
Dynamic

Instrumentation

@JeffryMolanus @openebs

Golang Meetup Bangalore XXIV
15 July 2017

Tracing

• To record information about a programs execution

• Useful for understanding code, in particular a very large code base

• Used during debugging, statistics, so on and so forth

• Dynamic tracing is the ability to ad-hoc add or remove certain instrumentation without

making changes to the code that is subject to tracing or restarting the program or system

• In general, tracing should not effect the stability of the program that is being traced in

production, during development its less of importance

• When no tracing is enabled there should be no overhead; when enabled the overhead

depends on what is traced and how

• User land tracing requires abilities in kernel (which is the focus of this talk)

• user space tracing has a little more overhead due to the induced context switch

Tracers on other platforms

• Illumos/Solaris and FreeBSD

• Dtrace, very powerful and production safe used for many years

• Compressed Type Format (CTF) data is available in binaries and libraries, no

need for debug symbols to work with the types

• Solaris uses the same CTF data for type information for debugging

• Event Tracing for Windows (EWT)

• Linux

• Requires debug symbols to be downloaded depending on what you trace and how

specific you want to trace

• With DWARF data more can be done then with plain CTF however

Basic architecture of tracing

• There are generally, two parts of tracing in Linux

• Frontend tools to work/consume with/the in kernel tracing

facilities

• We will look briefly in ftrace, systemtap and BCC

• Backend subsystems

• Kernel code that executes what ever code you want to be

executed on entering the probes function or address

• kprobes, probes, tracepoints, sysdig

ftrace

• Tracepoints; static probes defined in the kernel that can be enabled at

run time

• ABI is kept stable by kernel

• static implies you have to know what you want to trace while

developing the code

• Makes use of sysfs interface to interact with it

• Several wrappers exist to make things a little easier

• tracecmd and kernelshark (UI)

• Also check the excellent stuff from Brendan Gregg

Adding a tracepoint

Trace points in sysfs

kernelshark

kprobes

• kprobes is defined in multiple sub categories

• jprobes: trace function entry (optimised for function entry, copy stack)

• kretprobes: trace function return

• kprobes: trace at any arbitrary instruction in the kernel

• To use it one has to write a kernel module which needs to be loaded at run

time

• this is not guaranteed to be safe

• A kprobe replaces the traced instruction with a break point instruction

• On entry, the pre_handler is called after instrumenting, the post handler

kprobes

Kprobe example

Kprobe example

jprobes

• Note: function

prototype needs to

match the actual

syscall

utrace/uprobes

• Roughly the the same as the kprobe facility in the kernel but focused

on user land tracing

• current ptrace() in linux is implemented using the utrace frame work

• tools like strace and GDB use ptrace()

• Allows for more sophisticated tooling, one of which is uprobes

• Trace points are placed on the an inode:offset tuple

• All binaries that map that address will have a SW breakpoint

injected at that address

ftrace & user space

• The same ftrace interface is available for working with uprobes

• Behind the scene the kernel does the right thing (e.g use kprobe,

tracepoints, or uprobes)

• The same sysfs interface is used, general work flow:

• Find address to place the probe on

• Enable probing

• Disable probing

• View results (flight recorder)

eBPF
• Pretty sure everyone here has used

BPF likely with out knowing

• tcpdump uses BPF

• eBPF is enhanced BPF

• sandboxed byte code executed by

kernel which is safe and user

defined

• attach eBPF to kprobes and

uprobes

• certain restrictions in abilities

BCC

• BPF Compiler Collection,

compiles code for the in kernel

VM to be executed

• Several high level wrappers for

Python, lua and GO

• Code is still written in C

however

Recap

• Several back-end tracing capabilities in the kernel

• Tracepoints, kprobes, jprobes, kretprobes and uprobes

• eBPF allows attachment to kprobe, uprobes and tracepoints for

safe execution

• Linux tracing world can use better generic frontends for adhoc

tracing

• Best today are perf and systemtap (IMHO)

• Who wants to write C when you want to print a member of a

complex struct? (ply)

Systemtap

• High level scripting language to work with the aforementioned tracing

capabilities of Linux

• Flexible as it allows for writing scripts that can trace specific lines

within a file (debug symbols)

• Next to tracing, it can also make changes to running programs when

run in “guru mode”

• Resulting scripts from systemtap are kernel modules that are loaded

in to the kernel (kprobe and uprobes)

• Adding a eBPF target is in the works as currently, systemtap may

result in unremovable modules or sudden death of traced processes

stp files

• Example script oneliner:

• stap -e ‘probe syscall.open { printf(“exec %s, file%s, execname(),

filename) }’

• stap -L ‘syscall.open'

• syscall.open: __nr:long name:string filename:string flags:long

flags_str:string mode:long argstr:string

• List user space functions in process “trace”

• stap -L ‘process(“./trace").function("*")'

• .call and .return probes for each function

List probes

Tracing line numbers

• What's the value of ret after

line 35?

• Could be done by tracing ret

values, but that is not the

purpose of this exercise

• gcc -g -O0

• full debug info

Tracing line number

• .statement(“main@code/talk/trace.c:36”) { … }

Understanding code flow

Understanding code flow

Downstack

• All functions

being called by

a function

Tracing go

Cant trace return values

Calling convention

• AMD64 calling conventions

• RDI, RSI, RDX, RCX, R8 and R9

• Go is based on PLAN9 which uses a different approach therefore tracing does not work as

well as one would like it to be (yet)

• This also goes for debuggers

• Perhaps Go will start using the X86_64 ABI as it moves forward or all tools and debuggers

will add specific PLAN9 support

• https://go-review.googlesource.com/#/c/28832/ (ABI change?)

• GO bindings to the BCC tool chain

• Allows for creating eBPF tracing tools written in go

• but still requires writing the actual trace logic in C

https://go-review.googlesource.com/#/c/28832/

Summary

• Dynamic tracing is an invaluable tool for

understanding code flow

• To verify hypotheses around software bugs or

understanding

• Ability to make changes to code on the fly with out

recompiling (guru mode)

• Under constant development most noticeable the

eBPF/BCC work

