
Google's Go Programming Language

Yossi Gil

What is it?

 Google's newly released Programming Language.

 Factor: An extensible Programming Language
(Slava Pestov 2008)

 Many other “internal languages”

 Not: Go! (a Prolog like obscure agent-based
programming language).

 Compiled, concurrent, imperative, structured, GC, {}

 By: Ken Thompson (B,C), Rob Pike (Limbo), 2007-

 Other Google Purchases: Udi Manber, Bram Moolenaar (vim), Vint
Cerf, Larry Brilliant, Michael Burrows (BW), Joshua Bloch (Java), Ed
Lu(astronaut)

Example

package main

import ("os"

 "flag”)

var nFlag = flag.Bool("n", false, `no \n`)

func main() {

 flag.Parse()

 s := "";

 for i := 0; i < flag.NArg(); i++ {

 if i > 0 { s += " " }

 s += flag.Arg(i)

 }

 if !*nFlag { s += "\n" }

 os.Stdout.WriteString(s);

}

Philosophy: No Bookkeeping

 Programming today: bookkeeping, repetition,
and clerical work.

 Dick Gabriel (IBM):

“Old programs read like quiet conversations between a well-spoken
research worker and a well-studied mechanical colleague, not as a
debate with a compiler. Who'd have guessed sophistication bought

such noise?”

 New Abstractions: Good.

 New Verbosity: Bad.

Why?

 No new major systems language in a decade.

 But much has changed:

 - sprawling libraries & dependency chains

 - dominance of networking

 - client/server focus

 - massive clusters

 - the rise of multi-core CPUs

 Major systems languages were not designed
with all these factors in mind.

Objectives

 The efficiency of a statically-typed compiled
language with the ease of programming of a
dynamic language.

 Safety: type-safe and memory-safe.

 Good support for concurrency and
communication.

 Efficient, latency-free garbage collection.

 High-speed compilation...

Design Principles

 Orthogonality: A few orthogonal features work better than a
lot of overlapping ones. (e.g. no ”while” command)

 Simple, Regular Grammar: Few keywords, parsable without a
symbol table.

 Reduced typing. Let the language work things out. No
stuttering; don't want to see

 foo.Foo *myFoo = new foo.Foo(foo.FOO_INIT)

 Reduce typing. Keep the type system clear. No type hierarchy.
Too clumsy to write code by constructing type hierarchies.

 Safety: GC and Memory (no pointer arithmetic)

 OO?: Yes, but the ”Google” way...

Idea: Escape from Type System Tyranny

 Const in C++ as an example

 well-intentioned but awkward in practice

 Type Hierarchy

 Types in large programs do not easily fall into
hierarchies

 You can be safe or productive, not both

Give us good old C back, but better

Why New Language?

New libraries won’t help

Adding anything will not enable us to reduce and
simplify the language

Parenthesis

 It is a ”curly braces language”, just like C, C++,
Java, C# and many others.

 But, the syntax of conditionals and iteration is
simplified: parenthesis are optional, curly
brackets are mandatory

 for i := 0; i < flag.NArg(); i++ {

 if i > 0 {

 s += Space

 }

 s += flag.Arg(i)

 }

Semicolons

 No semicolons...

 except in:

 for i := 0; i < 10; i++ {...}

 if v := math.Pow(x, n); v < 5 {…}

 Improve on the synthesis approach:

 Internally, the language uses semicolons.

 They are added automatically for you.

 CASE tool will remove them from text.

 Necessary if you have two statements on the
same line.

No Need for Type Declaration

Equivalent declerations:

var s string = ”Hello”;

var s = ”Hello”;

s := ”Hello”; //Initialization operator

Declering Constants:

const space = ” ”;

Decleration inside a for loop:

for i := 1; i < 100; i++

Declares i to be a new variable of type integer

Primitive Types

 Boolean: boolean

 Integral: int8, int16, int32, int64, int

 int is 32 bits or 64 bits, but it is always distinct from int32 and int64

 Unsigned: uint8, uint16, uint32, uint64, uint

 uint is 32 bits or 64 bits, but it is always distinct from uint32 and uint64

 byte is alias for uint8

 Float: float32, float64, float

 float is 32 bits or 64 bits, but it is always distinct from float32 and float64

 Complex: complex32, complex64

 complex is 32 bits or 64 bits, but it is always distinct from complex32 and complex64

 uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value

 Any pointer or value of type uintptr can be converted into a Pointer and vice versa.

String Type

Similar to immutable array of bytes

Partial inspection

No partial modification

Arrays and Slices

• Indices, just like C, are 0,..,Size

• Multidimensional, just like C, unlike Java.

• Size must be known at compile time

• No pointer arithmetic is allowed?

• Why???

• Slice types: reference to a contiguous segment
of an array and contains a numbered sequence
of elements from that array.

Arrays and Slices- example

func f(a [10]int) { fmt.Println(a) }

func fp(a *[10]int) { fmt.Println(a) }

func main() {

 var ar [10] int

 f(ar) // passes a copy of ar

 fp(&ar) // passes a pointer to ar

 var a []int //creating a slice

 a = ar[7:9]

}

Struct Types and Methods

type Point struct { x, y float64 }

// A method on *Point

func (p *Point) Abs() float64 {

 return math.Sqrt(p.x*p.x + p.y*p.y)

}

p := &Point{ 3, 4 }

fmt.Print(p.Abs()) // will print 5

Interfaces

type Abser interface {

 Abs() float64

}

type Vertex struct {

 X, Y float64

}

func (v *Vertex) Abs() float64 {

 return math.Sqrt(v.X*v.X + v.Y*v.Y)

}

func main() {

 var a Abser

 v := Vertex{3, 4}

 a = &v // a *Vertex implements Abser

 a = v // a Vertex, does NOT implement Abser

 fmt.Println(a.Abs())

}

Other Type Constructors

• Map

• Function

• Channel (for parallel programming)

• No union

• No inheritance (struct may implement
interfaces)

Differences from C++

• No constructors

• No destructions (thanks to garbage collection)

• No pointer arithmetic

• Arrays are first class values
(passed by value to functions)

• No implicit type conversion
All conversions must be explicit

• nil “belongs” to all pointer types

White Lie Above

Constants (and literals) are untyped!

const b = 3

Gives the literal “3” a symbolic name “b”

But, “3” is untyped!

 var a uint

const b = 3;

 …

f(a + b) // untyped numeric constant “3" becomes typed as uint

goroutine

func IsReady(what string, minutes int64) {

 time.Sleep(minutes * 60*1e9)
 // Unit is nanosecs.

 fmt.Println(what, "is ready")

}

go IsReady("tea", 6)

go IsReady("coffee", 2)

fmt.Println("I'm waiting...")

Prints:

 I'm waiting... (right away)

 coffee is ready (2 minutes later)

 tea is ready (6 minutes later)

Channels

func pump(ch chan int) {

 for i := 0; ; i++ { ch <- i }

}

func suck(ch chan int) {

 for { fmt.Println(<-ch) }

}

ch1 := make(chan int)

go pump(ch1) // pump hangs; we run

fmt.Println(<-ch1) // prints 0

go suck(ch1) // tons of numbers appear

