
January 9th 2020 — Quantstamp Verified

OmiseGO Plasma Framework

This smart contract audit was prepared by Quantstamp, the protocol for securing smart contracts.

Executive Summary

Type Protocol

Auditors Kacper Bąk, Senior Research Engineer
Ed Zulkoski, Senior Security Engineer
Jan Gorzny, Blockchain Researcher

Timeline 2019-10-21 through 2020-01-10

EVM Byzantium

Languages Solidity, Javascript

Methods Architecture Review, Unit Testing, Functional Testing, Computer-Aided Verification, Manual Review

Specification More Viable Plasma
Integration Doc
Architecture and Design

Source Code
Repository Commit

plasma-contracts bab16ae

Goals Can a malicious user compromise funds from OMG network users?•

Can a malicious user disrupt users to deposit, withdraw or perform transactions on the OMG network?•

Can users safely exit their funds in the presence of malicious owner?•

How can the existing code be improved?•

Changelog 2019-11-22 - Initial report•

2020-01-10 - Reaudit based on commit• 9d79e35

https://github.com/omisego/elixir-omg/blob/master/docs/morevp.md
https://github.com/omisego/plasma-contracts/blob/master/plasma_framework/docs/integration-docs/integration-doc.md
https://github.com/omisego/plasma-contracts/blob/security_spec/security/spec.md
https://github.com/omisego/plasma-contracts/
https://github.com/omisego/plasma-contracts/commit/bab16aee4e799af9bbbf06d3ad97df701f91c273


Overall Assessment We have done a thorough review of OmiseGO's

implementation of Plasma Framework. The audit

included the design, architecture, and the actual

codebase. Although most of the issues we have

found are minor, we consider the denial-of-service

issue (already fixed) a high-severity one, whereas

UTXO fragmentation as a medium-severity one.

Overall, the code conforms to the presented

specification. It is mostly well-documented and

adheres to best practices. It features good

modularization and architecture. In the report, we

provide further ideas for design and code

improvements. Design-wise, we think that

piggybacking on IFE introduces unnecessary

complexity for end-users, and, therefore, we

encourage carrying out additional research to

smoothen out end-user experience.

we reaudited the code based on commit

. Since the between this and the

previous commit contains over 250

commits and significant code changes, our reaudit

was only concerned with the changes that

addressed findings from the initial report.

Update:

9d79e35 diff

bab16ae

Total Issues 8 (6 Resolved)

High Risk Issues 1 (1 Resolved)

Medium Risk Issues 1 (0 Resolved)

Low Risk Issues 5 (4 Resolved)

Informational Risk Issues 0 (0 Resolved)

Undetermined Risk Issues 1 (1 Resolved)

High Risk The issue puts a large number of
users’ sensitive information at risk,
or is reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would
be detrimental for the client’s
reputation if exploited, or is
reasonably likely to lead to
moderate financial impact.

Low Risk The risk is relatively small and
could not be exploited on a
recurring basis, or is a risk that the
client has indicated is low-impact
in view of the client’s business
circumstances.

Informational The issue does not post an
immediate risk, but is relevant to
security best practices or Defence
in Depth.

Undetermined The impact of the issue is
uncertain.

Unresolved Acknowledged the existence of the
risk, and decided to accept it
without engaging in special efforts
to control it.

Acknowledged the issue remains in the code but
is a result of an intentional
business or design decision. As
such, it is supposed to be
addressed outside the
programmatic means, such as: 1)
comments, documentation,
README, FAQ; 2) business
processes; 3) analyses showing
that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to
eliminate the risk.

Summary of Findings

ID Description Severity Status

QSP-1 Denial-of-Service (DoS) High Resolved

QSP-2 UTXO fragmentation may make exits prohibitively expensive Medium Acknowledged

QSP-3 Merkle tree susceptible to second preimage attack Low Resolved

QSP-4 Possible out of bounds access in RLPReader._itemLength() Low Resolved

QSP-5 Race Conditions / Front-Running Low Unresolved

QSP-6 Enforce ownership renouncement Low Resolved

QSP-7 A malicious maintainer may steal funds by setting a bad deposit
verifier

Low Resolved

QSP-8 Maintainer may register a malicious game Undetermined Resolved

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

https://github.com/omisego/plasma-contracts/compare/bab16ae%E2%80%A69d79e35


Setup

Tool Setup:

• Truffle

• Ganache

• SolidityCoverage

• Mythril

• Securify

• Slither

Steps taken to run the tools:

1. Installed Truffle: npm install -g truffle

2. Installed Ganache: npm install -g ganache-cli

3. Installed the solidity-coverage tool (within the project's root directory): npm install --save-dev solidity-coverage

4. Ran the coverage tool from the project's root directory: ./node_modules/.bin/solidity-coverage

5. Installed the Mythril tool from Pypi: pip3 install mythril

6. Ran the Mythril tool on each contract: myth -x path/to/contract

7. Ran the Securify tool: java -Xmx6048m -jar securify-0.1.jar -fs contract.sol

8. Installed the Slither tool: pip install slither-analyzer

9. Run Slither from the project directory slither .

Assessment

Findings

QSP-1 Denial-of-Service (DoS)

Severity: High Risk

ResolvedStatus:

, , , ,

,

File(s) affected: ExitGameController.sol EthVault.sol PaymentProcessStandardExit.sol PaymentChallengeIFEInputSpent.sol
PaymentChallengeIFEOutputSpent.sol PaymentProcessInFlightExit.sol

A Denial-of-Service (DoS) attack is a situation in which an attacker renders a smart contract unusable. In the context of

, the line 49 of may get executed to return ETH during an exit. Since there is no restriction on how much

gas will get, a malicious receiver may decide to use up all the forwarded gas which may lead to reverting the transaction that invoked

. Consequently, (for a given token and vault), one may block all of the subsequent exits. Similar attack is possible for

malicious ERC20 tokens (via ).

Description:

ExitGameController.processExits() EthVault.sol
receiver

ExitGameController.processExits()
Erc20Vault.sol#53

Additionally, please note the following lines that forward all gas to the receiver:

,• PaymentProcessStandardExit.sol#58

,• PaymentChallengeIFEInputSpent.sol#114

, and• PaymentChallengeIFEOutputSpent.sol#70

and• PaymentProcessInFlightExit.sol#92 #108

See .Exploit Scenario: Issue 385

For ETH transfers, we recommend defining a custom method that performs the transfer with a predefined gas limit. The custom

function shall be used in place of without the gas limit. The issue has been addressed in .

Recommendation: transfer()
transfer() call.value() PR 248

For ERC20 tokens we recommend that the maintainer carefully reviews their code to ensure that the DoS/gas griefing attack does not occur.

QSP-2 UTXO fragmentation may make exits prohibitively expensive

Severity: Medium Risk

AcknowledgedStatus:

The support for micro-transactions is an important use case for Plasma. Micro-transaction may lead to UTXO fragmentation. Consequently, if a user (or

set of users) is in possession of a significant number of small valued UTXOs, it may be prohibitively expensive to exit the UTXOs from the Plasma chain due to the gas

cost. Furthermore, malicious operator could take advantage of such a situation and steal funds while performing an exit. Although, UTXO fragmentation is a known

Plasma issue, the audited codebase does not address this problem directly. See .

Description:

Issue 427

Exploit Scenario:

1. The operator notices that a user (or several users) have many low value UTXOs, such that it is not gas-efficient to exit them.

2. The operator spawns an out-of-nowhere transaction to exit, which has value proportional to the sum of these low valued UTXOs. (The value of operator's transaction
would likely have to be somewhat lower than the full sum, in case a few of the low valued UTXOs exit anyway.)

3. The users decide to not exit since it would be too costly, and the operator is able to exit the funds.

The issue could largely be prevented if users/wallets regularly and proactively consolidate their funds on the Plasma chain by creating transactions

that send multiple input UTXOs to themselves with a single output. It is important to note that consolidation needs to happen before an attack occurs, or else the

operator would have higher priority when exiting the funds.

Recommendation:

https://truffleframework.com/
https://truffleframework.com/ganache
https://github.com/sc-forks/solidity-coverage
https://github.com/ConsenSys/mythril
https://github.com/eth-sri/securify
https://github.com/crytic/slither
https://github.com/omisego/plasma-contracts/issues/385
https://github.com/omisego/plasma-contracts/pull/428
https://github.com/omisego/plasma-contracts/issues/427


QSP-3 Merkle tree susceptible to second preimage attack

Severity: Low Risk

ResolvedStatus:

File(s) affected: Merkle.sol

is a well-known issue with Merkle tree implementations. In the current implementation, the function

may be called for intermediate nodes as opposed to checking only leaves.

Description: Second preimage attack

Merkle.checkMembership()

See .Exploit Scenario: Issue 425

We recommend prepending a byte to each node in the tree to discriminate between leaf and intermediate nodes. Second part of the an effective

solution is to fix the size of the Merkle tree. As the team informed us, the height of the used Merkle trees is always 16.

Recommendation:

QSP-4 Possible out of bounds access in RLPReader._itemLength()

Severity: Low Risk

ResolvedStatus:

File(s) affected: RLPReader.sol

Related Issue(s): SWC-110

The function takes a and attempts to decode an RLP encoded item to return its complete size (tag + length +

payload). The function does not have any information about the length of the buffer it is working on. Consequently, it cannot check if it reads out-of-bounds. It has to

rely on the caller to do bounds checking.

Description: RLPReader._itemLength() memPtr

See .Exploit Scenario: Issue 409

We recommend passing the buffer (instead of the memory pointer) and performing bounds checking while decoding. The issue has been addressed

in .

Recommendation:

PR 396

QSP-5 Race Conditions / Front-Running

Severity: Low Risk

UnresolvedStatus:

,File(s) affected: PaymentStandardExitRouter.sol PaymentInFlightExitRouter.sol

Related Issue(s): SWC-114

A block is an ordered collection of transactions from all around the network. It's possible for the ordering of these transactions to manipulate the end result

of a block. A miner attacker can take advantage of this by generating and moving transactions in a way that benefits themselves.

Description:

Specifically, as anyone can see the challenge transactions in the transaction pool, they may try to front-run them. This may disincentivize legitimate users from

attempting challenges. The following functions are vulnerable to front-running:

,• PaymentStandardExitRouter.challengeStandardExit()

,• PaymentInFlightExitRouter.challengeInFlightExitOutputSpent()

, and• PaymentInFlightExitRouter.challengeInFlightExitInputSpent()

• PaymentInFlightExitRouter.challengeInFlightExitNotCanonical()

Currently we have no recommendation. One could design a protocol that is resistant to TOD, but it would make the implementation of challenges

more complex. At this point, the benefit of doing that is unclear.

Recommendation:

QSP-6 Enforce ownership renouncement

Severity: Low Risk

ResolvedStatus:

,File(s) affected: OutputGuardHandlerRegistry.sol SpendingConditionRegistry.sol

Both and are expected to have their ownership renounced before injecting the

registries to the contracts. Although stated in the documentation, this requirement is not enforced programmatically. Hence, there is nothing requiring the

owner to actually renounce the ownership. As such, the owner could register new output guard handlers and spending conditions to perform malicious operations on

the Plasma chain.

Description: OutputGuardHandlerRegistry SpendingConditionRegistry
ExitGame

We recommend enforcing the ownership renouncement programmatically. For example, the vaults may reject any deposits as long as

and have owners.

Recommendation:

OutputGuardHandlerRegistry SpendingConditionRegistry

https://en.wikipedia.org/wiki/Merkle_tree#Second_preimage_attack
https://github.com/omisego/plasma-contracts/issues/425
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://github.com/omisego/plasma-contracts/issues/409
https://github.com/omisego/plasma-contracts/pull/396
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114


QSP-7 A malicious maintainer may steal funds by setting a bad deposit verifier

Severity: Low Risk

ResolvedStatus:

File(s) affected: Vault.sol

If a malicious maintainer (colluding with the operator) sets a faulty deposit verifier, they may be able to submit a fake deposit and exit funds before other

standard exits. It is possible because: 1) the function sets the maturity timestamp (on line 52) to be a single exit period, and 2) exits

of deposits are shorter than standard exits (as defined in ).

Description:

Vault.setDepositVerifier()
ExitableTimestamp.sol

Exploit Scenario:

1. At time , the maintainer sees a very large payment of tokens from Alice to Bob, which is still in-flight. At this moment, the maintainer first sets a new deposit
verifier, which will allow the maintainer to verify any deposit they want. This will only go into effect after the delay as specified on (i.e., after 1 exit
period). Shortly after, the in-flight transaction is included in the child chain, say at time .

T_0 N
Vault.sol#L52

T_0 + delta

2. At some point soon after, Bob realizes that this new deposit verifier is fraudulent. Since Bob sees the transaction included in the child chain, he attempts a
exit on the transaction. This exit will be allowed to complete at time .

standard

T_0 + delta + 2 exit periods

3. At time , the malicious maintainer creates a fake deposit indicating that they've deposited tokens, where is the amount in the payment
above. This will be scheduled for exit at time .

T_0 + 1 exit period N N
T_0 + 2 exit periods

4. The malicious maintainer exits at time .T_0 + 2 exit periods

5. Bob cannot exit at time , since in step (4) all the funds were wiped.T_0 + delta + 2 exit periods

We have the following recommendations. First, users should be made aware of scenarios where standard exits are insufficient. Second, enhance the

watcher so that it can recognize a new deposit verifier, informs the user, and, if necessary, performs an in-flight exit of user's funds (even if the transaction is included

on the side chain). Furthermore, consider a longer delay before the new deposit verifier goes into effect so that the user is able to start a standard exit to recover their

funds.

Recommendation:

QSP-8 Maintainer may register a malicious game

Severity: Undetermined

ResolvedStatus:

File(s) affected: ExitGameRegistry.sol

Maintainer has the privilege of adding new exit games. Each new exit game is quarantined for three exit periods -- that's the period in which the

community of Plasma chain users may audit the newly added exit game. In case they realize that the game is malicious, they may decide to exit the chain. Given that it

may take two exit periods to perform an exit, is it realistic that the community discovers a problematic exit game within a single exit period?

Description:

Currently we have no recommendation.Recommendation:

Automated Analyses

Mythril

Mythril reported the following:

multiple Calls in a Single Transaction in and ,• EthVault.withdraw(address,uint256) Erc20Vault.sol#52

Exception State in , , , , , and ,• EthVault.sol#34 EthVault.sol#49 Vault.sol#21 PriorityQueue.sol#75 Erc20Vault.sol#30 EthVault.sol#49

External Call To User-Supplied Address in ,• EthVault.sol#49

Unchecked Call Return Value in ,• EthVault.sol#49

Unprotected Ether Withdrawal in ,• EthVault.sol#49

Integer Overflow in ,• Erc20Vault.sol

External Call To Fixed Address in , and• Erc20Vault.sol#57

External Call To User-Supplied Address in .• Erc20Vault.sol#57

Upon closer inspection, we classified them as non-issues.

Securify

Securify did not report any issues.

Slither

Slither reported the following:

ETH transfer to arbitrary user in: , , ,
, and .

• EthVault.sol#49 PaymentProcessStandardExit.sol#58 PaymentChallengeIFEInputSpent.sol#114
PaymentChallengeStandardExit.sol#96 PaymentChallengeIFEOutputSpent.sol#70

the following functions declared views that contain assembly code: , , ,
, , , , ,

, , and .

• Address.isContract() Merkle.checkMembership() ECDSA.recover()
RLPReader.toRlpItem() RLPReader.isList() RLPReader.toRlpBytes() RLPReader.toUint() RLPReader._itemLength()
RLPReader._payloadOffset() RLPReader.copy() RLPReader.toBytes()

the following local variables that are never initialized: , ,
, , ,

, and .

• PaymentProcessInFlightExit.sol#92 PaymentProcessInFlightExit.sol#108
PaymentProcessInFlightExit.sol#126 PaymentProcessInFlightExit.sol#199 PaymentProcessInFlightExit.sol#207
ZeroHashesProvider.sol#9 PaymentStartInFlightExit.sol#142

return values by external calls are ignored in , , and
.

• PaymentStartStandardExit.sol#214 PaymentPiggybackInFlightExit.sol#180
ExitGameController.sol#165

Upon closer inspection, we classified them as non-issues.



Adherence to Specification

The specification is comprehensive and well-written. We have, however, the following concerns:

the functions and don't check .
resolved.

• EthDepositVerifier.verify() Erc20DepositVerifier.verify() decodedTx.outputs[0].outputType Update:

from the design standpoint, it is unclear why users must issue a second transaction to piggyback an IFE that they created. Furthermore, it is unclear what the
use case for initiating an in-flight exit by non-participant is.

•

Code Documentation

The code is mostly well-documented, however, in the comment block for , field descriptions are

missing for and . resolved.

PaymentInFlightExitRouterArgs.ChallengeCanonicityArgs
inputTx inputUtxoPos Update:

Adherence to Best Practices

Although the code uses the experimental feature , overall, it conforms to best practices and it makes good use of modularization. We provide further

ideas for improvements below:

ABIEncoderV2

in there is no need to import . We recommend importing instead.
resolved.

• FailFastReentrancyGuard.sol PlasmaFramework.sol ExitGameController.sol
Update:

in there is a strict equality requiring user to approve an exact amount of tokens. Such a design prohibits the user from
making a single approval for multiple deposits. To facilitate flexibility and to reduce gas usage, we recommend using instead of equality. Furthermore, the
comment in line would hint on the recommended approach. resolved.

• Erc20DepositVerifier.sol#46
>=

Erc20Vault.sol#32 Update:

in there is an unused variable which is write-only. We
recommend removing it. resolved.

• PaymentInFlightExitModelUtils.isFirstPiggybackOfTheToken() isPiggybackInput
Update:

in following the line 32, we recommend checking the length of , e.g.,
. resolved.

• WireTransaction.sol output require(4 == output.length, "Invalid
output encoding") Update:

in the function takes as an argument. We recommend simplifying the code by introducing a
unique internal counter that could then be used to generate and return it from the function.

• VaultRegistry.sol registerVault() uint256 _vaultId
_vaultId

has inconsistent definitions; for example, it is defined as in and
, whereas it is defined as in

and . resolved.

• utxoPos uint192 PaymentExitDataModel.StandardExit
PaymentStandardExitRouterArgs.StartStandardExitArgs uint256 ExitChallenged.PaymentStandardExitRouter

UtxoPosLib.UtxoPos Update:

similarly, is defined as in , whereas is it defined as in
. resolved.

• exitId uint160 ExitId.getStandardExitId() uint192
PaymentExitDataModel.StandardExitMap Update:

unlocked pragma in . Since it's a clone-and-owned library, we recommend locking pragma as in other contracts. resolved.• RLPReader.sol Update:

since the max number of outputs and inputs associated with a UTXO is 4, the data type for indices could be instead of (e.g., the return value of
, or input of ).

• uint8 uint16
UtxoPosLib.outputIndex() PaymentOutputToPaymentTxCondition.verify()

it is unclear why the function takes a second unnamed argument (presumably vault Id). If it is not used, we recommend
removing it.

• PaymentExitGame.processExit()

it is unclear why takes as an argument. If deposit's output UTXO is always zero, we recommend
removing it.

• OutputId.computeDepositOutputId() _outputIndex

in , it is unclear why there are both and . The former
appears wrong since it does not shift the . However, is not used anywhere in the code base; we recommend removing it. resolved.

• PaymentInFlightExitModelUtils.sol clearOutputPiggyback() clearOutputPiggybacked()
index Update:

typos: in : "unucessful" -> "unsuccessful", and : "depost" -> "deposit". resolved.• EthVault.sol ExitId.sol Update:

constants and are re-defined in multiple different places (e.g., ,
, , , ). We recommend

extracting them to some shared contract/library. resolved.

• MAX_INPUT_NUM MAX_OUTPUT_NUM PaymentInFlightExitModelUtils.sol
PaymentExitDataModel.sol PaymentPiggybackInFlightExit.sol PaymentTransactionModel.sol PaymentEip712Lib.sol

Update:

the field is not used anywhere in the code. We recommend removing it. resolved.• EthVault.withdrawEntryCounter Update:

Test Results

Test Suite Results

Contract: PlasmaFramework - Fee Claim
Given contracts deployed, ETH exitQueue added to the framework
When Alice deposits ETH to the plasma
When Alice transfers to Bob, fee is implicitly collected
And then operator mined the block with the first fee tx claiming the fee

When Alice transfers to Carol, fee is implicitly collected
And then operator mined the block with the second fee tx claiming the fee
And then the operator spends the 2 fee claim outputs in a payment transaction

✓ should be able to standard exit the fee via payment transaction (631ms)
✓ should be able to in-flight exit the fee via Payment transaction (2865ms)

Contract: PaymentExitGame - In-flight Exit - End to End Tests
Given contracts deployed, exit game and both ETH and ERC20 vault registered
>>> TEST CASE: Canonical Basic
Given Alice deposited ETH



Given Alice started a canonical in-flight exit from transaction to Bob that is not mined
And owner of the output (Bob) piggybacks

✓ should emit InFlightExitOutputPiggybacked event
And someone processes exits for ETH after two weeks

✓ should transfer the funds to the output owner (Bob)
✓ should publish an event
✓ should mark output as spent

>>> TEST CASE: Non-Canonical Basic
Given Alice deposited ETH two times, creating output A and output B
When Alice signs a tx1 to Bob using output A and output B as input

And then Alice also signs another competing tx2 to Carol using output A as input
When Bob starts IFE on tx1
And Bob piggybacks the output of tx1
Then the IFE of tx1 is challenged non-canonical by Carol
And then Alice piggybacks both outputs output A and output B

And then the piggyback of output A is challenged with tx2
When someone processes exits after two weeks

✓ should return only funds of output B to Alice (input exited)
✓ should NOT return fund to Bob (output not exited)

>>> TEST CASE: Competing IFEs With One Canonical And The Other Non Canonical
Given Alice and Bob deposits, creating output A and output B respectively
Given Alice and Bob both sign the tx1 spending output A and output B as input

And then Bob signs another tx2 spending output B
Bob starts IFE for tx2 first
Nex Alice starts IFE for tx1
Both IFEs are challenged non-canonical
Suddenly Operator (Authority) includes tx2 and respond to the IFE of tx2

Alice piggybacks the input of tx1 and Bob piggybacks the output of tx2
Someone processes both exits after 2 weeks

✓ should exit the output of tx2 to Bob
✓ should return IFE bond for tx2 to IFE responder (Operator)
✓ should exit the input of tx1 to Alice

Contract: PaymentExitGame - Standard Exit - End to End Tests
Given contracts deployed, exit game and both ETH and ERC20 vault registered

✓ should not allow to call processExit from outside of exit game controller contract (89ms)
Given Alice deposited with ETH

✓ should have transferred the ETH from Alice to vault
When Alice starts standard exit on the deposit tx

✓ should save the StandardExit data when successfully done (54ms)
✓ should put the exit data into the queue of framework (119ms)
And then someone processes the exits for ETH after a week

✓ should return the fund plus standard exit bond to Alice
Given Alice deposited ETH and transferred some to Bob
When Bob tries to start the standard exit on the transfered tx

✓ should start successully (47ms)
And then someone processes the exits for ETH after two weeks

✓ should return the output amount plus standard exit bond to Bob
Given Alice deposited ETH and transferred some to Bob
When Alice tries to start the standard exit on the deposit tx

✓ should still be able to start standard exit even already spent
Then Bob can challenge the standard exit spent

✓ should challenge it successfully
✓ should transfer the bond to Bob
✓ should not allow Alice to restart the exit (978ms)
And then someone processes the exits for ETH after two weeks

✓ should be omitted
✓ should not withdraw funds from the vault

Given Alice deposited with ERC20 token
✓ should have transferred the ERC20 token from Alice to vault
Given ERC20 token added to the PlasmaFramework

✓ should have the ERC20 token
When Alice starts standard exit on the ERC20 deposit tx

✓ should start successully (55ms)
And then someone processes the exits for the ERC20 token after a week

✓ should return the standard exit bond in ETH to Alice
✓ should return ERC20 token with deposited amount to Alice

Contract: StandardExit getter Load Test
Given contracts deployed, exit game and ETH vault registered
Given Alice deposited with ETH
When Alice starts standard exits on the deposit txs

✓ should save the StandardExit data when successfully done (30155ms)

Contract: PriorityQueue Load Test
load test on gas limit
- should test and print the gas cost for each batch size items

Contract: FeeClaimOutputToPaymentTxCondition
verify

✓ should fail when fee claim output index is not 0
✓ should fail when fee tx is not with the expected tx type (252ms)
✓ should fail when fee claim output is not with the expected output type (208ms)
✓ should fail when payment tx is not with the expected tx type (386ms)
✓ should fail when payment tx does not point to the fee claim output (349ms)
✓ should fail when failed to recover the signer from the signature (401ms)
✓ should fail when payment tx not correctly signed by the fee claim output owner (410ms)
✓ should return true when all verification passes (403ms)

Contract: PaymentExitGame
✓ should fail to deploy if the spending condition registry has not renounced its ownership (613ms)

Contract: PaymentExitGame - Reentrant Protected
standard exit functions are protected

✓ should not be able to re-enter startStandardExit (78ms)
✓ should not be able to re-enter challengeStandardExit (87ms)

in-flight exit functions are protected
✓ should not be able to re-enter startInFlightExit (82ms)
✓ should not be able to re-enter piggybackInFlightExitOnInput (81ms)
✓ should not be able to re-enter piggybackInFlightExitOnOutput (94ms)
✓ should not be able to re-enter challengeInFlightExitNotCanonical (152ms)
✓ should not be able to re-enter respondToNonCanonicalChallenge (122ms)
✓ should not be able to re-enter challengeInFlightExitInputSpent (137ms)
✓ should not be able to re-enter challengeInFlightExitOutputSpent (167ms)
✓ should not be able to re-enter deleteNonPiggybackedInFlightExit (165ms)

Contract: PaymentInFlightExitModelUtils
isInputEmpty

✓ returns true when the input is empty (233ms)
✓ returns false when the outputId is not empty (348ms)
✓ returns false when the exitTarget is not empty (398ms)
✓ returns false when the token is not empty (393ms)
✓ returns false when the amount is not empty (409ms)
✓ returns false when the piggyback bond is not empty (400ms)



isOutputEmpty
✓ returns true when the output is empty (184ms)
✓ returns false when the outputId is not empty (405ms)
✓ returns false when the exitTarget is not empty (406ms)
✓ returns false when the token is not empty (397ms)
✓ returns false when the amount is not empty (378ms)
✓ returns false when the piggyback bond is not empty (382ms)

isInputPiggybacked
✓ returns true for piggybacked input (178ms)
✓ returns false for non-piggybacked input (174ms)
✓ fails for invalid input index (73ms)

isOutputPiggybacked
✓ returns true for piggybacked output (174ms)
✓ returns false for non-piggybacked output (214ms)
✓ fails for invalid output index (42ms)

setInputPiggybacked
✓ sets input as piggybacked (312ms)
✓ does not unset already piggybacked input (316ms)
✓ fails for invalid input index (38ms)

setOutputPiggybacked
✓ sets outputs as piggybacked (299ms)
✓ does not unset already piggybacked output (314ms)
✓ fails for invalid output index (39ms)

clearInputPiggybacked
✓ clears piggybacked input (281ms)
✓ does not change not piggybacked input (320ms)
✓ fails for invalid input index (40ms)

clearOutputPiggybacked
✓ clears piggybacked output (304ms)
✓ does not change not piggybacked output (300ms)
✓ fails for invalid output index (40ms)

isInFirstPhase
✓ returns true when ife is in the first phase
✓ returns false when ife is not in the first phase (43ms)
✓ returns false when ife just passes the first phase (MIN_EXIT_PERIOD/2) (39ms)

Contract: PaymentInFlightExitRouter
✓ should fail when being deployed with unset ETH vault (132ms)
✓ should fail when being deployed with unset ERC20 vault (134ms)

Contract: PaymentStandardExitRouter
✓ should fail when being deployed with unset ETH vault (107ms)
✓ should fail when being deployed with unset ERC20 vault (120ms)

Contract: PaymentTransactionStateTransitionVerifier
verifies state transition

✓ should return true for a valid state transition (515ms)
✓ should verify transition for any combination of inputs / outputs numbers (5704ms)
✓ should return false when in-flight transaction overspends (590ms)
✓ should return false when input transactions list and utxos positions differ in length
✓ should revert when sum of outputs overflows uint256 (545ms)

Contract: PaymentExitGame - Update Bond
updateStartStandardExitBondSize

✓ should emit an event when the standard exit bond size is updated
✓ should update the bond value after the waiting period has passed

updateStartIFEBondSize
✓ should emit an event when the in-flight exit bond size is updated
✓ should update the bond value after the waiting period has passed

updatePiggybackBondSize
✓ should emit an event when the in-flight exit bond size is updated
✓ should update the bond value after the waiting period has passed

Contract: PaymentChallengeIFEInputSpent
challenge in-flight exit input spent

✓ should fail when paying out piggyback bond fails (613ms)
after successfully challenged IFE input spent

✓ should emit InFlightExitInputBlocked event
✓ should remove the input from piggybacked (91ms)
✓ should pay the piggyback bond to the challenger

check exitMap before and after challenge
✓ should remove the input from piggybacked (745ms)

failures
✓ should fail when ife not started (170ms)
✓ should fail when the indexed input has not been piggybacked (205ms)
✓ should fail when challenging tx is the same as in-flight one (217ms)
✓ should fail when the challenging transaction input index is incorrect (1139ms)
✓ should fail when challenging tx is not of MoreVP protocol (620ms)
✓ should fail when the spent input is not the same as piggybacked input (331ms)
✓ should fail when spending condition for given output is not registered (937ms)
✓ should fail when spending condition is not met (1180ms)

Contract: PaymentChallengeIFENotCanonical
challenge in-flight exit non-canonical

✓ should successfully challenge when transaction that created input tx is a deposit (451ms)
challenge in-flight exit non-canonical
when successfully challenge inFlight exit

✓ should emit InFlightExitChallenged event
✓ should set the oldest competitorPosition (92ms)
✓ should set the bond owner to challenger (92ms)
✓ should flag the exit non-canonical (85ms)

is unsuccessful and
✓ fails when provided input index is bigger then number of in-flight transaction inputs (181ms)
✓ fails when competing tx is the same as in-flight one (284ms)
✓ fails when provided input tx does not match input tx stored in in-flight exit data (294ms)
✓ fails when first phase is over (286ms)
✓ fails when competing tx is not included in the given position (846ms)
✓ fails when ife not started (182ms)
✓ fails when spending condition is not met (592ms)
✓ fails when spending condition for given output is not registered (666ms)
✓ fails when competing tx is younger than already known competitor (1416ms)
✓ fails when challenge with the same competing tx twice (1291ms)
✓ should set large competitor position when competitor is in-flight (427ms)

challenge in-flight exit non-canonical with non MoreVP tx
✓ fails when competing tx position is not in a block (783ms)
✓ fails when competing tx is included in a block (846ms)

response to non-canonical challenge
when successfully responded to non-canonical challenge

✓ should emit InFlightExitChallengeResponded event (122ms)
✓ should set isCanonical back to true (216ms)
✓ should set bond owner to caller (225ms)
✓ should set oldest competitor position to response position (203ms)

is unsuccessful and
✓ fails when in-flight exit does not exists (119ms)



✓ fails when in-flight transaction is not older than competitor (110ms)
✓ fails when in-flight transaction position is 0 (110ms)
✓ fails when the block of the in-flight tx position does not exist (135ms)
✓ fails when in-flight transaction is not included in block (171ms)

Contract: PaymentChallengeIFEOutputSpent
challengeInFlightExitOutputSpent

✓ should emit event when challenge is successful (681ms)
✓ should pay out bond to the challenger when challenged successfully (685ms)
✓ should fail when paying out piggyback bond fails (707ms)
✓ should not allow to challenge output exit successfully for the second time (989ms)
✓ should fail when exit is not started (160ms)
✓ should fail when output is not piggybacked (215ms)
✓ should fail when challenging tx is not of MoreVP protocol (856ms)
✓ should fail when in-flight transaction is not included in Plasma (749ms)
✓ should fail when spending condition for challenging tx is not registered (1343ms)
✓ should fail when challenging transaction does not spend the output (1505ms)

Contract: PaymentChallengeStandardExit
challengeStandardExit
When spending condition not registered

✓ should fail by not able to find the spending condition contract (1074ms)
Given everything registered

✓ should fail when malicious user tries attack when paying out bond (676ms)
✓ should fail when exit for such exit id does not exist (368ms)
✓ should fail when try to challenge with a tx that is not of MoreVP protocol (860ms)
✓ should fail when spending condition contract returns false (1141ms)
✓ should fail when spending condition contract reverts (1127ms)
✓ should fail when provided exiting transaction does not match stored exiting transaction (1082ms)
✓ should call the Spending Condition contract with expected params (733ms)
When successfully challenged

✓ should set exitable flag to false when successfully challenged
✓ should transfer the standard exit bond to challenger when successfully challenged
✓ should emit ExitChallenged event when successfully challenged

Contract: PaymentDeleteInFlightExit
deleteNonPiggybackedInFlightExit

✓ should fail when the exit does not exits (124ms)
✓ should fail when the exit is still in first phase (313ms)
✓ should fail when input of the exit is piggybacked (334ms)
✓ should fail when output of the exit is piggybacked (355ms)
✓ should fail when failed to transfer bond (382ms)
when the delete succeeds

✓ should send the IFE bond to the bond owner
✓ should delete the in-flight exit data (104ms)
✓ should emit InFlightExitDeleted event

Contract: PaymentPiggybackInFlightExitOnInput
piggybackOnInput

✓ should fail when not send with the bond value (86ms)
✓ should fail when no exit to piggyback on (268ms)
✓ should fail when first phase of exit has passed (317ms)
✓ should fail when input index exceed max size of tx input (378ms)
✓ should fail when the input is empty (372ms)
✓ should fail when the same input has been piggybacked (456ms)
✓ should fail when not called by the exit target of the output (464ms)
✓ should fail when there is no block for the exit position to enqueue (496ms)
When piggyback successfully

✓ should enqueue with correct data when it is the first piggyback of the exit on the token
✓ should not enqueue when it is not first piggyback of the exit on the same token (234ms)
✓ should set the exit as piggybacked on the input index (84ms)
✓ should set a proper piggyback bond size (99ms)
✓ should emit InFlightExitInputPiggybacked event

When piggyback successfully on ERC20 input
✓ should enqueue with correct data when it is the first piggyback of the exit on the token

Contract: PaymentPiggybackInFlightExitOnOutput
piggybackOnOutput

✓ should fail when not send with the bond value (74ms)
✓ should fail when no exit to piggyback on (148ms)
✓ should fail when first phase of exit has passed (331ms)
✓ should fail when output index exceed max size of tx output (381ms)
✓ should fail when the indexed output is empty (391ms)
✓ should fail when the same output has been piggybacked (478ms)
✓ should fail when there is no block for the exit position to enqueue (551ms)
✓ should fail when not called by the exit target of the output (419ms)
When piggyback successfully

✓ should enqueue with correct data when it is the first piggyback of the exit on the token
✓ should NOT enqueue with correct data when it is not the first piggyback of the exit on the token (212ms)
✓ should set the exit as piggybacked on the output index (94ms)
✓ should set a proper piggyback bond size (106ms)
✓ should set the correct exit target to withdraw data on the output of exit data
✓ should emit InFlightExitOutputPiggybacked event

Contract: PaymentProcessInFlightExit
processInFlightExit

✓ should omit the exit if the exit does not exist (49ms)
When bond return call failed
on start ife bond return

✓ should not return bond
✓ should publish an event that bond return failed

on piggyback bond return
when transaction is non-canonical

✓ should not return piggyback bond
✓ should publish an event that input bond return failed

when transaction is canonical
✓ should not return piggyback bond
✓ should publish an event that input bond return failed

When any in-flight exit is processed successfully
✓ should transfer exit bond to the IFE bond owner if all piggybacked inputs/outputs are cleaned up (303ms)
✓ should only clean the piggyback flag of the inputs/outputs with same token (108ms)
When not all piggybacks are resolved

✓ should NOT transfer exit bond to the IFE bond owner
✓ should NOT delete the exit from storage (89ms)

When all piggybacks are resolved
✓ should transfer exit bond to the IFE bond owner
✓ should delete the exit from storage (87ms)

When any input is spent, given the challenge game result is canonical
✓ should be treated as non canonical (397ms)

When the exit is non canonical, and some inputs/outputs are piggybacked
✓ should withdraw ETH from vault for the piggybacked input (305ms)
✓ should NOT withdraw fund from vault for the piggybacked but already spent input (330ms)
✓ should NOT withdraw fund from vault for the non piggybacked input (275ms)
✓ should withdraw ERC20 from vault for the piggybacked input (279ms)



✓ should return piggyback bond to the input owner (281ms)
✓ should only flag piggybacked inputs with the same token as spent (316ms)
✓ should NOT flag output as spent (340ms)
✓ should emit InFlightExitInputWithdrawn event (283ms)

When the exit is canonical, and some inputs/outputs are piggybacked
✓ should withdraw ETH from vault for the piggybacked output (420ms)
✓ should NOT withdraw from fund vault for the piggybacked but already spent output (447ms)
✓ should NOT withdraw from fund vault for the non piggybacked output (395ms)
✓ should withdraw ERC20 from vault for the piggybacked output (352ms)
✓ should return piggyback bond to the output owner (370ms)
✓ should flag ALL inputs with the same token as spent (451ms)
✓ should only flag piggybacked output with the same token as spent (411ms)
✓ should emit InFlightExitOutputWithdrawn event (342ms)

Contract: PaymentStandardExitRouter
processStandardExit

✓ should not process the exit when such exit is not exitable (120ms)
✓ should not process the exit when output already flagged as spent (155ms)
✓ should flag the output spent when sucessfully processed (128ms)
✓ should return standard exit bond to exit target when the exit token is ETH (118ms)
✓ should return standard exit bond to exit target when the exit token is ERC20 (149ms)
✓ should call the ETH vault with exit amount when the exit token is ETH (118ms)
✓ should call the Erc20 vault with exit amount when the exit token is an ERC 20 token (147ms)
✓ should deletes the standard exit data (140ms)
✓ should emit ExitFinalized event (121ms)
when paying out bond fails

✓ should not pay out bond
✓ should publish an event informing that bond pay out failed

Contract: PaymentStartInFlightExit
startInFlightExit
when calling start in-flight exit succeed with valid arguments

✓ should call the StateTransitionVerifier with correct arguments (1520ms)
✓ should store in-flight exit data (1581ms)
✓ should emit InFlightExitStarted event (1386ms)
✓ should charge user with a bond (1352ms)
✓ should succeed when first input transaction is the youngest (1447ms)
✓ should be able to start by non input or output owner (1394ms)

when in-flight exit start is called but failed
✓ should fail when spending condition not registered (1736ms)
✓ should fail when spending condition not satisfied (1869ms)
✓ should fail when in-flight transaction is an invalid state transition (2343ms)
✓ should fail when state transition verification reverts (2337ms)
✓ should fail when any of input transactions is not of MoreVP protocol (1127ms)
✓ should fail when any of input transactions is not standard finalized (1472ms)
✓ should fail when the same in-flight exit is already started (2479ms)
✓ should fail when the in-flight tx is not the supported tx type (1009ms)
✓ should fail when there too many input transaction utxos provided (994ms)
✓ should fail when number of input utxos does not match the number of in-flight tx inputs (988ms)
✓ should fail when not called with a valid exit bond (116ms)
✓ should fail when there are no input transactions provided (897ms)
✓ should fail when number of input transactions does not match number of input utxos positions (767ms)
✓ should fail when number of input transactions does not match in-flight transactions number of inputs (1113ms)
✓ should fail when number of witnesses does not match in-flight transactions number of inputs (1027ms)
✓ should fail when number of merkle inclusion proofs does not match in-flight transactions number of inputs (990ms)
✓ should fail when in-flight tx input transactions are not unique (1066ms)

Contract: PaymentStartStandardExit
startStandardExit

✓ should fail when the transaction is not standard finalized (914ms)
✓ should fail when exit with amount of 0 (520ms)
✓ should fail when the exiting tx type is not the supported one (629ms)
✓ should fail when the block of the position does not exists in the Plasma Framework (543ms)
✓ should fail when amount of bond is invalid (90ms)
✓ should fail when not initiated by the output owner (630ms)
✓ should fail when same Exit has already started (1478ms)
✓ should fail when exit has already been spent (978ms)
✓ should charge the bond from the user (573ms)
✓ should save the correct StandardExit data when successfully done for deposit tx (614ms)
✓ should save the correct StandardExit data when successfully done for non deposit tx (607ms)
✓ should put the exit data into the queue of framework (600ms)
✓ should emit ExitStarted event (569ms)

Contract: PaymentOutputToPaymentTxCondition
verify

✓ should fail when input tx does not match the supported type of payment tx (217ms)
✓ should fail when spending tx does not match the supported type of payment tx (387ms)
✓ should fail when spending tx does not point to the utxo pos in input (316ms)
✓ should fail when failed to recover the signer from the signature (392ms)
✓ should fail when spending tx not correctly signed by the input owner (418ms)
✓ should return true when all verification passes (418ms)

Contract: SpendingConditionRegistry
spendingConditions

✓ should get empty address if not registered
registerSpendingCondition

✓ should be able to register successfully (45ms)
✓ should reject when not registered by owner
✓ should not be able to register after renouncing the ownership (53ms)
✓ should reject when trying to register with output type 0
✓ should reject when trying to register with spending tx type 0 (74ms)
✓ should reject when trying to register with a non-contract address
✓ should reject when the (output type, spending tx type) pair is already registered (89ms)

Contract: BondSize
with normal cases

✓ should return the initial bond size
✓ should be able to update the bond to upperBoundMultiplier times its current value
✓ should fail to update bond to more than upperBoundMultiplier times its current value (38ms)
✓ should be able to update the bond to lowerBoundDivisor of its current value
✓ should fail to update bond to less than lowerBoundDivisor of its current value
✓ should not update the actual bond value until after the waiting period (56ms)
✓ should update the actual bond value after the waiting period (58ms)
✓ should update the actual bond value after the waiting period (117ms)
✓ should be able to update continuosly (137ms)

with boundary size of numbers
✓ should able to update to max number of uint128 without having overflow issue (103ms)
✓ should be able to update to 1 (91ms)
✓ should NOT be able to update to 0 (64ms)

Contract: ExitId
isStandardExit

✓ should return true given a standard exit id for deposit tx (40ms)
✓ should return true given a standard exit id for non deposit tx



✓ should return false given an in-flight exit id
getStandardExitId

✓ should get the correct exit id for deposit tx output
✓ should return distinct exit ids for deposits that differ only in utxo pos (57ms)
✓ should get the correct exit id for non deposit tx output
✓ should overflow when created a tx with more than 255 outputs (61ms)

getInFlightExitId
✓ should get correct in-flight exit id

Contract: ExitableTimestamp
calculate

✓ should get the correct exit timestamp for deposit tx (38ms)
✓ should get the correct exit timestamp for non deposit tx whose age is older than MIN_EXIT_PERIOD
✓ should get the correct exit timestamp for non deposit tx whose age is younger than MIN_EXIT_PERIOD

Contract: MoreVpFinalization
isStandardFinalized

✓ should revert for invalid transaction position (91ms)
✓ should revert when the tx type is not registered to the framework yet (144ms)
Given MVP protocol

✓ should revert as it is not supported by this library (190ms)
Given MoreVP protocol

✓ should revert if there is no block root hash data in the PlasmaFramework for the position (172ms)
✓ should return true given valid inclusion proof (232ms)
✓ should return false given empty inclusion proof (211ms)
✓ should return false given invalid inclusion proof (208ms)

isProtocolFinalized
✓ should revert when the tx type is not registered to the framework yet (158ms)
Given MVP protocol

✓ should revert as it is not supported by this library (177ms)
Given MoreVP protocol

✓ should return true when tx exist (148ms)
✓ should return true when tx is empty (80ms)

Contract: OutputId
computeDepositOutputId

✓ should get the correct output id for deposit tx output
✓ should return distinct output ids for deposits that differ in utxo pos (38ms)

computeNormalOutputId
✓ should get the correct output id for non deposit tx output when output index is 0
✓ should get the correct output id for non deposit tx output when output index is not 0

Contract: BlockController
constructor

✓ should set the authority correctly (85ms)
✓ nextChildBlock is set to "childBlockInterval" (59ms)
✓ nextDeposit set to 1 (58ms)
✓ childBlockInterval is set as the inserted value (55ms)

activateChildChain
before activate

✓ should not be able to submit child chain block (92ms)
✓ should not be able to submit deposit block (101ms)
✓ should not be able to be activated by non authority (84ms)
after activated by authority

✓ should change isChildChainActivated flag to true
✓ should emit ChildChainActivated event
✓ should not be able to activate again

submitBlock
✓ saves the child chain block root to contract (103ms)
✓ updates "nextChildBlock" with a jump of "childBlockInterval" (114ms)
✓ resets "nextDeposit" back to 1 (129ms)
✓ emits "BlockSubmitted" event (84ms)
✓ reverts when not called by authority (84ms)

submitDepositBlock
✓ saves the deposit block root to contract (148ms)
✓ adds 1 to nextDeposit (159ms)
✓ does not change nextChildBlock (108ms)
✓ reverts when exceed max deposit amount (childBlockInterval) between two child chain blocks (227ms)
✓ should revert when called from a newly registered (still quarantined) vault (179ms)
✓ reverts when not called by registered vault (81ms)

isDeposit
✓ should return false when it is not a deposit block (93ms)
✓ should return true when it is a deposit block (93ms)
✓ should revert if the block does not exist (61ms)

Contract: ExitGameController
addExitQueue

✓ generates a priority queue instance to the exitsQueues map
✓ emits event
✓ reverts when adding the same queue (41ms)
✓ reverts when adding queue with vault id 0

hasExitQueue
✓ returns true when queue is added (62ms)
✓ returns false when queue not added

enqueue
✓ rejects when not called from exit game contract (77ms)
✓ rejects when such token has not been added yet (143ms)
✓ rejects when called from a newly registered (still quarantined) exit game (204ms)
✓ can enqueue with the same exitable timestamp (priority) multiple times (232ms)
when successfully enqueued

✓ inserts the new priority to the queue (53ms)
✓ saves the exit data to map
✓ emits an ExitEnqueued event
✓ should be able to find the exit in the priority queue given exitId (48ms)
✓ should provide convenience method to show top exit priority

processExits
✓ rejects when such token has not been added yet (109ms)
✓ rejects when the exit queue is empty (90ms)
✓ rejects when the top exit id mismatches with the specified one (194ms)
✓ does not process exit that is not able to exit yet (165ms)
given the queue already has an exitable exit

✓ should be able to process when the exitId is set to 0 (75ms)
✓ should be able to process when the exitId is set to the exact top of the queue (88ms)
✓ should call the "processExit" function of the exit processor when processes (83ms)
✓ should delete the exit data after processed (113ms)
✓ should stop to process when queue becomes empty (81ms)

given multiple exits with different priorities in queue
✓ should process with the order of priority and delete the processed exit from queue (132ms)
✓ should process no more than the "maxExitsToProcess" limit (82ms)

isAnyOutputsSpent
✓ should return true when checking a spent output (53ms)
✓ should return false when checking an unspent output
✓ should return true when all of the outputs are spent (58ms)
✓ should return true when one of the outputs is spent (56ms)



✓ should return false when all of the outputs are not spent
batchFlagOutputsSpent

✓ should be able to flag a single output (58ms)
✓ should be able to flag multiple outputs (78ms)
✓ should fail when try to flag with empty outputId (63ms)
✓ should fail when not called by Exit Game contracts
✓ should revert when called on quarantined Exit Game contract (156ms)
✓ should fail when reentrancy attack on processExits happens (332ms)

flagOutputSpent
✓ should be able to flag an output (48ms)
✓ should fail when try to flag withempty outputId (43ms)
✓ should fail when not called by Exit Game contracts
✓ should revert when called on quarantined Exit Game contract (140ms)

Contract: PlasmaFramework
constructor

✓ should set the min exit period
✓ should set maintainer address

Contract: Protocol
MORE_VP()

✓ should return protocol value of MoreVP
MVP()

✓ should return protocol value of MVP
isValidProtocol

✓ should return true for MVP protocol
✓ should return true for MoreVP protocol
✓ should return false for invalid protocol

Contract: ExitGameRegistry
onlyFromNonQuarantinedExitGame

✓ should revert when the exit game contract is still quarantined
✓ accepts call when called by registered exit game contract on passed quarantine period
✓ reverts when not called by registered exit game contract

registerExitGame
✓ should be able to register for both MVP and MoreVP protocol (143ms)
✓ rejects when not registered by maintainer
✓ rejects when trying to register with tx type 0
✓ rejects when trying to register with a non contract address
✓ rejects when protocol value is not MVP or MoreVP value (167ms)
✓ rejects when the tx type is already registered (100ms)
✓ rejects when the the exit game address is already registered (73ms)
When succeed

✓ should be able to receive exit game address with tx type
✓ should be able to receive tx type with exit game contract address
✓ should be able to receive protocol with tx type
✓ should emit ExitGameRegistered event

Contract: VaultRegistry
onlyFromNonQuarantinedVault

✓ should accept call when called by registered and non quarantined vault contract
✓ should revert when not called by registered vault contract
✓ should revert when the vault contract is still quarantined

vaults
✓ can receive vault contract address with vault id

vaultToId
✓ can receive vault id with vault contract address

registerVault
✓ should save the vault data correctly (66ms)
✓ should emit VaultRegistered event
✓ rejects when not registered by maintainer
✓ rejects when trying to register with vault id 0
✓ rejects when trying to register with a non-contract address
✓ rejects when The vault ID is already registered (94ms)
✓ rejects when the the vault contract address is already registered (68ms)

Contract: ExitPriority
computePriority
Given different exitableAt

✓ should be positive correlative with "exitable" no matter txPos and exit id combination (462ms)
Given exitableAt is the same

✓ should be positive correlative with "txPos" no matter how exit ids are (127ms)
Given both exitableAt and txPos are the same

✓ should be positively correlative with exid id
parseExitableAt

✓ should be able to parse the "exitableAt" from priority given exit id is 0
✓ should be able to parse the "exitableAt" from priority given max exit id value
✓ should be able to parse the "exitableAt" from priority given exitable timestamp is 0
✓ should be able to parse the "exitableAt" from priority given max exitable timestamp of uint42
✓ should be able to parse the "exitableAt" from priority given txPos is 0
✓ should be able to parse the "exitableAt" from priority given max txPos of uint54
✓ should be able to parse exit id from priority

Contract: PriorityQueue
getMin

✓ can get the min value (70ms)
✓ fails when empty

currentSize
✓ can get current size (48ms)

insert
✓ can insert one value (56ms)
✓ can insert two values with order (84ms)
✓ can insert multiple values out of order and still get the minimal number (255ms)
✓ is not idempotent (86ms)
✓ should fail when not inserted by the framework (who deploys the priority queue contract)

delMin
✓ can delete when single value in queue (79ms)
✓ can delete when two values in queue (126ms)
✓ can delete when multiple values in queue (317ms)
✓ can delete all (474ms)
✓ should fail when not deleted by the framework (who deploys the priority queue contract)
✓ should fail when queue is empty (78ms)

Contract: FungibleTokenOutputModel
decodeOutput

✓ should return a fungible token output (105ms)
✓ should fail when output has not enough items (64ms)
✓ should fail when output has too many items (70ms)
✓ should fail when amount is 0 (75ms)
✓ should fail when outputGuard is 0 (81ms)

getOutput
✓ should return a transaction output (160ms)
✓ should fail when output index is out of bounds (124ms)



Contract: GenericTransaction
decode

✓ should decode a correctly formatted transaction (137ms)
✓ should decode a correctly formatted transaction with no inputs or outputs (79ms)
✓ should decode a correctly formatted transaction different output types (173ms)
✓ should decode a correctly formatted transaction with extra txData (128ms)
✓ should fail when not enough items (51ms)
✓ should fail when too many items (65ms)
✓ should fail when tx type is 0 (61ms)
✓ should fail when output type is 0 (96ms)
✓ should fail when not enough items in output (88ms)
✓ should fail when too many items in output (102ms)
✓ should fail when txType is a list (62ms)
✓ should fail when inputs is not a list (101ms)
✓ should fail when ouputs is not a list of lists (82ms)
✓ should fail when metadata is not 32 bytes (99ms)

getOutput
✓ should return a transaction output (119ms)
✓ should fail when output index is out of bounds (123ms)

Contract: PaymentTransactionModel
decode

✓ should decode payment transaction (263ms)
✓ should decode payment transaction with 4 inputs and 4 outputs (473ms)
✓ should fail when decoding transaction have more inputs than MAX_INPUT limit (107ms)
✓ should fail when decoding transaction have more outputs than MAX_OUTPUT limit (280ms)
✓ should fail when transaction does not contain metadata (50ms)
✓ should fail when decoding invalid transaction (50ms)
✓ should fail when the transaction contains a null input (164ms)
✓ should fail when the transaction type is zero (62ms)
✓ should fail when an output type is zero (155ms)
✓ should fail when an output amount is zero (232ms)
✓ should fail when txData is not zero (168ms)
✓ should fail when the transaction has no outputs (91ms)

getOutputOwner
✓ should parse the owner address from output guard when output guard holds the owner info directly

getOutput
✓ should get output (235ms)
✓ should fail when output index is out of bounds (262ms)

Contract: PaymentEip712Lib
hashTx

✓ should hash normal transaction correctly (228ms)
✓ should hash deposit transaction correctly (195ms)
✓ should hash transaction correctly given transaction has empty metaData (219ms)

Contract: Bits
bit operations

✓ should set bit on specified position (132ms)
✓ should set bit - small numbers (50ms)
✓ setting already set bit does not change the value
✓ should clear bit on specified position (94ms)
✓ should clear bit - small numbers (51ms)
✓ clearing already cleared bit does not change the value
✓ should answer whether bit is set (168ms)

Contract: FailFastReentrancyGuard
✓ should not allow local recursion (51ms)
✓ should not allow remote reentrancy but should not fail the top call (53ms)

Contract: Merkle
✓ check membership for tree where some leaves are empty
checkMembership

✓ should return false when not able to prove included (49ms)
✓ should return false when a node preimage is provided as a leaf (50ms)
✓ should return false when leaf index mismatches the proof (45ms)
✓ should reject call when proof data size is incorrect
Prove inclusion

✓ should return true for index 0 (51ms)
✓ should return true for index 1 (46ms)
✓ should return true for index 2 (45ms)
✓ should return true for index 3 (48ms)
✓ should return true for index 65534 (52ms)
✓ should return true for index 65535 (49ms)

Contract: OnlyWithValue
onlyWithValue

✓ should accept call when the value matches
✓ should reject call when value mismatches

Contract: PosLib
toStrictTxPos

✓ should parse a correct tx position
getTxPostionForExitPriority

✓ should get a correct tx position for exit priority
encode

✓ should correctly encode a position
✓ should fail when output index is too big
✓ should fail when transaction index is too big
✓ should fail when block number is too big

decode
✓ should decode a position

Contract: Quarantine
contract is quarantined

✓ should return true from isQuarantined when the contract is quarantined
✓ should return false from isQuarantined when the quarantine period has passed

quarantineContract errors
✓ should revert when attempting to quarantine an empty address
✓ should revert when attempting to quarantine a contract again

initial immune contract is not quarantined
✓ should return true from the initial immune contract
✓ should revert from the non immune contract

Contract: RLP
✓ should decode bytes32 (45ms)
✓ should fail decode to a bytes32 that has less than 32 bytes
✓ should decode bytes20
✓ should not decode an invalid length address
✓ should not decode an invalid length address
✓ should not decode an invalid length bytes32
✓ should decode uint 0
✓ should decode uint 0
✓ should decode positive uint (41ms)



✓ should fail to decode 0x00 as a uint
✓ should decode positive int
✓ should decode array (43ms)
✓ should fail to decode a list as a uint
✓ should fail to decode a list as an address
✓ should fail to decode a list as an bytes32

Contract: RLP invalid tests
✓ should revert on invalid test wrongEmptyString (56ms)
✓ should revert on invalid test wrongSizeList
✓ should revert on invalid test wrongSizeList2
✓ should revert on invalid test incorrectLengthInArray
✓ should revert on invalid test randomRLP
✓ should revert on invalid test bytesShouldBeSingleByte00
✓ should revert on invalid test bytesShouldBeSingleByte01
✓ should revert on invalid test bytesShouldBeSingleByte7F
✓ should revert on invalid test leadingZerosInLongLengthArray1
✓ should revert on invalid test leadingZerosInLongLengthArray2
✓ should revert on invalid test leadingZerosInLongLengthList1
✓ should revert on invalid test leadingZerosInLongLengthList2
✓ should revert on invalid test nonOptimalLongLengthArray1
✓ should revert on invalid test nonOptimalLongLengthArray2
✓ should revert on invalid test nonOptimalLongLengthList1
✓ should revert on invalid test nonOptimalLongLengthList2
✓ should revert on invalid test shortStringInvalidEncodedLength1
✓ should revert on invalid test shortStringInvalidEncodedLength2
✓ should revert on invalid test stringListInvalidEncodedLength1
✓ should revert on invalid test stringListInvalidEncodedItemLength1
✓ should revert on invalid test stringListInvalidEncodedItemLength2 (38ms)
✓ should revert on invalid test invalidAddress
✓ should revert on invalid test invalidList
✓ should revert on invalid test emptyLonglist
✓ should revert on invalid test longstringInvalidEncodedLength1
✓ should revert on invalid test leadingZerosInUInt
✓ should revert on invalid test leadingZerosInUInt2
✓ should revert on invalid test leadingZerosInUInt3

Contract: RLP official tests
✓ should pass emptystring
✓ should pass bytestring00
✓ should pass bytestring01
✓ should pass bytestring7F
✓ should pass shortstring
✓ should pass shortstring2
✓ should pass longstring
✓ should pass longstring2 (58ms)
✓ should pass zero
✓ should pass smallint
✓ should pass smallint2
✓ should pass smallint3
✓ should pass smallint4
✓ should pass mediumint1
✓ should pass mediumint2
✓ should pass mediumint3
✓ should pass mediumint4
✓ should pass mediumint5
✓ should pass emptylist
✓ should pass stringlist (116ms)
✓ should pass multilist (183ms)
✓ should pass shortListMax1 (388ms)
✓ should pass longList1 (580ms)
✓ should pass longList2 (4267ms)
✓ should pass listsoflists (176ms)
✓ should pass listsoflists2 (307ms)
✓ should pass dictTest1 (389ms)
✓ should pass bigint
✓ should pass bigint2

Contract: SafeEthTransfer
transferRevertOnError

✓ should revert when failed to transfer the fund
✓ should transfer the fund when successfully called

transferReturnResult
✓ should revert when remaining gas is less than the gas stipend
✓ should return false when the contract does not have enough fund to transfer (40ms)
✓ should return false when called to a attacking contract that would fail in fallback function (94ms)
✓ should return false when called to a contract that would need more gas than gas stipend (90ms)
when successfully called

✓ should return true when successfully transferred
✓ should transfer the fund

Contract: Erc20Vault
deposit
before deposit verifier is set

✓ should fail with error message (54ms)
after all contracts are set

✓ should store erc20 deposit (310ms)
✓ should emit deposit event (318ms)
✓ should spend erc20 tokens from depositing user (329ms)
✓ should be able to deposit when approved balance is more than deposit value (301ms)
✓ should not store a deposit when the tokens have not been approved (391ms)
✓ should not store a deposit when the tokens have not been approved enough value (384ms)
✓ should not store a deposit from user who does not match output address (356ms)
✓ should not store an ethereum deposit that sends funds
✓ should not store an ethereum deposit that does not send funds (343ms)
✓ should not accept a deposit with invalid output type (375ms)
✓ should not accept transaction that does not match expected transaction type (387ms)
✓ should not accept transaction with inputs (392ms)
✓ should not accept transaction with more than one output (505ms)

deposit from NonCompliantERC20
✓ should store erc20 deposit (304ms)

withdraw
✓ should fail when not called by a registered exit game contract (42ms)
✓ should transfer ERC token to the receiver (98ms)
✓ should emit Erc20Withdrawn event correctly (60ms)
given quarantined exit game

✓ should fail when called under quarantine (178ms)
✓ should succeed after quarantine period passes (72ms)

withdraw with NonCompliantERC20
✓ should transfer ERC token to the receiver (84ms)

Contract: EthVault
deposit
before deposit verifier has been set



✓ should fail with error message
after all related contracts set

✓ should store ethereum deposit (272ms)
✓ should emit deposit event (262ms)
✓ should charge eth from depositing user (254ms)
✓ should not store deposit when output value mismatches sent wei (739ms)
✓ should not store a deposit from user who does not match output address (386ms)
✓ should not store a non-ethereum deposit (349ms)
✓ should not accept a deposit with invalid output type (349ms)
✓ should not accept transaction that does not match expected transaction type (357ms)
✓ should not accept transaction with inputs (405ms)
✓ should not accept transaction with more than one output (531ms)

withdraw
✓ should fail when not called by a registered exit game contract (45ms)
✓ should transfer ETH to the receiver (48ms)
✓ should emit EthWithdrawn event correctly (45ms)
when fund transfer fails

✓ should emit WithdrawFailed event
✓ should not transfer ETH

given quarantined exit game
✓ should fail when called under quarantine (59ms)
✓ should succeed after quarantine period passes (58ms)

Contract: Vault
setDepositVerifier / getEffectiveDepositVerifier

✓ should not allow for setting empty address as deposit verifier (44ms)
✓ should fail when not set by maintainer (41ms)
before any deposit verifier is set

✓ should get empty address if nothing is set
after the first deposit verifier is set

✓ should immediately take effect
✓ should emit SetDepositVerifierCalled event
when setting the second verifier

✓ should not take effect before 2 minExitPeriod has passed
✓ should take effect after 2 minExitPeriod has passed
✓ should emit SetDepositVerifierCalled event

648 passing (8m)
1 pending

Code Coverage

The code features very good coverage.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

exits/fee/ 100 100 100 100

FeeClaimOutputToPaymentTxCondition.so
l

100 100 100 100

FeeExitGame.sol 100 100 100 100

exits/interfaces/ 100 100 100 100

ISpendingCondition.sol 100 100 100 100

IStateTransitionVerifier.sol 100 100 100 100

exits/payment/ 100 100 100 100

PaymentExitDataModel.sol 100 100 100 100

PaymentExitGame.sol 100 100 100 100

PaymentExitGameArgs.sol 100 100 100 100

PaymentInFlightExitModelUtils.sol 100 100 100 100

PaymentTransactionStateTransitionVeri
fier.sol

100 100 100 100

exits/payment/controllers/ 100 98.06 100 100

PaymentChallengeIFEInputSpent.sol 100 92.86 100 100

PaymentChallengeIFENotCanonical.sol 100 97.06 100 100

PaymentChallengeIFEOutputSpent.sol 100 91.67 100 100

PaymentChallengeStandardExit.sol 100 90 100 100

PaymentDeleteInFlightExit.sol 100 100 100 100

PaymentPiggybackInFlightExit.sol 100 100 100 100

PaymentProcessInFlightExit.sol 100 100 100 100

PaymentProcessStandardExit.sol 100 100 100 100

PaymentStartInFlightExit.sol 100 100 100 100

PaymentStartStandardExit.sol 100 100 100 100

exits/payment/routers/ 100 100 100 100

PaymentInFlightExitRouter.sol 100 100 100 100



PaymentInFlightExitRouterArgs.sol 100 100 100 100

PaymentStandardExitRouter.sol 100 100 100 100

PaymentStandardExitRouterArgs.sol 100 100 100 100

exits/payment/spendingConditions/ 100 100 100 100

PaymentOutputToPaymentTxCondition.sol 100 100 100 100

exits/registries/ 100 100 100 100

SpendingConditionRegistry.sol 100 100 100 100

exits/utils/ 100 100 100 100

BondSize.sol 100 100 100 100

ExitId.sol 100 100 100 100

ExitableTimestamp.sol 100 100 100 100

MoreVpFinalization.sol 100 100 100 100

OutputId.sol 100 100 100 100

framework/ 100 94.74 100 100

BlockController.sol 100 100 100 100

ExitGameController.sol 100 92.86 100 100

PlasmaFramework.sol 100 100 100 100

Protocol.sol 100 100 100 100

framework/interfaces/ 100 100 100 100

IExitProcessor.sol 100 100 100 100

framework/models/ 100 100 100 100

BlockModel.sol 100 100 100 100

framework/registries/ 100 100 100 100

ExitGameRegistry.sol 100 100 100 100

VaultRegistry.sol 100 100 100 100

framework/utils/ 100 100 100 100

ExitPriority.sol 100 100 100 100

PriorityQueue.sol 100 100 100 100

Quarantine.sol 100 100 100 100

transactions/ 100 100 100 100

FungibleTokenOutputModel.sol 100 100 100 100

GenericTransaction.sol 100 100 100 100

PaymentTransactionModel.sol 100 100 100 100

transactions/eip712Libs/ 100 100 100 100

PaymentEip712Lib.sol 100 100 100 100

utils/ 100 100 100 100

Bits.sol 100 100 100 100

FailFastReentrancyGuard.sol 100 100 100 100

Merkle.sol 100 100 100 100

OnlyFromAddress.sol 100 100 100 100

OnlyWithValue.sol 100 100 100 100

PosLib.sol 100 100 100 100

RLPReader.sol 100 100 100 100

SafeEthTransfer.sol 100 100 100 100

vaults/ 100 100 100 100

Erc20Vault.sol 100 100 100 100

EthVault.sol 100 100 100 100



Vault.sol 100 100 100 100

vaults/verifiers/ 100 100 100 100

Erc20DepositVerifier.sol 100 100 100 100

EthDepositVerifier.sol 100 100 100 100

IErc20DepositVerifier.sol 100 100 100 100

IEthDepositVerifier.sol 100 100 100 100

All files 100 98.85 100 100

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review.
You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within
the scope of the review.

Contracts

1c4e30fd3aa765cb0ee259a29dead71c1c99888dcc7157c25df3405802cf5b09 ./contracts/Migrations.sol

53eacae398407de4a71f0ecaeb10a38f6127e21571b5b508035a4b02a31f3ac4
./contracts/src/exits/interfaces/IStateTransitionVerifier.sol

3e503c814e315a4b5c63f4f572766f5e82825a8b38a3df1a410d64c2d85fb01e ./contracts/src/exits/interfaces/ISpendingCondition.sol

b0c8e78075cdb155323bdfb3a42710d8e5e5bd9248d3987272b50b4306058821 ./contracts/src/exits/utils/ExitId.sol

8641dbadd022ca740bfa5be944c034152a2e77f223b70ff1df5289e956df5f90 ./contracts/src/exits/utils/ExitableTimestamp.sol

e616b2cc749ef6a9ddde3821bca21332b21f3705e74903db3d6293152bbd9f46 ./contracts/src/exits/utils/OutputId.sol

e6ac7bb1ca546fa93b92f71a57099b30bc94aac569ad12e911575829a0405a99 ./contracts/src/exits/utils/MoreVpFinalization.sol

84c9cbdfccd9e23c9615d7d0f649a0f5e088913653096732af4b9a41a857529b ./contracts/src/exits/utils/BondSize.sol

48dd7614961de0e76572017a8b6d3bc9271016b3c2dad75ec6ab5780dd8ec3e2
./contracts/src/exits/payment/PaymentTransactionStateTransitionVerifier.sol

463fe5b9119c991c803780a1e323db93071b59e282b080e6936017f27404b925 ./contracts/src/exits/payment/PaymentExitGameArgs.sol

27eb4b529e5d99d6275a9bc2795f7236755d94690d52c8d8ca343370a83d4e51 ./contracts/src/exits/payment/PaymentExitGame.sol

7c0314902d714ab04a996324bea50252b61b36ae53a86798af5540fef4111c5d
./contracts/src/exits/payment/PaymentInFlightExitModelUtils.sol

38f33c0577aa523a77cd2e4aa121b07558f3e82e0d0265dfb7225da2b39bca55 ./contracts/src/exits/payment/PaymentExitDataModel.sol

253a603760da47e6fee7f7c826dc60e58a6a9541191e73c3d1a06238c8a08955
./contracts/src/exits/payment/spendingConditions/PaymentOutputToPaymentTxCondition.sol

6f46d443c6ef92b9877b15d9d155787eb66ffcf11ef11c20758d10f6d03caa7e
./contracts/src/exits/payment/controllers/PaymentPiggybackInFlightExit.sol

a8c4d34a51ec3c9661332eafe13bae68a839725172f2812d4797de07939ef459
./contracts/src/exits/payment/controllers/PaymentChallengeIFENotCanonical.sol

0a50b9c9e0fc01e395b9c287ab728f7cf3ad14ca65514a9015dccd6b3d0a01a0
./contracts/src/exits/payment/controllers/PaymentStartInFlightExit.sol

ed09dccf17151cd5f4f165250f1a896147e3eaaaadd74f18de40547a86c2d992
./contracts/src/exits/payment/controllers/PaymentProcessInFlightExit.sol

071c35a76eeaa2dea437abc2afd212c17b7bd41e791268999fb1dfc6db1ba81e
./contracts/src/exits/payment/controllers/PaymentChallengeStandardExit.sol

a8f1bd4534570df05bef52b2ebd81065aaa0035c193a31d6591b65062f5b36ed
./contracts/src/exits/payment/controllers/PaymentChallengeIFEOutputSpent.sol

8f736b2c08afe6525f0da3abf6ea7d86a72a40a35110c1e6160e23af81246c56
./contracts/src/exits/payment/controllers/PaymentChallengeIFEInputSpent.sol

e22c9343c3d2b25542f3da45a6e5c999aa82858316ac57fed76fb503aed48e9b
./contracts/src/exits/payment/controllers/PaymentDeleteInFlightExit.sol

af3082bdb2991716e42549c4bc5c25a9b7a83d1fc4b4c15dcf6ffecc6ab0ebb1
./contracts/src/exits/payment/controllers/PaymentProcessStandardExit.sol

f8c29d33fd343e0677b765d2f9a73af98d6e0db810d5a90f7649bdc552124499
./contracts/src/exits/payment/controllers/PaymentStartStandardExit.sol

8ae92788506674858b7acec726a28a5c61474d203ca6d42f3afa439e013f7e09
./contracts/src/exits/payment/routers/PaymentStandardExitRouter.sol

9dcce8a08edad539cffb178217b0218c20b7cfc343f17599e8f585be46317ddf
./contracts/src/exits/payment/routers/PaymentInFlightExitRouter.sol

febf6e328ac2cba485af86d2a0e2424a8e3e4162216b0b7c18056b488efb50b5
./contracts/src/exits/payment/routers/PaymentStandardExitRouterArgs.sol

13b48f7010815cf5a243d50a1ca6b109ce94344288f6518514f958692d9695fc
./contracts/src/exits/payment/routers/PaymentInFlightExitRouterArgs.sol

8997cd1ba34111a37f52b75b5ef85c91a84d2dfaab2a866eda2b9b79ed960b9b
./contracts/src/exits/fee/FeeClaimOutputToPaymentTxCondition.sol

6b5713535b7d9c0ba2563718bec9aa4448d558991b5bc65ba1ebabbc9d163bb6 ./contracts/src/exits/fee/FeeExitGame.sol



da80c007fd44c140b404d47a62dcbd8105fd3dabbbcaee342d1758fe3913dd37
./contracts/src/exits/registries/SpendingConditionRegistry.sol

ee604a3d9800d1330ea6a32493bf1b2ddbd92a32073c4dc49b55eff5e2297ab5 ./contracts/src/vaults/Erc20Vault.sol

8369645827d895d97698a5763d09e604facfeff0a0780e47edf3fd4259d61000 ./contracts/src/vaults/EthVault.sol

147f9359c0020546f8493c1c9906ad5c1cfa9b8c1d728fef0e9bb6896e33de10 ./contracts/src/vaults/Vault.sol

6efbb58f6fb0eee8ad8a6f41ff73495d2410b6ce867bab98c2f6c99aab929d45 ./contracts/src/vaults/verifiers/Erc20DepositVerifier.sol

26f3aad86be11b6094b7dae1bd4fe77be98557e2106f490446a876b55842e39d ./contracts/src/vaults/verifiers/IErc20DepositVerifier.sol

e28639232f729b68909aa9a5946d4ddb72aeb0ae9f3a194e42f6a58a8b17b304 ./contracts/src/vaults/verifiers/IEthDepositVerifier.sol

e17b109e665d5db9e6adee530d271433f0cbb7047ce655c30e282bc9ddd40bbf ./contracts/src/vaults/verifiers/EthDepositVerifier.sol

fbb243682be3863ff859904b7fb62e4a48a43cacc101c5d5ff2fcc85b20dc5ad ./contracts/src/transactions/PaymentTransactionModel.sol

0b7c07e3e9a75b02a07e211c991fadacbae4d1629ec99c72076c7bbb68402cff ./contracts/src/transactions/GenericTransaction.sol

e8ce53ebb470c250d89cb9d6253c0a683ac9895a82f687941fff2d24a7150c47 ./contracts/src/transactions/FungibleTokenOutputModel.sol

d99ef1272a55d93f2be87493cb8156222dc3fbeedb2db1b4c4cfe8ba71809588
./contracts/src/transactions/eip712Libs/PaymentEip712Lib.sol

eac8d175d9aa497d85c7e387c229e4dd2649a40afe93967bcd97968e81ba98a4 ./contracts/src/utils/PosLib.sol

631ee6395d730c721d3d0d80d4ec8cf9bfe08bbe0b009de09b8a0a945c7785f5 ./contracts/src/utils/FailFastReentrancyGuard.sol

f64f9e84e2af7e50110dee8cfcea6907add54fe6969ed897892ef2cfeec1bb5d ./contracts/src/utils/RLPReader.sol

433ccb7c1ebe9928aaad140b9491a016164ae9c2ff230e5af5ed68e84aa33e64 ./contracts/src/utils/Bits.sol

3bc982014b8de3a37c0c651c8b78bfd31fb3dfe52792b8d40c299c812e249263 ./contracts/src/utils/OnlyFromAddress.sol

7c02b17fa0d26a20cc2f85f511cf1c574ecf3bec1a0bbe2f1397a7068887069b ./contracts/src/utils/SafeEthTransfer.sol

686e690ba698747970bd128436338f101f7bd41583ce7a862a828e92b7b8fc92 ./contracts/src/utils/OnlyWithValue.sol

116cfeab45f827ae3e2deb23e2d7b2f4429aff97a0c7983cd70964733f6e4587 ./contracts/src/utils/Merkle.sol

93e522f3ec04ac953a654f4a1234711a69378d4cdee8c3a534b09037f697631d ./contracts/src/framework/Protocol.sol

d75b4f86ffd3a9772668361349ff3a02a6cab3d98046d1ca9e0e762893da7d02 ./contracts/src/framework/PlasmaFramework.sol

4ff7ccdce7318d385f2590d1997e33cef1f16fbfa71f575dea95dafd830ba996 ./contracts/src/framework/BlockController.sol

ca1714d4665a77191cf8a09decefb2c42395fafedd3a6ce4c8a0b9a00b31dd36 ./contracts/src/framework/ExitGameController.sol

940bcafd5ec13619275e4cab3a91fefa15930db829167b9ca0238153af3869f8 ./contracts/src/framework/interfaces/IExitProcessor.sol

b734a60c842aa2e994d27cb1a2c7c3164c9c6943354e67de60c1b02c5813b754 ./contracts/src/framework/models/BlockModel.sol

6a784286dc848dddf718013b4e7bd7dd53ba7fe4d10b6377c10057b5e4f2c15e ./contracts/src/framework/utils/Quarantine.sol

f8711b6eabc80fce326609c9c682cac87718dfae40b70362501626eb7558c759 ./contracts/src/framework/utils/ExitPriority.sol

e9a072c2a10b46250d88239782a5f454ef59dc7a86603f8b725ea0061ff91daf ./contracts/src/framework/utils/PriorityQueue.sol

46b29360a28e4f83d293e6fb6d34b65e1f46cc2f2b57ef058a796fcd86ec6262 ./contracts/src/framework/registries/ExitGameRegistry.sol

f7afd9a6fec44b988b288989a096ffc30475b558369409cb6da2169e5472b17c ./contracts/src/framework/registries/VaultRegistry.sol

0bdfae2f3fbee26350cc3d7a449a0ff7cef4208a7722703e87a6f2db512f05ed ./contracts/mocks/Imports.sol

83687b5a87c1dee9622c6c16a2b8a60a5911eaa3c885d0455ea376f283efe719
./contracts/mocks/python_tests_wrappers/PriorityQueueTest.sol

ac441a183656f8a6a8003fc0bb916644fa84bbba1c4870e19310f94403372729 ./contracts/mocks/python_tests_wrappers/RLPTest.sol

ca226d32c9b5ed2dc2029f1068794a798c5cb9974f3ccb719e1649641b934167 ./contracts/mocks/exits/StateTransitionVerifierMock.sol

cc866ec5703b1d53de6af77bc5ff7c52d43dec3cbcc5d74753d4020ccf19ab9b ./contracts/mocks/exits/SpyPlasmaFrameworkForExitGame.sol

81b87bc3a4a3f2d38a8d0c8a9d63fe997feca3129430c38280cea935df69ab61 ./contracts/mocks/exits/SpendingConditionMock.sol

e587f32dca1244b4ecf1aa7d54f6013d3ea7fa1435807b10a929c6daf92f0227
./contracts/mocks/exits/utils/MoreVpFinalizationWrapper.sol

5619a0dee6e0ee30dff8107d7ca9effb5cd17e1cfdc11e56b1061938c2911175 ./contracts/mocks/exits/utils/OutputIdWrapper.sol

a80da6c21575d3d710bf316f667680d77b236692fd0bae0315f34a3f6a4c66ee ./contracts/mocks/exits/utils/ExitIdWrapper.sol

e76360818cb76b0dbd0be64af630e68756fc268342000cab0ec6e38f29d1241f ./contracts/mocks/exits/utils/ExitableTimestampWrapper.sol

eb49ff973146f7cf5139bf27559f17cd3cb5d44d10cb11ef8fc63db4f905afc1
./contracts/mocks/exits/payment/PaymentInFlightExitModelUtilsMock.sol

2a401ba5b8ce678dcae0360229c288fe2d8abf015d48d0782237d485385b0cda
./contracts/mocks/exits/payment/routers/PaymentStandardExitRouterMock.sol

ad6215186c73cbbe098d004cdc9fe1d4adb5d91e51fa3224b4909de8487afe09
./contracts/mocks/exits/payment/routers/PaymentInFlightExitRouterMock.sol

f93c21c0cd3460cacc560ad7a67b1b746e816d038e9d3f1ed738c4b12806b24a
./contracts/mocks/exits/dummyVaults/SpyErc20VaultForExitGame.sol

8b40c8d26ad831e1ea6875908bd07ccb76ea78441bb42f000632ae75f4780176
./contracts/mocks/exits/dummyVaults/SpyEthVaultForExitGame.sol

6cd9e5f1ecf3e87ce2343ae9e8ad244467e48bab2f49a6458d1a6c7ffd5cb1de ./contracts/mocks/attackers/OutOfGasFallbackAttacker.sol

3c1b36b076d6fbf2f351943349f96c2b297e29ee0e0d25b465f726e85bad3e30
./contracts/mocks/attackers/FallbackFunctionFailAttacker.sol

6b394d946840334d6fc99364b8f620ffec2fcd0f82e080fb141196ee0e9c983e
./contracts/mocks/attackers/FailFastReentrancyGuardAttacker.sol

7b6a87024e3d30a9bea2e20b638a4aa59e2b192b5393f77d585663917c0e9652 ./contracts/mocks/vaults/NonCompliantERC20.sol



dbcdb99266fb64b2d4d72dd43bcfe9133437055d91ac7799e00b071ad9aa555c
./contracts/mocks/transactions/GenericTransactionWrapper.sol

9364bb8afaff49a86d936d09c3a5a5ef749417c1358acc9448937249de01b45f
./contracts/mocks/transactions/PaymentTransactionModelMock.sol

e31618c8493a6932de5ee71a51e893abb4b271f6a03daf9e9af844889cfe3ac2
./contracts/mocks/transactions/FungibleTokenOutputWrapper.sol

85e8efe07b325460ac938d176e44d3e0d83d2371675ce1386f4f91132f43eace
./contracts/mocks/transactions/eip712Libs/PaymentEip712LibMock.sol

04b15354a37ef6c01ade81e061ed36a8f1e78edaef7eaedd6f816a7fe3f04900 ./contracts/mocks/utils/SafeEthTransferMock.sol

c862bc15d8708d5ff762826e061e6cde8f8607b75613294aed0a080cbc783c31 ./contracts/mocks/utils/BitsWrapper.sol

0c7691ccd05991709a55a9f328ec1dc7a8c76f1ee10549b638697f9dd95c089d ./contracts/mocks/utils/BondSizeMock.sol

585eb96d9a63b0886dc7bc7c7ba02f497f5a55eab5dff776d02173899e960779 ./contracts/mocks/utils/RLPMockSecurity.sol

11a7469cfd1d1bf436a72486b1f51e7f56af897a6553984a5cd61e119272f7a7 ./contracts/mocks/utils/MerkleWrapper.sol

c6f657fdc07ed42d4c7d2d368dc526b9ca35c88e9e154b66532876642740ad8d ./contracts/mocks/utils/RLPMock.sol

3b234f06a90b429635de492c2844e0be318feaa399505ca231fb75bd98973201 ./contracts/mocks/utils/PosLibWrapper.sol

fd18bc5c1d73bf9a03bad2c562eaa3842cd052646f7947b52d0ca835d5ad4627 ./contracts/mocks/utils/QuarantineMock.sol

6dc83b14b1457f885e89278f7fb846fdb28a15c7e1cacbfeecb4d20440ac4e2f ./contracts/mocks/utils/OnlyWithValueMock.sol

74cae5e5778a2ebf884f9a1b07592ca4b7d3c14a7629583b50ef1be31272061f ./contracts/mocks/framework/DummyExitGame.sol

29ec22fcb67e9587a6efb5cb5a72b78b9aa36b2ae6f8394eee918207bc2cf057 ./contracts/mocks/framework/DummyVault.sol

16ed08ae0b50a13b2285a157fb7b13552de693de6a53b93296ac3c481a4bfc34 ./contracts/mocks/framework/ExitGameControllerMock.sol

1d08082f4c18c04e75f514950f10fac1eade1ce4d3307d91b17f2afeb0dce058 ./contracts/mocks/framework/ProtocolWrapper.sol

2a1433de088a8202b054e20e6eca2b2f4baa39408f60933b5dfdaf46b38d5850 ./contracts/mocks/framework/ReentrancyExitGame.sol

b16384f32b5535b1340bc13b23998ba32b47b3049dc1501143292e3e765c3e41 ./contracts/mocks/framework/BlockControllerMock.sol

650a564724dc7685d0968297684c5510ecdabe0d3fdfd1d17ffcdc1d110ae047
./contracts/mocks/framework/utils/PriorityQueueLoadTest.sol

d9e73cc4a2baa746842c86a5ed9b38c13c3501731bbe08fa83f455ce2e3046c6 ./contracts/mocks/framework/utils/ExitPriorityWrapper.sol

3793e4cb5deaf0eaeec8a79902754fed439785d240b37ea4e6be9c172a4820bb
./contracts/mocks/framework/registries/VaultRegistryMock.sol

8c125fa5b49300ad9170c7ede221337cc75513dd867062a80c60e29467d619fc
./contracts/mocks/framework/registries/ExitGameRegistryMock.sol

Tests

68b68d22062528b2d01c1262ea7b74ee63d8501ec2ced4c4fe7e99a7ff8c3d2c ./test/src/exits/utils/OutputId.test.js

71a46d2da99691c0c50ba2fead6b0fd20338c095567e28afa6c8d1856fbe4690 ./test/src/exits/utils/ExitableTimestamp.test.js

950773d750a4a6d381e319e9b9f0848a07e0efb8905bb92de15d7046922b0ad2 ./test/src/exits/utils/BondSize.test.js

9ea7dc878d801edba25bd549a7d38783ed546842065f02e66b0dffc70c52c2b3 ./test/src/exits/utils/ExitId.test.js

c16594f661ee7d82c8c6a0b193f9a0f68583faed98a624e394e57466e57c7550 ./test/src/exits/utils/MoreVpFinalization.test.js

af7c6f2bdd580e419f4e314942bd4dd8fb0351cd4ca2c48413b0f36c3beab416
./test/src/exits/payment/PaymentExitGameReentrantProtected.test.js

d48b3cb69fd34f273c962a29cc7566a6b580a2f9a0e35500f3e69f6da4bb1bea ./test/src/exits/payment/PaymentInFlightExitRouter.test.js

91fd7750e597237bad76bed710bfaa324c7bd8e213c4f091163ebdc1618675af
./test/src/exits/payment/PaymentTransactionStateTransitionVerifier.test.js

f065c40268cdb9449b609cfa801b4e1d2aeb904e33666193c7844ba655dce42a ./test/src/exits/payment/PaymentExitGame.test.js

f03c81f986cfb4432a61a2bdba279897e16105978cb65cb76d51721cdb874fbf
./test/src/exits/payment/PaymentInFlightExitModelUtils.test.js

8c7f46174fac870893631c7b98512b25f99370877a6a08cd78d0617e5df19b2e ./test/src/exits/payment/PaymentUpdateBond.test.js

c10fdcce2a00108898fd9333bd83bf395710ddce51daa773b7807f03c5c5a4e4 ./test/src/exits/payment/PaymentStandardExitRouter.test.js

27566ccd1c114debd755661594049cf20f890d980764603689404e449d89655a
./test/src/exits/payment/spendingConditions/PaymentOutputToPaymentTxCondition.test.js

393979d279d790212846d8efa060c3abbfd296c553431e009e36f5868556bb9d
./test/src/exits/payment/controllers/PaymentPiggybackInFlightExitOnOutput.test.js

5cf2901ba74b4b76dde067af39377b3971bf8254f586d88fcecc13860aa10f0a
./test/src/exits/payment/controllers/PaymentChallengeIFENotCanonical.test.js

eb0e3be579ca72394deeb200438afe3b595452b279f5bc61478b9301efa2ad4c
./test/src/exits/payment/controllers/PaymentProcessInFlightExit.test.js

1b603741decfb377fda9d492d553805b9cccb96148a6692d5f17f266840f748c
./test/src/exits/payment/controllers/PaymentProcessStandardExit.test.js

a3226fbd8718df8f841404284bbdd473937ec24dee00c533c1af4fd90a9ae90b
./test/src/exits/payment/controllers/PaymentChallengeIFEOutputSpent.test.js

f22c240c2ac15b641bb11ad854901be5dc22a80ea0935ba40fe040d67c685e04
./test/src/exits/payment/controllers/PaymentStartInFlightExit.test.js

c775d598790e2c14d83d1400a366fed0055c705ecd0ee675b7a52179868ed9f1
./test/src/exits/payment/controllers/PaymentStartStandardExit.test.js

13822020808cc3b4a617ed9b7f93a2ce341aa7e4c61eff91d089e154f729f681
./test/src/exits/payment/controllers/PaymentDeleteInFlightExit.test.js



d8cbc1423ed3c9e997a12a54d9be0a3a4ccab77755ca700b7892cea201308786
./test/src/exits/payment/controllers/PaymentChallengeIFEInputSpent.test.js

197d7f8c37f9a2147fbfb00adeaed3508eef05a5a8252df84ab3969810a20bec
./test/src/exits/payment/controllers/PaymentChallengeStandardExit.test.js

87b544e22022b97ffb4669b7012d14c7604f4aad1921e53b4746fffd1225dd03
./test/src/exits/payment/controllers/PaymentPiggybackInFlightExitOnInput.test.js

bf6600e917b10f664f58dadd2161d4d12aeb1b416491303cf1c6483e7937236a
./test/src/exits/fee/FeeClaimOutputToPaymentTxCondition.test.js

6f5036653c00949a3104c4299e0f1dad55aecf3ccdf6b06ac08c27fd16d64272
./test/src/exits/registries/SpendingConditionRegistry.test.js

ad7f38c75edd71832e620d0d45b3eb67c57387e851fb2b31b2bf67fddd3722a2 ./test/src/vaults/Vault.test.js

b1d763b8e296bf4b1a61ac4c240aad0d9d7ffc4bf14e54e7ee17c99c5077de25 ./test/src/vaults/EthVault.test.js

dd9414ff1073c9560994cfdaf74e4d56ba0daa90b4d679d30f829528e853ec54 ./test/src/vaults/Erc20Vault.test.js

168da52a046dcbbb89c9bbbaa509f87620a40a3ab01db5ac1dcfd69ffe5a8f7e ./test/src/transactions/PaymentTransactionModel.test.js

14f457777106188e6b4f1604b4badffb4a7e819942308dc477d58d0f0e957a63 ./test/src/transactions/GenericTransaction.test.js

ffd3e88674d5c4e50e8bfed1573c74afb332f672f88614dae34927b83853ab50 ./test/src/transactions/FungibleTokenOutput.test.js

2f9e867cabd2c0129a977e7821d4199936bf052cb7ec72790c31b02048ba3325
./test/src/transactions/eip712Libs/PaymentEip712Lib.test.js

52ba4b83a3193f3a5d5dfbb7e382b32b4f9c43e24b085f8f789dc1f639b30f6c ./test/src/utils/RLP.test.js

395940e316811e94162d36c879bdead02b20250c15daed12caaf83dd47b1fb1c ./test/src/utils/Quarantine.test.js

26a11c8db36aec47f27fe40a70758379ad3bd657c1f37eed699972810c25b054 ./test/src/utils/RLPOfficial.test.js

48535a8acc827733af0863464d3822d888f3ef4d7403755a2aa7a76966755381 ./test/src/utils/Merkle.test.js

5bc2b07395c61eb0f159ff8d0e95428fdeb8a86d723a7e3578628a2e44e9de2a ./test/src/utils/OnlyWithValue.test.js

f5d0154228ea1d6f0cfc92a00635f4ddcfacb56f7f568eab980a0d99cebeb863 ./test/src/utils/PosLib.test.js

6dff5b1a1afe722145419bd114514204d0681b5a73f24734a1d7375dabb37486 ./test/src/utils/SafeEthTransfer.test.js

9d6845e99c36da84a982b924f3466473783aa3a094abfc5b014be7adfebf6920 ./test/src/utils/RLPInvalid.test.js

ef4e284e0b6452341eb76e60587ab6be8c51a5020682d4409d7562f64571b966 ./test/src/utils/BitsLib.test.js

07db22971cc5aa23f05fb282246e2c3252e75ec3ba3d9516e27fd0b630b5ea99 ./test/src/utils/FailFastReentrancyGuard.test.js

655dfee56d59d6d4246ec62a64968b2d6be13644f041ddd5f7445225d353a645 ./test/src/framework/ExitGameController.test.js

5b9c034028709c96c6ccf38c56613bf16dbe20829b83f4344f8f565c0656c217 ./test/src/framework/BlockController.test.js

7863d919bf6b2679c79ee8a93fdf21249f153054d0f9dcc8ed6873a061b0dd4e ./test/src/framework/PlasmaFramework.test.js

61e156e1711a8532b838ae1ca97b76675a0fa9d0593fc47b6a9b2ccfd9757e26 ./test/src/framework/Protocol.test.js

a93ab14332221bf20f21404fcfdd66652b3d05e074ad01c5992ec24582ec8d29 ./test/src/framework/utils/ExitPriority.test.js

da6b9d2d96a7fa83977b2b1883d5634f62b8f973c0c374eae2a45120c28fe44d ./test/src/framework/utils/PriorityQueue.test.js

8b8bda315334473f6587fd01d5600a02618258d54b3568956f408892a8b18f2b ./test/src/framework/registries/ExitGameRegistry.test.js

35722b865beebc79bd0edf0cca4cc90318449594b693541cbaed132f0e330cb6 ./test/src/framework/registries/VaultRegistry.test.js

ac9a8e56e20218fe126778c5a83e664c9e20c763bd1792ec2ce14a3ab31ddf05 ./test/helpers/constants.js

e7374804334e45bb65e5d23477eff24f35225bbe90fd7b4c084da71b29bd54d1 ./test/helpers/transaction.js

34063756bfac78272118a7fea834b6f3446252e9e25707f83f41f611c6b2c667 ./test/helpers/merkle.js

53ea3dc559bd24a60dfc8c2bfd05486330c04da402c8383ea0f3b085fa951116 ./test/helpers/positions.js

dc345cc076e34d385c00ef708b60901bda7467605d7a65405aba4754d4df4ea1 ./test/helpers/sign.js

ef82567a96836e2ff911c7ccf7de57efabfe1bdba4a9bc945dcea96e1b072872 ./test/helpers/paymentEip712.js

81b1b419df403a690d1304d2e01ce66b1b12bbede0e7be362d5b19ad03e6ac34 ./test/helpers/utils.js

79b2b62669ff69b15ec1810280ceff77be6691f2d20138e7372a3d5f26e1d209 ./test/helpers/exitable.js

45e8d0584893f5db9ee705c6c0ab39859043f7b085a6628c640e861be7a9449e ./test/helpers/ife.js

5e298ca383ed9c4cae83734e5882ef07ccb36ea298fa3b4b7d5b4aca4ae4089f ./test/helpers/testlang.js

dd161f672ee97fd399b61400612e6f8546c91823ca786eb09df70caba7f63cdf ./test/endToEndTests/PaymentInFlightExit.e2e.test.js

16a1cf60dfed9859bd7cab6c155ee29a5f0453f14b995d0b35effcb2ad1b18da ./test/endToEndTests/PaymentStandardExit.e2e.test.js

8784923c657763a7311fa6f7d0d4e8ba7c24945633be91c9a329f3fa9fcf1359 ./test/endToEndTests/StandardExit.load.test.js

f8aa6441c58806ef9e50d710359f7f6ab5d21077eb1891a5dfa717ed8f275076 ./test/endToEndTests/FeeClaim.e2e.test.js

7eb0e16135f6f551435318e6df886c682d888a2432971a636753de80f56171ab ./test/loadTests/PriorityQueue.load.test.js



About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure smart contracts at scale using computer-aided reasoning tools, with a mission to help boost

adoption of this exponentially growing technology.

Quantstamp’s team boasts decades of combined experience in formal verification, static analysis, and software verification. Collectively, our individuals have over 500

Google scholar citations and numerous published papers. In its mission to proliferate development and adoption of blockchain applications, Quantstamp is also

developing a new protocol for smart contract verification to help smart contract developers and projects worldwide to perform cost-effective smart contract security

audits.

To date, Quantstamp has helped to secure hundreds of millions of dollars of transaction value in smart contracts and has assisted dozens of blockchain projects

globally with its white glove security auditing services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading

community initiatives such as the Ethereum Community Fund to expedite the adoption of blockchain technology.

Finally, Quantstamp’s dedication to research and development in the form of collaborations with leading academic institutions such as National University of Singapore

and MIT (Massachusetts Institute of Technology) reflects Quantstamp’s commitment to enable world-class smart contract innovation.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by

Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other

means, and assumes no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy

or completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to

any associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Cryptographic tokens are emergent technologies and carry

with them high levels of technical risk and uncertainty. The Solidity language itself and other smart contract languages remain under development and are subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond Solidity or the smart contract programming language, or other

programming aspects that could present security risks. You may risk loss of tokens, Ether, and/or other loss. A report is not an endorsement (or other opinion) of any

particular project or team, and the report does not guarantee the security of any particular project. A report does not consider, and should not be interpreted as

considering or having any bearing on, the potential economics of a token, token sale or any other product, service or other asset. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset. To the fullest extent permitted by law, we

disclaim all warranties, express or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without

limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume

responsibility for any product or service advertised or offered by a third party through the product, any open source or third party software, code, libraries, materials,

or information linked to, called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked website, or any

website or mobile application featured in any banner or other advertising, and we will not be a party to or in any way be responsible for monitoring any transaction

between you and any third-party providers of products or services. As with the purchase or use of a product or service through any medium or in any environment, you

should use your best judgment and exercise caution where appropriate. You may risk loss of QSP tokens or other loss. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS

CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM

OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

OmiseGO Plasma Framework Audit


