d

Persistent state on all servers:

(Updated on stable storage before responding to RPCs)

currentTerm

on first boot, increases monotonically)

candidateld that received vote in current

term (or null if none)

log[] log entries; each entry contains command
for state machine, and term when entry
was received by leader (first index is 1)

votedFor

Volatile state on all servers:

commitIndex index of highest log entry known to be
committed (initialized to 0, increases
monotonically)

lastApplied index of highest log entry applied to state

machine (initialized to 0, increases
monotonically)

Volatile state on leaders:
(Reinitialized after election)

nextIndex|] for each server, index of the next log entry
to send to that server (initialized to leader
last log index + 1)

matchIndex|] for each server, index of highest log entry

known to be replicated on server
(initialized to 0, increases monotonically)

latest term server has seen (initialized to 0

RequestVote RPC

Invoked by candidates to gather votes (§3.4).

Arguments:

term candidate’s term

candidateld candidate requesting vote

lastLogIndex index of candidate’s last log entry (§3.6)
lastLogTerm term of candidate’s last log entry (§3.6)
Results:

term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:

1.
2.

Reply false if term < currentTerm (§3.3)
If votedFor is null or candidateld, and candidate’s log is at
least as up-to-date as receiver’s log, grant vote (§3.4, §3.6)

Append eS RP
Invoked by leader to replicate log entries (§3.5); also used as

heartbeat (§3.4).

Arguments:

term leader’s term

leaderld so follower can redirect clients

prevLoglIndex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndex entry

entries|] log entries to store (empty for heartbeat;
may send more than one for efficiency)

leaderCommit leader’s commitIndex

Results:

term currentTerm, for leader to update itself

success true if follower contained entry matching

prevLoglndex and prevLogTerm

Receiver implementation:
1. Reply false if term < currentTerm (§3.3)

2. Reply false if log doesn’t contain an entry at prevLoglndex

whose term matches prevLogTerm (§3.5)

3. [Ifan existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it (§3.5)

4. Append any new entries not already in the log

5. If leaderCommit > commitIndex, set commitindex =
min(leaderCommit, index of last new entry)

Rules for Servers

All Servers:

If commitIndex > lastApplied: increment lastApplied, apply
log[lastApplied] to state machine (§3.5)

If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower (§3.3)

Followers (§3.4):

c

Respond to RPCs from candidates and leaders

If election timeout elapses without receiving AppendEntries
RPC from current leader or granting vote to candidate:
convert to candidate

andidates (§3.4):
On conversion to candidate, start election:
* Increment currentTerm
* Vote for self
* Reset election timer
* Send RequestVote RPCs to all other servers
If votes received from majority of servers: become leader
If AppendEntries RPC received from new leader: convert to
follower
If election timeout elapses: start new election

Leaders:

Upon election: send initial empty AppendEntries RPC

(heartbeat) to each server; repeat during idle periods to

prevent election timeouts (§3.4)

If command received from client: append entry to local log,

respond after entry applied to state machine (§3.5)

If last log index > nextIndex for a follower: send

AppendEntries RPC with log entries starting at nextIndex

* Ifsuccessful: update nextIndex and matchIndex for
follower (§3.5)

» If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry (§3.5)

If there exists an N such that N > commitIndex, a majority

of matchIndex[i] > N, and log[N].term == currentTerm:

set commitIndex =N (§3.5, §3.6).

