Dynamic
Instrumentation

Golang Meetup Bangalore XXIV
15 July 2017

@JeffryMolanus @openebs

Tracing

To record information about a programs execution
® Useful for understanding code, in particular a very large code base
® Used during debugging, statistics, so on and so forth

Dynamic tracing is the ability to ad-hoc add or remove certain instrumentation without
making changes to the code that is subject to tracing or restarting the program or system

In general, tracing should not effect the stability of the program that is being traced in
production, during development its less of importance

When no tracing is enabled there should be no overhead; when enabled the overhead
depends on what is traced and how

User land tracing requires abilities in kernel (which is the focus of this talk)

® user space tracing has a little more overhead due to the induced context switch

Tracers on other platforms

® lllumos/Solaris and FreeBSD
® Dtrace, very powerful and production safe used for many years

®* Compressed Type Format (CTF) data is available in binaries and libraries, no
need for debug symbols to work with the types

® Solaris uses the same CTF data for type information for debugging
®* Event Tracing for Windows (EWT)
® Linux

®* Requires debug symbols to be downloaded depending on what you trace and how
specific you want to trace

* With DWARF data more can be done then with plain CTF however

Basic architecture of tracing

®* There are generally, two parts of tracing in Linux

®* Frontend tools to work/consume with/the in kernel tracing
facilities

®* We will look briefly in ftrace, systemtap and BCC
®* Backend subsystems

® Kernel code that executes what ever code you want to be
executed on entering the probes function or address

® Kkprobes, probes, tracepoints, sysdig

ftrace

® Tracepoints; static probes defined in the kernel that can be enabled at
run time

®* ABI is kept stable by kernel

® static implies you have to know what you want to trace while
developing the code

®* Makes use of sysfs interface to interact with it
® Several wrappers exist to make things a little easier
® tracecmd and kernelshark (Ul)

® Also check the excellent stuff from Brendan Gregg

Adding a tracepoin

TRACE EVENT({extd4 regquest inode,
TP PROTO(struet inode *dir, int mode),

TP ARGS(dir, mode),

TF STRUCT entry|

_ field(dev t, dev)
_ field|(ino t, dir)
_ field(__ulé, mode)

TP fast assign(
___entry=>dev = dir=>i sbh=>s dev;
__entry=>dir dir=>1i ino;
___entry->mode = mode:

TP printk("dev %d,3%d dir %lu mode 0%0",
MAJOR(entry=>dev), MINOR(entry->dev),
{unsigned leng) entry-»>dir, entry->mode)

Trace points In sysfs

=+ extd_request_inode pwd
/sys/kernel/debug/tracing/events/ext4/ext4_request_inode
=% extd4_request_inode cat format
name: ext4_request_inode
ID: 920
format :
field:unsigned short common_type; offset:0; size:2; signed:9;

field:unsigned char common_flags; offset:2; size:1; signed:@;
field:unsigned char common_preempt_count; offset:3; size:1; signed:@;
field:int common_pid; offset:4; size:4; signed:1;

field:dev_t dev; offset:§; size:4; signed:@;
field:ino_t dir; offset:16; size:8; signed:@;
field:__ul6é mode; offset:24; size:2; signed:@;

kKernelshark

File

H

[T T I (R ¥) N T S =)

Filter

BJEIES

Plats Help

Pointer: 3280035.846126 Cursor: 0.0 Markerf 0.0 Markerfl]l 0.0 A B Delta: 0.0

Time Line

IPage|1

CPU

(- = T - T R =T

sys_enter

Search: Column:

Time Stamp

32B0035.156957
32B0035.156958
32B0035.156965
3280035.156971
32B0035.156974
32B0035.156980
3280035.156991
32B0035.1569594
32B0035.156997
3280035.156997

MR 240 (edbfd040, 85, 1, 1, edbfd03c, 4000001)
3280035.846125 epiphany-browse-28059

SO e ——— A0
ceun | N |

3280035.847577

#

== ” contains

Task
trace-crmd
Is
trace-cmd
trace-cmd
trace-cmd

trace-cmid

trace-cmid

PID

25900

Latency

mm_page_alloc
sys_enter
hrtimer_init
hrtimer_start
sys_enter

kmem _cache_alloc
krmem_cache_alloc

sched_switch

- |[]I:I graph follows
Event Info

sys_exit MR 42 = 0

sys_exit MR 4 =1

page=0xffffeadi0oc3dcE pfn=1023943Z2 or
MR 162 (ff9aeclc, 0O, 806cd484, 0, 0, ff9
hritimer OxffffB88007ce35eald, clockid CLO
hrtimer=0xffff88007ce35ea8 function=hrt
NR 11 (ff9aecOd, ffo9afddc, ff9afdec, ff
(getname+0x23) call site=BlOf558d ptr=0
(compat_do_execve+0x43) call_site=8lllc

25200:44:5 === 0,140 swapper

[+]

]

(1]

Kprobes

® kprobes is defined in multiple sub categories
® Jprobes: trace function entry (optimised for function entry, copy stack)
® kretprobes: trace function return
® kprobes: trace at any arbitrary instruction in the kernel

® To use it one has to write a kernel module which needs to be loaded at run
time

® this is not guaranteed to be safe
® A kprobe replaces the traced instruction with a break point instruction

®* On entry, the pre_handler is called after instrumenting, the post handler

Kprobes

tracepoint

Kprobe example

static struct kprobe kp;

int handler_pre(struct kprobe *p, struct pt_regs *regs)
{
printk{"pre_handler: p->addr=0x*p, eip=ilx, eflags=0x
p->addr, regs->»eip, regs-»eflags);
dump_stack();
d;

void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags)

{
printk("post_handler: p->addr=@x‘p, eflags=8x "

p->addr, regs->»eflags);

int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)

{

printk("fault_handler: p->addr=@xip, trap #idn",
p->addr, trapnr);

)

-
]

Kprobe example

int init_module(void)
{
int ret;
kKp.pre_nandler = handler_pre;
kp.post_handler = handler_post;
kp.fault_handler = handler_fault;
kp.addr = (kprobe_opcode_t*) kallsyms_lookup_name("do_fork");

(lkp.addr) {
printk("Couldn’'t find to plant kprobe'n", “do_fork");
_1;

((ret = register_kprobe(&kp) < 8)) {
printk("register_kprobe failed, returned ", ret);
-1;
}
printk("kprobe registered.n");

¥

void cleanup_module(void)

{

unregister_kprobe(&kp);
printk("kprobe unregistered'.n");

jprobes

_ long jdo_fork(unsigned long clone_flags, unsigned long stack_start,
¢ NOte: funC'“()n struct pt_regs *regs, unsigned long stack_size,

tot d int _user * parent_tidptr, int __user * child_tidptr)
prototype needs

printk("jprobe: clone_flags=0x+1x, stack_size=@x"|x, regs=0x

matCh the aCtuaI clone_flags, stack_size, regs);
syscall

jprobe_return();

"M

¥

b

static struct jprobe my_jprobe = {
.entry = (kprobe_opcode_t *) jdo_fork
¥;

utrace/uprobes

®* Roughly the the same as the kprobe faclility in the kernel but focused
on user land tracing

® current ptrace() in linux is implemented using the utrace frame work
® tools like strace and GDB use ptrace()
® Allows for more sophisticated tooling, one of which is uprobes

®* Trace points are placed on the an inode:offset tuple

® All binaries that map that address will have a SW breakpoint
Injected at that address

ftrace & user space

®* The same ftrace interface is available for working with uprobes

®* Behind the scene the kernel does the right thing (e.g use kprobe,
tracepoints, or uprobes)

®* The same sysfs interface is used, general work flow:
®* Find address to place the probe on
®* Enable probing
® Disable probing

® View results (flight recorder)

=* tracing objdump -T /bin/zsh | grep -w zfree
PO0DDOD0DO5del1d g DF .text 0000000000000012 Base zfree
=* tracing echo 'p:zfree_entry /bin/zsh:8x5deld ¥ip ¥ax' > uprobe_events

=* tracing cat uprobe_events
p:uprobes/zfree_entry /bin/zsh:x000000000005deld argl=Kip argZ=%ax
=» tracing echo 1 > events/uprobes/enable

=% tracing echo @ > events/uprobes/enable

d..
d..
d..
d..
d..
d..
d..
d..

: zfree_entry:
: zfree_entry:
: zfree_entry:
: zfree_entry:
: zfree_entry:
: zfree_entry:
: zfree_entry:
: zfree_entry:

“la ¥ el

(0x562034863e1@) argl=0x562034863e10
(@x562034863e10) argl=0x562034863e10
(@x562034863e10) argl=0x562034863e10
(0x562034863e10) argl=0x562034863e10
(0x562034863e10) argl=0x562034863e10
(0x562034863e1@) argl=0x562034863e10
(@x562034863e10) argl=0x562034863e10
(@x562034863e10) argl=0x562034863e10

¢ LA = W el L all et - WAL EFRIITETNIE

arg2=0x49
argZ=0x7f39b6e80
argz=0xe
argZ=0x48
arg2=gx1e5
arg2=0x7f39b6e7c
argZ=0x7f39b6e7c
argz=0xe

alata LA L

eBPF

® Pretty sure everyone here has used
BPF likely with out knowing

¢ thdump uses BPF tcpdump -nnnX port 3000

sniffer

® sandboxed byte code executed k —
kernel which is safe and user ot | ?‘

user Applications

* eBPF is enhanced BPF

] kernel
defined -

VM filter
net if

® attach eBPF to kprobes and
uprobes

® certain restrictions in abilities

BCC

®* BPF Compiler Collection,
compiles code for the in kernel
VM to be executed

® Several high level wrappers for
Python, lua and GO

const std::string BPF_PROGRAM = R"(
int on_sys_clone(void #ctx) {

¢ COde |S Stl” ertten |n C bpf_trace_printk("Hello, World! Here I did a sys_clone call!\n");

return @;

however L

Recap

® Several back-end tracing capabilities in the kernel
®* Tracepoints, kprobes, jprobes, kretprobes and uprobes

®* eBPF allows attachment to kprobe, uprobes and tracepoints for
safe execution

® Linux tracing world can use better generic frontends for adhoc
tracing

®* Best today are perf and systemtap (IMHO)

®* Who wants to write C when you want to print a member of a
complex struct? (ply)

Systemtap

High level scripting language to work with the aforementioned tracing
capabilities of Linux

Flexible as it allows for writing scripts that can trace specific lines
within a file (debug symbols)

Next to tracing, it can also make changes to running programs when
run in “guru mode”

Resulting scripts from systemtap are kernel modules that are loaded
In to the kernel (kprobe and uprobes)

Adding a eBPF target is in the works as currently, systemtap may
result in unremovable modules or sudden death of traced processes

stp files

®* Example script oneliner:

® stap -e ‘probe syscall.open { printf(“exec %s, file%s, exechame(),
filename) }

® stap -L ‘syscall.open’

® syscall.open: _ nr:long name:string filename:string flags:long
flags_str:string mode:long argstr:string

® List user space functions in process “trace”
® stap -L ‘process(“./trace").function("*")’

® _.call and .return probes for each function

List probes

= talk stap -L 'process("./trace").function("*")"

$ret:int

$x:int $y:int Snumber:int
$a:int $brint

Tracing line numbers

int

traceme(int a, int b) {
®* What's the value of ret after : a+b;
line 357 -
traceme2(int x, int y) {
® Could be done by tracing ret it e e B
values, but that is not the e e
purpose of this exercise S

® gcc -g-00 }

int main{void) {

. int ret = trncele(l,Ej;
® full debug info ret = tracemc2(S, 5);
ret = traceme2(1l, 1);
ret = tracemeZ(traceme(3,3), 4);
Q:

Tracing line number

=» talk stap -e ‘probe process("./trace").statement("main@/code/talk/trace.c:36") { printf("ret val here is ¥%d\n", Sret)}’
e is 3

ret va
N

-+ talk]

* _statement("main@code/talk/trace.c:367) { ... }

Understanding code flow

probe process("./trace"). ("*@/code/talk/trace.c").

{
printf ("%s -> %s\n", thread_indent(1), probefunc())

}

probe process("./trace"). ("*@/code/talk/trace.c").

{
(@defined($ N {

printf ("%s <- %s #x\n", thread_indent(-1), probefunc(), $

{
printf ("%s <- %s EﬂfHLILI\n", thread_indent(-1), probefunc())

}

probe {

printf("Press CTRL+C exit\n")

Understanding code flow

=» talk stap indent.stp
Press CTRL+C to exit

® trace(58698): -> main

18 trace(58698): -> traceme

15 trace(58698): <- main return 3

19 trace(58698): -> traceme?

24 trace(58698): -> traceme

27 trace(58698): <- traceme? return a

31 trace(58698): -> larger
trace(58698): <- tracemeZ return @/NULL
trace(58698): <- main return @
trace(58698): -> traceme?
trace(58698): -> traceme
trace(58698): <- tracemeZ return
trace(58698): -> smaller
trace(58698): <- tracemeZ return @/NULL
trace(58698): <- main return @
trace(58698): -> traceme
trace(58698): <- main return 6
trace(58698): -> traceme?
trace(58698): -> traceme
trace(58698): <= traceme? return a
trace(58698): -> larger
trace(58698): <= tracemeZ return @/NULL
trace(58698): <- main return @
trace(58698): <- x7fcd942893f1 return @

Downstack

global trace = @;

probe process("./trace"). ("traceme2").
o " {
All functions trace = 1:
being called by }

a fU n Ctl on probe process("./trace”). ("traceme2™).

{

trace = @;

}

Imbe process("./trace"). {"*&/code/talk/trace.c").

=» talk stap downstack.stp {

Press CTRL+C to exit
traceme called from traceme?
larger called from tracemez

(trace = 1 & ppfunc() != "traceme2")
printf("%s called tracemez\n", ppfunc())

}
traceme called from traceme2
smaller called from traceme?
traceme called from traceme2
larger called from tracemez

probe {

printf("Press CTRL+C exit\n")

Tracing go

=+ go cat main.go
package main

import "fmt"

func traceme(a int, b int) (ret int) {
return a + b

}
func main() {

ret := traceme(l, 2)
fmt.Printf("ret %d\n", ret)

}
=% go stap -e 'probe process("./stap").function("main.traceme") { printf("%d and %d\n",%a, $b)}' -c ./stap

ret 3
1l and 2

-+ g ||

ant trace return values

=+ go go build -gcflags "-N -1" -0 stap
= go stap -e 'probe process("./stap").function("main.traceme").return { printf("%d \n", $return)}' -c ./stap

semantic error: while processing probe process("/code/go/stap”).function("main.traceme@/code/go/main.go:5").return f
rom:; process("./stap").function("main.traceme™).return

semantic error: function main.traceme (go) has no return value: identifier "$return’ at

source: probe process("./stap").function("main.traceme").return { printf("%d “n", $return)}
A

Pass 2: analysis failed. [man error::passZ]
+ g |l

Calling convention

AMDG64 calling conventions
®* RDI, RSI, RDX, RCX, R8 and R9

Go is based on PLAN9 which uses a different approach therefore tracing does not work as
well as one would like it to be (yet)

®* This also goes for debuggers

Perhaps Go will start using the X86 64 ABI as it moves forward or all tools and debuggers
will add specific PLAN9 support

® https://go-review.googlesource.com/#/c/28832/ (ABI change?)

GO bindings to the BCC tool chain
® Allows for creating eBPF tracing tools written in go

® but still requires writing the actual trace logic in C

https://go-review.googlesource.com/#/c/28832/

Summary

Dynamic tracing is an invaluable tool for
understanding code flow

To verify hypotheses around software bugs or
understanding

ADbility to make changes to code on the fly with out
recompiling (guru mode)

Under constant development most noticeable the
eBPF/BCC work

