
Programming Language
Implementation /

Cadence Implementation

Programming Language
Implementation

Syntactical Analysis
(“Parsing”)

Semantical Analysis
(“Checking”)

Evaluation
(“Execution”)

Source
Code

● Input is a program in text form

● On a high level there are 3 phases

● Each phase transforms and/or

generates more information

● These phases are often sequential

(as separate passes), but can be

performed together (in one pass)

● Trade-off:

complexity/features vs performance

Phases

Syntactical Analysis

Lexical Analysis
(“Lexing”, “Tokenization”)

Parsing

● Input is a program in text form

(characters)

Syntactical Analysis

Characters

Tokens

Syntax Tree

Source
Code

Lexical Analysis
(“Lexing”, “Tokenization”)

Parsing

● First, the characters are split into tokens,

e.g. “fun foo() { return }”:

○ Keyword “fun”

○ Identifier “foo”

○ Open paren

○ Close paren

○ Open brace

○ Keyword “return”

○ Close brace

Syntactical Analysis

Characters

Tokens

Syntax Tree

Source
Code

Lexical Analysis
(“Lexing”, “Tokenization”)

Parsing

● The parser validates that the source code

has a valid form, which is defined

in a grammar (rules)

● For example, a function declaration:

○ Must start with the “fun” keyword

○ Must follow with an identifier,

the name

○ Must follow with an open paren

○ Must follow with

parameters (nested rule)

○ ...

Syntactical Analysis

Characters

Tokens

Syntax Tree

Source
Code

Lexical Analysis
(“Lexing”, “Tokenization”)

Parsing

● If the program is invalid,

i.e. the tokens don’t follow the grammar,

then errors are reported

● The parser ideally recovers from

problems and parses the remainder

Syntactical Analysis

Characters

Tokens

Syntax Tree

Source
Code

Lexical Analysis
(“Lexing”, “Tokenization”)

Parsing

● Then the tokens are transformed into a

syntax tree, e.g.

Syntactical Analysis

Characters

Tokens

Syntax Tree

Source
Code

Function Declaration
● Name: “foo”
● Body:

Return Statement

Program
● Declarations:

Lexical Analysis
(“Lexing”, “Tokenization”)

Parsing

● The syntax tree might be

concrete or abstract

● A concrete syntax tree is shaped in the

form of the grammar rules

● An abstract syntax tree is shaped for the

semantical analysis and execution

● Some syntactical analysis phases may

have both, some just one

Syntactical Analysis

Characters

Tokens

Syntax Tree

Source
Code

Semantical Analysis

Semantical Analysis

● Input is a syntax tree

● Produces an elaboration:

Information about the program

● For example, resulting type of an

expression like “a + 1”

Semantical Analysis

Syntax Tree
+ Elaboration

Syntax Tree

Semantical Analysis

● Scoping: Regions where

declarations are valid

● Determines (infers) types and

validates typing rules

(subtyping)

Semantical Analysis

Syntax Tree
+ Elaboration

Syntax Tree

Semantical Analysis

● Checks that the program is valid,

which is defined in the semantics (rules)

● For example, a rule might be

“+ is only defined for numbers”

● Given a variable “a” of type “String”,

a program “a + 1” is invalid

Semantical Analysis

Syntax Tree
+ Elaboration

Syntax Tree

Evaluation

● Programs can be executed in different ways:

○ Interpretation

○ Compilation

○ A mix of both, e.g.

■ Compiling while interpreting: “Just-in-time compilation”

■ Compiling to a non-native instruction set

(e.g. JVM, WebAssembly, etc.),

then interpreting the binary

Evaluation

● How a program is executed is not defined by the language!

○ For example, C is not a “compiled language”:

there are many C compilers, but also interpreters!

● There might be many implementations of a language:

○ Python: CPython (reference), PyPy, Jython, IronPython, etc.

○ Ruby: Ruby MRI (reference), Mruby, JRuby, IronRuby, etc.

○ C: GCC, Clang, CINT, etc.

○ JavaScript: V8, SpiderMonkey, JavaScriptCore, etc.

Evaluation

● Interpretation:

○ Input is AST and elaboration, or program of “flat” instructions

○ Program that executes the input program

○ For example:

If an AST element or an instruction in the program represents addition,

then the interpreter performs the addition

Evaluation

● Compilation:

○ Input is AST and elaboration

○ Output is binary of “flat” instructions,

which can usually be run by a CPU

○ Might perform optimizations:

■ For example, the code “1 + 2” might be directly evaluated

at compile time, once, so the addition does not has to be performed

each time the program is executed

■ Dead code might be removed

Evaluation

● Trade-off: Time to execution vs execution time

○ For example, if a program is run many times,

it makes sense to spend more time upfront, once,

to reduce the execution time

○ If a program is only run once,

compilation time might be longer than total execution time

Evaluation

Cadence

● Programs are uploaded to the chain as source code
(deployed contracts, transactions, scripts)

● Execution:
○ Parse (syntactical analysis)
○ Check (semantic analysis)
○ Interpret

● Optional caching of parsed programs
● Checking result is elaboration (types of AST nodes)
● AST and elaboration are not stored on-chain

Phases

Source
Code

Blockchain Runtime
(Parse + Check + Interpret)

Transaction

Source
Code

Blockchain Runtime
(Parse + Check + Interpret)

Transaction

● Concurrent tokenization (goroutine)

● Produces AST directly, no CST

Parsing

● Parser was initially generated using ANTLR
○ Pros:

■ Nice declarative grammar
■ Development speed

○ Cons:
■ Go backend is very slow
■ Hard to handle parse errors
■ Hard to handle ambiguities
■ Easy to introduce exponential blow-up
■ Construction of CST is additional step with associated overhead

● Replaced with hand-written Top-Down Operator Precedence (Pratt) parser

Parsing

● Checks:

○ Type checks (e.g. subtyping, restrictions, etc.)

○ Resource tracking (construction, moves, destroys)

○ Interface conformance

○ Type requirement conformance

○ Definite initialization / use-before initialization

○ Literal range checks

○ Type storability

● Based on visitor over AST

○ Breadth-first traversal: use before declaration

Checking

● AST-walking interpreter, uses visitor

Execution

● Language Server + Visual Studio Code extension

○ Implements Language Server Protocol

○ Integrated into CLI

○ Integrated into Playground FE using WebAssembly

● REPL

○ Useful for development of Cadence

○ Would be nice to integrate it with emulator/network:

re-use language server

● Documentation generator

● Debugger

Tools

● Command-line tools for parsing, checking, executing

○ Allow benchmarking

● Compatibility suite:

○ Checks out known repositories

○ Generates report about parsing/checking and performance regressions

Tools

● “Runtime” interface
○ Import handling (resolution, reading code)
○ Storage: read value, write value
○ Account management:

■ Account creation
■ Key management
■ Contract management

○ Event emission
○ Transaction information (signers)
○ Block information
○ Crypto (hashing, signature verification, etc.)
○ Random number generation

Integration with Flow

● We started with formalizing Cadence using the K Framework
● Subset of early version of Cadence (e.g., no resources)
● Declare syntax and semantics → generate interpreter, verifier, etc.
● “Correct by construction”
● Experience:

○ Requires lots of expert knowledge
○ Time consuming
○ Slow iteration

● Assumed we could use it as a tool for language design exploration
● Language better defined now, it would be nice to complete this eventually

K Semantics

● Replace interpreter with compiler and virtual machine

● Compiler could initially be just used on-chain (to increase performance)

● By adding a bytecode verifier and using it on-chain,
users could run compiler off-chain and submit compiled bytecode,
the network wouldn’t need to compile

● Bytecode verifier and Virtual Machine must enforce
same security and safety semantics for bytecode
as checker and interpreter do for Cadence source programs

Performance and Efficiency: Execution

Source
Code Bytecode

Blockchain Runtime
(Verify + Execute)

TransactionCompiler

Source
Code Bytecode

Blockchain Runtime
(Verify + Execute)

TransactionCompiler

● Requirements:
○ Deterministic (e.g. cannot have non-deterministic features like

platform-dependent floating point semantics)
○ Portable
○ “Managed”: Instruction set must not allow direct access to private data
○ Size-efficient
○ Linear types / resource semantics
○ Similar to JVM/CL

Performance and Efficiency: Execution

● Requirements:
○ Deterministic (e.g. cannot have non-deterministic features like

platform-dependent floating point semantics)
○ Portable
○ “Managed”: Instruction set must not allow direct access to private data
○ Size-efficient
○ Linear types / resource semantics
○ Similar to JVM/CL

Performance and Efficiency: Execution

● Options
○ WebAssembly

■ Has external references/values
■ Standard
■ Many implementations and lots of tooling
■ Formal semantics
■ Is missing linear types
■ Need to extend instruction set

○ (Cont.)

Performance and Efficiency: Execution

● Options (continued)
○ MoveVM

■ Has linear types
■ Is missing external references/values
■ Only one implementation
■ Need to extend instruction set and virtual machine
■ Opposition to extension, e.g. with dynamic features

○ (Cont.)

Performance and Efficiency: Execution

● Options (continued)
○ LLVM IR:

■ Not portable: architecture specific
■ Generates very efficient code
■ Slow compilation speed

○ Custom?
■ Lots of work and re-inventing the wheel
■ Source of bugs

Performance and Efficiency: Execution

● Currently we have
○ WebAssembly Binary (WASM) reader/writer
○ Start of IR
○ Start of compiler

● Goal is to have MVP
○ Compiler and verifier for subset (e.g resources, interfaces)
○ Demonstrate approach satisfies goals

Performance and Efficiency: Execution

● Storage operations account for a large portion of execution

● Programs are read/write heavy, usually not compute intensive

● Storage format: CBOR

○ RFC standard

○ Efficient

● Streaming decoding and encoding (no intermediate objects)

● Lazy decoding (read data, only decode when/if needed)

Performance and Efficiency: Storage

● Bugs: crashers, security issues (!)

● Known problems

○ Manually written tests

● Unknown problems

○ Automatic testing: Fuzzing

Reliability

Questions?

