-tests/contracts/Test00G.sol

./integration-tests/contracts/ERC20. sol

lca3ea3ac83cebce53£51b953d498b3£3113b9666€2a630/b7614dbl3cOb366b
61d557943ce34018551£dd0a836525££70£224b9445alcat2f56£d9c19bc8be5
e0/dce@fb57295020654c809654dadf/78a1a395823582de3/79ab912¢cb2d63cc
/9eecd2£5307cb98c8d3b8776c14f5bad6469f046felc/eddc888e13/d88ae2b
6déc3e5c3clfedaad208461431b05d59d849d66821alcl23/cOdd5def/5542a9
Ob899b5c342f£f8ffaf407611b2ea3c8d264d66390£/d27a359a389£1d693£8b5
d69c071086eb4b56ebb/7£2923d695d1c8al5e0c9£223a8103/7/ba8122306249at
97e44358b64b/c4c3ablf5d/3b4a/ccat002e08d/£6d42ba2c9eb/cbf83d2£17
551ff0ceB4a0ad4d2d1lb2fcO1dfcO@9bcebc589dalcb8a0e5587bcf9£684995eb7/
abeaf?2e/75eb9737a9e65dd41b835e9165a1cf96c29bb3d697/£c9e21164e04c06
07861a63£51e£69610d1a09282fe03£103e9/d45f7aaefa432236848e041666c¢C
2d866043b55cea8879f1e3095e6131dbecb02ab3015dbe82£2£2c150031d83a4
£9189051dad321b22db843cec5£38b76£9£12b3¢c5459392/49bacclPedad10a
7/6c110758a6ed38627b2af49e23£4598d98dcl143ac54a/71e/7037c1f/73c2¢cf299
elb825c97/bd25e908799048a1d0d522cba3848£5834e4fcb2d2e/7d06bt2e4790
3e956b1225e€a16b845151d7¢c41d195868eac66ebb659fct/flee/c61230364¢ee
4e5daleb6a579295e3£53fd440434486aeb6ecdb6390e4/6e//7a41da/d/bdb6casd
5188aeleffeb39e4360f185/6aaba4lecfa8ee5d56961d8574a/78b4£6cab8683
90£4442d2e37ec36770ee654b9c9337034£4870ac462d352429bal1429df04955
1616a318add8e/7alb8cc690942a/798b82a92££3052a138e528£2dd348a697981
15abf5c76035633019434d3¢c901798b£348111416£8dc3058693¢c9£1£2704c12
/a4e850c4b5f05afe2fd2661225da5b5cdfBe2fd3037ae8c3d/69a4df19817d7/
938c75523dbad4ba33c95/£f7c83ee62addd2980c989ddad5tf/b4/bd2a0£3407/
850eee0265c46d5c2e11d2265ca/704127b913900edf3d840736aebd4£46b2c9
b434d8889c63£315827e0/7/bcf43ed8cc3ab005b89efdce/5¢c629c0871dcctled
b4el1f9ac83bf657/£9281e535257¢c8bd237bc198fe2479fa573¢c90d1la4bde2a53
1a6017eb2c32673dc54b38560c908b6el6£130a11368dda43e8a3410a1189¢c29

d615b7d0acc9805£90fab29c1d4f0e4da/8t50ef5a3033e5e/7/9d49bab//7/b2ab5s

Changelog

« 2021-12-21 - Initial report

« 2022-01-21 - Reaudit report

./integration-tests/contracts/OVMMulticall.sol
./integration-tests/contracts/SimpleStorage.sol
./integration-tests/contracts/Proxy.sol
./integration-tests/contracts/0VMContextStorage.sol
./integration-tests/contracts/Reverter.sol
./integration-tests/contracts/ValueCalls.sol
./integration-tests/contracts/ConstructorReverter.sol
./integration-tests/test/native-eth-ovm-calls.spec.ts
./integration-tests/test/basic-l1-l2-communication.spec.ts
./integration-tests/test/stress-tests.spec.ts
./integration-tests/test/fee-payment.spec.ts
./integration-tests/test/pool _dao_actions.spec.ts
./integration-tests/test/native-eth.spec.ts
./integration-tests/test/erc20.spec.ts
./integration-tests/test/setup-docker-compose-network.js
./integration-tests/test/nft bridge.spec.ts
./integration-tests/test/basic _nft.spec.ts
./integration-tests/test/whitelist.spec.ts
./integration-tests/test/rpc.spec.ts
./integration-tests/test/ovmcontext.spec.ts
./integration-tests/test/mrf lp.spec.ts
./integration-tests/test/mrf message.spec.ts
./integration-tests/test/queue-ingestion.spec.ts
./integration-tests/test/shared/stress-test-helpers.ts
./integration-tests/test/shared/utils.ts
./integration-tests/test/shared/watcher-utils.ts
./integration-tests/test/shared/env.ts

./integration-tests/test/shared/docker-compose.ts

About Quantstamp

Quantstamp is a ¥ Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,
and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected S5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment
services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;
however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.
Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.
Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the
content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as
described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or
operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.
Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.
Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that
could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of
products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

n Quantstamp’ Boba Network Audit

AL BRI RILTILGIR LEIARL O e O S L N O (A S N N NI OIS

