
Cadence
Implementation: Past, Present, and Future

● Implemented in Go

● Also considered Rust

● Trade-off: Implementation/iteration speed / time to MVP > performance

Implementation Language

● Pros:
○ Lots of expertise at Dapper Labs
○ Commonly used in blockchain space
○ Fast iteration / development speed
○ Easily integratable into node software
○ Can leverage garbage collection in Go for garbage collection in Cadence
○ Can easily cross-compile (Linux, Windows, WebAssembly)
○ Performance is good enough

Implementation in Go

● Cons:
○ Go is very minimalistic (no generics, structural typing, no enums, etc.) –

Suboptimal for safely implementing a programming language
○ Performance could be better

Implementation in Go

● Might implement new components or re-implement components
in another language

Implementation Language

● Programs are uploaded to the chain as source code
(deployed contracts, transactions, scripts)

● Execution:
○ Parse (syntactical analysis)
○ Check (semantic analysis)
○ Interpret

● Optional caching of parsed programs
● Checking result is elaboration (types of AST nodes)
● AST and elaboration are not stored on-chain

Phases

● Input: Source
● Lexer recognizes tokens from source (e.g. identifier, string literal, etc.)
● Parser:

○ Hand-written Top-Down Operator Precedence (Pratt) parser
■ Can declaratively specify prefix, infix, and postfix operators and

their precedence
○ Supports backtracking (buffering + replay) for ambiguous cases

■ Less than operator vs. type argument: a()
■ Greater than operator vs. bitwise right shift operator: a >> b

(again due to type arguments: a<b<c>>())
● Output: AST

○ JSON output for other tools

Parsing

● Parser was initially generated using ANTLR
○ Pros:

■ Nice declarative grammar
■ Development speed

○ Cons:
■ Go backend is very slow
■ Hard to handle parse errors
■ Hard to handle ambiguities
■ Easy to introduce exponential blow-up
■ Concrete Syntax Tree (CST) is additional step

with associated overhead

Parsing

● Input: AST

● Semantic analysis of program
○ Type checks (e.g. subtyping, restrictions, etc.)
○ Resource tracking (construction, moves, destroys)
○ Interface conformance
○ Type requirement conformance
○ Definite initialization
○ Literal range checks
○ Type storability

● Based on visitor over AST, breadth-first traversal

● Output: Elaboration: Type information for AST nodes

Checking

● Input: AST + Elaboration

● AST-walking interpreter, uses visitor
● Based on trampolining:

○ Prevent stack overflow during execution
○ Can halt + resume execution (useful for debugger)
○ Limited by heap space instead of stack space

(though Go’s goroutines automatically grow!)

Execution

● Cadence has a high-level storage API, path-value based
● Mapped to low-level storage API, key-value based (bytes)
● Data is encoded as CBOR

○ Standard: RFC
○ Efficient: size, encoding/decoding performance
○ Extensible: allows encoding values with rich types, self-describing

● Storage optimization: “Deferral” (transparent persistence)
○ Save values of resource dictionaries in separate storage keys
○ Lazy-loading of values when accessed by program

Storage

● Extensive source based tests (i.e. input is program)
for parsing, checking, interpretation,

● Generation of tests to cover all cases (e.g. test all number types)
● Fuzzing

Tests

● Language Server + Visual Studio Code extension
○ Implements Language Server Protocol
○ Integrated into CLI
○ Integrated into Playground FE using WebAssembly

● REPL
○ Useful for development of Cadence
○ Would be nice to integrate it with emulator/network:

re-use language server
● Command-line tools for parsing, checking, executing

○ Allow benchmarking
● Compatibility suite:

○ Checks out known repositories
○ Generates report about parsing/checking and performance regressions

Tools

● “Runtime” interface
○ Import handling
○ Storage: read value, write value
○ Account management:

■ Account creation
■ Key management
■ Contract management

○ Event emission
○ Transaction information (signers)
○ Block information
○ Crypto (hashing, signature verification, etc.)

Integration

● Currently a “pull”-based architecture:
Cadence contains type and value declarations (e.g. block information, crypto)
and requires host environment to provide functionality

● Future: “push”-based architecture:
Invert, refactor non-core/Flow-specific types and values
from Cadence to node software

● Cadence recently gained support for allowing the host environment
to inject values when executing programs (transactions and scripts)

Integration

● We started with formalizing Cadence using the K Framework
● Subset of early version of Cadence (e.g., no resources)
● Declare syntax and semantics → derive interpreter, verifier, etc.
● “Correct by construction”
● Experience:

○ Requires lots of expert knowledge
○ Time consuming
○ Slow iteration

● Assumed we could use it as a tool for language design exploration
● Language better defined now, it would be nice to complete this eventually

K Semantics

● Expand standard library
○ Account API (e.g. key management)
○ Storage API (e.g. querying, iteration)

● Extensibility
(add data and functionality to existing types without changing original code)

● Roadmap

Future: Features

https://github.com/onflow/cadence/blob/master/ROADMAP.md

● Testing framework

● Pretty printer
● Documentation generator
● Debugger

Future: Tools

● Replace interpreter with compiler and virtual machine

● Compiler could initially be just used on-chain (to increase performance)

● By adding a bytecode verifier and using it on-chain,
users could run compiler off-chain and submit compiled bytecode,
the network wouldn’t need to compile

● Bytecode verifier and Virtual Machine must enforce
same security and safety semantics for bytecode
as checker and interpreter do for Cadence source programs

Future: Performance and Efficiency

● Requirements:
○ Deterministic (e.g. cannot have non-deterministic features like

platform-dependent floating point semantics)
○ Portable
○ “Managed”: Instruction set must not allow direct access to private data
○ Size-efficient
○ Linear types / resource semantics
○ Similar to JVM/CL

Future: Performance and Efficiency

● Options
○ WebAssembly

■ Has external references/values
■ Standard
■ Many implementations and lots of tooling
■ Formal semantics
■ Is missing linear types
■ Need to extend instruction set

○ (Cont.)

Future: Performance and Efficiency

● Options (continued)
○ MoveVM

■ Has linear types
■ Is missing external references/values
■ Only one implementation
■ Need to extend instruction set and virtual machine
■ Opposition to extension, e.g. with dynamic features

○ (Cont.)

Future: Performance and Efficiency

● Options (continued)
○ LLVM IR:

■ Not portable: architecture specific
■ Generates very efficient code
■ Slow compilation speed

○ Custom?
■ Lots of work and re-inventing the wheel
■ Source of bugs

Future: Performance and Efficiency

● Currently we have
○ WebAssembly Binary (WASM) reader/writer
○ Start of IR
○ Start of compiler

● Goal is to have MVP
○ Compiler and verifier for subset (e.g resources, interfaces)
○ Demonstrate approach satisfies goals

Future: Performance and Efficiency

● Extend transparent persistence

Future: Performance and Efficiency

Questions?

