
Quantifying Criticality

Rob Pike

Introduction

We have a set of signals for a package that we would like to combine into a single

number representing the ​criticality​ of that package. A package with higher criticality

is one that is more important within its packaging system (NPM, RubyGems etc.)

and therefore may deserve higher scrutiny and attention.

We start with ground rules. Assume that each signal is quantifiable, that is, that it

can be represented by a number. Without loss of generality, specify that value must

be The goal is to find a single value that represents all the signals for a.≥ 0

package in a meaningful way, possibly one that is evaluated differently in different

systems. Since even within a single system, not all signals will be present for all

packages, the mechanism must allow for that. Also, the set of signals is likely to

expand over time, and possibly shrink.

The metric will contain arbitrary elements, such as the amount individual signals

contribute to the criticality. There is a large element of judgment and refinement

required in defining the precise way in which criticality is computed. Nonetheless,

we seek a well-defined framework within which we can represent, refine, and justify

such subjective adjustments.

Basics

Typical signals might be the number of downloads of a package or the number of

dependents it has. For the purposes of this discussion, we will use the term ​package

as the unit we are interested in, whatever it may be, and ​signal​ as an abstract,

non-negative value that increases with importance but is otherwise not interpreted

here.

We have a set of signals . Not all packages need have values for allN Spkg,i ≥ 0

signals. For simplicity of notation we write just for with the understandingSi Spkg,i

we are talking about a particular single package.

Some signals are more important than others, and so with each signal isSi

associated an arbitrarily settable positive weight that is consistent for allαi

packages within the system. The weight does not have a package-specificαi

component.

Defining criticality

A naive starting point would be to define the ​criticality value​ of a package as aCpkg

weighted sum of the signal values for that package:

 SCpkg = ∑
N

i
αi i

This has several disadvantages. The value is unbounded, which means that the

criticality value of a package may grow over time although the true importance of

the package is unchanged. Also, many if not most signals are non-linear in effect,

with Zipfian-like distributions. A package with 10,000 dependents is surely more

important than a package with only 1,000, but arguably not ten times more.

Looking at the second point first, we can define for each signal a function Si f i (S)
that scales the signal non-linearly. In general we may need a different for each f i i
, but it is likely that a unique function will suffice, and that the logarithm is a

reasonable choice. The precise function is unimportant to this analysis, though, and

so for simplicity we will use the logarithm, adding to avoid problems with having1

a zero for the signal value, and to make the minimum value :0

 logCpkg = ∑
N

i
αi (1)+ Si

This has better scaling properties than the naive version. For one signal, the

number of dependents, and a weight of , package A with 10,000 1

dependents has criticality value , while package B with 100,000.2 CA = 9

dependents has .1.5 CB = 1

More important than the actual criticality value is how it compares to that of

other packages. In the example from the previous paragraph, the ratio

is 1.25, which seems reasonable but if a larger or smaller relative CB ÷ CA

importance is required, we could change the definition of . For now, f i

however, we will continue with the logarithm.

If we compute for each signal for the package the ratio of and theog l (1)+ Si

maximum value achieved by all packages for , we could develop a Si,max Si

naive global criticality that orders the packages. We would have the scaling

factor apply to the ratio, and after normalization have the formula:

 Cpkg = 1

∑

i
αi

∑

i
αi

log(1 + S)i
log 1 + S(i,max)

with a criticality value in the range as desired. This still has two 0,[1]

problems however: it requires examining all signals for all packages to

compute the criticality for just one package; and the value for one package

can drift over time because of changes in other packages or in the set of

signals or their weights.

We can address both of these issues with one more step. For a signal we Si

choose a threshold value such that any signal value above that is atT i

maximum importance. In other words, we clamp the signal values to a

maximum value appropriate to the signal, considering anything above that

to be truly "critical". For instance, we might consider any package with more

than 100,000 dependents to be critical, and ignore the actual count for

packages above that threshold.

The formula now becomes easier to compute, independent of other packages

and, for truly critical packages, more stable:

 Cpkg = 1

∑

i
αi

∑

i
αi

log(1 + S)i
 log(1 + max(S , T)) i i

To summarize, for each signal valid within a packaging system we choose Si

two values, a scaling factor representing the relative importance of that αi

signal and a threshold value representing the point at which that signal T i

becomes of maximum importance. For each package, we compute a

normalized sum of the ratio of the logarithm of that signal and the logarithm

of the maximum of that value and the threshold.

This is the proposed criticality value for that package.

What if a signal is not available for a package? We have two options, and

which to take may depend on the signal itself. We can either ignore that

signal for that package completely, in which case the other signals that are

available rise in importance, or we can set it to zero, in which case its

absence reduces the criticality of the package.

