tProcessor-64 and Signal Generator V4

This note describe the details of the 64-bit timed-processor (tProc). This block is a
custom processor, which means it executes a program loaded into a memory, allowing to
target a wide variety of algorithms by modifying the program. The feature that makes this
a block somehow different from standard processors is the addition of timed-instructions
that are executed at specific times. These instructions differ from standard instructions
in which they are dispatched into a timed-instruction control queue that executes them
in order and at the specified time. The user can use standard instructions to operate on
registers, push/pop to stack and compute times, to make things happen at very specific
times using the timed-instructions. This block is the 64-bit version of the tProc, which
can be connected to the Signal Generator V4 that adds phase control and uses a 160-bit

interface.

1 Block diagram and features

Figure 1 shows the block diagram of the tProcessor block.The tProcessor has a Main
Control state machine that decodes the instructions coming from the external program
memory (PM). This memory is reserved for program only, and the user cannot read or
write from the processor into this space..

After reset or when the user provides a stop and start sequence, the processor will
start reading the memory from address 0. Each memory location has a 64-bit number
which encodes the instruction together with the necessary parameters for the execution.
The start and stop sequence can be applied with internal registers or with an external

physical pin. This pin is intended when multiple processor blocks are instantiated and

1 BLOCK DIAGRAM AND FEATURES

DMA ﬁ:ﬁ? DMA

AXI Regs. — . Time

Fifo 0 oC

start —|U — ctrl. 0

PM . Time
IC . Fifo 1 7 et 1 ocC
Register Control
File
ac Fifo 7 oC
— ctrl. 7
Cond.
Logic
too Master = |
Math Clock
Bitw

Figure 1: tProcessor block diagram with their main components.

they all need to start at the same time. Register 0 of the AXI address map is the source
of the start, with a value of 0 for internal start and 1 for external start. Register 1 is
the start register. A value of 1 will start the block. Once the program is completed it
is necessary to reset this register to 0 and back to 1 in order to re-initialize the program
execution. There are 4 extra registers that can be accessed, which are used for the internal
data memory. These will be described later.

Not to confuse with the previously mentioned AXI registers is the Register File sub-
block. Most of the instructions operate over registers, which are within this block. This
implementation provides 8 pages, with 32 registers on each page. Registers are 32-bit.
The register file provides the flexibility to read up to 7 registers and write 1 register
on a single clock cycle. The user can initialize registers before time-critical instructions
are issued to save computation time of the algorithm. Register number 0 on all four
pages is hardwired to 0. This zero-valued register can be used to initialize registers or for

comparison purposes.

1 BLOCK DIAGRAM AND FEATURES

A Stack block is also included with 256, 32-bit words. This stack can be accessed
using push/pop instructions. It is up to the user to carefully handle the stack to avoid
empty/full conditions. If either condition is reached, the processor will jump into a special
error location and will need to be re-initialized. The stack can be used as a temporary
memory, and becomes useful to implement nested loops as it allows using a single register
as the loop register, with extra push/pop instructions in order to save or recall the loop
value. The stack can also be used to move registers from page to page, provided there is
no direct instruction for that matter.

The block of Cond. Logic implements the conditional logic that is used by the ap-
propriate instruction. The inclusion of this logic ensures 1 clock cycle latency for the
comparison, and also allows to expand to more complex conditions by expanding this
sub-block. The instruction that makes use of this block will jump if the output flag is
set to 1, which is the true condition. Other arithmetic and bit-wise operations are im-
plemented by the Math/Bitw block. The Math part includes addition, substraction and
product. Bit-wise operations include the standard and, or, exclusive or, not, left and
right shift. There are immediate and register-like versions of both.

Timed-instructions make this processor a distinct block from standard processors.
Timed instructions make use of the Master Clock and ¢,¢; register. The master clock is
a counter that starts counting when the software starts at address 0, and never stops.
This is a 48-bit counter, which clocked at the maximum FPGA speed of 500 Mhz gives
roughly 156 hs of counting. This could still be expanded to use more bits in the future.
It can be seen from the figure that the master clock is an input to the Time Ctrl. logic.
The other piece that timed-instructions need is the time offset ¢, ; register. This internal
register is the time reference that timed-instructions refer to. As an example, let’s say the
processor starts executing and a timed-instruction is scheduled to happen at time 150.
This means that when the master clock reaches 150, that particular instruction will be
executed. In the case of looping through an algorithm, having to specify absolute times
would be rather difficult, and the instruction itself would need to reserve 48-bit for this

field. The processor includes special instructions to synchronize the time offset register.

1 BLOCK DIAGRAM AND FEATURES

Back to our example, let’s imagine the algorithm needs to loop 10 times executing the
timed-instruction at time 150 for the first time, at time 7" + 150 the second time, at
2T + 150 for the third time, and so on. Using the sync mechanism, the user would need
to provide the timed-instruction with a specification of 150 and then a sync instruction
with T" as the value. The first execution of the loop will have a value of 0 for ¢,7¢, and the
timed-instruction will be scheduled to happen at 150 units. After the first sync instruction
is provided, the internal ¢,¢; register will be set to 7. On the second pass of the loop,
the timed-instruction will be scheduled at time ¢,;¢+150, resulting in the absolute time
of T'+ 150. This process continues until the loop is completed. In summary, when the
processor decodes a timed-instruction it will compute the absolute time with the offset
register before dispatching it into the timed-instruction control queue of that particular
channel. This simple mechanism makes it easy to specify timing sequences, and also
allows lowering the number of bits that need to be used in order to specify the time on
timed-instructions. Additionally, because the absolute time of instructions is computed
before dispatching them into the time-queue, the processor can continue decoding and
looking-ahead of the program as the synchronization mechanism is nothing but defining
a time reference for instructions.

Now the timed-instruction mechanism has been explained, going back to the diagram
of Fig. 1, it can be seen the tProcessor provides 8 output channels (OC), implemented as
axi-stream master interfaces. Each channel has its own fifo and associated time-control.
This allows to execute instructions at the same absolute time in different channels. This
may be useful in some special cases where events need to be either overlapped or executed
at the same time for a specific experiment.

The processor can also read a single value from the provided input channels (IC).
This could be used for example to read the result of a measurement, and take a decision
based on that result. The read instruction, used for reading the value of this port, is
implemented as non-blocking, which means that if the interface does not have the valid
signal asserted, the instruction will still read the value and return to the main program.

There is a mechanism that receives the data from the interface using the valid/ready

2 INSTRUCTION TYPES

handshake and updates the value of an internal register. The user should then make
sure the value is taken from the interface after the time it occurred. The instruction
was designed as non-blocking to ensure the correct timing flow throughout the program
executing. A blocking procedure will break the time structure of the algorithm.

The Data Mem. block is an internal data memory, independent from the program
memory of the processor. This internal data memory can be accessed in different ways,
and should be used to load data into the processor, or to read data from it. Memory can
be accessed from the exterior using different methods, which are single-read /write, and
DMA-like read /write. The processor can use the provided memory read /write instruction,
either immediate or register based. The details of the operation of this data memory block

will be introduced on a later section.

2 Instruction types

There are three types of instructions: I-type, J-type and R-type. The definition of
these types allow to define the underlaying binary format of the instruction, together
with the different bit fields. In the following lines the format of these instructions will be

defined.

I-type

These instructions are called immediate type. The name indicates that there is a value,
called the immediate value, that is used on the execution of the instruction and is specified
as part of the instruction itself. This type of instruction is useful when a fixed value wants
to be added to a register, or when a fixed amount of time needs to be used to synchronize

the internal time offset. The I-type instructions implemented are:
e pushi: push value into the stack.
e popi: pop value from the stack.

e mathi: add, substract or multiply value to resiter.

2 INSTRUCTION TYPES

e seti: set output port.
e synci: synchronize internal time offset.

e waiti: wait until master clock reaches specified time.

e bitwi: perform bit-wise operation on register.

e memri: read data memory.

e memwi: write data memory.

e regwi: write value into register.

Note that all immediate instructions have the ‘“9”

added at the end to make explicit refer-
ence they are immediate instructions. This help differentiating register-based instructions

with similar notation and behavior. The format of the instruction is as follows:

63:56 | 55:53 | 52:50 | 49:46 | 45:41 | 40:36 | 35:31 30:0
opcode page ch oper ra rb rc imm
As it can be seen from the instruction, there are 8 bits for the opcode. This is the

same for all instructions. The page is 3 bits and it allows specifying up to 8 register
pages. Registers are addressed using 5 bits, which allows to specify up to 32 registers
per page. Bits [52 : 50] specify the output channel. It will be clear what the meaning of
the channel is when describing the specifics of the instructions. The field oper is used in
some instruction to specify the operation, like in the mathematical instructions. These
instructions can use two source registers, one destination register and the immediate
value. There is only one caveat at the moment. Immediate values are specified using
only 31 bits instead of 32. This is due to legacy field description. This issue will be fix

in an upcoming version.

J-type

This instruction is of jump type, which means the program counter of the processor may

jump to an address that is not in the normal sequence of operation. In general, jump

2 INSTRUCTION TYPES

instructions may or may not cause the processor to jump, depending on the result of the
instruction. If the processor needs to jump, the address pointing to the memory is loaded
with the new address. If the instruction does not indicate a jump needs to be applied,
the processor skips to the next instruction and continues with the sequential execution.

The J-type instructions that are implemented are:
e loopnz: jump and decrement if register is not zero.
e condj: jump if condition is true.
e end: finish program execution and jump to end state.

The end instruction is not actually a jump instruction, because it does not make the
processor to read from the memory at a particular address. It causes the processor to
get into the end state, which needs a stop and start cycle to execute a new program or
repeat the one loaded into the memory. Bits [52 : 50] and [30 : 16] are not used. The

format of J-type instructions is as follows:

63 : 56 55 : 53 49 : 46 45 : 41 40 : 36 35 : 31 15:0
opcode page oper ra rb rc addr

R-type

These instructions are register-based. Even if the other instructions operate with registers
most of the times, R-type instructions operate always using registers and not immediate
values. The purpose of these instructions is to allow operating on up 7 registers as
source, plus an extra register as destination. There are not any instruction implemented
yet which uses all those registers at once, but it is possible given the structure of this

type of instruction. The instructions implemented of this type are:

e math: addition, subtraction or product of two registers, writing write the result on

a third register.

e set: set output port using 5 registers as source, and a sixth register for time.

3 INSTRUCTION SET

e sync: synchronize the internal time offset.

e read: read input port value into register.

e wait: wait until master clock reaches time specified on register.
e bitw: apply bit-wise operation on registers.

e memr: read data memory.

e memw: write data memory.

As mentioned before, these instructions perform a similar operation to their immediate
counterparts, using registers instead of immediate value. For memory operations, the
user could use a register to access the data memory with a loop variable, instead of a
fixed immediate value. As an example of multiple register use, it can be seen that set
instruction operates with 6 registers as source. This allows to output 160 bits with a bi-
nary word for the instruction that is 64 bits. This would not be possible using immediate

instructions. The format of this type of instruction is as follows:

63 : 56

25 193

52 : 50

49 : 46

45 : 41

40 : 36

35:31

30 : 26

25:21

20 : 16

15:11

10 :

opcode

gl

ch

oper

ra

rb

rc

rd

re

rf

rg

rh

3 Instruction set

Instructions are specified using assembly language. This language was developed to ease
the writing of simple algorithms. What matters is the underlaying binary code which is
loaded into the program memory of the tProcessor. In the upcoming pages, the assembly
code, together with the description of the instruction and the binary machine code are
going to be detailed. The user could use any other software mechanism to create the

binary code in order to re-define the input language.

3 INSTRUCTION SET

I-type

pushi p, $ra, $rb, imm:

This instruction will push the contents of register $ra into the stack, and load register
$rb with the value specified by imm. Both registers are on page p, and can be the same

to reuse the register. If the stack is full, this instruction will make the processor to jump

into an error state.

63 : 56 95 : 53 52 : 50 49 : 46 45 : 41 40 : 36 35:31 30:0

00010000 page XXX XXX rb ra XX imm

Example: pushi 0, $1, $1, 100, push the content of register 1 on page 0 into the stack,

and load 100 on the same register.

popi p, $r:

This instruction will pop the contents from the top of the stack into the register $r of
page p. If the stack is empty, this instruction will make the processor to jump into an
error state. Source register and immediate fields are not used and could be set to any

value.

63 : 56 95 :53 52 :50 49 : 46 45 : 41 40 : 36 35:31 30:0

00010001 page XXX XXX T XX XX XX

Example: popi, 1, $3, pop the content of the stack into register 3 on page 1.

mathi p, $ra, $rb oper imm:

This instruction will apply the specified operation on register $rb and the value imm,
and write the result into register $ra. The imm value is 32-bit signed, which allows
implementing signed arithmetic. Due to the fact the immediate field is defined over 31
bits, it is internally sign-extended to get 32-bit before operating with it. Both registers
are on page p. Registers $ra and $rb can be the same, to allow updating the value.

There are three operations implemented so far:

e +, adds the contents of the register and the immediate value, is coded as 1000.

3 INSTRUCTION SET

e —, substracts the immediate value from the register, coded as 1001.

e x, product of register and immediate, coded as 1010.

It’s important to say that for the case of the product, the output is still coded as 32-
bit signed number. The actual product is implemented using the lower 16 bits of the

operands to create the output over 32-bit.

63 : 56 95 : 33 52 : 30 49 : 46 45 : 41 40 : 36 35: 31 30:0

00010010 page XX oper ra rb XX imm

Example: mathi 2, $2, $1 * 3, compute the product of register number 1 on page 2,

and the fixed number 3, and write the result into register number 2 on page 2.

seti ch, p, $r, imm:

This instruction will set the value specified by register $r on page p, to be the output
of channel ch at time imm. As any timed-instruction, the processor will dispatch it to
the timed-control queue to schedule it to happen in the future using the master clock
as reference. Output channels of the tProcessor are 160-bit and this instruction uses
one register, which is 32-bit. The output port will be zero-padded to complete 160-bit
and the register value will set the lower 32 bits. The actual implementation of this
instruction act as a non-blocking write to the output master axi-stream interface. This
means the block won’t wait until the corresponding ready signal is asserted and will act
as if a “always ready” slave was connected. This behavior could easily be changed but
could compromise timed-instructions in general, as the block would be blocked until the

transaction is completed.

63 : 56 95 133 52 : 30 49 : 46 45 : 41 40 : 36 35:31 30:0

00010011 page ch XX XX r XX imm

Example: seti 3, 0, $8, 65, set channel 3 to the value specified by register 8 on page

0, at time 65.

10

3 INSTRUCTION SET

synci imm:

This instruction is used to synchronize the internal time offset register to the value spec-
ified by imm. At the beginning of the execution of the program, the time offset is set to
zero and any timed-instruction is referenced to 0. When a synci instruction is provided,
the internal time offset is added the time value indicated by the instruction. From that
point on, whenever a timed-instruction is decoded, the tProc will compute the absolute
time using this internal time offset. This mechanism makes it very easy to specify timed-
instructions relative to the last synchronization. Page, channel, operation, source and

destination register fields are not used and could be set to any value.

63 : 56 95 1 93 92 : 50 49 : 46 45 : 41 40 : 36 35 :31 30:0

00010100 XX XX XX XX XX XX imm

Example: synci 500, synchronize internal time offset to its previous value plus 500.

waiti ch, imm:

This instruction should be used when the algorithm needs to wait up to a certain time
before proceeding. This could be useful, as an example, to read the value of the input port
after a specified time. The instruction will wait until time imm on channel ch is reached. It
is important to note that, even if the channel is selected, the decoding of instructions will
stop until the master clock reaches the specified time. Instructions cannot be dispatched
to other channels. In short, the user could use any of the available 8 channels to execute
the waiti instruction. A side effect of this instruction is that the internal timed-control

queue is empty on the channel after this instruction.

63 : 56 95 193 52 : 50 49 : 46 45 : 41 40 : 36 35 :31 30: 0

00010101 XX ch XX XX XX XX imm

Example: waiti 2, 500, wait until time 500 is reached on channel 2.

11

3 INSTRUCTION SET

bitwi p, $ra, $rb oper imm:

This instruction will apply the specified operation between register rb and the imm value,

and write the result back into register ra. The operations implemented are:

0000:

0001:

0010:

0100:

0101:

0011: ~

$rb & imm, is the and operation.

$rb | imm, is the or operation.

$rb ~ imm, is the exclusive or operation.

imm, is the not operation.

$rb « imm, is the left shift operation.

$rb » imm, is the right shift operation.

Note that the not operation has a slightly different syntax, and it does not use register

rb.

63 : 56

95 193

52 : 50

49 : 46

45 : 41

40 : 36

35 :31

30:0

00010110

page

XX

oper

ra

rb

XX

imm

Example: bitwi 3, $4, $4 « 4, perform a left shift of 4 positions over register 4 on

page 3, and write the result into the same register.

memri p, $r, imm:

Read the data memory at the address specified by imm and write the result into register

r on page p. Data memory can be pre-loaded using the methods provided, which will be

detailed on a later section. Addressing of the data memory is sample-based, which means

address 0 will read a 32-bit value, address 1 will read the next 32-bit value, and so on.

63 : 56

95 : 93

52 :50

49 : 46

45 . 41

40 : 36

35 :31

30:0

00010111

pegE

XX

XX

r

XX

XX

imm

Example: memri 1, $3, 23, read data memory at address 23, and write the value into

register 3 of page 1.

3 INSTRUCTION SET

memwi p, $r, imm:

Write register r of page p into data memory at address imm. This instruction should be
used when the memory location is fixed and known in advance. For loops and variable-

indexing address, the user may use the register-based instructions for memory addressing.

63 : 56 95 : 93 52 : 50 49 : 46 45 : 41 40 : 36 35:31 30:0

00011000 page XX XX XX XX r imm

Example: memwi 2, $2, 11, write contents of register 2 on page 2, on memory at address

number 11.

regwi p, $r, imm:

Write the value specified by imm in register r on page p. This is instruction is widely used
at initialization stages to set initial values on registers. As an alternative, memory read
instructions can also be used to initialize registers from previously user-defined values

which can be dynamically modified.

63 : 56 95 : 53 52 :50 49 : 46 45 : 41 40 : 36 35:31 30:0

00011001 page XX XX T XX XX imm

Example: regwi 0, $4, -38, write the value —38 into register 4, page 0.

J-type
loopnz p, $r, @label:

This instruction will decrement by one the value of register $r on page p, and jump to the
address indicated by label. If the register is zero when the instruction is executed, it is
not decremented and the instruction skips to the next line of code without implementing
the jump. The address in calculated by the compiler, as the user will normally indicate
a label that points to an instruction in the memory. An immediate value could also be
used. Note that as source and destination registers are the same, this value is repeated

in the binary code.

13

3 INSTRUCTION SET

63 : 56 95 : 93 49 : 46 45 : 41 40 : 36 35:31 15:0
00110000 page 1000 r r XX addr

Example: loopnz 1, $2, @LOOP, jump to address on symbol LOOP if register 2 on page

1 is not zero, and decrement the register.

condj p, $ra op $rb, @label:

This instruction will jump to the address indicated by label if the condition is true.
There are 6 operations implemented: >, >=, <, <=, == and ! = . Registers $ra and
$rb are on page p. If the condition is false, the instruction will skip to the next instruction
in the program. The typical if-elsif-else structure can be easily implemented chaining few

condj instructions.

63 : 56 95 : 53 49 : 46 45 : 41 40 : 36 35 : 31 15:0
00110001 page oper XX ra rb addr

The op field is coded as follows:

e > means greater than and is coded as 0000.

e >= means greater or equal and is coded as 0001.
e < means smaller than and is coded as 0010.

e <= means smaller or equal and is coded as 0011.
e == means equal and is coded as 0100.

e | = means different and is coded as 0101.

Example: condj 2, $4 != $5, @DIFF, jump to address on symbol DIFF if register 4 on

page 2 is different from register 5 on page 2.

end:

This instruction will end the program execution. The processor state machine will jump

to the end state. To execute again, the user should send a stop followed by a start. All

14

3 INSTRUCTION SET

fields but the opcode are not used and could be set to any value.

63 : 56 55 : 53 49 : 46 45 : 41 40 : 36 35 :31 15:0
00111111 XX XX XX XX XX XX
R-type

math p, $ra, $rb oper $rc:

Apply the specified operation to the contents of registers $rb and $rc and write the result

on register $ra. Registers belong to page p. All three registers can be the same, which

allows to update the value over the same register. Operations are coded the same way as

for mathi operation. Addition, substraction and product are implemented.

63 : 56

95 1 93

52 : 50

49 : 46

45 : 41

40 : 36

35 :31

30 : 26

25:21

20 : 16

15:11

10 :

01010000

page

XX

oper

ra

rb

rc

XX

XX

XX

XX

XX

Example: math 0, $3, $3 + $4, add the contents of register 3 and 4, and write the re-

sult back into register 3, all on page 0.

set ch, p, $ra, $rb, $rc, $rd, $re, $rt:

This instruction will set the value specified by registers $ra, $rb, $rc, $rd and $re on

page p, to the output channel ch at the time specified by register $rt. Registers are

16-bits, and the lower bits are those of $ra, then it follows $rb, $rc and finally $re.

63 : 56

95 : 93

52 : 50

49 : 46

45 : 41

40 : 36

35:31

30 : 26

25:21

20 : 16

15:11

10 :

01010001

laigie

ch

oper

XX

ra

rt

rb

rc

rd

re

XX

Example: set 0, 1, $1, $2, $3, $4, $5, $6, set the value on registers 5, 4, 3, 2 and

1 to the output channel 0, at time on register 6. All registers are on page 1.

15

3 INSTRUCTION SET

sync p, $r:

Synchronize internal time offset to the value specified by register $r on page p. This
instruction has the same effect that synci, but time is specified with a register. Most of

the fields of the instruction are unused and could be set to any value.

63:56 [55:53[52:50|49:46(45:41|40:36|35:3130:26|25:21(20:16|15:11|10:

01010010 | page XX XX XX XX T XX XX XX XX

Example: sync 2, $3, synchronize internal time offset to its previous value plus the one

specified by register 3 on page 2.

read p, $r:

Read external port value into register $r on page p. This instruction could be used in
conjunction with wait variants and condj to read a result at a specific time and jump
according to the condition. The value is read from a axi-stream slave port. However, it is
implemented as a non-blocking read to avoid dead-locking the processor until input data
is valid. The input axi-stream slave is connected to a specific logic that implements the
valid /ready handshake and sets a value when new data is received. This value can be
read using this instruction, without blocking the processor. The user may issue a wait

instruction to be sure data is received and execute the reading after that point.

63:56 [55:53[52:50(49:46|45:41|40:36(35:31[30:26(25:21(20:16|15:11|10:

01010011 | page XX XX r XX XX XX XX XX XX

Example: read 0, $1, read the value of the input port to register 1 on page 0.

wait ch, p, $r:

Similar to waiti, the instruction will wait until time specified by register $r on page p has
arrived on channel ch. All upcoming instruction decoding is suspended while waiting.
This instruction should be used only when an external event needs to happen before

continuing executing instruction. As an example, reading the result of an external device

16

3 INSTRUCTION SET

and branching accordingly.

63 : 56

55 : 53

52 : 50

49 : 46

45 : 41

40 : 36

35 : 31

30 : 26

25:21

20 : 16

15:11

10 :

01010100

1P

ch

oper

XX

XX

rd

XX

XX

XX

XX

Example: wait 3, 1, $2, wait until time specified by register 2 on page 1 is reached on

channel 3.

bitw p, $ra, $rb oper $rc:

Apply the specified bit-wise operation over registers rb and rc and write the result back

to register ra. Operations are coded the exact same way than for the bitwi operation.

63 : 56

55 : 53

52 : 50

49 : 46

45 : 41

40 : 36

35 :31

30 : 26

25: 21

20 : 16

15:11

10 :

01010101

P

XX

oper

ra

rb

rc

XX

XX

XX

XX

XX

Example: bitw 3, $3, $3 & $4, perform the bit-wise and operation between registers

3 and 4, and write the result back into register 3. Registers are all on page 3.

memr p, $ra, $rb:

Read data memory at address pointed by register rb and write the value into register ra.
Registers are on page p. This instruction is useful when the address needs to be controlled

on a loop, instead of accessing a fixed location as in the immediate counterpart.

63 : 56

95 193

52 : 50

49 : 46

45 : 41

40 : 36

35 :31

30 : 26

25:21

20 : 16

15:11

10 :

01010110

IPisle

XX

XX

ra

rb

XX

XX

XX

XX

XX

XX

Example: memr 3, $5, $2, read data memory at address pointed by register 2 and write

the value into register 5, both on page 3.

memw p, $ra, $rb:

Write the contents of register ra into the data memory at the address pointed by register

rb. As in the previous case, this instruction could be useful when trying to loop through

17

4 SIGNAL GENERATOR V2

memory locations.

63:56 [55:53[52:50(49:46(45:41|40:36|35:3130:26|25:21(20:16|15:11|10:

01010111 | page XX XX XX rb ra XX XX XX XX

Example: memw 1, $2, $13, write the value of register 2 into the data memory at address

pointed by register 13. Registers are both on page 1.

4 Signal Generator V2

Output channels of the tProc can be connected to Signal Generator V2 block. This
block has a 80-bit interface, which allows “pushing” waveforms into it to reproduce with
configuration parameters. The block includes a memory and a DDS block. The memory
section can be used to upload an arbitrary shape. The DDS is a complex cosine/sine
generator block, whose frequency can be configured using the provided interface. The
block allows the user to select four different outputs: table, dds, product and zero-value.
Table is real and DDS is complex. The output of this block is complex but the imaginary
part is set to zero when table output is selected. Figure 2 shows a simplified block diagram
of this block.

The table section is loaded using the sO_axis interface with a support DMA block.
The user can specify the address of the first sample using the corresponding axi register,
to allow uploading several waveforms into the internal memory. It is also necessary to
enable writes into the memory before sending the samples in. This serves to protect
agains unexpected writes. The DDS section is an integrated IP that works in “streaming”
mode, which means frequency can be changed from sample to sample. This allows the
user to specify a precise duration for waveforms. The number of samples of the output
waveform is specified in the input s1_axis interface. This configuration interface is 80-bit
and allows to push waveforms into the internal fifo or queue. Whenever the fifo is empty,
the block will output zero-valued samples. When the fifo is not empty, the block will act

accordingly to generate the waveform at the output m_axis interface. The meaning of

18

4 SIGNAL GENERATOR V2

sO_axis m_axis
s1_
Figure 2: Signal Generator block diagram.
the fields of the input s1_axis interface is as follows:
79 78 T7:76 | 75:64 | 63:48 | 47:32 | 31:16 | 15:0
stdysel | mode outsel | nsamp gain addr phase freq

There are some fields that are used for the DDS section, other fields for the Table section,
and other are shared. The freq field is 16-bit and should be used to specify the frequency
of the DDS block. DDS frequency is [0 —500] MHz as the block runs at that speed and it
is a complex signal generator. The configuration of the frequency is an unsigned integer
number that goes from 0 to 65535, and maps into the frequency range. The phase field
is also a 16-bit integer number, and can be used to specify the starting phase of the DDS
signal. It’s important to clarify how the Signal Generator V2 handles the phase. This
block keeps track of the phase to implemente the so called phase coherency. Let’s say a

signal of frequency wy is selected. This signal could be written mathematically as:

xo(t) = ag cos(wot + 6p).

Now let’s say another signal of frequency w; is needed, starting at time t;. What is
the phase relationship between z4(¢) and x;(¢)? The phase-coherent signal generator will
compute the initial phase of the signal 1(¢) to be wyt; + #;. Simply put, the generator
works as if any selected frequency is referenced to the same initial phase. If a signal of

a given frequency is used for a certain time, then a different frequency, and back to the

19

4 SIGNAL GENERATOR V2

same frequency with the same initial phase, both signals will meet as if they were coming
from an always-running generator.

Let’s continue with the other parameters. The addr field refers to the first sample
of the table section. This memory should be loaded with the desired waveform before
usage. The address is incremented automatically from the start address. The gain field
is a signed, 16-bit number which applies a gain to the overall output. This number goes
from -32768 to 32767, and corresponds to +1. The next field nsamp is used to specify the
length or number of samples of the waveform. It is 12-bit and allows to specify waveforms

up to 4096 samples long. The field outsel is used to select the output source:

e outsel=0: output is the product of table and DDS.
e outsel=1: output is coming from the DDS section.
e outsel=2: output comes from the table for real part, 0 for imaginary part.

e outsel=3: output is set to 0.

The mode is a 1-bit field and allows to specify “periodic” or “one-shot” mode. When this
bit is set to 0, the signal generator will create a waveform with the specified number of
samples and then will either read the next waveform or end if no more waveforms are in
the queue. If this mode is set to 1, the signal generator will keep repeating the actual
waveform if the queue is empty, or read the next waveform if the queue is not empty, after
the number of samples have been completed. As an example, let’s say a pure sine wave
wants to be created with “infinite” duration. The user could push a configuration using
DDS for output selection and the required number of samples, say 100 in this case. If the
mode is set to 1, the signal generator will keep repeating the same waveform, letting the
DDS section to run freely without any phase jumps. Then, later on, the user could push
another waveform into the signal generator with the mode bit set to 0. After completing
the actual period of 100 samples of the infinite wave, the signal generator will read from
the queue the new waveform and output it. Once completed, the block will stop until new
waveforms are pushed into it. There is an extra bit added to V2 of the signal generator.

The field stdysel allows to select weather the last value after completion of all waveforms

20

10

11

5 CODE EXAMPLES

is the last sample or a zero-valued number. When this bit is set to 0, the last sample is
kept in the output of the signal generator. When this bit is set to 1, the signal generator
will output a zero-valued sample once all waveforms have been completed.

The actual implementation allows to queue up to 16 waveforms. The provided axi-
stream interface will signal “not ready” when the block is either full or not ready to receive
new waveforms. Note that when using this signal generator with the tProcessor block,
the user should be careful not to push too many waveforms and cause the signal generator
to be full. This situation may lead to lost waveforms as the actual implementation of the

tProcessor does not wait until the slave is ready to complete the transaction.

5 Code examples

This section provides some code examples to introduce the usage of the tProcessor lan-

guage. Examples are introductory and may not cover all available options.

Basic register operations

Registers are used in almost all instructions. The tProc provides 4 pages, with 16 registers
each page. Register number 0 is always zero, so there are 15 effective registers for a total

of 60 registers available for usage. Let’s start with a simple register set example:

// Initialize registers.
regwi O, $1, 1234; // freq = 1234
regwi 0, $2, 100; // delta freq = 100

regwi 0, $3, 10; // loop register

// Loop.
LOOP: math 0, $1, $1 + $2; // freq = freq + delta freq

loopnz O, $3, @LOOP;

// Program end.

end;

21

10
11

12

5 CODE EXAMPLES

Let’s walk through this example to understand how the language work. Lines 2, 3 and
4 load initial values on registers. In this case register 1 on page 0 is loaded with the
value 1234, register 2 with the value 100 and register 3 with the value 10. Line 7 shows
how to label instructions for jump operations. In this case the program memory address
of the instruction on line 7 will be the destination address for the loopnz instruction.
Line 7 makes use of the R-type instruction math, which uses 2 source registers and 1
destination register. In this case, the values of registers 1 and 2 is added and written
back into register 1. This simple example shows how to implement a delta variation on
a variable. Line 8 will use register 3 on page 0 as the loop register. The instruction will
jump to address on line 7 if the loop register is different from zero, and decrement the
value of the register before jumping. It is important to note that instruction on line 7

will be executed 11 times and not 10. Line 11 finishes the execution of the program.

Nested loops and stack usage

Let’s move to a more complex example, using the stack for nesting loops. Imagine an
algorithm is needed to sweep three variables: frequency, gain and number of samples.
This variables will have an initial value and associated increment. The following listing

shows a possible implementation using the stack to nest the three loops:

// Page O:
// $1 . df
// $2 : freq

// $3 : dg
// $4 : gain
// $5 : dn

// $6 : nsamp

// $7 : loop register

// i = 5 (outer-most loop)
// 3 =3
// k = 6 (inner -most loop)

22

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

5 CODE EXAMPLES

// Initialize deltas.
regwi 0, $1, -50; //
regwi 0, $3, 34; //

regwi 0, $5, 100; //

regwi 0, $2, 12000; //

regwi 0, $7, 5, //

// Loop freq.

FREQ: math 0, $2, $2
regwi 0, $4,
pushi 0, $7, $7
// Loop gain.
GAIN: math O,

regwi O,

pushi O,

delta freq -50
delta gain = 34

delta nsamples = 100

freq = 12000

i=25

+ $1; // freq

freq + df
120; // gain = 120

, 3; // i -> stack, j = 3

$4, $4 + $3; // gain = gain + dg

$6 , 25; // nsamples = 25

$7, 87, 6; // j -> stack, k

// Loop nsamp.

NSAMP: math 0, $6, $6 + $5; // nsamp =

lo
popi 0,
loopnz O,

popi 0, $7;

loopnz 0, $7,

// Program end.

end;

opnz 0, $7, G@NSAMP; // loop k
$7; // stack -> j
$7, Q@GAIN; // loop j

// stack -> 1

QFREQ; // loop 1

nsamp + dn

The example shows three loops, named 4, j and k. These three loops are implemented
using a single register, which is register number 7 on page 0. The stack is used to

push/pop and allows to nest the loop very easily. Lines 15, 16 and 17 initialize the delta

23

5 CODE EXAMPLES

registers, and lines 19 and 20 initializes the registers used for frequency and outer loop.
Indentations are added to ease the reading of the algorithm and they do not have any
effect in the generated code.

The frequency loop starts with the addition of registers number 2 and 1 on page
0, writing the result back to register 2. As in the previous example, this allows to
keep incrementing the value of the variable re-using the same register for source and
destination. This line is a labeled instruction as will be later used for jump. Line 24
initializes the gain register, and the next line pushes the contents of register 7 to the
stack, and moves the value 3 into the same register. Note how a single instruction allows
to push the register to the stack and replace its value using the immediate field. What
follows is basically the same structure for the inner loops. Line 27 computes delta gain,
and lines 28 and 29 load the number of samples and push the contents of the loop register
to the stack to initialize the inner-most loop value to 6. Note that after instruction 29
is executed, the stack has two values: ¢ and j. The latter is in the top of the stack, and
the former at the bottom. Lines 31 and 32 implement the loop over number of samples
variable. Once this loop has been completed, instruction on line 33 is executed, which
pops the value of j from the stack into register 7. Instruction on line 34 will jump back to
GAIN label if the value is different from zero, decrementing its value previously. Once the
second loop has been completed, lines 35 and 36 repeat the same structure to recover the
outer-most loop counter value and repeat accordingly. This simple example shows how
to implement a 3 variables increment algorithm, using a single register for loop counter

and the stack to nest the loops.

Timed instructions and sychronization

The previous examples did not make use of the timed-instruction mechanism. The fol-
lowing listing shows a simple example of use of timed-instructions and synchonization

mechanism:

1 // Initialize registers.

2 regwi 0, $1, 78; // out = 78

24

10
11
12
13
14
15
16
17

18

5 CODE EXAMPLES

regwi 0, $2, 200; // i = 200 (loop)

regwi 0, $3, 333; // T = 333

// Loop.

LOOP: seti 0, 0, $1, 20; // ch 0 = out @t = 20

mathi 0, $1, $1 + 1; // out = out + 1
synci 50; // toff = toff + 50
loopnz O, $2, @LOOP; // loop i

// Finish.

sync O, $3; // toff = toff + $3

math 0, $1, $0 + $0; // out = 0O

seti 0, O, $1, 55; // ch 0 = out @t = 55

// Program end.

end;

Lines 2, 3 and 4 have already been explained on great detail and they initialize register
values. Line 7 shows the first timed-instruction. This instruction will set the contents
of register 1 on page 0 to be the output on channel 0, at time 20. What is the meaning
of time here? When the processor starts executing the code, the internal master clock
counter starts counting and never stops. The time offset register is reset to zero at this
time. Instruction on Line 7 will be scheduled to happen at time 20 the first time, which
means when the master clock reaches that value the output port will be written. Line 9
uses the synci instruction to synchronize the internal time offset to 50 units. The second
pass of the loop will decode instruction on Line 7 again, but the absolute time at which
this instruction is scheduled equals 50 4+ 20 = 70 units. However, with respect to the new
reference that was set at 50 units by Line 9, the instruction happens 20 time units after
as in the first case. This allows to think the algorithm in terms of small timed pieces by
inserting time references using synchronization instructions. After the second pass, the

instruction synci 50 will set the internal time offset to its previous value plus 50, which

25

10
11
12
13
14

5 CODE EXAMPLES

results on ¢,7¢ = 100 time units. Instruction on Line 7 will now be scheduled to happen
at 120. The process is repeated until the loop is completed.

Once the loop finished, Line 13 uses the R-type flavor of the synchronization mecha-
nism. The end result is the same, but instead of using a immediate value, source register
3 on page 0 is used in this case. Line 15 sets the output again, which will occur 55 time
units after the previous synchronization. Even if the absolute time of the instruction is
difficult to say without going on a bit of math, what matters is that the time structure is
very simple: 200 repetitions of instructions happenning 20 time units after the reference
for the loop, and one more instruction at time 7'+ 333 4+ 55. The value of T is simply the

product of the number of times the loop is repeated by the synchronization time.

Math, bit-wise and memory access

Mathematical and bit-wise operations were added in the 64-bit versino of the tProcessor.
Data memory was also added. In the following pages, few examples of use of these new

kind of instructions will be shown.

// Initialize registers.
regwi 0, $1, 100; // freq = 100
regwi 0, $2, 15; // df = 15

regwi 0, $3, 1000; // loop

// Loop.
regwi 0, $4, 0; // 1 =0
LOOP: math O, $5, $4 * $2; // temp = ixdf

math 0, $6, $1 + $5; // freq freq + ixdf
mathi 0, $4, $4 + 1; // i =1 + 1

condj 0, $4 < $3, QLOOP;

// Program end.

end;

26

10
11
12
13
14
15

16

5 CODE EXAMPLES

This simple program shows how to use product to implement a delta variation over a
variable with a loop counter. Lines 2, 3 and 4 initialize frequency, delta frequency and
the maximum number of repetitions. Line 7 initializes the register 4 on page 0 to be 0,
as it will be used for counting and loop variable. Line 8 computes the accumulated delta
frequency as ¢ x* Af. The first time register 4 is initialized to 0, and this product will
lead to 0. The next instruction adds the value of the initial frequency, held by register 1,
with the accumulated delta frequency. Line number 10 increments the value of the loop
register by 1, and finally line number 11 implements a loop using a conditional instead of
a loop instruction. This line will jump to line 8 of code while register number 4 is smaller
than register number 3, which was initialized to the maximum count value.

An interesting example is the interface with the Signal Generator V2 block, as it uses
5 registers for programming the block and 1 extra register for time specification of the set
instruction. Also, bit-wise operations are needed to ease creating the value of the mode

bits of the signal generator:

// Signal Generator V2.
// 15..0 : frequency.
// 31..16 : phase.

// 47..32 : addr.

// 63..48 : gain.

// T75..64 : nsamp.

// T7..76 : outsel (00: product, 01: dds, 10: table, 11: zero-value).

// 78 : mode (0: nsamp, 1: periodic).
// 79 : stdysel (0: last value, 1: zero-value).
// Registers.
regwi 0, $1, 750; // freq.
regwi 0, $2, 0; // phase.
regwi 0, $3, 0; // addr.
regwi 0, $4, 10000; // gain.
regwi 0, $5, 1000; // nsamp.

27

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

5 CODE EXAMPLES

LOOPO:

regwi 0, $6, 0x8; // 0b1000.
bitwi 0, $6, $6 << 12; // left shift register 6 by 12 bits.
bitw 0, $5, $5 | $6; // r5 = r5 or r6.

regwi 0, $7, 20; // t = 20.

// Signal start.
regwi 1, $1, 0x1;
seti 0, 1, $1, 200;

synci 200;

// Generate waveforms.

regwi 1, $2, 13; // loop counter.

regwi 0, $10, 0; // memory address index.
set 1, 0, $1, $2, $3, $4, $5, $7; // out @t = $7.

mathi 0, $4, $4 + 300; // gain = gain + 300.
memw 0, $4, $10; // mem[$10] = $4

mathi 0, $10, $10 + 1; // memory address +1

loopnz 1, $2, @LOOPO;

// Signal end.
regwi 1, $1, 0x0;

seti 0, 1, $1, 500;

// Program end.

end;

This listing is a little bit more complicated than the previous ones and uses most of the
available instructions. Lines 12 through 15 are used to initialize frequency, phase, address

and gain registers. These are going to be used to program the Signal Generator V2. Line

16 sets the number of samples, which are the lower 12 bits according to the specification

of the signal generator. Line 17 sets the 4 mode bits of the signal generator. These bits

28

5 CODE EXAMPLES

should be placed into the 4 most-significant bits of the configuration word. To achieve
that, line 18 moves these 4 configuration bits to the left using the left shift bit-wise
operation. Oncde the bits are placed in the right spot, line 19 performs the bit-wise or
operation to combine the number of samples and the extre 4 configuration bits. Register
number 7 on line 20 will be used to set the time of the instruction.

Lines 23, 24 and 25 are used to set the least-significant bit of channel 0 at time 200.
This is simply to create an external reference to trigger equipement. Line 28 initializes the
loop counter to 13. Line 34 uses this register to implement the loop. Line 29 initializes an
extra register that will be used to address the data memory. Line 30 is the set instruction,
which allows using 5 registers for output data plus a 6th register to specify time. In this
case, the signal generator is connected to channel 1 and this is why the set instruction
is using this channel. Line 31 increments the gain register and line 32 writes this gain
value into the data memory, using register number 10 for the destination address, which
is incremented in the following line.

There is an interesting detail on this loop. As it can be seen, there is no synchroniza-
tion instruction inside the loop, which means that all timed-instructions will be scheduled
to happen at the same time. This is not a problem due to the fact that the signal gen-
erator can queue up to 16 waveforms. The result of this loop will be pulses of varying
gain one after each other, without any gap in between. This trick can be used to output
pulses wihout any delay between them. The option using a synchronization instruction

could be used when a gap between the waveforms is needed.

29

