= O DAdSEeU d 0 Q0

Apply entry:
Mutate in-memory data structure

Service read:
Look up result in in-memory data structure

Take snapshot:
When Raft log size in bytes reaches 4x previous snapshot size:
1. Fork the state machine’s memory
* In parent, continue processing requests
* In child, serialize in-memory data structure to new
snapshot file on disk
2. Discard previous snapshot file on disk
3. Discard Raft log up through child’s last applied index

State to transfer to slow follower:
Latest snapshot file (immutable)

) = B
Dd o dJ O QU

Apply entry:
1. Mutate on-disk data structure
2. Discard Raft log up through last applied index

Service read:
Look up result in on-disk data structure

State to transfer to slow follower:
Copy-on-write snapshot of on-disk data structure

ole ed [(QO

Apply entry:
1. Append entry to in-memory head segment
2. Update index with location of key

Service read:
1. Look up location of key in index
2. Read value from segment on disk

Flush head segment:

When in-memory log segment reaches 2 MB:

1. Write in-memory segment to disk as new head segment
2. Reset in-memory segment

3. Discard Raft log up through last applied index

Compact segments:
When free disk space drops below 5%:
1. Select 10 segments to clean with the largest value of:
benefit 1-—u
cost 1 +u
where u is the fraction of live bytes in the segment
2. Copy live entries into new segments:
* Look up key in index to determine if entry is live
» Update index with new location of key
3. Discard original segments

X segmentAge

State to transfer to slow follower:
All segments on disk (immutable)

00 20 2rge e Q0

Apply entry:
Add entry to in-memory tree

Service read:

1. Search for key in in-memory tree

2. Search all level 0 runs (any might contain the key)

3. For each level counting up from 1 in order, search the
single run that might contain the key

Create new run:

When in-memory tree reaches 1 MB:

1. Serialize in-memory tree into new sorted level 0 run on disk
2. Reset in-memory tree

3. Discard Raft log up through last applied index

Compact runs:

When there are 4 runs at level 0:

1. Merge all level 0 runs with all level 1 runs, producing new
non-overlapping level 1 runs split at 2 MB boundaries

2. Discard merged runs

When the total size of all runs at level L exceeds 10" MB:
1. Merge one level L run (chosen round-robin) with all
overlapping level L+1 runs, producing new non-
overlapping level L+1 runs split at 2 MB boundaries
2. Discard merged runs

State to transfer to slow follower:
All runs on disk (immutable)

B N
c c 0 0 Dd 0

Persisted before discarding log entries. Also sent from leader
to slow followers when transmitting state.

previndex index of last discarded entry (initialized to
0 on first boot)

prevlerm term of last discarded entry (initialized to 0
on first boot)

prevConfig latest cluster membership configuration up

through previndex

< d edde DAdSed a0 O V0.4

Apply entry:
Mutate in-memory data structure

Service read:
Look up result in in-memory data structure

Take snapshot:

When Raft log size in bytes reaches 1 MB:

. Stop accepting client requests

. Wait until last applied index reaches end of log

. Serialize data structure, append to new snapshot entry in log

. Resume processing client requests

. As each server learns the snapshot entry is committed, it
discards its Raft log entries up to that entry

v AW N =

State to transfer to slow follower:
Raft log (no additional state)

