
Data-Parallel to Distributed Data-Parallel

• Shared Memory: data-parallel programming model; data partitioned in
memory and operated upon in parallel.

• Distributed: same programming model; although, data is partitioned
between machines, network in between, operated upon in parallel.

Distribution

• Partial Failure: crash failures of a subset of the machines involved in a
dstributed computation;

• Latency: certain operations have a much higher latency than other opera-
tions due to network communication.

network roundtrips are expensive, you typically want to reduce the
amout of network communication that your job cause.

Important Latency Numbers

It’s 1.000.000x slower Sending a packet round trip over a long distance than
reference something that exists in main memory.

Memory > Disk > Network

Why Spark over Hadoop?

• Fault-tolerance in Hadoop/MapReduce comes at a cost; between each map
and reduce step, in order to recover from potential failures, Hadoop shuffles
its data and write intermediate data to disk.

• Spark keep all data immutable and in-memory; all operations on data are
just functional transformations; faul tolerance is achieved by replaying
functional transformations over original dataset.

Hadoop = Disk + Network; Spark = Memory + Network; => 100x faster.

Spark <3 Data Science * Lazy Transformations; * Eager Actions that kick off
staged transformations; * In-memory computations = lower latencies; * No need
to read/write to disk!

Resilient Distributed Datasets (data parallel model)

A nice paper on RDD’s: https://cs.stanford.edu/~matei/papers/2012/nsdi_spark.pdf
> a distributed memory abstraction that lets programmers perform in-memory
computations on large clusters in a fault-tolerant manner.

1



Using RDDs in Spark feels a lot like normal Scala sequential/parallel collections,
with the added knowledge that your data is distributed accross several machines.

abstract class RDD[T] {
def map[U](f: T => U): RDD[U] = ...
def flatMap[U](f: T => TraversableOnce[U]): RDD[U] = ...

}

// count the words in a large file
val count = spark.textFile("hdfs://...")

.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)

There is two ways of creating RDDs:

• Transforming an existing RDD ~ just like a call to map on a List returns a
new List, many higher-order functions defined on RDD return a new RDD.

• From a SparkContext (represents the connection between the Spark cluster
and the runnin application) either with parallelize (convert a local Scala
collection to an RDD) or with textFile (read a file from HDFS and return
an RDD of String)

Transformations and Actions

• Transformations ~ Return new RDDs as results; (They are lazy, their result
RDD is not immediately computed.

• Actions ~ Compute a result based on an RDD, and either returned or saved
to an external storage system. (They are eager, their result is immediately
computed.

By relying on these lazy transformations, Spark aggressively reduce the amout
of network communications.

1. val largeList: List[String] = ...
2. val wordsRdd = sparkCtx.parallelize(largeList)
3. val lengthsRdd = wordsRdd.map(_.length)
4. val totalChars = lengthsRdd.reduce(_ + _)

Nothing happens on the cluster untill invoking the reduce action on line #4.

Common Actions

collect(): Array[T]
count(): Long
take(num: Int): Array[T]
reduce(op: (A, A) => A): A
foreach(f: T => Unit): Unit

2



Caching and Persistence

RDDs are recomputed each time we run an action on them. This can be very
expensive (in time) if we need to use a dataset more than once.

Although, we can tell Spark to cache an RDD in memory, simply by calling
persist() or cache() on it!

A scenario where we can benefit from caching RDDs is listed below:

val logsWithErrors = lastYearsLogs.filter(_.contains("ERROR")).persist()
val firstLogsWithErrors = logsWithErrors.take(10)
val numOfErrors = logsWithErrors.count()

If we don’t persist the filter result, we would execute that same filter twice, on
take(10) and count().

There are manyb ways to configure how data is persisted: * in memory as regular
objects; * on disk as regular objects; * in memory as serialized objects; (saves
memory but it costs a little more of compute time to serialize/unserialize objects)
* on disk as serialized objects; * both in memory and on disk (spill over to disk,
when we don’t have any more memory available, to avoid re-computation!).

Spark default is memory only, cache().

Note ~ One of the most common performance bottlenecks of newcomers to Spark
arises from unknowingly re-evaluating several transformations when caching
could be used!

Cluster Topology

• Master(Driver Program -> Spark Context) ~ This is the node we’re inter-
acting with when we’re writing Spark programs!

• Workers(Worker Node -> Executor) ~ These are the nodes actually exe-
cuting the jobs!

Master and Worker communicate via a Cluster Manager, that allocates resources
across the cluster and manages scheduling.

If we take a look at the example below:

val people: RDD[Person] = ...
people.foreach(println)

The foreach is an action, with return type Unit. It’s lazy on the Driver.
Although, it is eagerly executed on the Executors!

3



Distributed Key-Value Pairs -> Pair RDDs

Large datasets are often made up of unfathomably large numbers of complex,
nested data records. To be able to work with such datasets, it’s often desirable
to project down these complex datatypes into key-value pairs.

It’s useful to organize data into key-value pairs since it allows to act on each key
in parallel or regroup data across the network.

val rdd: RDD[WikipediaPage] = ...
// The following map produce a type RDD[(String, String)]
val pairRdd = rdd.map(page => (page.title, page.text))

def groupBy[K](f: A => K): Map[K, Traversable[A]]
def groupByKey(): RDD[(K, Iterable[V])]
def reduceByKey(f: (V, V) => V): RDD[(K, V)]
def mapValues[U](f: V => U): RDD[(K, U)]
def countByKey(): Map[K, Long]

Example where we calculate the average budget per event organizer using both
reduceByKey and mapValues:

val avgBudgets = events.mapValues(b => (b, 1))
.reduceByKey((v1, v2) => v1._1 + v2._1, v1._2 + v2._2)
.mapValues {

case (budget, numberOfEvents) => budget / numberOfEvents
}
.collect()

reduceByKey is more efficient that using each groupByKey and reduce sepa-
rately.

Joins

Joins are another sort of transformation on Pair RDDs. They’re used to combine
multiple datasets. There are two kinds of joins: inner and outer joins.

Inner joins return a new RDD containing combined pairs whose keys are
present in both input RDDs. Other keys will be dropped from the result.

def join[W](other RDD[(K,W)]): RDD[(K, (V,W))]

Outer joins return a new RDD containing combined pairs whose keys don’t
have to be present in both input RDDs. With outer joins, we can decide
which RDD’s keys are most essential to keep the left, or the right RDD in the
join expression.

def leftOuterJoin[W](other: RDD[(K,W)]): RDD[(K, (V,Option[W])]
def rightOuterJoin[W](other: RDD[(K,W)]): RDD[(K, (Option[V],W)]

4



Shuffling

Suffling is when we have to move data from one node to another to be “grouped
with” its key. These shuffles can be an enormous hit because it means that Spark
must send data from one node to another.

purchases.map(p => (p.customerId, p.price))
.groupByKey()
.map(p => (p._1, (p._2.size, p._2.sum)))
.count()

By reducing the dataset first, the amount of data sent over the network during
the shuffle is greatly reduced. This kind of trick can result in non-trivial gains
in performance!

purchases.map(p => (p.customerId, (1, p.price))
.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))
.count()

Grouping all values of key-value pairs with the same key requires collecting all
key-value pairs with the same key on the same machine. For determining which
key-value pair should be sent to which machine, Spark uses hash partitioning.

Partitions

The data within an RDD is split into several partitions. There are two kinds of
available partitioning in Spark: Hash and Range partitioning.

Properties of partitions: * Partitions never span multiple machines; * Each
machine in the cluster contains one or more partitions; * The number of partitions
is configurable. (by default it equals the total number of cores on all executor
nodes)

Hash Partitioning

Given a Pair RDD that should be grouped, groupByKey first computes per tuple
(k,v) its partition p:

p = k.hashCode() % numPartitions

Then, all tuples in the same partition p are sent to the machine hosting p.

Summary

It’s crucial to have an understanding how Spark works under the hood in order
to make effective use of RDDs. It’s not always immediately obvious upon first

5



glance on what part of the cluster a line of code might run on. We need to know
by ourselves where the code is running!

Resources

• https://jaceklaskowski.gitbooks.io/mastering-apache-spark/

6


	Data-Parallel to Distributed Data-Parallel
	Distribution
	Important Latency Numbers

	Why Spark over Hadoop?
	Resilient Distributed Datasets (data parallel model)
	Transformations and Actions
	Caching and Persistence

	Cluster Topology
	Distributed Key-Value Pairs -> Pair RDDs
	Joins
	Shuffling
	Partitions
	Hash Partitioning

	Summary
	Resources

