
Network programming with Go
v1.0, 27 April 2012 An e-book on building network applicat ions using the Google Go programming language (golang)

This book has been revised to cover Go 1. The book is not complete, and also Go is expected to introduce more packages as it
evolves.

Contents

1. Architecture

2. Overview of the Go language

3. Socket-level Programming

4. Data serialisation

5. Application-Level Protocols

6. Managing character sets and encodings

7. Security

8. HTTP

9. Templates

10. A Complete Web Server

11. HTML

12. XML

13. Remote Procedure Call

14. Network Channels

15. Web Sockets
A PDF is here.

An epub ebook is here.

Copyright © Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Changes

version 1.0

Revised for Go 1

version 0.5

Updated template chapter
Added web sockets chapter

version 0.4

Updated template package to the new template package in the web server chapter
Tested and revised code under release.r60.1 9497

version 0.3

Network Programming with Go

Version 1.0 Page 1©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

all.pdf
Go.epub

Added chapter on new template package
Revised web serer example to use new template package

version 0.2

Compiled code under release.r60.1 9497

version 0.1

Init ial version

Network Programming with Go

Version 1.0 Page 2©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 1 Architecture
skip table of contents

Show table of contents

This chapter covers the major architectural features of distributed sytems.

1.1 Introduction
You can't build a system without some idea of what you want to build. And you can't build it if you don't know the environment in
which it will work. GUI programs are different to batch processing programs; games programs are different to business programs;
and distributed programs are different to standalone programs. They each have their approaches, their common patterns, the
problems that typically arise and the solut ions that are often used.

This chapter covers the highl evel architectural aspects of distributed systems. There are many ways of looking at such systems,
and many of these are dealt with.

1.2 Protocol Layers
Distributed systems are hard. There are mult iple computers involved, which have to be connected in some way. Programs have to
be writ ten to run on each computer in the system and they all have to co-operate to get a distributed task done.

The common way to deal with complexity is to break it down into smaller and simpler parts. These parts have their own structure,
but they also have defined means of communicat ing with other related parts. In distributed systems, the parts are called protocol
layers and they have clearly defined funct ions. They form a stack, with each layer communicat ing with the layer above and the
layer below. The communicat ion between layers is defined by protocols.

Network communicat ions requires protocols to cover high-level applicat ion communicat ion all the way down to wire communicat ion
and the complexity handled by encapsulat ion in protocol layers.

ISO OSI Protocol

Although it was never properly implemented, the OSI (Open Systems Interconnect) protocol has been a major influence in ways of
talking about and influencing distributed systems design. It is commonly given in the following figure:

OSI layers

The funct ion of each layer is:

Network layer provides switching and rout ing technologies
Transport layer provides transparent t ransfer of data between end systems and is responsible for end-to-end error recovery
and flow control
Session layer establishes, manages and terminates connect ions between applicat ions.
Presentat ion layer provides independance from differences in data representat ion (e.g. encrypt ion)
Applicat ion layer supports applicat ion and end-user processes

TCP/IP Protocol

While the OSI model was being argued, debated, part ly implemented and fought over, the DARPA internet research project was
busy building the TCP/IP protocols. These have been immensely succesful and have led to The Internet (with capitals). This is a
much simpler stack:

Distributed Systems Architecture

Version 1.0 Page 3©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Some Alternative Protocols

Although it almost seems like it , the TCP/IP protocols are not the only ones in existence and in the long run may not even be the
most successful. There are many protocols occupying significant niches, such as

Firewire
USB
Bluetooth
WiFi

Thre is act ive work cont inuing on many other protocols, even quite bizarre ones such as those for the "internet in space."

The focus in this book will be on the TCP/IP, but you should be aware of these other ones.

1.3 Networking
A network is a communicat ions system for connect ing end systems called hosts. The mechanisms of connect ion might be copper
wire, ethernet, fibre opt ic or wireless, but that won't concern us here. A local area network (LAN) connects computers that are
close together, typically belonging to a home, small organisat ion or part of a larger organisat ion.

A Wide Area Network (WAN) connects computers across a larger physical area, such as between cit ies. There are other types as
well, such as MANs (Metropolitan Area Network), PANs (Personal Are Networks) and even BANs (Body Are Network).

An internet is a connect ion of two or more dist inct networks, typically LANs or WANs. An intranet is an internet with all networks
belonging to a single organisat ion.

There are significant differences between an internet and an intranet. Typically an intranet will be under a single administrat ive
control, which will impose a single set of coherent policies. An internet on the other hand will not be under the control of a single
body, and the controls exercised over different parts may not even be compatable.

A trivial example of such differences is that an intranet will often be restricted to computers by a small number of vendors running a
standardised version of a part icular operat ing system. On the other hand, an internet will often have a smorgasborg of different
computers and operat ing systems.

The techniques of this book will be applicable to internets. They will also be valid for intranets, but there you will also find
specialised, non-portable systems.

And then there is the "mother" of all internets: The Internet. This is just a very, very large internet that connects us to Google, my
computer to your computer and so on.

1.4 Gateways
A gateway is a generic term for an ent ity used to connect two or more networks. A repeater operates at the physical level copies
the informat ion from one subnet to another. A bridge operates at the data link layer level and copies frames between networks. A
router operates at the network level and not only moves informat ion between networks but also decides on the route.

1.5 Packet encapsulation
The communicat ion between layers in either the OSI or the TCP/IP stacks is done by sending packets of data from one layer to
the next, and then eventually across the network. Each layer has administrat ive informat ion that it has to keep about its own layer.
It does this by adding header informat ion to the packet it receives from the layer above, as the packet passes down. On the
receiving side, these headers are removed as the packet moves up.

For example, the TFP (Trivial File Transfer Protocol) moves files from one computer to another. It uses the UDP protocol on top of
the IP protocol, which may be sent over Ethernet. This looks like:

Distributed Systems Architecture

Version 1.0 Page 4©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

The packet t ransmit ted over ethernet, is of course the bottom one.

1.6 Connection Models
In order for two computers to communicate, they must set up a path whereby they can send at least one message in a session.
There are two major models for this:

Connect ion oriented
Connect ionless

Connection oriented

A single connect ion is established for the session. Two-way communicat ions flow along the connect ion. When the session is over,
the connect ion is broken. The analogy is to a phone conversat ion. An example is TCP

Connectionless

In a connect ionless system, messages are sent independant of each other. Ordinary mail is the analogy. Connect ionless messages
may arrive out of order. An example is the IP protocol. Connect ion oriented transports may be established on top of connect ionless
ones - TCP over IP. Connect ionless t ransports my be established on top of connect ion oriented ones - HTTP over TCP.

There can be variat ions on these. For example, a session might enforce messages arriving, but might not guarantee that they
arrive in the order sent. However, these two are the most common.

1.7 Communications Models

Message passing

Some non-procedural languages are built on the principle of message passing. Concurrent languages often use such a mechanism,
and the most well known example is probably the Unix pipeline. The Unix pipeline is a pipeline of bytes, but there is not an inherent
limitat ion: Microsoft 's PowerShell can send objects along its pipelines, and concurrent languages such as Parlog could send
arbit rary logic data structures in messages between concurrent processes.

Message passing is a primit ive mechanism for distributed systems. Set up a connect ion and pump some data down it . At the other
end, figure out what the message was and respond to it , possibly sending messages back. This is illustrated by

Distributed Systems Architecture

Version 1.0 Page 5©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Low level event driven systems such as the X Window System funct ion in a somewhat similar way: wait for message from a user
(mouse clicks, etc), decode them and act on them.

Higher level event driven systems assume that this decoding has been done by the underlying system and the event is then
dispatched to an appropriate object such as a ButtonPress handler. This can also be done in distributed message passing
systems, whereby a message received across the network is part ly decoded and dispatched to an appropriate handler.

Remote procedure call

In any system, there is a t ransfer of informat ion and flow control from one part of the system to another. In procedural languages
this may consist of the procedure call, where informat ion is placed on a call stack and then control flow is t ransferred to another
part of the program.

Even with procedure calls, there are variat ions. The code may be stat ically linked so that control t ransfers from one part of the
program's executable code to another part . Due to the increasing use of library rout ines, it has become commonplace to have such
code in dynamic link libraries (DLLs), where control t ransfers to an independent piece of code.

DLLs run in the same machine as the calling code. it is a simple (conceptual) step to t ransfer control to a procedure running in a
different machine. The mechanics of this are not so simple! However, this model of control has given rise to the "remote procedure
call" (RPC) which is discussed in much detail in a later chapter. This is illustrated by

There is an historical oddity called the "lightweight remote procedure call" invented by Microsoft as they transit ioned from 16-bit to
32-bit applicat ions. A 16-bit applicat ion might need to t ransfer data to a 32-bit applicat ion on the same machine. That made it
lightweight as there was no networking! But it had many of the other issues of RPC systems in data representat ions and
conversion.

1.8 Distributed Computing Models
At the highest lvel, we could consider the equivalence or the non-equivalence of components of a distributed system. The most
common occurrence is an asymmetric one: a client sends requests to a server, and the server responds. This is a client-server
system.

If both components are equivalent, both able to init iate and to respond to messages, then we have a peer-to-peer system. Note
that this is a logical classificat ion: one peer may be a 16,000 core mainframe, the other might be a mobile phone. But if both can
act similarlym then they are peers.

Distributed Systems Architecture

Version 1.0 Page 6©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

A third model is the so-called filter. Here one component passes informat ion to another which modifies it before passing it to a
third. This is a fairly common model: for example, the middle component gets informat ion from a database as SQl records and
transforms it into an HTML table for the third component (which might be a browser).

These are illustrated as:

1.9 Client/Server System
Another view of a client server system is

1.10 Client/Server Application
And a third view is

1.11 Server Distribution
A client-server systems need not be simple. The basic model is single client , single server

but you can also have mult iple clients, single server

In this, the master receives requests and instead of handling them one at a t ime itself, passes them off to other servers to handle.
This is a common model when concurrent clients are possible.

Distributed Systems Architecture

Version 1.0 Page 7©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

There are also single client , mult iple servers

 which occurs frequent ly when a server needs to act as a client to other
servers, such as a business logic server gett ing informat ion from a database server. And of course, there could be mult iple clients
with mult iple servers

1.12 Component Distribution
A simple but effect ive way of decomposing many applicat ions is to consider them as made up of three parts:

Presentat ion component
Applicat ion logic
Data access

The presentation component is responsible for interact ions with the user, both displaying data and gathering input. it may be a
modern GUI interface with buttons, lists, menus, etc, or an older command-line style interface, asking quest ions and gett ing
answers. The details are not important at this level.

The application logic is responsible for intrepret ing the users' responses, for applying business rules, for preparing queries and
managing responses from the thir component.

The data access component is responsible for stroing and retrieving data. This will often be through a database, but not
necessarily.

Gartner Classification

Based on this threefold decomposit ion of applicaitons, Gartner considered how the components might be distributed in a client-
server sysem. They came up with five models:

Example: Distributed Database

Gartner classificat ion: 1

Modern mobile phones make good examples of this: due to limited memory they may store a small part of a database locally so
that they can usuall respond quickly. However, if data is required that is not held locally, then a request may be made to a remote
database for that addit ional data.

Google maps forms another good example. Al of the maps reside on Google's servers. When one is requested by a user, the
"nearby" maps are also downloaded into a small database in the browser. When the user moves the map a lit t le bit , the extra bits
required are already in the local store for quick response.

Example: Network File Service

Gartner classificat ion 2 allows remote clients acess to a shared file system

Distributed Systems Architecture

Version 1.0 Page 8©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

There are many examples of scuh systems: NFS, Microsoft shares, DCE, etc

Example: Web

An example of Gartner classificat ion 3 is the Web with Java applets. This is a distributed hypertext system, with many addit ional
mechanisms

Example: Terminal Emulation

An example of Gartner classificat ion 4 is terminal emulat ion. This allows a remote system to act as a normal terminal on a local
system.

Telnet is the most common example of this.

Example: Expect

Expect is a novel illustrat ion of Gartner classificat ion 5. It acts as a wrapper around a classical system such as a command-line
interface. It builds an X Window interface around this, so that the user interacts with a GUI, and the GUI in turn interacts with the
command-line interface.

Example: X Window System

The X Window System itself is an example of Gartner classificat ion 5. An applicat ion makes GUI calls such as DrawLine, but these
are not handled direct ly but instead passed to an X Window server for rendering. This decouples the applicat ion view of windowing
and the display view of windowing.

Distributed Systems Architecture

Version 1.0 Page 9©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Three Tier Models

of course, if you have two t iers, then you can have three, four, or more. Some of the three t ier possibilit ies are shown in this
diagram:

The modern Web is a good example of the rightmost of these. The backend is made up of a database, often running stored
procedures to hold some of the database logic. The middle t ier is an HTTP server such as Apache running PHP scripts (or Ruby on
Rails, or JSP pages, etc). This will manage some of the logic and will have data such as HTML pages stored locally. The frontend
is a browser to display the pages, under the control of some Javascript . In HTML 5, the frontend may also have a local database.

Fat vs thin

A common labelling of components is "fat" or "thin". Fat components take up lots of memory and do complex processing. Thin
components on the other hand, do lit t le of either. There don't seem to be any "normal" size components, only fat or thin!

Fatness or thinness is a relat ive concept. Browsers are often laelled as thin because "all they do is diplay web pages". Firefox on
my Linux box takes nearly 1/2 a gigabyte of memory, which I don't regard as small at all!

1.13 Middleware model
Middleware is teh "glue" connect ing components of a distributed system. The middleware model is

1.14 Middleware
Components of middleware include

The network services include things like TCP/IP
The middleware layer is applicat ion-independent s/w using the network services
Examples of middleware are: DCE, RPC, Corba
Middleware may only perform one funct ion (such as RPC) or many (such as DCE)

Middleware examples

Examples of middleware include

Primit ive services such as terminal emulators, file t ransfer, email
Basic services such as RPC
Integrated services such as DCE, Network O/S

Distributed Systems Architecture

Version 1.0 Page 10©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Distributed object services such as CORBA, OLE/Act iveX
Mobile object services such as RMI, Jini
World Wide Web

Middleware functions

The funct ions of middleware include

Init iat ion of processes at different computers
Session management
Directory services to allow clients to locate servers
remote data access
Concurrency control to allow servers to handle mult iple clients
Security and integrity
Monitoring
Terminat ion of processes both local and remote

1.15 Continuum of Processing
The Gartner model is based on a breakdown of an applicat ion into the components of presentat ion, applicat ion logic and data
handling. A finer grained breakdown is

1.16 Points of Failure
Distributed applicat ions run in a complex environment. This makes them much more prone to failure than standalone applicat ions on
a single computer. The points of failure include

The client side of the applicat ion could crash
The client system may have h/w problems
The client 's network card could fail
Network content ion could cause t imeouts
There may be network address conflicts
Network elements such as routers could fail
Transmission errors may lose messages
The client and server versions may be incompatable
The server's network card could fail
The server system may have h/w problems
The server s/w may crash
The server's database may become corrupted

Applicat ions have to be designed with these possible failures in mind. Any act ion performed by one component must be
recoverable if failure occurs in some other part of the system. Techniques such as t ransact ions and cont inuous error checking need
to be employed to avoid errors.

1.17 Acceptance Factors
Reliability

Distributed Systems Architecture

Version 1.0 Page 11©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Performance
Responsiveness
Scalability
Capacity
Security

1.18 Transparency
The "holy grails" of distributed systems are to provide the following:

access transparency
locat ion t ransparency
migrat ion t ransparency
replicat ion t ransparency
concurrency transparency
scalability t ransparency
performance transparency
failure t ransparency

1.19 Eight fallacies of distributed computing
Sun Microsystems was a company that performed much of the early work in distributed systems, and even had a mantra "The
network is the computer." Based on their experience over many years a number of the scient ists at Sun came up with the following
list of fallacies commonly assumed:

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

Many of these direct ly impact on network programming. For example, the design of most remote procedure call systems is based
on the premise that the network is reliable so that a remote procedure call will behave in the same way as a local call. The fallacies
of zero latency and infinite bandwidth also lead to assumptions about the t ime durat ion of an RPC call being the same as a local
call, whereas they are magnitudes of order slower.

The recognit ion of these fallacies led Java's RMI (remote method invocat ion) model to require every RPC call to potent ially throw a
RemoteException. This forced programmers to at least recognise the possibility of network error and to remind them that they
could not expect the same speeds as local calls.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Distributed Systems Architecture

Version 1.0 Page 12©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 2 Overview of the Go language
skip table of contents

Show table of contents

2.1 Introduction
Please go to the main index for the content pages for network comput ing.

I don't feel like writ ing a chapter introducing Go right now, as there are other materials already available. There are several tutorials
on the Go web site:

Gett ing started
A Tutorial for the Go Programming Language
Effect ive Go

There is an introductory textbook on Go: "Go Programming" by John P. Baugh available from Amazon

There is a #golang group on Google+

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Network Channels

Version 1.0 Page 13©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

..
http://golang.org/doc/install.html
http://golang.org/doc/go_tutorial.html
http://golang.org/doc/effective_go.html
http://www.amazon.com/Go-Programming-John-P-Baugh/dp/1453636676/ref=sr_1_1?s=books&ie=UTF8&qid=1294310361&sr=1-1
https://plus.google.com/u/0/s/%23Golang

Chapter 3 Socket-level Programming
This chapter looks at the basic techniques for network programming. It deals with
host and service addressing, and then considers TCP and UDP. It shows how to
build both servers and clients using the TCP and UDP Go APIs. It also looks at raw
sockets, in case you need to implement your own protocol above IP.

skip table of contents

Show table of contents

3.1 Introduction
There are many kinds of networks in the world. These range from the very old such as serial links, through to wide area networks
made from copper and fibre, to wireless networks of various kinds, both for computers and for telecommunicat ions devices such as
phones. These networks obviously differ at the physical link layer, but in many cases they also differed at higher layers of the OSI
stack.

Over the years there has been a convergence to the "internet stack" of IP and TCP/UDP. For example, Bluetooth defines physical
layers and protocol layers, but on top of that is an IP stack so that the same internet programming techniques can be employed on
many Bluetooth devices. Similarly, developing 4G wireless phone technologies such as LTE (Long Term Evolut ion) will also use an
IP stack.

While IP provides the networking layer 3 of the OSI stack, TCP and UDP deal with layer 4. These are not the final word, even in
the interenet world: SCTP has come from the telecommunicat ions to challenge both TCP and UDP, while to provide internet
services in interplanetary space requires new, under development protocols such as DTN. Nevertheless, IP, TCP and UDP hold
sway as principal networking technologies now and at least for a considerable t ime into the future. Go has full support for this style
of programming

This chapter shows how to do TCP and UDP programming using Go, and how to use a raw socket for other protocols.

3.2 The TCP/IP stack
The OSI model was devised using a commit tee process wherein the standard was set up and then implemented. Some parts of
the OSI standard are obscure, some parts cannot easily be implemented, some parts have not been implemented.

The TCP/IP protocol was devised through a long-running DARPA project . This worked by implementat ion followed by RFCs
(Request For Comment). TCP/IP is the principal Unix networking protocol. TCP/IP = Transmission Control Protocol/Internet
Protocol.

The TCP/IP stack is shorter than the OSI one:

TCP is a connect ion-oriented protocol, UDP (User Datagram Protocol) is a connect ionless protocol.

IP datagrams

The IP layer provides a connect ionless and unreliable delivery system. It considers each datagram independent ly of the others.
Any associat ion between datagrams must be supplied by the higher layers.

The IP layer supplies a checksum that includes its own header. The header includes the source and dest inat ion addresses.

The IP layer handles rout ing through an Internet. It is also responsible for breaking up large datagrams into smaller ones for
transmission and reassembling them at the other end.

UDP

Sockets

Version 1.0 Page 14©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

UDP is also connect ionless and unreliable. What it adds to IP is a checksum for the contents of the datagram and port numbers.
These are used to give a client /server model - see later.

TCP

TCP supplies logic to give a reliable connect ion-oriented protocol above IP. It provides a virtual circuit that two processes can use
to communicate. It also uses port numbers to ident ify services on a host.

3.3 Internet adddresses
In order to use a service you must be able to find it . The Internet uses an address scheme for devices such as computers so that
they can be located. This addressing scheme was originally devised when there were only a handful of connected computers, and
very generously allowed upto 2^32 addresses, using a 32 bit unsigned integer. These are the so-called IPv4 addresses. In recent
years, the number of connected (or at least direct ly addressable) devices has threatened to exceed this number, and so "any day
now" we will switch to IPv6 addressing which will allow upto 2^128 addresses, using an unsigned 128 bit integer. The changeover is
most likely to be forced by emerging countries, as the developed world has already taken nearly all of the pool of IPv4 addresses.

IPv4 addresses

The address is a 32 bit integer which gives the IP address. This addresses down to a network interface card on a single device.
The address is usually writ ten as four bytes in decimal with a dot '.' between them, as in "127.0.0.1" or "66.102.11.104".

The IP address of any device is generally composed of two parts: the address of the network in which the device resides, and the
address of the device within that network. Once upon a t ime, the split between network address and internal address was simple
and was based upon the bytes used in the IP address.

In a class A network, the first byte ident ifies the network, while the last three ident ify the device. There are only 128 class A
networks, owned by the very early players in the internet space such as IBM, the General Electric Company and MIT
(ht tp://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml)
Class B networks use the first two bytes to ident ify the network and the last two to ident ify devices within the subnet. This
allows upto 2^16 (65,536) devices on a subnet
Class C networks use the first three bytes to ident ify the network and the last one to ident ify devices within that network.
This allows upto 2^8 (actually 254, not 256) devices

This scheme doesn't work well if you want, say, 400 computers on a network. 254 is too small, while 65,536 is too large. In binary
arithmet ic terms, you want about 512. This can be achieved by using a 23 bit network address and 9 bits for the device addresses.
Similarly, if you want upto 1024 devices, you use a 22 bit network address and a 10 bit device address.

Given an IP address of a device, and knowing how many bits N are used for the network address gives a relat ively straightforward
process for extract ing the network address and the device address within that network. Form a "network mask" which is a 32-bit
binary number with all ones in the first N places and all zeroes in the remaining ones. For example, if 16 bits are used for the
network address, the mask is 11111111111111110000000000000000. It 's a lit t le inconvenient using binary, so decimal bytes are
usually used. The netmask for 16 bit network addresses is 255.255.0.0, for 24 bit network addresses it is 255.255.255.0, while for
23 bit addresses it would be 255.255.254.0 and for 22 bit addresses it would be 255.255.252.0.

Then to find the network of a device, bit -wise AND it 's IP address with the network mask, while the device address within the
subnet is found with bit -wise AND of the 1's complement of the mask with the IP address.

IPv6 addresses

The internet has grown vast ly beyond original expectat ions. The init ially generous 32-bit addressing scheme is on the verge of
running out. There are unpleasant workarounds such as NAT addressing, but eventually we will have to switch to a wider address
space. IPv6 uses 128-bit addresses. Even bytes becomes cumbersome to express such addresses, so hexadecimal digits are
used, grouped into 4 digits and separated by a colon ':'. A typical address might be 2002:c0e8:82e7:0:0:0:c0e8:82e7.

These addresses are not easy to remember! DNS will become even more important. There are t ricks to reducing some addresses,
such as eliding zeroes and repeated digits. For example, "localhost" is 0:0:0:0:0:0:0:1, which can be shortened to ::1

3.4 IP address type

The type IP

The package "net" defines many types, funct ions and methods of use in Go network programming. The type IP is defined as an
array of bytes

 type IP []byte

There are several funct ions to manipulate a variable of type IP, but you are likely to use only some of them in pract ice. For
example, the funct ion ParseIP(String) will take a dotted IPv4 address or a colon IPv6 address, while the IP method String will
return a string. Note that you may not get back what you started with: the string form of 0:0:0:0:0:0:0:1 is ::1.

Sockets

Version 1.0 Page 15©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

A program to illustrate this is

/* IP
 */

package main

import (
 "net"
 "os"
 "fmt"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s ip-addr\n", os.Args[0])
 os.Exit(1)
 }
 name := os.Args[1]

 addr := net.ParseIP(name)
 if addr == nil {
 fmt.Println("Invalid address")
 } else {
 fmt.Println("The address is ", addr.String())
 }
 os.Exit(0)
}

If this is compiled to the executable IP then it can run for example as

IP 127.0.0.1

with response

The address is 127.0.0.1

or as

IP 0:0:0:0:0:0:0:1

with response

The address is ::1

The type IPmask

In order to handle masking operat ions, there is the type

type IPMask []byte

There is a funct ion to create a mask from a 4-byte IPv4 address

func IPv4Mask(a, b, c, d byte) IPMask

Alternat ively, there is a method of IP which returns the default mask

func (ip IP) DefaultMask() IPMask

Note that the string form of a mask is a hex number such as ffff0000 for a mask of 255.255.0.0.

A mask can then be used by a method of an IP address to find the network for that IP address

func (ip IP) Mask(mask IPMask) IP

An example of the use of this is the following program:

/* Mask
 */

Sockets

Version 1.0 Page 16©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

package main

import (
 "fmt"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s dotted-ip-addr\n", os.Args[0])
 os.Exit(1)
 }
 dotAddr := os.Args[1]

 addr := net.ParseIP(dotAddr)
 if addr == nil {
 fmt.Println("Invalid address")
 os.Exit(1)
 }
 mask := addr.DefaultMask()
 network := addr.Mask(mask)
 ones, bits := mask.Size()
 fmt.Println("Address is ", addr.String(),
 " Default mask length is ", bits,
 "Leading ones count is ", ones,
 "Mask is (hex) ", mask.String(),
 " Network is ", network.String())
 os.Exit(0)
}

If this is compiled to Mask and run by

Mask 127.0.0.1

it will return

Address is 127.0.0.1 Default mask length is 8 Network is 127.0.0.0

The type IPAddr

Many of the other funct ions and methods in the net package return a pointer to an IPAddr. This is simply a structure containing an
IP.

type IPAddr {
 IP IP
}

A primary use of this type is to perform DNS lookups on IP host names.

func ResolveIPAddr(net, addr string) (*IPAddr, os.Error)

where net is one of "ip", "ip4" or "ip6". This is shown in the program

/* ResolveIP
 */

package main

import (
 "net"
 "os"
 "fmt"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s hostname\n", os.Args[0])
 fmt.Println("Usage: ", os.Args[0], "hostname")
 os.Exit(1)
 }
 name := os.Args[1]

 addr, err := net.ResolveIPAddr("ip", name)
 if err != nil {
 fmt.Println("Resolution error", err.Error())
 os.Exit(1)
 }
 fmt.Println("Resolved address is ", addr.String())

Sockets

Version 1.0 Page 17©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 os.Exit(0)
}

Running ResolveIP www.google.com returns

Resolved address is 66.102.11.104

Host lookup

The funct ion ResolveIPAddr will perform a DNS lookup on a hostname, and return a single IP address. However, hosts may have
mult iple IP addresses, usually from mult iple network interface cards. They may also have mult iple host names, act ing as aliases.

func LookupHost(name string) (cname string, addrs []string, err os.Error)

One of these addresses will be labelled as the "canonical" host name. If you wish to find the canonical name, use func
LookupCNAME(name string) (cname string, err os.Error)

This is shown in the following program

/* LookupHost
 */

package main

import (
 "net"
 "os"
 "fmt"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s hostname\n", os.Args[0])
 os.Exit(1)
 }
 name := os.Args[1]

 addrs, err := net.LookupHost(name)
 if err != nil {
 fmt.Println("Error: ", err.Error())
 os.Exit(2)
 }

 for _, s := range addrs {
 fmt.Println(s)
 }
 os.Exit(0)
}

Note that this funct ion returns strings, not IPAddress values.

3.5 Services
Services run on host machines. They are typically long lived and are designed to wait for requests and respond to them. There are
many types of services, and there are many ways in which they can offer their services to clients. The internet world bases many of
these services on two methods of communicat ion, TCP and UDP, although there are other communicat ion protocols such as
SCTP wait ing in the wings to take over. Many other types of service, such as peer-to-peer, remote procedure calls,
communicat ing agents, and many others are built on top of TCP and UDP.

Ports

Services live on host machines. The IP address will locate the host. But on each computer may be many services, and a simple
way is needed to dist inguish between them. The method used by TCP, UDP, SCTP and others is to use a port number. This is an
unsigned integer beween 1 and 65,535 and each service will associate itself with one or more of these port numbers.

There are many "standard" ports. Telnet usually uses port 23 with the TCP protocol. DNS uses port 53, either with TCP or with
UDP. FTP uses ports 21 and 20, one for commands, the other for data t ransfer. HTTP usually uses port 80, but it often uses
ports 8000, 8080 and 8088, all with TCP. The X Window System often takes ports 6000-6007, both on TCP and UDP.

On a Unix system, the commonly used ports are listed in the file /etc/services. Go has a funct ion to interrogate this file

func LookupPort(network, service string) (port int, err os.Error)

The network argument is a string such as "tcp" or "udp", while the service is a string such as "telnet" or "domain" (for DNS).

Sockets

Version 1.0 Page 18©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

A program using this is

/* LookupPort
 */

package main

import (
 "net"
 "os"
 "fmt"
)

func main() {
 if len(os.Args) != 3 {
 fmt.Fprintf(os.Stderr,
 "Usage: %s network-type service\n",
 os.Args[0])
 os.Exit(1)
 }
 networkType := os.Args[1]
 service := os.Args[2]

 port, err := net.LookupPort(networkType, service)
 if err != nil {
 fmt.Println("Error: ", err.Error())
 os.Exit(2)
 }

 fmt.Println("Service port ", port)
 os.Exit(0)
}

For example, running LookupPort tcp telnet prints Service port: 23

The type TCPAddr

The type TCPAddr is a structure containing an IP and a port:

type TCPAddr struct {
 IP IP
 Port int
}

The funct ion to create a TCPAddr is ResolveTCPAddr

func ResolveTCPAddr(net, addr string) (*TCPAddr, os.Error)

where net is one of "tcp", "tcp4" or "tcp6" and the addr is a string composed of a host name or IP address, followed by the port
number after a ":", such as "www.google.com:80" or '127.0.0.1:22". if the address is an IPv6 address, which already has colons in
it , then the host part must be enclosed in square brackets, such as "[::1]:23". Another special case is often used for servers, where
the host address is zero, so that the TCP address is really just the port name, as in ":80" for an HTTP server.

3.6 TCP Sockets
When you know how to reach a service via its network and port IDs, what then? If you are a client you need an API that will allow
you to connect to a service and then to send messages to that service and read replies back from the service.

If you are a server, you need to be able to bind to a port and listen at it . When a message comes in you need to be able to read it
and write back to the client .

The net.TCPConn is the Go type which allows full duplex communicat ion between the client and the server. Two major methods of
interest are

func (c *TCPConn) Write(b []byte) (n int, err os.Error)
func (c *TCPConn) Read(b []byte) (n int, err os.Error)

A TCPConn is used by both a client and a server to read and write messages.

TCP client

Once a client has established a TCP address for a service, it "dials" the service. If succesful, the dial returns a TCPConn for
communicat ion. The client and the server exchange messages on this. Typically a client writes a request to the server using the
TCPConn, and reads a response from the TCPConn. This cont inues unt il either (or both) sides close the connect ion. A TCP connect ion
is established by the client using the funct ion

Sockets

Version 1.0 Page 19©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

func DialTCP(net string, laddr, raddr *TCPAddr) (c *TCPConn, err os.Error)

where laddr is the local address which is usually set to nil and raddr is the remote address of the service, and the net string is one
of "tcp4", "tcp6" or "tcp" depending on whether you want a TCPv4 connect ion, a TCPv6 connect ion or don't care.

A simple example can be provided by a client to a web (HTTP) server. We will deal in substant ially more detail with HTTP clients
and servers in a later chapter, but for now we will keep it simple.

One of the possible messages that a client can send is the "HEAD" message. This queries a server for informat ion about the
server and a document on that server. The server returns informat ion, but does not return the document itself. The request sent to
query an HTTP server could be

"HEAD / HTTP/1.0\r\n\r\n"

which asks for informat ion about the root document and the server. A typical response might be

HTTP/1.0 200 OK
ETag: "-9985996"
Last-Modified: Thu, 25 Mar 2010 17:51:10 GMT
Content-Length: 18074
Connection: close
Date: Sat, 28 Aug 2010 00:43:48 GMT
Server: lighttpd/1.4.23

We first give the program (GetHeadInfo.go) to establish the connect ion for a TCP address, send the request string, read and print
the response. Once compiled it can be invoked by e.g.

GetHeadInfo www.google.com:80

The program is

/* GetHeadInfo
 */
package main

import (
 "net"
 "os"
 "fmt"
 "io/ioutil"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s host:port ", os.Args[0])
 os.Exit(1)
 }
 service := os.Args[1]

 tcpAddr, err := net.ResolveTCPAddr("tcp4", service)
 checkError(err)

 conn, err := net.DialTCP("tcp", nil, tcpAddr)
 checkError(err)

 _, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
 checkError(err)

 //result, err := readFully(conn)
 result, err := ioutil.ReadAll(conn)
 checkError(err)

 fmt.Println(string(result))

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

The first point to note is the almost excessive amount of error checking that is going on. This is normal for networking programs:
the opportunit ies for failure are substant ially greater than for standalone programs. Hardware may fail on the client , the server, or
on any of the routers and switches in the middle; communicat ion may be blocked by a firewall; t imeouts may occur due to network
load; the server may crash while the client is talking to it . The following checks are performed:

1. There may be syntax errors in the address specified
2. The at tempt to connect to the remote service may fail. For example, the service requested might not be running, or there

Sockets

Version 1.0 Page 20©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

may be no such host connected to the network
3. Although a connect ion has been established, writes to the service might fail if the connect ion has died suddenly, or the

network t imes out
4. Similarly, the reads might fail

Reading from the server requires a comment. In this case, we read essent ially a single response from the server. This will be
terminated by end-of-file on the connect ion. However, it may consist of several TCP packets, so we need to keep reading t ill the
end of file. The io/ioutil funct ion ReadAll will look after these issues and return the complete response. (Thanks to Roger Peppe
on the golang-nuts mailing list .).

There are some language issues involved. First , most of the funct ions return a dual value, with possible error as second value. If no
error occurs, then this will be nil. In C, the same behaviour is gained by special values such as NULL, or -1, or zero being returned -
if that is possible. In Java, the same error checking is managed by throwing and catching except ions, which can make the code look
very messy.

In earlier versions of this program, I returned the result in the array buf, which is of type [512]byte. At tempts to coerce this to a
string failed - only byte arrays of type []byte can be coerced. This is a bit of a nuisance.

A Daytime server

About the simplest service that we can build is the dayt ime service. This is a standard Internet service, defined by RFC 867, with a
default port of 13, on both TCP and UDP. Unfortunately, with the (just ified) increase in paranoia over security, hardly any sites run
a dayt ime server any more. Never mind, we can build our own. (For those interested, if you install inetd on your system, you usually
get a dayt ime server thrown in.)

A server registers itself on a port , and listens on that port . Then it blocks on an "accept" operat ion, wait ing for clients to connect.
When a client connects, the accept call returns, with a connect ion object . The dayt ime service is very simple and just writes the
current t ime to the client , closes the connect ion, and resumes wait ing for the next client .

The relevant calls are

func ListenTCP(net string, laddr *TCPAddr) (l *TCPListener, err os.Error)
func (l *TCPListener) Accept() (c Conn, err os.Error)

The argument net can be set to one of the strings "tcp", "tcp4" or "tcp6". The IP address should be set to zero if you want to
listen on all network interfaces, or to the IP address of a single network interface if you only want to listen on that interface. If the
port is set to zero, then the O/S will choose a port for you. Otherwise you can choose your own. Note that on a Unix system, you
cannot listen on a port below 1024 unless you are the system supervisor, root, and ports below 128 are standardised by the IETF.
The example program chooses port 1200 for no part icular reason. The TCP address is given as ":1200" - all interfaces, port 1200.

The program is

/* DaytimeServer
 */
package main

import (
 "fmt"
 "net"
 "os"
 "time"
)

func main() {

 service := ":1200"
 tcpAddr, err := net.ResolveTCPAddr("ip4", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 daytime := time.Now().String()
 conn.Write([]byte(daytime)) // don't care about return value
 conn.Close() // we're finished with this client
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

Sockets

Version 1.0 Page 21©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

If you run this server, it will just wait there, not doing much. When a client connects to it , it will respond by sending the dayt ime
string to it and then return to wait ing for the next client .

Note the changed error handling in the server as compared to a client . The server should run forever, so that if any error occurs with
a client , the server just ignores that client and carries on. A client could otherwise try to mess up the connect ion with the server,
and bring it down!

We haven't built a client . That is easy, just changing the previous client to omit the init ial write. Alternat ively, just open up a telnet
connect ion to that host:

telnet localhost 1200

This will produce output such as

$telnet localhost 1200
Trying ::1...
Connected to localhost.
Escape character is '^]'.
Sun Aug 29 17:25:19 EST 2010Connection closed by foreign host.

where "Sun Aug 29 17:25:19 EST 2010" is the output from the server.

Multi-threaded server

"echo" is another simple IETF service. This just reads what the client types, and sends it back:

/* SimpleEchoServer
 */
package main

import (
 "net"
 "os"
 "fmt"
)

func main() {

 service := ":1201"
 tcpAddr, err := net.ResolveTCPAddr("tcp4", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 handleClient(conn)
 conn.Close() // we're finished
 }
}

func handleClient(conn net.Conn) {
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 if err != nil {
 return
 }
 fmt.Println(string(buf[0:]))
 _, err2 := conn.Write(buf[0:n])
 if err2 != nil {
 return
 }
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

While it works, there is a significant issue with this server: it is single-threaded. While a client has a connect ion open to it , no other
cllient can connect. Other clients are blocked, and will probably t ime out. Fortunately this is easly fixed by making the client handler
a go-rout ine. We have also moved the connect ion close into the handler, as it now belongs there

/* ThreadedEchoServer
 */

Sockets

Version 1.0 Page 22©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

package main

import (
 "net"
 "os"
 "fmt"
)

func main() {

 service := ":1201"
 tcpAddr, err := net.ResolveTCPAddr("ip4", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 // run as a goroutine
 go handleClient(conn)
 }
}

func handleClient(conn net.Conn) {
 // close connection on exit
 defer conn.Close()

 var buf [512]byte
 for {
 // read upto 512 bytes
 n, err := conn.Read(buf[0:])
 if err != nil {
 return
 }

 // write the n bytes read
 _, err2 := conn.Write(buf[0:n])
 if err2 != nil {
 return
 }
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

3.7 Controlling TCP connections

Timeout

The server may wish to t imeout a client if it does not respond quickly enough i.e. does not write a request to the server in t ime.
This should be a long period (several minutes), because the user may be taking their t ime. Conversely, the client may want to
t imeout the server (after a much shorter t ime). Both do this by

func (c *TCPConn) SetTimeout(nsec int64) os.Error

before any reads or writes on the socket.

Staying alive

A client may wish to stay connected to a server even if it has nothing to send. It can use

func (c *TCPConn) SetKeepAlive(keepalive bool) os.Error

There are several other connect ion control methods, documented in the "net" package.

3.8 UDP Datagrams
In a connect ionless protocol each message contains informat ion about its origin and dest inat ion. There is no "session" established
using a long-lived socket. UDP clients and servers make use of datagrams, which are individual messages containing source and
dest inat ion informat ion. There is no state maintained by these messages, unless the client or server does so. The messages are
not guaranteed to arrive, or may arrive out of order.

The most common situat ion for a client is to send a message and hope that a reply arrives. The most common situat ion for a
server would be to receive a message and then send one or more replies back to that client . In a peer-to-peer situat ion, though,

Sockets

Version 1.0 Page 23©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

the server may just forward messages to other peers.

The major difference between TCP and UDP handling for Go is how to deal with packets arriving from possibly mult iple clients,
without the cushion of a TCP session to manage things. The major calls needed are

func ResolveUDPAddr(net, addr string) (*UDPAddr, os.Error)
func DialUDP(net string, laddr, raddr *UDPAddr) (c *UDPConn, err os.Error)
func ListenUDP(net string, laddr *UDPAddr) (c *UDPConn, err os.Error)
func (c *UDPConn) ReadFromUDP(b []byte) (n int, addr *UDPAddr, err os.Error
func (c *UDPConn) WriteToUDP(b []byte, addr *UDPAddr) (n int, err os.Error)

The client for a UDP t ime service doesn't need to make many changes, just changing ...TCP... calls to ...UDP... calls:

/* UDPDaytimeClient
 */
package main

import (
 "net"
 "os"
 "fmt"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s host:port", os.Args[0])
 os.Exit(1)
 }
 service := os.Args[1]

 udpAddr, err := net.ResolveUDPAddr("up4", service)
 checkError(err)

 conn, err := net.DialUDP("udp", nil, udpAddr)
 checkError(err)

 _, err = conn.Write([]byte("anything"))
 checkError(err)

 var buf [512]byte
 n, err := conn.Read(buf[0:])
 checkError(err)

 fmt.Println(string(buf[0:n]))

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error ", err.Error())
 os.Exit(1)
 }
}

while the server has to make a few more:

/* UDPDaytimeServer
 */
package main

import (
 "fmt"
 "net"
 "os"
 "time"
)

func main() {

 service := ":1200"
 udpAddr, err := net.ResolveUDPAddr("up4", service)
 checkError(err)

 conn, err := net.ListenUDP("udp", udpAddr)
 checkError(err)

 for {
 handleClient(conn)
 }
}

func handleClient(conn *net.UDPConn) {

 var buf [512]byte

Sockets

Version 1.0 Page 24©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 _, addr, err := conn.ReadFromUDP(buf[0:])
 if err != nil {
 return
 }

 daytime := time.Now().String()

 conn.WriteToUDP([]byte(daytime), addr)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error ", err.Error())
 os.Exit(1)
 }
}

3.9 Server listening on multiple sockets
A server may be at tempt ing to listen to mult iple clients not just on one port , but on many. In this case it has to use some sort of
polling mechanism between the ports.

In C, the select() call lets the kernel do this work. The call takes a number of file descriptors. The process is suspended. When I/O
is ready on one of these, a wakeup is done, and the process can cont inue. This is cheaper than busy polling. In Go, accomplish the
same by using a different gorout ine for each port . A thread will become runnable when the lower-level select() discovers that I/O is
ready for this thread.

3.10 The types Conn, PacketConn and Listener
So far we have different iated between the API for TCP and the API for UDP, using for example DialTCP and DialUDP returning a
TCPConn and UDPConn respect ively. The type Conn is an interface and both TCPConn and UDPConn implement this interface. To a large
extent you can deal with this interface rather than the two types.

Instead of separate dial funct ions for TCP and UDP, you can use a single funct ion

func Dial(net, laddr, raddr string) (c Conn, err os.Error)

The net can be any of "tcp", "tcp4" (IPv4-only), "tcp6" (IPv6-only), "udp", "udp4" (IPv4-only), "udp6" (IPv6-only), "ip", "ip4" (IPv4-
only) and "ip6" IPv6-only). It will return an appropriate implementat ion of the Conn interface. Note that this funct ion takes a string
rather than address as raddr argument, so that programs using this can avoid working out the address type first .

Using this funct ion makes minor changes to programs. For example, the earlier program to get HEAD informat ion from a Web page
can be re-writ ten as

/* IPGetHeadInfo
 */
package main

import (
 "bytes"
 "fmt"
 "io"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s host:port", os.Args[0])
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := net.Dial("tcp", service)
 checkError(err)

 _, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
 checkError(err)

 result, err := readFully(conn)
 checkError(err)

 fmt.Println(string(result))

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())

Sockets

Version 1.0 Page 25©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 os.Exit(1)
 }
}

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

Writ ing a server can be similarly simplified using the funct ion

func Listen(net, laddr string) (l Listener, err os.Error)

which returns an object implement ing the Listener interface. This interface has a method

func (l Listener) Accept() (c Conn, err os.Error)

which will allow a server to be built . Using this, the mult i-threaded Echo server given earlier becomes

/* ThreadedIPEchoServer
 */
package main

import (
 "fmt"
 "net"
 "os"
)

func main() {

 service := ":1200"
 listener, err := net.Listen("tcp", service)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 go handleClient(conn)
 }
}

func handleClient(conn net.Conn) {
 defer conn.Close()

 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 if err != nil {
 return
 }
 _, err2 := conn.Write(buf[0:n])
 if err2 != nil {
 return
 }
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

If you want to write a UDP server, then there is an interface PacketConn and a method to return an implementat ion of this:

func ListenPacket(net, laddr string) (c PacketConn, err os.Error)

Sockets

Version 1.0 Page 26©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This interface has primary methods ReadFrom and WriteTo to handle packet reads and writes.

The Go net package recommends using these interface types rather than the concrete ones. But by using them, you lose specific
methods such as SetKeepAlive or TCPConn and SetReadBuffer of UDPConn, unless you do a type cast. It is your choice.

3.11 Raw sockets and the type IPConn
This sect ion covers advanced material which most programmers are unlikely to need. it deals with raw sockets, which allow the
programmer to build their own IP protocols, or use protocols other than TCP or UDP

TCP and UDP are not the only protocols built above the IP layer. The site ht tp://www.iana.org/assignments/protocol-numbers lists
about 140 of them (this list is often available on Unix systems in the file /etc/protocols). TCP and UDP are only numbers 6 and 17
respect ively on this list .

Go allows you to build so-called raw sockets, to enable you to communicate using one of these other protocols, or even to build
your own. But it gives minimal support : it will connect hosts, and write and read packets between the hosts. In the next chapter we
will look at designing and implement ing your own protocols above TCP; this sect ion considers the same type of problem, but at the
IP layer.

To keep things simple, we shall use almost the simplest possible example: how to send a ping message to a host. Ping uses the
"echo" command from the ICMP protocol. This is a byte-oriented protocol, in which the client sends a stream of bytes to another
host, and the host replies. the format is:

The first byte is 8, standing for the echo message
The second byte is zero
The third and fourth bytes are a checksum on the ent ire message
The fifth and sixth bytes are an arbit rary indent ifier
The seventh and eight bytes are an arbit rary sequence number
The rest of the packet is user data

The following program will prepare an IP connect ion, send a ping request to a host and get a reply. You may need to have root
access in order to run it successfully.

/* Ping
 */
package main

import (
 "bytes"
 "fmt"
 "io"
 "net"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host")
 os.Exit(1)
 }

 addr, err := net.ResolveIPAddr("ip", os.Args[1])
 if err != nil {
 fmt.Println("Resolution error", err.Error())
 os.Exit(1)
 }

 conn, err := net.DialIP("ip4:icmp", addr, addr)
 checkError(err)

 var msg [512]byte
 msg[0] = 8 // echo
 msg[1] = 0 // code 0
 msg[2] = 0 // checksum, fix later
 msg[3] = 0 // checksum, fix later
 msg[4] = 0 // identifier[0]
 msg[5] = 13 //identifier[1]
 msg[6] = 0 // sequence[0]
 msg[7] = 37 // sequence[1]
 len := 8

 check := checkSum(msg[0:len])
 msg[2] = byte(check >> 8)
 msg[3] = byte(check & 255)

 _, err = conn.Write(msg[0:len])
 checkError(err)

 _, err = conn.Read(msg[0:])
 checkError(err)

 fmt.Println("Got response")
 if msg[5] == 13 {

Sockets

Version 1.0 Page 27©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 fmt.Println("identifier matches")
 }
 if msg[7] == 37 {
 fmt.Println("Sequence matches")
 }

 os.Exit(0)
}

func checkSum(msg []byte) uint16 {
 sum := 0

 // assume even for now
 for n := 1; n < len(msg)-1; n += 2 {
 sum += int(msg[n])*256 + int(msg[n+1])
 }
 sum = (sum >> 16) + (sum & 0xffff)
 sum += (sum >> 16)
 var answer uint16 = uint16(^sum)
 return answer
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

3.12 Conclusion
This chapter has considered programming at the IP, TCP and UDP levels. This is often necessary if you wish to implement your
own protocol, or build a client or server for an exist ing protocol.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Sockets

Version 1.0 Page 28©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 4 Data serialisation
Communicat ion between a client and a service requires the exchange of data. This
data may be highly structured, but has to be serialised for t ransport . This chapter
looks at the basics of serialisat ion and then considers several techniques supported
by Go APIs.

skip table of contents

Show table of contents

4.1 Introduction
A client and server need to exchange informat ion via messages. TCP and UDP provide the transport mechanisms to do this. The
two processes also have to have a protocol in place so that message exchange can take place meaningfully.

Messages are sent across the network as a sequence of bytes, which has no structure except for a linear stream of bytes. We
shall address the various possibilit ies for messages and the protocols that define them in the next chapter. In this chapter we
concentrate on a component of messages - the data that is t ransferred.

A program will typically build complex data structures to hold the current program state. In conversing with a remote client or
service, the program will be at tempt ing to t ransfer such data structures across the network - that is, outside of the applicat ion's
own address space.

Programming languages use structured data such as

records/structures
variant records
array - fixed size or varying
string - fixed size or varying
tables - e.g. arrays of records
non-linear structures such as

circular linked list
binary t ree
objects with references to other objects

None of IP, TCP or UDP packets know the meaning of any of these data types. All that they can contain is a sequence of bytes.
Thus an applicat ion has to serialise any data into a stream of bytes in order to write it , and deserialise the stream of bytes back
into suitable data structures on reading it . These two operat ions are known as marshalling and unmarshalling respect ively.

For example, consider sending the following variable length table of two columns of variable length strings:

fred programmer

liping analyst

sureerat manager

This could be done by in various ways. For example, suppose that it is known that the data will be an unknown number of rows in a
two-column table. Then a marshalled form could be

 3 // 3 rows, 2 columns assumed
 4 fred // 4 char string,col 1
 10 programmer // 10 char string,col 2
 6 liping // 6 char string, col 1
 7 analyst // 7 char string, col 2
 8 sureerat // 8 char string, col 1
 7 manager // 7 char string, col 2

Variable length things can alternat ively have their length indicated by terminat ing them with an "illegal" value, such as '\0' for strings:

 3
 fred\0
 programmer\0
 liping\0
 analyst\0
 sureerat\0
 manager\0

Alternat ively, it may be known that the data is a 3-row fixed table of two columns of strings of length 8 and 10 respect ively. Then a
serialisat ion could be

 fred\0\0\0\0
 programmer
 liping\0\0
 analyst\0\0\0
 sureerat
 manager\0\0\0

Any of these formats is okay - but the message exchange protocol must specify which one is used, or allow it to be determined at

Data serialisation

Version 1.0 Page 29©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

runtime.

4.2 Mutual agreement
The previous sect ion gave an overview of the issue of data serialisat ion. In pract ise, the details can be considerably more complex.
For example, consider the first possibility, marshalling a table into the stream

 3
 4 fred
 10 programmer
 6 liping
 7 analyst
 8 sureerat
 7 manager

Many quest ions arise. For example, how many rows are possible for the table - that is, how big an integer do we need to describe
the row size? If it is 255 or less, then a single byte will do, but if it is more, then a short , integer or long may be needed. A similar
problem occurs for the length of each string. With the characters themselves, to which character set do they belong? 7 bit ASCII?
16 bit Unicode? The quest ion of character sets is discussed at length in a later chapter.

The above serialisat ion is opaque or implicit. If data is marshalled using the above format, then there is nothing in the serialised
data to say how it should be unmarshalled. The unmarshalling side has to know exact ly how the data is serialised in order to
unmarshal it correct ly. For example, if the number of rows is marshalled as an eight-bit integer, but unmarshalled as a sixteen-bit
integer, then an incorrect result will occur as the receiver t ries to unmarshall 3 and 4 as a sixteen-bit integer, and the receiving
program will almost certainly fail later.

An early well-known serialisat ion method is XDR (external data representat ion) used by Sun's RPC, later known as ONC (Open
Network Comput ing). XDR is defined by RFC 1832 and it is instruct ive to see how precise this specificat ion is. Even so, XDR is
inherent ly type-unsafe as serialised data contains no type informat ion. The correctness of its use in ONC is ensured primarily by
compilers generat ing code for both marshalling and unmarshalling.

Go contains no explicit support for marshalling or unmarshalling opaque serialised data. The RPC package in Go does not use
XDR, but instead uses "gob" serialisat ion, described later in this chapter.

4.3 Self-describing data
Self-describing data carries type informat ion along with the data. For example, the previous data might get encoded as

table
 uint8 3
 uint 2
string
 uint8 4
 []byte fred
string
 uint8 10
 []byte programmer
string
 uint8 6
 []byte liping
string
 uint8 7
 []byte analyst
string
 uint8 8
 []byte sureerat
string
 uint8 7
 []byte manager

Of course, a real encoding would not normally be as cumbersome and verbose as in the example: small integers would be used as
type markers and the whole data would be packed in as small a byte array as possible. (XML provides a counter-example,
though.). However, the principle is that the marshaller will generate such type informat ion in the serialised data. The unmarshaller
will know the type-generat ion rules and will be able to use this to reconstruct the correct data structure.

4.4 ASN.1
Abstract Syntax Notat ion One (ASN.1) was originally designed in 1984 for the telecommunicat ions industry. ASN.1 is a complex
standard, and a subset of it is supported by Go in the package "asn1". It builds self-describing serialised data from complex data
structures. Its primary use in current networking systems is as the encoding for X.509 cert ificates which are heavily used in
authent icat ion systems. The support in Go is based on what is needed to read and write X.509 cert ificates.

Two funct ions allow us to marshal and unmarshal data

func Marshal(val interface{}) ([]byte, os.Error)
func Unmarshal(val interface{}, b []byte) (rest []byte, err os.Error)

Data serialisation

Version 1.0 Page 30©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

The first marshals a data value into a serialised byte array, and the second unmarshals it . However, the first argument of type
interface deserves further examinat ion. Given a variable of a type, we can marshal it by just passing its value. To unmarshal it , we
need a variable of a named type that will match the serialised data. The precise details of this are discussed later. But we also
need to make sure that the variable is allocated to memory for that type, so that there is actually exist ing memory for the
unmarshalling to write values into.

We illustrate with an almost t rivial example, of marshalling and unmarshalling an integer. We can pass an integer value to Marshal
to return a byte array, and unmarshal the array into an integer variable as in this program:

/* ASN.1
 */

package main

import (
 "encoding/asn1"
 "fmt"
 "os"
)

func main() {
 mdata, err := asn1.Marshal(13)
 checkError(err)

 var n int
 _, err1 := asn1.Unmarshal(mdata, &n)
 checkError(err1)

 fmt.Println("After marshal/unmarshal: ", n)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

The unmarshalled value, is of course, 13.

Once we move beyond this, things get harder. In order to manage more complex data types, we have to look more closely at the
data structures supported by ASN.1, and how ASN.1 support is done in Go.

Any serialisat ion method will be able to handle certain data types and not handle some others. So in order to determine the
suitability of any serialisat ion such as ASN.1, you have to look at the possible data types supported versus those you wish to use
in your applicat ion. The following ASN.1 types are taken from http://www.obj-sys.com/asn1tutorial/node4.html

The simple types are

BOOLEAN: two-state variable values
INTEGER: Model integer variable values
BIT STRING: Model binary data of arbit rary length
OCTET STRING: Model binary data whose length is a mult iple of eight
NULL: Indicate effect ive absence of a sequence element
OBJECT IDENTIFIER: Name informat ion objects
REAL: Model real variable values
ENUMERATED: Model values of variables with at least three states
CHARACTER STRING: Models values that are strings of characters fro

Character strings can be from certain character sets

NumericString: 0,1,2,3,4,5,6,7,8,9, and space
PrintableString: Upper and lower case let ters, digits, space, apostrophe, left /right parenthesis, plus sign, comma, hyphen, full
stop, solidus, colon, equal sign, quest ion mark
TeletexString (T61String): The Teletex character set in CCITT's T61, space, and delete
VideotexString: The Videotex character set in CCITT's T.100 and T.101, space, and delete
VisibleString (ISO646String): Print ing character sets of internat ional ASCII, and space
IA5String: Internat ional Alphabet 5 (Internat ional ASCII)
GraphicString 25 All registered G sets, and space GraphicString

And finally, there are the structured types:

SEQUENCE: Models an ordered collect ion of variables of different type
SEQUENCE OF: Models an ordered collect ion of variables of the same type
SET: Model an unordered collect ion of variables of different types
SET OF: Model an unordered collect ion of variables of the same type
CHOICE: Specify a collect ion of dist inct types from which to choose one type
SELECTION: Select a component type from a specified CHOICE type
ANY: Enable an applicat ion to specify the type Note: ANY is a deprecated ASN.1 Structured Type. It has been replaced
with X.680 Open Type.

Data serialisation

Version 1.0 Page 31©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Not all of these are supported by Go. Not all possible values are supported by Go. The rules as given in the Go "asn1" package
documentat ion are

An ASN.1 INTEGER can be writ ten to an int or int64. If the encoded value does not fit in the Go type, Unmarshal returns a
parse error.
An ASN.1 BIT STRING can be writ ten to a BitString.
An ASN.1 OCTET STRING can be writ ten to a []byte.
An ASN.1 OBJECT IDENTIFIER can be writ ten to an Object Ident ifier.
An ASN.1 ENUMERATED can be writ ten to an Enumerated.
An ASN.1 UTCTIME or GENERALIZEDTIME can be writ ten to a *t ime.Time.
An ASN.1 PrintableString or IA5String can be writ ten to a string.
Any of the above ASN.1 values can be writ ten to an interface{}. The value stored in the interface has the corresponding Go
type. For integers, that type is int64.
An ASN.1 SEQUENCE OF x or SET OF x can be writ ten to a slice if an x can be writ ten to the slice's element type.
An ASN.1 SEQUENCE or SET can be writ ten to a struct if each of the elements in the sequence can be writ ten to the
corresponding element in the struct .

Go places real restrict ions on ASN.1. For example, ASN.1 allows integers of any size, while the Go implementat ion will only allow
upto signed 64-bit integers. On the other hand, Go dist inguishes between signed and unsigned types, while ASN.1 doesn't . So for
example, t ransmit t ing a value of uint64 may fail if it is too large for int64,

In a similar vein, ASN.1 allows several different character sets. Go only supports PrintableString and IA5String (ASCII). ASN.1
does not support Unicode characters (which require the BMPString ASN.1 extension). The basic Unicode character set of Go is
not supported, and if an applicat ion requires t ransport of Unicode characters, then an encoding such as UTF-7 will be needed.
Such encodings are discussed in a later chapter on character sets.

We have seen that a value such as an integer can be easily marshalled and unmarshalled. Other basic types such as booleans and
reals can be similarly dealt with. Strings which are composed ent irely of ASCII characters can be marshalled and unmarshalled.
However, if the string is, for example, "hello \u00bc" which contains the non-ASCII character '¼' then an error will occur: "ASN.1
structure error: PrintableString contains invalid character". This code works, as long as the string is only composed of printable
characters:

 s := "hello"
 mdata, _ := asn1.Marshal(s)

 var newstr string
 asn1.Unmarshal(mdata, &newstr)

ASN.1 also includes some "useful types" not in the above list , such as UTC t ime. Go supports this UTC t ime type. This means that
you can pass t ime values in a way that is not possible for other data values. ASN.1 does not support pointers, but Go has special
code to manage pointers to t ime values. The funct ion GetLocalTime returns *time.Time. The special code marshals this, and it can
be unmarshalled into a pointer variable to a time.Time object . Thus this code works

 t := time.LocalTime()
 mdata, err := asn1.Marshal(t)

 var newtime = new(time.Time)
 _, err1 := asn1.Unmarshal(&newtime, mdata)

Both LocalTime and new handle pointers to a *time.Time, and Go looks after this special case.

In general, you will probably want to marshal and unmarshal structures. Apart from the special case of t ime, Go will happily deal
with structures, but not with pointers to structures. Operat ions such as new create pointers, so you have to dereference them
before marshalling/unmarshalling them. Go normally dereferences pointers for you when needed, but not in this case. These both
work for a type T:

// using variables
var t1 T
t1 = ...
mdata1, _ := asn1.Marshal(t)

var newT1 T
asn1.Unmarshal(&newT1, mdata1)

/// using pointers
var t2 = new(T)
*t2 = ...
mdata2, _ := asn1.Marshal(*t2)

var newT2 = new(T)
asn1.Unmarshal(newT2, mdata2)

Any suitable mix of pointers and variables will work as well.

The fields of a structure must all be exportable, that is, field names must begin with an uppercase let ter. Go uses the reflect
package to marshal/unmarshal structures, so it must be able to examine all fields. This type cannot be marshalled:

 type T struct {
 Field1 int

Data serialisation

Version 1.0 Page 32©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 field2 int // not exportable
 }

ASN.1 only deals with the data types. It does not consider the names of structure fields. So the following type T1 can be
marshalled/unmarshalled into type T2 as the corresponding fields are the same types:

type T1 struct {
 F1 int
 F2 string
}

type T2 struct {
 FF1 int
 FF2 string
}

Not only the types of each field must match, but the number must match as well. These two types don't work:

type T1 struct {
 F1 int
}

type T2 struct {
 F1 int
 F2 string // too many fields
}

ASN.1 daytime client and server

Now (finally) let us turn to using ASN.1 to t ransport data across the network.

We can write a TCP server that delivers the current t ime as an ASN.1 Time type, using the techniques of the last chapter. A
server is

/* ASN1 DaytimeServer
 */
package main

import (
 "encoding/asn1"
 "fmt"
 "net"
 "os"
 "time"
)

func main() {

 service := ":1200"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 daytime := time.Now()
 // Ignore return network errors.
 mdata, _ := asn1.Marshal(daytime)
 conn.Write(mdata)
 conn.Close() // we're finished
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

which can be compiled to an executable such as ASN1DaytimeServer and run with no arguments. It will wait for connect ions and
then send the t ime as an ASN.1 string to the client .

A client is

/* ASN.1 DaytimeClient

Data serialisation

Version 1.0 Page 33©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 */
package main

import (
 "bytes"
 "encoding/asn1"
 "fmt"
 "io"
 "net"
 "os"
 "time"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Fprintf(os.Stderr, "Usage: %s host:port", os.Args[0])
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := net.Dial("tcp", service)
 checkError(err)

 result, err := readFully(conn)
 checkError(err)

 var newtime time.Time
 _, err1 := asn1.Unmarshal(result, &newtime)
 checkError(err1)

 fmt.Println("After marshal/unmarshal: ", newtime.String())

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
 os.Exit(1)
 }
}

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

This connects to the service given in a form such as localhost:1200, reads the TCP packet and decodes the ASN.1 content back
into a string, which it prints.

We should note that neither of these two - the client or the server - are compatable with the text-based clients and servers of the
last chapter. This client and server are exchanging ASN.1 encoded data values, not textual strings.

4.5 JSON
JSON stands for JavaScript Object Notat ion. It was designed to be a lighweight means of passing data between JavaScript
systems. It uses a text-based format and is sufficient ly general that it has become used as a general purpose serialisat ion method
for many programming languages.

JSON serialises objects, arrays and basic values. The basic values include string, number, boolean values and the null value. Arrays
are a comma-separated list of values that can represent arrays, vectors, lists or sequences of various programming languages.
They are delimited by square brackets "[...]". Objects are represented by a list of "field: value" pairs enclosed in curly braces "{ ...
}".

For example, the table of employees given earlier could be writ ten as an array of employee objects:

[
 {Name: fred, Occupation: programmer},
 {Name: liping, Occupation: analyst},
 {Name: sureerat, Occupation: manager}
]

Data serialisation

Version 1.0 Page 34©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

There is no special support for complex data types such as dates, no dist inct ion between number types, no recursive types, etc.
JSON is a very simple language, but nevertheless can be quite useful. Its text-based format makes it easy for people to use, even
though it has the overheads of string handling.

From the Go JSON package specificat ion, marshalling uses the following type-dependent default encodings:

Boolean values encode as JSON booleans.
Float ing point and integer values encode as JSON numbers.
String values encode as JSON strings, with each invalid UTF-8 sequence replaced by the encoding of the Unicode
replacement character U+FFFD.
Array and slice values encode as JSON arrays, except that []byte encodes as a base64-encoded string.
Struct values encode as JSON objects. Each struct field becomes a member of the object . By default the object 's key name
is the struct field name converted to lower case. If the struct field has a tag, that tag will be used as the name instead.
Map values encode as JSON objects. The map's key type must be string; the object keys are used direct ly as map keys.
Pointer values encode as the value pointed to. (Note: this allows trees, but not graphs!). A nil pointer encodes as the null
JSON object .
Interface values encode as the value contained in the interface. A nil interface value encodes as the null JSON object .
Channel, complex, and funct ion values cannot be encoded in JSON. Attempt ing to encode such a value causes Marshal to
return an InvalidTypeError.
JSON cannot represent cyclic data structures and Marshal does not handle them. Passing cyclic structures to Marshal will
result in an infinite recursion.

A program to store JSON serialised data into a file is

/* SaveJSON
 */

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func main() {
 person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
 Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

 saveJSON("person.json", person)
}

func saveJSON(fileName string, key interface{}) {
 outFile, err := os.Create(fileName)
 checkError(err)
 encoder := json.NewEncoder(outFile)
 err = encoder.Encode(key)
 checkError(err)
 outFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

and to load it back into memory is

/* LoadJSON
 */

package main

import (
 "encoding/json"

Data serialisation

Version 1.0 Page 35©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 "fmt"
 "os"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}
func main() {
 var person Person
 loadJSON("person.json", &person)

 fmt.Println("Person", person.String())
}

func loadJSON(fileName string, key interface{}) {
 inFile, err := os.Open(fileName)
 checkError(err)
 decoder := json.NewDecoder(inFile)
 err = decoder.Decode(key)
 checkError(err)
 inFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The serialised form is (formatted nicely)

{"Name":{"Family":"Newmarch",
 "Personal":"Jan"},
 "Email":[{"Kind":"home","Address":"jan@newmarch.name"},
 {"Kind":"work","Address":"j.newmarch@boxhill.edu.au"}
]
}

A client and server

A client to send a person's data and read it back ten t imes is

/* JSON EchoClient
 */
package main

import (
 "fmt"
 "net"
 "os"
 "encoding/json"
 "bytes"
 "io"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string

Data serialisation

Version 1.0 Page 36©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

func main() {
 person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
 Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := net.Dial("tcp", service)
 checkError(err)

 encoder := json.NewEncoder(conn)
 decoder := json.NewDecoder(conn)

 for n := 0; n < 10; n++ {
 encoder.Encode(person)
 var newPerson Person
 decoder.Decode(&newPerson)
 fmt.Println(newPerson.String())
 }

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

and the corrsponding server is

/* JSON EchoServer
 */
package main

import (
 "fmt"
 "net"
 "os"
 "encoding/json"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string

Data serialisation

Version 1.0 Page 37©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

func main() {

 service := "0.0.0.0:1200"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 encoder := json.NewEncoder(conn)
 decoder := json.NewDecoder(conn)

 for n := 0; n < 10; n++ {
 var person Person
 decoder.Decode(&person)
 fmt.Println(person.String())
 encoder.Encode(person)
 }
 conn.Close() // we're finished
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

4.6 The gob package
Gob is a serialisat ion technique specific to Go. It is designed to encode Go data types specifically and does not at present have
support for or by any other languages. It supports all Go data types except for channels, funct ions and interfaces. It supports
integers of all types and sizes, strings and booleans, structs, arrays and slices. At present it has some problems with circular
structures such as rings, but that will improve over t ime.

Gob encodes type informat ion into its serialised forms. This is far more extensive than the type informat ion in say an X.509
serialisat ion, but far more efficient than the type informat ion contained in an XML document. Type informat ion is only included once
for each piece of data, but includes, for example, the names of struct fields.

This inclusion of type informat ion makes Gob marshalling and unmarshalling fairly robust to changes or differences between the
marshaller and unmarshaller. For example, a struct

 struct T {
 a int
 b int
}

can be marshalled and then unmarshalled into a different struct

 struct T {
 b int
 a int
}

where the order of fields has changed. It can also cope with missing fields (the values are ignored) or extra fields (the fields are left
unchanged). It can cope with pointer types, so that the above struct could be unmarshalled into

 struct T {
 *a int
 **b int
}

To some extent it can cope with type coercions so that an int field can be broadened into an int64, but not with incompatable
types such as int and uint.

To use Gob to marshall a data value, you first need to create an Encoder. This takes a Writer as parameter and marshalling will be

Data serialisation

Version 1.0 Page 38©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

done to this write stream. The encoder has a method Encode which marshalls the value to the stream. This method can be called
mult iple t imes on mult iple pieces of data. Type informat ion for each data type is only writ ten once, though.

You use a Decoder to unmarshall the serialised data stream. This takes a Reader and each read returns an unmarshalled data
value.

A program to store gob serialised data into a file is

/* SaveGob
 */

package main

import (
 "fmt"
 "os"
 "encoding/gob"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func main() {
 person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
 Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

 saveGob("person.gob", person)
}

func saveGob(fileName string, key interface{}) {
 outFile, err := os.Create(fileName)
 checkError(err)
 encoder := gob.NewEncoder(outFile)
 err = encoder.Encode(key)
 checkError(err)
 outFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

and to load it back into memory is

/* LoadGob
 */

package main

import (
 "fmt"
 "os"
 "encoding/gob"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

Data serialisation

Version 1.0 Page 39©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}
func main() {
 var person Person
 loadGob("person.gob", &person)

 fmt.Println("Person", person.String())
}

func loadGob(fileName string, key interface{}) {
 inFile, err := os.Open(fileName)
 checkError(err)
 decoder := gob.NewDecoder(inFile)
 err = decoder.Decode(key)
 checkError(err)
 inFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

A client and server

A client to send a person's data and read it back ten t imes is

/* Gob EchoClient
 */
package main

import (
 "fmt"
 "net"
 "os"
 "encoding/gob"
 "bytes"
 "io"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

func main() {
 person := Person{
 Name: Name{Family: "Newmarch", Personal: "Jan"},
 Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
 Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := net.Dial("tcp", service)
 checkError(err)

 encoder := gob.NewEncoder(conn)
 decoder := gob.NewDecoder(conn)

Data serialisation

Version 1.0 Page 40©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 for n := 0; n < 10; n++ {
 encoder.Encode(person)
 var newPerson Person
 decoder.Decode(&newPerson)
 fmt.Println(newPerson.String())
 }

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

func readFully(conn net.Conn) ([]byte, error) {
 defer conn.Close()

 result := bytes.NewBuffer(nil)
 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 result.Write(buf[0:n])
 if err != nil {
 if err == io.EOF {
 break
 }
 return nil, err
 }
 }
 return result.Bytes(), nil
}

and the corrsponding server is

/* Gob EchoServer
 */
package main

import (
 "fmt"
 "net"
 "os"
 "encoding/gob"
)

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

type Email struct {
 Kind string
 Address string
}

func (p Person) String() string {
 s := p.Name.Personal + " " + p.Name.Family
 for _, v := range p.Email {
 s += "\n" + v.Kind + ": " + v.Address
 }
 return s
}

func main() {

 service := "0.0.0.0:1200"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 encoder := gob.NewEncoder(conn)
 decoder := gob.NewDecoder(conn)

 for n := 0; n < 10; n++ {

Data serialisation

Version 1.0 Page 41©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 for n := 0; n < 10; n++ {
 var person Person
 decoder.Decode(&person)
 fmt.Println(person.String())
 encoder.Encode(person)
 }
 conn.Close() // we're finished
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

4.7 Encoding binary data as strings
Once upon a t ime, t ransmtt ing 8-bit data was problemat ic. It was often transmit ted over noisy serial lines and could easily become
corrupted. 7-bit data on the other hand could be transmit ted more reliably because the 8th bit could be used as check digit . For
example, in an "even parity" scheme, the check digit would be set to one or zero to make an even number of 1's in a byte. This
allows detect ion of errors of a single bit in each byte.

ASCII is a 7-bit character set . A number of schemes have been developed that are more sophist icated than simple parity
checking, but which involve t ranslat ing 8-bit binary data into 7-bit ASCII format. Essent ially, the 8-bit data is stretched out in some
way over the 7-bit bytes.

Binary data t ransmit ted in HTTP responses and requests is often translated into an ASCII form. This makes it easy to inspect the
HTTP messages with a simple text reader without worrying about what strange 8-bit bytes might do to your display!

One common format is Base64. Go has support for many binary-to-text formats, including base64.

There are two principal funct ions to use for Base64 encoding and decoding:

func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser
func NewDecoder(enc *Encoding, r io.Reader) io.Reader

A simple program just to encode and decode a set of eight binary digits is

/**
 * Base64
 */

package main

import (
 "bytes"
 "encoding/base64"
 "fmt"
)

func main() {

 eightBitData := []byte{1, 2, 3, 4, 5, 6, 7, 8}
 bb := &bytes.Buffer{}
 encoder := base64.NewEncoder(base64.StdEncoding, bb)
 encoder.Write(eightBitData)
 encoder.Close()
 fmt.Println(bb)

 dbuf := make([]byte, 12)
 decoder := base64.NewDecoder(base64.StdEncoding, bb)
 decoder.Read(dbuf)
 for _, ch := range dbuf {
 fmt.Print(ch)
 }
}

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Data serialisation

Version 1.0 Page 42©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 5 Application-Level Protocols
A client and a server exchange messages consist ing of message types and message
data. This requires design of a suitable message exchange protocol. This chapter
looks at some of the issues involved in this, and gives a complete example of a
simple client-server applicat ion.

skip table of contents

Show table of contents

5.1 Introduction
A client and server need to exchange informat ion via messages. TCP and UDP provide the transport mechanisms to do this. The
two processes also need to have a protocol in place so that message exchange can take place meaningfully. A protocol defines
what type of conversat ion can take place between two components of a distributed applicat ion, by specifying messages, data
types, encoding formats and so on.

5.2 Protocol Design
There are many possibilit ies and issues to be decided on when designing a protocol. Some of the issues include:

Is it to be broadcast or point to point?
Broadcast must be UDP, local mult icast or the more experimental MBONE. Point to point could be either TCP or UDP.
Is it to be stateful vs stateless?
Is it reasonable for one side to maintain state about the other side? It is often simpler to do so, but what happens if
something crashes?
Is the transport protocol reliable or unreliable?
Reliable is often slower, but then you don't have to worry so much about lost messages.
Are replies needed?
If a reply is needed, how do you handle a lost reply? Timeouts may be used.
What data format do you want?
Two common possibilit ies are MIME or byte encoding.
Is your communicat ion bursty or steady stream?
Ethernet and the Internet are best at bursty t raffic. Steady stream is needed for video streams and part icularly for voice. If
required, how do you manage Quality of Service (QoS)?
Are there mult iple streams with synchronisat ion required?
Does the data need to be synchronised with anything? e.g. video and voice.
Are you building a standalone applicat ion or a library to be used by others?
The standards of documentat ion required might vary.

5.3 Version control
A protocol used in a client /server system will evolve over t ime, changing as the system expands. This raises compatability
problems: a version 2 client will make requests that a version 1 server doesn't understand, whereas a version 2 server will send
replies that a version 1 client won't understand.

Each side should ideally be able to understand messages for its own version and all earlier ones. It should be able to write replies to
old style queries in old style response format.

The ability to talk earlier version formats may be lost if the protocol changes too much. In this case, you need to be able to ensure
that no copies of the earlier version st ill exist - and that is generally imposible.

Part of the protocol setup should involve version informat ion.

Application-Level Protocols

Version 1.0 Page 43©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

The Web

The Web is a good example of a system that is messed up by different versions. The protocol has been through three versions,
and most servers/browsers now use the latest version. The version is given in each request

request version
GET / pre 1.0
GET / HTTP/1.0 HTTP 1.0
GET / HTTP/1.1 HTTP 1.1

But the content of the messages has been through a large number of versions:

HTML versions 1-4 (all different), with version 5 on the horizon;
non-standard tags recognised by different browsers;
non-HTML documents often require content handlers that may or may not be present - does your browser have a handler for
Flash?
inconsistent t reatment of document content (e.g. some stylesheet content will crash some browsers)
Different support for JavaScript (and different versions of JavaScript)
Different runt ime engines for Java
Many pages do not conform to any HTML versions (e.g. with syntax errors)

5.4 Message Format
In the last chapter we discussed some possibilit ies for represent ing data to be sent across the wire. Now we look one level up, to
the messages which may contain such data.

The client and server will exchange messages with different meanings. e.g.
Login request,
get record request,
login reply,
record data reply.

The client will prepare a request which must be understood by the server.
The server will prepare a reply which must be understood by the client .

Commonly, the first part of the message will be a message type.

Client to server

 LOGIN name passwd
 GET cpe4001 grade

Server to client

 LOGIN succeeded
 GRADE cpe4001 D

The message types can be strings or integers. e.g. HTTP uses integers such as 404 to mean "not found" (although these integers
are writ ten as strings). The messages from client to server and vice versa are disjoint : "LOGIN" from client to server is different to
"LOGIN" from server to client .

5.5 Data Format
There are two main format choices for messages: byte encoded or character encoded.

Byte format

In the byte format

the first part of the message is typically a byte to dist inguish between message types.
The message handler would examine this first byte to dist inguish message type and then perform a switch to select the
appropriate handler for that type.
Further bytes in the message would contain message content according to a pre-defined format (as discussed in the previous
chapter).

The advantages are compactness and hence speed. The disadvantages are caused by the opaqueness of the data: it may be
harder to spot errors, harder to debug, require special purpose decoding funct ions. There are many examples of byte-encoded
formats, including major protocols such as DNS and NFS , upto recent ones such as Skype. Of course, if your protocol is not
publicly specified, then a byte format can also make it harder for others to reverse-engineer it !

Pseudocode for a byte-format server is

 handleClient(conn) {
 while (true) {

Application-Level Protocols

Version 1.0 Page 44©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 byte b = conn.readByte()
 switch (b) {
 case MSG_1: ...
 case MSG_2: ...
 ...
 }
 }
 }

Go has basic support for managing byte streams. The interface Conn has methods

(c Conn) Read(b []byte) (n int, err os.Error)
(c Conn) Write(b []byte) (n int, err os.Error)

and these methods are implemented by TCPConn and UDPConn.

Character Format

In this mode, everything is sent as characters if possible. For example, an integer 234 would be sent as, say, the three characters
'2', '3' and '4' instead of the one byte 234. Data that is inherent ly binary may be base64 encoded to change it into a 7-bit format
and then sent as ASCII characters, as discussed in the previous chapter.

In character format,

A message is a sequence of one or more lines
The start of the first line of the message is typically a word that represents the message type.
String handling funct ions may be used to decode the message type and data.
The rest of the first line and successive lines contain the data.
Line-oriented funct ions and line-oriented convent ions are used to manage this.

Pseudocode is

handleClient() {
 line = conn.readLine()
 if (line.startsWith(...) {
 ...
 } else if (line.startsWith(...) {
 ...
 }
}

Character formats are easier to setup and easier to debug. For example, you can use telnet to connect to a server on any port ,
and send client requests to that server. It isn't so easy the other way, but you can use tools like tcpdump to snoop on TCP traffic
and see immediately what clients are sending to servers.

There is not the same level of support in Go for managing character streams. There are significant issues with character sets and
character encodings, and we will explore these issues in a later chapter.

If we just pretend everything is ASCII, like it was once upon a t ime, then character formats are quite straightforward to deal with.
The principal complicat ion at this level is the varying status of "newline" across different operat ing systems. Unix uses the single
character '\n'. Windows and others (more correct ly) use the pair "\r\n". On the internet, the pair "\r\n" is most common - Unix
systems just need to take care that they don't assume '\n'.

5.6 Simple Example
This example deals with a directory browsing protocol - basically a stripped down version of FTP, but without even the file t ransfer
part . We only consider list ing a directory name, list ing the contents of a directory and changing the current directory - all on the
server side, of course. This is a complete worked example of creat ing all components of a client-server applicat ion. It is a simple
program which includes messages in both direct ions, as well as design of messaging protocol.

Look at a simple non-client-server program that allows you to list files in a directory and change and print the directory on the
server. We omit copying files, as that adds to the length of the program without really introducing important concepts. For
simplicity, all filenames will be assumed to be in 7-bit ASCII. If we just looked at a standalone applicat ion first , then the pseudo-
code would be

read line from user
while not eof do
 if line == dir
 list directory
 else

 if line == cd <dir>
 change directory
 else

 if line == pwd
 print directory
 else

Application-Level Protocols

Version 1.0 Page 45©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 if line == quit
 quit
 else
 complain

 read line from user

A non-distributed applicat ion would just link the UI and file access code

In a client-server situat ion, the client would be at the user end, talking to a server somewhere else. Aspects of this program belong
solely at the presentat ion end, such as gett ing the commands from the user. Some are messages from the client to the server,
some are solely at the server end.

For a simple directory browser, assume that all directories and files are at the server end, and we are only t ransferring file
informat ion from the server to the client . The client side (including presentat ion aspects) will become

read line from user
while not eof do
 if line == dir
 list directory
 else

 if line == cd <dir>
 change directory
 else

 if line == pwd
 print directory
 else

 if line == quit
 quit
 else
 complain

 read line from user

where the italicised lines involve communicat ion with the server.

Alternative presentation aspects

A GUI program would allow directory contents to be displayed as lists, for files to be selected and act ions such as change directory
to be be performed on them. The client would be controlled by act ions associated with various events that take place in graphical
objects. The pseudo-code might look like

change dir button:
 if there is a selected file
 change directory
 if successful
 update directory label
 list directory
 update directory list

The funct ions called from the different UI's should be the same - changing the presentat ion should not change the networking code

Protocol - informal

Application-Level Protocols

Version 1.0 Page 46©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

client request server response
dir send list of files

cd <dir>
change dir
send error if failed
send ok if succeed

pwd send current directory
quit quit

Text protocol

This is a simple protocol. The most complicated data structure that we need to send is an array of strings for a directory list ing. In
this case we don't need the heavy duty serialisat ion techniques of the last chapter. In this case we can use a simple text format.

But even if we make the protocol simple, we st ill have to specify it in detail. We choose the following message format:

All messages are in 7-bit US-ASCII
The messages are case-sensit ive
Each message consists of a sequence of lines
The first word on the first line of each message describes the message type. All other words are message data
All words are separated by exact ly one space character
Each line is terminated by CR-LF

Some of the choices made above are weaker in real-life protocols. For example

Message types could be case-insensit ive. This just requires mapping message type strings down to lower-case before
decoding
An arbit rary amount of white space could be left between words. This just adds a lit t le more complicat ion, compressing white
space
Cont inuat ion characters such as '\' can be used to break long lines over several lines. This starts to make processing more
complex
Just a '\n' could be used as line terminator, as well as '\r\n'. This makes recognising end of line a bit harder

All of these variat ions exist in real protocols. Cumulat ively, they make the string processing just more complex than in our case.

client request server response

send "DIR" send list of files, one per line
terminated by a blank line

send "CD <dir>"
change dir
send "ERROR" if failed
send "OK"

send "PWD" send current working directory

Server code

/* FTP Server
 */
package main

import (
 "fmt"
 "net"
 "os"
)

const (
 DIR = "DIR"
 CD = "CD"
 PWD = "PWD"
)

func main() {

 service := "0.0.0.0:1202"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 go handleClient(conn)
 }
}

Application-Level Protocols

Version 1.0 Page 47©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

func handleClient(conn net.Conn) {
 defer conn.Close()

 var buf [512]byte
 for {
 n, err := conn.Read(buf[0:])
 if err != nil {
 conn.Close()
 return
 }

 s := string(buf[0:n])
 // decode request
 if s[0:2] == CD {
 chdir(conn, s[3:])
 } else if s[0:3] == DIR {
 dirList(conn)
 } else if s[0:3] == PWD {
 pwd(conn)
 }

 }
}

func chdir(conn net.Conn, s string) {
 if os.Chdir(s) == nil {
 conn.Write([]byte("OK"))
 } else {
 conn.Write([]byte("ERROR"))
 }
}

func pwd(conn net.Conn) {
 s, err := os.Getwd()
 if err != nil {
 conn.Write([]byte(""))
 return
 }
 conn.Write([]byte(s))
}

func dirList(conn net.Conn) {
 defer conn.Write([]byte("\r\n"))

 dir, err := os.Open(".")
 if err != nil {
 return
 }

 names, err := dir.Readdirnames(-1)
 if err != nil {
 return
 }
 for _, nm := range names {
 conn.Write([]byte(nm + "\r\n"))
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Client code

/* FTPClient
 */
package main

import (
 "fmt"
 "net"
 "os"
 "bufio"
 "strings"
 "bytes"
)

// strings used by the user interface
const (
 uiDir = "dir"
 uiCd = "cd"
 uiPwd = "pwd"
 uiQuit = "quit"
)

Application-Level Protocols

Version 1.0 Page 48©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

// strings used across the network
const (
 DIR = "DIR"
 CD = "CD"
 PWD = "PWD"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host")
 os.Exit(1)
 }

 host := os.Args[1]

 conn, err := net.Dial("tcp", host+":1202")
 checkError(err)

 reader := bufio.NewReader(os.Stdin)
 for {
 line, err := reader.ReadString('\n')
 // lose trailing whitespace
 line = strings.TrimRight(line, " \t\r\n")
 if err != nil {
 break
 }

 // split into command + arg
 strs := strings.SplitN(line, " ", 2)
 // decode user request
 switch strs[0] {
 case uiDir:
 dirRequest(conn)
 case uiCd:
 if len(strs) != 2 {
 fmt.Println("cd <dir>")
 continue
 }
 fmt.Println("CD \"", strs[1], "\"")
 cdRequest(conn, strs[1])
 case uiPwd:
 pwdRequest(conn)
 case uiQuit:
 conn.Close()
 os.Exit(0)
 default:
 fmt.Println("Unknown command")
 }
 }
}

func dirRequest(conn net.Conn) {
 conn.Write([]byte(DIR + " "))

 var buf [512]byte
 result := bytes.NewBuffer(nil)
 for {
 // read till we hit a blank line
 n, _ := conn.Read(buf[0:])
 result.Write(buf[0:n])
 length := result.Len()
 contents := result.Bytes()
 if string(contents[length-4:]) == "\r\n\r\n" {
 fmt.Println(string(contents[0 : length-4]))
 return
 }
 }
}

func cdRequest(conn net.Conn, dir string) {
 conn.Write([]byte(CD + " " + dir))
 var response [512]byte
 n, _ := conn.Read(response[0:])
 s := string(response[0:n])
 if s != "OK" {
 fmt.Println("Failed to change dir")
 }
}

func pwdRequest(conn net.Conn) {
 conn.Write([]byte(PWD))
 var response [512]byte
 n, _ := conn.Read(response[0:])
 s := string(response[0:n])
 fmt.Println("Current dir \"" + s + "\"")
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())

Application-Level Protocols

Version 1.0 Page 49©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 os.Exit(1)
 }
}

5.7 State
Applicat ions often make use of state informat ion to simplify what is going on. For example

Keeping file pointers to current file locat ion
Keeping current mouse posit ion
Keeping current customer value.

In a distributed system, such state informat ion may be kept in the client , in the server, or in both.

The important point is to whether one process is keeping state informat ion about itself or about the other process. One process
may keep as much state informat ion about itself as it wants, without causing any problems. If it needs to keep informat ion about
the state of the other process, then problems arise: the process' actual knowledge of the state of the other may become incorrect .
This can be caused by loss of messages (in UDP), by failure to update, or by s/w errors.

An example is reading a file. In single process applicat ions the file handling code runs as part of the applicat ion. It maintains a table
of open files and the locat ion in each of them. Each t ime a read or write is done this file locat ion is updated. In the DCE file system,
the file server keeps track of a client 's open files, and where the client 's file pointer is. If a message could get lost (but DCE uses
TCP) these could get out of synch. If the client crashes, the server must eventually t imeout on the client 's file tables and remove
them.

In NFS, the server does not maintain this state. The client does. Each file access from the client that reaches the server must
open the file at the appropriate point , as given by the client , to perform the act ion.

If the server maintains informat ion about the client , then it must be able to recover if the client crashes. If informat ion is not saved,
then on each transact ion the client must t ransfer sufficient informat ion for the server to funct ion.

If the connect ion is unreliable, then addit ional handling must be in place to ensure that the two do not get out of synch. The classic
example is of bank account t ransact ions where the messages get lost . A t ransact ion server may need to be part of the client-
server system.

Application State Transition Diagram

A state t ransit ion diagram keeps track of the current state of an applicat ion and the changes that move it to new states.

Example: file t ransfer with login:

Application-Level Protocols

Version 1.0 Page 50©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This can also be expressed as a table

Current state Transit ion Next state

login
login failed login
login succeeded file t ransfer

file t ransfer

dir file t ransfer
get file t ransfer
logout login
quit -

Client state transition diagrams

The client state diagram must follow the applicat ion diagram. It has more detail though: it writes and then reads

Current state Write Read Next state

login LOGIN name password
FAILED login
SUCCEEDED file t ransfer

file t ransfer

CD dir
SUCCEEDED file t ransfer
FAILED file t ransfer

GET filename
#lines + contents file t ransfer
ERROR file t ransfer

DIR
#files + filenames file t ransfer
ERROR file t ransfer

quit none quit
logout none login

Server state transition diagrams

The server state diagram must also follow the applicat ion diagram. It also has more detail: it reads and then writes

Current state Read Write Next state

login LOGIN name password
FAILED login
SUCCEEDED file t ransfer

file t ransfer

CD dir
SUCCEEDED file t ransfer
FAILED file t ransfer

GET filename
#lines + contents file t ransfer
ERROR file t ransfer

DIR
#files + filenames file t ransfer
ERROR file t ransfer

quit none quit
logout none login

Server pseudocode

state = login
while true
 read line
 switch (state)
 case login:

Application-Level Protocols

Version 1.0 Page 51©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 get NAME from line
 get PASSWORD from line
 if NAME and PASSWORD verified
 write SUCCEEDED
 state = file_transfer
 else
 write FAILED
 state = login
 case file_transfer:
 if line.startsWith CD
 get DIR from line
 if chdir DIR okay
 write SUCCEEDED
 state = file_transfer
 else
 write FAILED
 state = file_transfer
 ...

We don't give the actual code for this server or client since it is pret ty straightforward.

5.8 Summary
Building any applicat ion requires design decisions before you start writ ing code. For distributed applicat ions you have a wider range
of decisions to make compared to standalone systems. This chapter has considered some of those aspects and demonstrated
what the resultant code might look like.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Application-Level Protocols

Version 1.0 Page 52©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 6 Managing character sets and encodings
There are many languages in use throughout the world, and they use many different
character sets. There are also many ways of encoding character sets into binary
formats of bytes. This chapter considers some of the issues in this.

skip table of contents

Show table of contents

6.1 Introduction
Once upon a t ime there was EBCDIC and ASCII... Actually, it was never that simple and has just become more complex over t ime.
There is light on the horizon, but some est imates are that it may be 50 years before we all live in the daylight on this!

Early computers were developed in the english-speaking countries of the US, the UK and Australia. As a result of this,
assumptions were made about the language and character sets in use. Basically, the Lat in alphabet was used, plus numerals,
punctuat ion characters and a few others. These were then encoded into bytes using ASCII or EBCDIC.

The character-handling mechanisms were based on this: text files and I/O consisted of a sequence of bytes, with each byte
represent ing a single character. String comparison could be done by matching corresponding bytes; conversions from upper to
lower case could be done by mapping individual bytes, and so on.

There are about 6,000 living languages in the world (3,000 of them in Papua New Guinea!). A few languages use the "english"
characters but most do not. The Romanic languages such as French have adornments on various characters, so that you can write
"j'ai arrêté", with two different ly accented vowels. Similarly, the Germanic languages have extra characters such as 'ß'. Even UK
English has characters not in the standard ASCII set : the pound symbol '£' and recent ly the euro '€'

But the world is not restricted to variat ions on the Lat in alphabet. Thailand has its own alphabet, with words looking like this:
"ภาษาไทย". There are many other alphabets, and Japan even has two, Hiragana and Katagana.

There are also the hierographic languages such as Chinese where you can write "百度一下，你就知道".

It would be nice from a technical viewpoint if the world just used ASCII. However, the t rend is in the opposite direct ion, with more
and more users demanding that software use the language that they are familiar with. If you build an applicat ion that can be run in
different countries then users will demand that it uses their own language. In a distributed system, different components of the
system may be used by users expect ing different languages and characters.

Internationalisation (i18n) is how you write your applicat ions so that they can handle the variety of languages and cultures.
Localisation (l10n) is the process of customising your internat ionalised applicat ion to a part icular cultural group.

i18n and l10n are big topics in themselves. For example, they cover issues such as colours: while white means "purity" in Western
cultures, it means "death" to the Chinese and "joy" to Egypt ians. In this chapter we just look at issues of character handling.

6.2 Definitions
It is important to be careful about exact ly what part of a text handling system you are talking about. Here is a set of definit ions that
have proven useful.

Character

A character is a "unit of informat ion that roughly corresponds to a grapheme (writ ten symbol) of a natural language, such as a
let ter, numeral, or punctuat ion mark" (Wikipedia). A character is "the smallest component of writ ten language that has a semant ic
value" (Unicode). This includes let ters such as 'a' and 'À' (or let ters in any other language), digits such as '2', punctuat ion characters
such as ',' and various symbols such as the English pound currency symbol '£'.

A character is some sort of abstract ion of any actual symbol: the character 'a' is to any writ ten 'a' as a Platonic circle is to any
actual circle. The concept of character also includes control characters, which do not correspond to natural language symbols but
to other bits of informat ion used to process texts of the language.

A character does not have any part icular appearance, although we use the appearance to help recognise the character. However,
even the appearance may have to be understood in a context : in mathematics, if you see the symbol π (pi) it is the character for
the rat io of circumference to radius of a circle, while if you are reading Greek text , it is the sixteenth let ter of the alphabet: "προσ"
is the greek word for "with" and has nothing to do with 3.14159...

Character repertoire/character set

A character repertoire is a set of dist inct characters, such as the Lat in alphabet. No part icular ordering is assumed. In English,
although we say that 'a' is earlier in the alphabet than 'z', we wouldn't say that 'a' is less than 'z'. The "phone book" ordering which
puts "McPhee" before "MacRea" shows that "alphabet ic ordering" isn't crit ical to the characters.

A repertoire specifies the names of the characters and often a sample of how the characters might look. e.g the let ter 'a' might
look like 'a', 'a' or 'a '. But it doesn't force them to look like that - they are just samples. The repertoire may make dist inct ions such

Managing character sets and encodings

Version 1.0 Page 53©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

as upper and lower case, so that 'a' and 'A' are different. But it may regard them as the same, just with different sample
appearances. (Just like some programming languages treat upper and lower as different - e.g. Go - but some don't e.g. Basic.). On
the other hand, a repertoire might contain different characters with the same sample appearance: the repertoire for a Greek
mathematician would have two different characters with appearance π. This is also called a noncoded character set .

Character code

A character code is a mapping from characters to integers. The mapping for a character set is also called a coded character set or
code set. The value of each character in this mapping is often called a code point . ASCII is a code set. The codepoint for 'a' is 97
and for 'A' is 65 (decimal).

The character code is st ill an abstract ion. It isn't yet what we will see in text files, or in TCP packets. However, it is gett ing close.
as it supplies the mapping from human oriented concepts into numerical ones.

Character encoding

To communicate or store a character you need to encode it in some way. To transmit a string, you need to encode all characters in
the string. There are many possible encodings for any code set.

For example, 7-bit ASCII code points can be encoded as themselves into 8-bit bytes (an octet). So ASCII 'A' (with codepoint 65)
is encoded as the 8-bit octet 01000001. However, a different encoding would be to use the top bit for parity checking e.g. with
odd parity ASCII 'A" would be the octet 11000001. Some protocols such as Sun's XDR use 32-bit word-length encoding. ASCII 'A'
would be encoded as 00000000 00000000 0000000 01000001.

The character encoding is where we funct ion at the programming level. Our programs deal with encoded characters. It obviously
makes a difference whether we are dealing with 8-bit characters with or without parity checking, or with 32-bit characters.

The encoding extends to strings of characters. A word-length even parity encoding of "ABC" might be 10000000 (parity bit in high
byte) 0100000011 (C) 01000010 (B) 01000001 (A in low byte). The comments about the importance of an encoding apply equally
strongly to strings, where the rules may be different.

Transport encoding

A character encoding will suffice for handling characters within a single applicat ion. However, once you start sending text between
applicat ions, then there is the further issue of how the bytes, shorts or words are put on the wire. An encoding can be based on
space- and hence bandwidth-saving techniques such as zip'ping the text . Or it could be reduced to a 7-bit format to allow a parity
checking bit , such as base64.

If we do know the character and transport encoding, then it is a matter of programming to manage characters and strings. If we
don't know the character or t ransport encoding then it is a matter of guesswork as to what to do with any part icular string. There is
no convent ion for files to signal the character encoding.

There is however a convent ion for signalling encoding in text t ransmit ted across the internet. It is simple: the header of a text
message contains informat ion about the encoding. For example, an HTTP header can contain lines such as

Content-Type: text/html; charset=ISO-8859-4
Content-Encoding: gzip

which says that the character set is ISO 8859-4 (corresponding to certain countries in Europe) with the default encoding, but then
gziped. The second part - content encoding - is what we are referring to as "t ransfer encoding" (IETF RFC 2130).

But how do you read this informat ion? Isn't it encoded? Don't we have a chicken and egg situat ion? Well, no. The convent ion is
that such informat ion is given in ASCII (to be precise, US ASCII) so that a program can read the headers and then adjust its
encoding for the rest of the document.

6.3 ASCII
ASCII has the repertoire of the English characters plus digits, punctuat ion and some control characters. The code points for ASCII
are given by the familiar table

 Oct Dec Hex Char Oct Dec Hex Char
 --
 000 0 00 NUL '\0' 100 64 40 @
 001 1 01 SOH 101 65 41 A
 002 2 02 STX 102 66 42 B
 003 3 03 ETX 103 67 43 C
 004 4 04 EOT 104 68 44 D
 005 5 05 ENQ 105 69 45 E
 006 6 06 ACK 106 70 46 F
 007 7 07 BEL '\a' 107 71 47 G
 010 8 08 BS '\b' 110 72 48 H
 011 9 09 HT '\t' 111 73 49 I
 012 10 0A LF '\n' 112 74 4A J
 013 11 0B VT '\v' 113 75 4B K
 014 12 0C FF '\f' 114 76 4C L
 015 13 0D CR '\r' 115 77 4D M
 016 14 0E SO 116 78 4E N
 017 15 0F SI 117 79 4F O

Managing character sets and encodings

Version 1.0 Page 54©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 020 16 10 DLE 120 80 50 P
 021 17 11 DC1 121 81 51 Q
 022 18 12 DC2 122 82 52 R
 023 19 13 DC3 123 83 53 S
 024 20 14 DC4 124 84 54 T
 025 21 15 NAK 125 85 55 U
 026 22 16 SYN 126 86 56 V
 027 23 17 ETB 127 87 57 W
 030 24 18 CAN 130 88 58 X
 031 25 19 EM 131 89 59 Y
 032 26 1A SUB 132 90 5A Z
 033 27 1B ESC 133 91 5B [
 034 28 1C FS 134 92 5C \ '\\'
 035 29 1D GS 135 93 5D]
 036 30 1E RS 136 94 5E ^
 037 31 1F US 137 95 5F _
 040 32 20 SPACE 140 96 60 `
 041 33 21 ! 141 97 61 a
 042 34 22 " 142 98 62 b
 043 35 23 # 143 99 63 c
 044 36 24 $ 144 100 64 d
 045 37 25 % 145 101 65 e
 046 38 26 & 146 102 66 f
 047 39 27 ' 147 103 67 g
 050 40 28 (150 104 68 h
 051 41 29) 151 105 69 i
 052 42 2A * 152 106 6A j
 053 43 2B + 153 107 6B k
 054 44 2C , 154 108 6C l
 055 45 2D - 155 109 6D m
 056 46 2E . 156 110 6E n
 057 47 2F / 157 111 6F o
 060 48 30 0 160 112 70 p
 061 49 31 1 161 113 71 q
 062 50 32 2 162 114 72 r
 063 51 33 3 163 115 73 s
 064 52 34 4 164 116 74 t
 065 53 35 5 165 117 75 u
 066 54 36 6 166 118 76 v
 067 55 37 7 167 119 77 w
 070 56 38 8 170 120 78 x
 071 57 39 9 171 121 79 y
 072 58 3A : 172 122 7A z
 073 59 3B ; 173 123 7B {
 074 60 3C < 174 124 7C |
 075 61 3D = 175 125 7D }
 076 62 3E > 176 126 7E ~
 077 63 3F ? 177 127 7F DEL

The most common encoding for ASCII uses the code points as 7-bit bytes, so that the encoding of 'A' for example is 65.

This set is actually US ASCII. Due to European desires for accented characters, some punctuat ion characters are omit ted to form
a minimal set , ISO 646, while there are "nat ional variants" with suitable European characters. The page
http://www.cs.tut .fi/~jkorpela/chars.html by Jukka Korpela has more informat ion for those interested. We shall not need these
variants though.

6.4 ISO 8859
Octets are now the standard size for bytes. This allows 128 extra code points for extensions to ASCII. A number of different code
sets to capture the repertoires of various subsets of European languages are the ISO 8859 series. ISO 8859-1 is also known as
Lat in-1 and covers many languages in western Europe, while others in this series cover the rest of Europe and even Hebrew,
Arabic and Thai. For example, ISO 8859-5 includes the Cyrillic characters of countries such as Russia, while ISO 8859-8 includes
the Hebrew alphabet.

The standard encoding for these character sets is to use their code point as an 8-bit value. For example, the character 'Á' in ISO
8859-1 has the code point 193 and is encoded as 193. All of the ISO 8859 series have the bottom 128 values ident ical to ASCII,
so that the ASCII characters are the same in all of these sets.

The HTML specificat ions used to recommend the ISO 8859-1 character set . HTML 3.2 was the last one to do so, and after that
HTML 4.0 recommended Unicode. In 2010 Google made an est imate that of the pages it sees, about 20% were st ill in ISO 8859
format while 20% were st ill in ASCII ("Unicode nearing 50% of the web" ht tp://googleblog.blogspot.com/2010/01/unicode-nearing-
50-of-web.html).

6.5 Unicode
Neither ASCII nor ISO 8859 cover the languages based on hieroglyphs. Chinese is est imated to have about 20,000 separate
characters, with about 5,000 in common use. These need more than a byte, and typically two bytes has been used. There have
been many of these two-byte character sets: Big5, EUC-TW, GB2312 and GBK/GBX for Chinese, JIS X 0208 for Japanese, and
so on. These encodings are generally not mutually compatable.

Unicode is an embracing standard character set intended to cover all major character sets in use. It includes European, Asian,
Indian and many more. It is now up to version 5.2 and has over 107,000 characters. The number of code points now exceeds

Managing character sets and encodings

Version 1.0 Page 55©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

http://www.cs.tut.fi/~jkorpela/chars.html

65,536, that is. more than 2^16. This has implicat ions for character encodings.

The first 256 code points correspond to ISO 8859-1, with US ASCII as the first 128. There is thus a backward compatability with
these major character sets, as the code points for ISO 8859-1 and ASCII are exact ly the same in Unicode. The same is not t rue
for other character sets: for example, while most of the Big5 characters are also in Unicode, the code points are not the same. The
page ht tp://moztw.org/docs/big5/table/unicode1.1-obsolete.txt contains one example of a (large) table mapping from Big5 to
Unicode.

To represent Unicode characters in a computer system, an encoding must be used. The encoding UCS is a two-byte encoding
using the code point values of the Unicode characters. However, since there are now too many characters in Unicode to fit them all
into 2 bytes, this encoding is obsolete and no longer used. Instead there are:

UTF-32 is a 4-byte encoding, but is not commonly used, and HTML 5 warns explicit ly against using it
UTF-16 encodes the most common characters into 2 bytes with a further 2 bytes for the "overflow", with ASCII and ISO
8859-1 having the usual values
UTF-8 uses between 1 and 4 bytes per character, with ASCII having the usual values (but not ISO 8859-1)
UTF-7 is used sometimes, but is not common

6.6 UTF-8, Go and runes
UTF-8 is the most commonly used encoding. Google est imates that 50% of the pages that it sees are encoded in UTF-8. The
ASCII set has the same encoding values in UTF-8, so a UTF-8 reader can read text consist ing of just ASCII characters as well as
text from the full Unicode set.

Go uses UTF-8 encoded characters in its strings. Each character is of type rune. This is a alias for int32 as a Unicode character
can be 1, 2 or 4 bytes in UTF-8 encoding. In terms of characters, a string is an array of runes.

A string is also an array of bytes, but you have to be careful: only for the ASCII subset is a byte equal to a character. All other
characters occupy two, three or four bytes. This means that the length of a string in characters (runes) is generally not the same as
the length of its byte array. They are only equal when the string consists of ASCII characters only.

The following program fragment illustrates this. If we take a UTF-8 string and test its length, you get the length of the underlying
byte array. But if you cast the string to an array of runes []rune then you get an array of the Unicode code points which is generally
the number of characters:

str := "百度一下，你就知道"

println("String length", len([]rune(str)))
println("Byte length", len(str))

prints

String length 9
Byte length 27

UTF-8 client and server

Possibly surprisingly, you need do nothing special to handle UTF-8 text in either the client or the server. The underlying data type
for a UTF-8 string in Go is a byte array, and as we saw just above, Go looks after encoding the string into 1, 2, 3 or 4 bytes as
needed. The length of the string is the length of the byte array, so you write any UTF-8 string by writ ing the byte array.

Similarly to read a string, you just read into a byte array and then cast the array to a string using string([]byte). If Go cannot
properly decode bytes into Unicode characters, then it gives the Unicode Replacement Character \uFFFD. The length of the
result ing byte array is the length of the legal port ion of the string.

So the clients and servers given in earlier chapters work perfect ly well with UTF-8 encoded text .

ASCII client and server

The ASCII characters have the same encoding in ASCII and in UTF-8. So ordinary UTF-8 character handling works fine for ASCII
characters. No special handling need to be done.

6.7 UTF-16 and Go
UTF-16 deals with arrays of short 16-bit unsigned integers. The package utf16 is designed to manage such arrays. To convert a
normal Go string, that is a UTF-8 string, into UTF-16, you first extract the code points by coercing it into a []rune and then use
utf16.Encode to produce an array of type uint16.

Similarly, to decode an array of unsigned short UTF-16 values into a Go string, you use utf16.Decode to convert it into code points
as type []rune and then to a string. The following code fragment illustrates this

str := "百度一下，你就知道"

runes := utf16.Encode([]rune(str))
ints := utf16.Decode(runes)

Managing character sets and encodings

Version 1.0 Page 56©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

str = string(ints)

These type conversions need to be applied by clients or servers as appropriate, to read and write 16-bit short integers, as shown
below.

Little-endian and big-endian

Unfortunately, there is a lit t le devil lurking behind UTF-16. It is basically an encoding of characters into 16-bit short integers. The
big quest ion is: for each short , how is it writ ten as two bytes? The top one first , or the top one second? Either way is fine, as long
as the receiver uses the same convent ion as the sender.

Unicode has addressed this with a special character known as the BOM (byte order marker). This is a zero-width non-print ing
character, so you never see it in text . But its value 0xfffe is chosen so that you can tell the byte-order:

In a big-endian system it is FF FE
In a lit t le-endian system it is FE FF

Text will somet imes place the BOM as the first character in the text . The reader can then examine these two bytes to determine
what endian-ness has been used.

UTF-16 client and server

Using the BOM convent ion, we can write a server that prepends a BOM and writes a string in UTF-16 as

/* UTF16 Server
 */
package main

import (
 "fmt"
 "net"
 "os"
 "unicode/utf16"
)

const BOM = '\ufffe'

func main() {

 service := "0.0.0.0:1210"
 tcpAddr, err := net.ResolveTCPAddr("tcp", service)
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }

 str := "j'ai arrêté"
 shorts := utf16.Encode([]rune(str))
 writeShorts(conn, shorts)

 conn.Close() // we're finished
 }
}

func writeShorts(conn net.Conn, shorts []uint16) {
 var bytes [2]byte

 // send the BOM as first two bytes
 bytes[0] = BOM >> 8
 bytes[1] = BOM & 255
 _, err := conn.Write(bytes[0:])
 if err != nil {
 return
 }

 for _, v := range shorts {
 bytes[0] = byte(v >> 8)
 bytes[1] = byte(v & 255)

 _, err = conn.Write(bytes[0:])
 if err != nil {
 return
 }
 }
}

func checkError(err error) {

Managing character sets and encodings

Version 1.0 Page 57©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

while a client that reads a byte stream, extracts and examines the BOM and then decodes the rest of the stream is

/* UTF16 Client
 */
package main

import (
 "fmt"
 "net"
 "os"
 "unicode/utf16"
)

const BOM = '\ufffe'

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := net.Dial("tcp", service)
 checkError(err)

 shorts := readShorts(conn)
 ints := utf16.Decode(shorts)
 str := string(ints)

 fmt.Println(str)

 os.Exit(0)
}

func readShorts(conn net.Conn) []uint16 {
 var buf [512]byte

 // read everything into the buffer
 n, err := conn.Read(buf[0:2])
 for true {
 m, err := conn.Read(buf[n:])
 if m == 0 || err != nil {
 break
 }
 n += m
 }

 checkError(err)
 var shorts []uint16
 shorts = make([]uint16, n/2)

 if buf[0] == 0xff && buf[1] == 0xfe {
 // big endian
 for i := 2; i < n; i += 2 {
 shorts[i/2] = uint16(buf[i])<<8 + uint16(buf[i+1])
 }
 } else if buf[1] == 0xff && buf[0] == 0xfe {
 // little endian
 for i := 2; i < n; i += 2 {
 shorts[i/2] = uint16(buf[i+1])<<8 + uint16(buf[i])
 }
 } else {
 // unknown byte order
 fmt.Println("Unknown order")
 }
 return shorts

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

6.8 Unicode gotcha's
This book is not about i18n issues. In part icular we don't want to delve into the arcane areas of Unicode. But you should know that
Unicode is not a simple encoding and there are many complexit ies. For example, some earlier character sets used non-spacing
characters, part icularly for accents. This was brought into Unicode, so you can produce accented characters in two ways: as a

Managing character sets and encodings

Version 1.0 Page 58©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

single Unicode character, or as a pair of non-spacing accent plus non-accented character. For example, U+04D6 CYRILLIC
CAPITAL LETTER IE WITH BREVE is a single character. It is equivalent to U+0415 CYRILLIC CAPITAL LETTER IE combined
with the breve accent U+0306 COMBINING BREVE. This makes string comparison difficult on occassions. The Go specificat ion
does not at present address such issues.

6.9 ISO 8859 and Go
The ISO 8859 series are 8-bit character sets for different parts of Europe and some other areas. They all have the ASCII set
common in the low part , but differ in the top part . According to Google, ISO 8859 codes account for about 20% of the web pages
it sees.

The first code, ISO 8859-1 or Lat in-1, has the first 256 characters in common with Unicode. The encoded value of the Lat in-1
characters is the same in UTF-16 and in the default ISO 8859-1 encoding. But this doesn't really help much, as UTF-16 is a 16-bit
encoding and ISO 8859-1 is an 8-bit encoding. UTF-8 is a 8-bit encoding, but it uses the top bit to signal extra bytes, so only the
ASCII subset overlaps for UTF-8 and ISO 8859-1. So UTF-8 doesn't help much either.

But the ISO 8859 series don't have any complex issues. To each character in each set corresponds a unique Unicode character.
For example, in ISO 8859-2, the character "lat in capital let ter I with ogonek" has ISO 8859-2 code point 0xc7 (in hexadecimal) and
corresponding Unicode code point of U+012E. Transforming either way between an ISO 8859 set and the corresponding Unicode
characters is essent ially just a table lookup.

The table from ISO 8859 code points to Unicode code points could be done as an array of 256 integers. But many of these will
have the same value as the index. So we just use a map of the different ones, and those not in the map take the index value.

For ISO 8859-2 a port ion of the map is

var unicodeToISOMap = map[int] uint8 {
 0x12e: 0xc7,
 0x10c: 0xc8,
 0x118: 0xca,
 // plus more
}

and a funct ion to convert UTF-8 strings to an array of ISO 8859-2 bytes is

/* Turn a UTF-8 string into an ISO 8859 encoded byte array
*/
func unicodeStrToISO(str string) []byte {
 // get the unicode code points
 codePoints := []int(str)

 // create a byte array of the same length
 bytes := make([]byte, len(codePoints))

 for n, v := range(codePoints) {
 // see if the point is in the exception map
 iso, ok := unicodeToISOMap[v]
 if !ok {
 // just use the value
 iso = uint8(v)
 }
 bytes[n] = iso
 }
 return bytes
}

In a similar way you cacn change an array of ISO 8859-2 bytes into a UTF-8 string:

var isoToUnicodeMap = map[uint8] int {
 0xc7: 0x12e,
 0xc8: 0x10c,
 0xca: 0x118,
 // and more
}

func isoBytesToUnicode(bytes []byte) string {
 codePoints := make([]int, len(bytes))
 for n, v := range(bytes) {
 unicode, ok :=isoToUnicodeMap[v]
 if !ok {
 unicode = int(v)
 }
 codePoints[n] = unicode
 }
 return string(codePoints)
}

These funct ions can be used to read and write UTF-8 strings as ISO 8859-2 bytes. By changing the mapping table, you can cover
the other ISO 8859 codes. Lat in-1, or ISO 8859-1, is a special case - the except ion map is empty as the code points for Lat in-1
are the same in Unicode. You could also use the same technique for other character sets based on a table mapping, such as
Windows 1252.

Managing character sets and encodings

Version 1.0 Page 59©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

6.10 Other character sets and Go
There are very, very many character set encodings. According to Google, these generally only have a small use, which will hopefully
decrease even further in t ime. But if your software wants to capture all markets, then you may need to handle them.

In the simplest cases, a lookup table will suffice. But that doesn't always work. The character coding ISO 2022 minimised
character set sizes by using a finite state machine to swap code pages in and out. This was borrowed by some of the Japanese
encodings, and makes things very complex.

Go does not at present give any language or package support for these other character sets. So you either avoid their use, fail to
talk to applicat ions that do use them, or write lots of your own code!

6.11 Conclusion
There hasn't been much code in this chapter. Instead, there have been some of the concepts of a very complex area. It 's up to
you: if you want to assume everyone speaks US English then the world is simple. But if you want your applicat ions to be usable by
the rest of the world, then you need to pay at tent ion to these complexit ies.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Managing character sets and encodings

Version 1.0 Page 60©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 7 Security
skip table of contents

Show table of contents

7.1 Introduction
Although the internet was originally designed as a system to withstand atacks by host ile agents, it developed in a co-operat ive
environment of relat ively t rusted ent it ies. Alas, those days are long gone. Spam mail, denial of service at tacks, phishing at tempts
and so on are indicat ive that anyone using the internet does so at their own risk.

Applicat ions have to be built to work correct ly in host ile situat ions. "correct ly" no longer means just gett ing the funct ional aspects
of the program correct , but also means ensuring privacy and integrity of data t ransferred, access only to legit imate users and other
issues.

This of course makes your programs much more complex. There are difficult and subtle comput ing problems involved in making
applicat ions secure. Attempts to do it yourself (such as making up your own encrypt ion libraries) are usually doomed to failure.
Instead, you need to make use of libraries designed by security professionals

7.2 ISO security architecture
The ISO OSI (open systems interconnect) seven-layer model of distributed systems is well known and is repeated in this figure:

What is less well known is that ISO built a whole series of documents upon this architecture. For our purposes here, the most
important is the ISO Security Architecture model, ISO 7498-2.

Functions and levels

The principal funct ions required of a security system are

Authent icat ion - proof of ident ity
Data integrity - data is not tampered with
Confident iality - data is not exposed to others
Notarizat ion/signature
Access control
Assurance/availability

These are required at the following levels of the OSI stack:

Peer ent ity authent icat ion (3, 4, 7)
Data origin authent icat ion (3, 4, 7)
Access control service (3, 4, 7)
Connect ion confident iality (1, 2, 3, 4, 6, 7)
Connect ionless confident iality (1, 2, 3, 4, 6, 7)
Select ive field confident iality (6, 7)
Traffic flow confident iality (1, 3, 7)
Connect ion integrity with recovery (4, 7)
Connect ion integrity without recovery (4, 7)
Connect ion integrity select ive field (7)
Connect ionless integrity select ive field (7)
Non-repudiat ion at origin (7)
Non-repudiat ion of receipt (7)

Mechanisms

Security

Version 1.0 Page 61©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Peer ent ity authent icat ion
encrypt ion
digital signature
authent icat ion exchange

Data origin authent icat ion
encrypt ion
digital signature

Access control service
access control lists
passwords
capabilit ies lists
labels

Connect ion confident iality
ecrypt ion
rout ing control

Connect ionless confidelity
encrypt ion
rout ing control

Select ive field confidelity
encrypt ion

Traffic flow confidelity
encrypt ion
traffic padding
rout ing control

Connect ion integrity with recovery
encrypt ion
data integrity

Connect ion integrity without recovery
encrypt ion
data integrity

Connect ion integrity select ive field
encrypt ion
data integrity

Connect ionless integrity
encrypt ion
digital signature
data integrity

Connect ionless integrity select ive field
encrypt ion
digital signature
data integrity

Non-repudiat ion at origin
digital signature
data integrity
notarisat ion

Non-repudiat ion of receipt
digital signature
data integrity
notarisat ion

7.3 Data integrity
Ensuring data integrity means supplying a means of test ing that the data has not been tampered with. Usually this is done by
forming a simple number out of the bytes in the data. This process is called hashing and the result ing number is called a hash or
hash value.

A naive hashing algorithm is just to sum up all the bytes in the data. However, this st ill allows almost any amount of changing the
data around and st ill preserving the hash values. For example, an at tacker could just swap two bytes. This preserves the hash
value, but could end up with you owing someone $65,536 instead of $256.

Hashing algorithms used for security purposes have to be "strong", so that it is very difficult for an at tacker to find a different
sequence of bytes with the same hash value. This makes it hard to modify the data to the at tacker's purposes. Security
researchers are constant ly test ing hash algorithms to see if they can break them - that is, find a simple way of coming up with byte
sequences to match a hash value. They have devised a series of cryptographic hashing algorithms which are believed to be strong.

Go has support for several hashing algorithms, including MD4, MD5, RIPEMD-160, SHA1, SHA224, SHA256, SHA384 and
SHA512. They all follow the same pattern as far as the Go programmer is concerned: a funct ion New (or similar) in the appropriate
package returns a Hash object from the hash package.

A Hash has an io.Writer, and you write the data to be hashed to this writer. You can query the number of bytes in the hash value
by Size and the hash value by Sum.

A typical case is MD5 hashing. This uses the md5 package. The hash value is a 16 byte array. This is typically printed out in ASCII
form as four hexadecimal numbers, each made of 4 bytes. A simple program is

Security

Version 1.0 Page 62©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

/* MD5Hash
 */

package main

import (
 "crypto/md5"
 "fmt"
)

func main() {
 hash := md5.New()
 bytes := []byte("hello\n")
 hash.Write(bytes)
 hashValue := hash.Sum(nil)
 hashSize := hash.Size()
 for n := 0; n < hashSize; n += 4 {
 var val uint32
 val = uint32(hashValue[n])<<24 +
 uint32(hashValue[n+1])<<16 +
 uint32(hashValue[n+2])<<8 +
 uint32(hashValue[n+3])
 fmt.Printf("%x ", val)
 }
 fmt.Println()
}

which prints "b1946ac9 2492d234 7c6235b4 d2611184"

A variat ion on this is the HMAC (Keyed-Hash Message Authent icat ion Code) which adds a key to the hash algorithm. There is lit t le
change in using this. To use MD5 hashing along with a key, replace the call to New by

func NewMD5(key []byte) hash.Hash

7.4 Symmetric key encryption
There are two major mechanisms used for encrypt ing data. The first uses a single key that is the same for both encrypt ion and
decrypt ion. This key needs to be known to both the encrypt ing and the decrypt ing agents. How this key is t ransmit ted between
the agents is not discussed.

As with hashing, there are many encrypt ion algorithms. Many are now known to have weaknesses, and in general algorithms
become weaker over t ime as computers get faster. Go has support for several symmetric key algorithms such as Blowfish and
DES.

The algorithms are block algorithms. That is they work on blocks of data. If you data is not aligned to the block size, then you will
have to pad it with extra blanks at the end.

Each algorith is represented by a Cipher object . This is created by NewCipher in the appropriate package, and takes the symmetric
key as parameter.

Once you have a cipher, you can use it to encrypt and decrypt blocks of data. The blocks have to be 8-bit blocks for Blowfish. A
program to illustrate this is

/* Blowfish
 */

package main

import (
 "bytes"
 "code.google.com/p/go.crypto/blowfish"
 "fmt"
)

func main() {
 key := []byte("my key")
 cipher, err := blowfish.NewCipher(key)
 if err != nil {
 fmt.Println(err.Error())
 }
 src := []byte("hello\n\n\n")
 var enc [512]byte

 cipher.Encrypt(enc[0:], src)

 var decrypt [8]byte
 cipher.Decrypt(decrypt[0:], enc[0:])
 result := bytes.NewBuffer(nil)
 result.Write(decrypt[0:8])
 fmt.Println(string(result.Bytes()))
}

Security

Version 1.0 Page 63©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Blowfish is not in the Go 1 distribut ion. Instead it is on the ht tp://code.google.com/p/ site. You have to install it by running "go get"
in a directory where you have source that needs to use it .

7.5 Public key encryption
Public key encrypt ion and decrypt ion requires two keys: one to encrypt and a second one to decrypt. The encrypt ion key is usually
made public in some way so that anyone can encrypt messages to you. The decrypt ion key must stay private, otherwise everyon
would be able to decrypt those messages! Public key systems aer asymmetric, with different keys for different uses.

There are many public key encrypt ion systems supported by Go. A typical one is the RSA scheme.

A program generat ing RSA private and public keys is

/* GenRSAKeys
 */

package main

import (
 "crypto/rand"
 "crypto/rsa"
 "crypto/x509"
 "encoding/gob"
 "encoding/pem"
 "fmt"
 "os"
)

func main() {
 reader := rand.Reader
 bitSize := 512
 key, err := rsa.GenerateKey(reader, bitSize)
 checkError(err)

 fmt.Println("Private key primes", key.Primes[0].String(), key.Primes[1].String())
 fmt.Println("Private key exponent", key.D.String())

 publicKey := key.PublicKey
 fmt.Println("Public key modulus", publicKey.N.String())
 fmt.Println("Public key exponent", publicKey.E)

 saveGobKey("private.key", key)
 saveGobKey("public.key", publicKey)

 savePEMKey("private.pem", key)
}

func saveGobKey(fileName string, key interface{}) {
 outFile, err := os.Create(fileName)
 checkError(err)
 encoder := gob.NewEncoder(outFile)
 err = encoder.Encode(key)
 checkError(err)
 outFile.Close()
}

func savePEMKey(fileName string, key *rsa.PrivateKey) {

 outFile, err := os.Create(fileName)
 checkError(err)

 var privateKey = &pem.Block{Type: "RSA PRIVATE KEY",
 Bytes: x509.MarshalPKCS1PrivateKey(key)}

 pem.Encode(outFile, privateKey)

 outFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The program also saves the cert ificates using gob serialisat ion. They can be read back by this program:

/* LoadRSAKeys
 */

package main

import (
 "crypto/rsa"

Security

Version 1.0 Page 64©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 "encoding/gob"
 "fmt"
 "os"
)

func main() {
 var key rsa.PrivateKey
 loadKey("private.key", &key)

 fmt.Println("Private key primes", key.Primes[0].String(), key.Primes[1].String())
 fmt.Println("Private key exponent", key.D.String())

 var publicKey rsa.PublicKey
 loadKey("public.key", &publicKey)

 fmt.Println("Public key modulus", publicKey.N.String())
 fmt.Println("Public key exponent", publicKey.E)
}

func loadKey(fileName string, key interface{}) {
 inFile, err := os.Open(fileName)
 checkError(err)
 decoder := gob.NewDecoder(inFile)
 err = decoder.Decode(key)
 checkError(err)
 inFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

7.6 X.509 certificates
A Public Key Infrastructure (PKI) is a framework for a collect ion of public keys, along with addit ional informat ion such as owner
name and locat ion, and links between them giving some sort of approval mechanism.

The principal PKI in use today is based on X.509 cert ificates. For example, web browsers use them to verify the ident ity of web
sites.

An example program to generate a self-signed X.509 cert ificate for my web site and store it in a .cer file is

/* GenX509Cert
 */

package main

import (
 "crypto/rand"
 "crypto/rsa"
 "crypto/x509"
 "crypto/x509/pkix"
 "encoding/gob"
 "encoding/pem"
 "fmt"
 "math/big"
 "os"
 "time"
)

func main() {
 random := rand.Reader

 var key rsa.PrivateKey
 loadKey("private.key", &key)

 now := time.Now()
 then := now.Add(60 * 60 * 24 * 365 * 1000 * 1000 * 1000) // one year
 template := x509.Certificate{
 SerialNumber: big.NewInt(1),
 Subject: pkix.Name{
 CommonName: "jan.newmarch.name",
 Organization: []string{"Jan Newmarch"},
 },
 // NotBefore: time.Unix(now, 0).UTC(),
 // NotAfter: time.Unix(now+60*60*24*365, 0).UTC(),
 NotBefore: now,
 NotAfter: then,

 SubjectKeyId: []byte{1, 2, 3, 4},
 KeyUsage: x509.KeyUsageCertSign | x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,

 BasicConstraintsValid: true,
 IsCA: true,

Security

Version 1.0 Page 65©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 DNSNames: []string{"jan.newmarch.name", "localhost"},
 }
 derBytes, err := x509.CreateCertificate(random, &template,
 &template, &key.PublicKey, &key)
 checkError(err)

 certCerFile, err := os.Create("jan.newmarch.name.cer")
 checkError(err)
 certCerFile.Write(derBytes)
 certCerFile.Close()

 certPEMFile, err := os.Create("jan.newmarch.name.pem")
 checkError(err)
 pem.Encode(certPEMFile, &pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
 certPEMFile.Close()

 keyPEMFile, err := os.Create("private.pem")
 checkError(err)
 pem.Encode(keyPEMFile, &pem.Block{Type: "RSA PRIVATE KEY",
 Bytes: x509.MarshalPKCS1PrivateKey(&key)})
 keyPEMFile.Close()
}

func loadKey(fileName string, key interface{}) {
 inFile, err := os.Open(fileName)
 checkError(err)
 decoder := gob.NewDecoder(inFile)
 err = decoder.Decode(key)
 checkError(err)
 inFile.Close()
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

This can then be read back in by

/* GenX509Cert
 */

package main

import (
 "crypto/x509"
 "fmt"
 "os"
)

func main() {
 certCerFile, err := os.Open("jan.newmarch.name.cer")
 checkError(err)
 derBytes := make([]byte, 1000) // bigger than the file
 count, err := certCerFile.Read(derBytes)
 checkError(err)
 certCerFile.Close()

 // trim the bytes to actual length in call
 cert, err := x509.ParseCertificate(derBytes[0:count])
 checkError(err)

 fmt.Printf("Name %s\n", cert.Subject.CommonName)
 fmt.Printf("Not before %s\n", cert.NotBefore.String())
 fmt.Printf("Not after %s\n", cert.NotAfter.String())

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

7.7 TLS
Encrypt ion/decrypt ion schemes are of limited use if you have to do all the heavy lift ing yourself. The most popular mechanism on
the internet to give support for encrypted message passing is current ly TLS (Transport Layer Security) which was formerly SSL
(Secure Sockets Layer).

In TLS, a client and a server negot iate ident ity using X.509 cert ificates. One this is complete, a secret key is invented between
them, and all encrypt ion/decrypt ion is done using this key. The negot iat ion is relat ively slow, but once complete a faster private key
mechanism is used.

Security

Version 1.0 Page 66©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

A server is

/* TLSEchoServer
 */
package main

import (
 "crypto/rand"
 "crypto/tls"
 "fmt"
 "net"
 "os"
 "time"
)

func main() {

 cert, err := tls.LoadX509KeyPair("jan.newmarch.name.pem", "private.pem")
 checkError(err)
 config := tls.Config{Certificates: []tls.Certificate{cert}}

 now := time.Now()
 config.Time = func() time.Time { return now }
 config.Rand = rand.Reader

 service := "0.0.0.0:1200"

 listener, err := tls.Listen("tcp", service, &config)
 checkError(err)
 fmt.Println("Listening")
 for {
 conn, err := listener.Accept()
 if err != nil {
 fmt.Println(err.Error())
 continue
 }
 fmt.Println("Accepted")
 go handleClient(conn)
 }
}

func handleClient(conn net.Conn) {
 defer conn.Close()

 var buf [512]byte
 for {
 fmt.Println("Trying to read")
 n, err := conn.Read(buf[0:])
 if err != nil {
 fmt.Println(err)
 }
 _, err2 := conn.Write(buf[0:n])
 if err2 != nil {
 return
 }
 }
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The server works with the following client :

/* TLSEchoClient
 */
package main

import (
 "fmt"
 "os"
 "crypto/tls"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := tls.Dial("tcp", service, nil)
 checkError(err)

 for n := 0; n < 10; n++ {

Security

Version 1.0 Page 67©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 fmt.Println("Writing...")
 conn.Write([]byte("Hello " + string(n+48)))

 var buf [512]byte
 n, err := conn.Read(buf[0:])
 checkError(err)

 fmt.Println(string(buf[0:n]))
 }
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

7.8 Conclusion
Security is a huge area in itself, and in this chapter we have barely touched on it . However, the major concepts have been covered.
What has not been stressed is how much security needs to be built into the design phase: security as an afterthought is nearly
always a failure.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Security

Version 1.0 Page 68©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 8 HTTP
skip table of contents

Show table of contents

8.1 Introduction
The World Wide Web is a major distributed system, with millions of users. A site may become a Web host by running an HTTP
server. While Web clients are typically users with a browser, there are many other "user agents" such as web spiders, web
applicat ion clients and so on.

The Web is built on top of the HTTP (Hyper-Text Transport Protocol) which is layered on top of TCP. HTTP has been through
three publically available versions, but the latest - version 1.1 - is now the most commonly used.

In this chapter we give an overview of HTTP, followed by the Go APIs to manage HTTP connect ions.

8.2 Overview of HTTP

URLs and resources

URLs specify the locat ion of a resource. A resource is often a stat ic file, such as an HTML document, an image, or a sound file. But
increasingly, it may be a dynamically generated object , perhaps based on informat ion stored in a database.

When a user agent requests a resource, what is returned is not the resource itself, but some representation of that resource. For
example, if the resource is a stat ic file, then what is sent to the user agent is a copy of the file.

Mult iple URLs may point to the same resource, and an HTTP server will return appropriate representat ions of the resource for
each URL. For example, an company might make product informat ion available both internally and externally using different URLs
for the same product. The internal representat ion of the product might include informat ion such as internal contact officers for the
product, while the external representat ion might include the locat ion of stores selling the product.

This view of resources means that the HTTP protocol can be fairly simple and straightforward, while an HTTP server can be
arbit rarily complex. HTTP has to deliver requests from user agents to servers and return a byte stream, while a server might have
to do any amount of processing of the request.

HTTP characteristics

HTTP is a stateless, connect ionless, reliable protocol. In the simplest form, each request from a user agent is handled reliably and
then the connect ion is broken. Each request involves a separate TCP connect ion, so if many reources are required (such as images
embedded in an HTML page) then many TCP connect ions have to be set up and torn down in a short space of t ime.

Thera are many opt imisat ions in HTTP which add complexity to the simple structure, in order to create a more efficient and reliable
protocol.

Versions

There are 3 versions of HTTP

Version 0.9 - totally obsolete
Version 1.0 - almost obsolete
Version 1.1 - current

Each version must understand requests and responses of earlier versions.

HTTP 0.9

Request format

Request = Simple-Request

Simple-Request = "GET" SP Request-URI CRLF

Response format

A response is of the form

Response = Simple-Response

Simple-Response = [Entity-Body]

HTTP

Version 1.0 Page 69©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

HTTP 1.0

This version added much more informat ion to the requests and responses. Rather than "grow" the 0.9 format, it was just left
alongside the new version.

Request format

The format of requests from client to server is

Request = Simple-Request | Full-Request

Simple-Request = "GET" SP Request-URI CRLF

Full-Request = Request-Line
 *(General-Header
 | Request-Header
 | Entity-Header)
 CRLF
 [Entity-Body]

A Simple-Request is an HTTP/0.9 request and must be replied to by a Simple-Response.

A Request-Line has format

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

where

Method = "GET" | "HEAD" | POST |
 extension-method

e.g.

GET http://jan.newmarch.name/index.html HTTP/1.0

Response format

A response is of the form

Response = Simple-Response | Full-Response

Simple-Response = [Entity-Body]

Full-Response = Status-Line
 *(General-Header
 | Response-Header
 | Entity-Header)
 CRLF
 [Entity-Body]

The Status-Line gives informat ion about the fate of the request:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

e.g.

HTTP/1.0 200 OK

The codes are

Status-Code = "200" ; OK
 | "201" ; Created
 | "202" ; Accepted
 | "204" ; No Content
 | "301" ; Moved permanently
 | "302" ; Moved temporarily
 | "304" ; Not modified
 | "400" ; Bad request
 | "401" ; Unauthorised
 | "403" ; Forbidden
 | "404" ; Not found
 | "500" ; Internal server error
 | "501" ; Not implemented
 | "502" ; Bad gateway
 | "503" | Service unavailable
 | extension-code

The Ent ity-Header contains useful informat ion about the Ent ity-Body to follow

Entity-Header = Allow
 | Content-Encoding
 | Content-Length
 | Content-Type
 | Expires
 | Last-Modified
 | extension-header

HTTP

Version 1.0 Page 70©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

For example

HTTP/1.1 200 OK
Date: Fri, 29 Aug 2003 00:59:56 GMT
Server: Apache/2.0.40 (Unix)
Accept-Ranges: bytes
Content-Length: 1595
Connection: close
Content-Type: text/html; charset=ISO-8859-1

HTTP 1.1

HTTP 1.1 fixes many problems with HTTP 1.0, but is more complex because of it . This version is done by extending or refining the
opt ions available to HTTP 1.0. e.g.

there are more commands such as TRACE and CONNECT
you should use absolute URLs, part icularly for connect ing by proxies e.g

 GET http://www.w3.org/index.html HTTP/1.1

there are more at t ributes such as If-Modified-Since, also for use by proxies

The changes include

hostname ident ificat ion (allows virtual hosts)
content negot iat ion (mult iple languages)
persistent connect ions (reduces TCP overheads - this is very messy)
chunked transfers
byte ranges (request parts of documents)
proxy support

The 0.9 protocol took one page. The 1.0 protocol was described in about 20 pages. 1.1 takes 120 pages.

8.3 Simple user-agents
User agents such as browsers make requests and get responses. The response type is

type Response struct {
 Status string // e.g. "200 OK"
 StatusCode int // e.g. 200
 Proto string // e.g. "HTTP/1.0"
 ProtoMajor int // e.g. 1
 ProtoMinor int // e.g. 0

 RequestMethod string // e.g. "HEAD", "CONNECT", "GET", etc.

 Header map[string]string

 Body io.ReadCloser

 ContentLength int64

 TransferEncoding []string

 Close bool

 Trailer map[string]string
}

We shall examine this data structure through examples. The simplest request is from a user agent is "HEAD" which asks for
informat ion about a resource and its HTTP server. The funct ion

func Head(url string) (r *Response, err os.Error)

can be used to make this query.

The status of the response is in the response field Status, while the field Header is a map of the header fields in the HTTP
response. A program to make this request and display the results is

/* Head
 */

package main

import (
 "fmt"
 "net/http"
 "os"
)

HTTP

Version 1.0 Page 71©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 url := os.Args[1]

 response, err := http.Head(url)
 if err != nil {
 fmt.Println(err.Error())
 os.Exit(2)
 }

 fmt.Println(response.Status)
 for k, v := range response.Header {
 fmt.Println(k+":", v)
 }

 os.Exit(0)
}

When run against a resource as in Head http://www.golang.com/ it prints something like

200 OK
Content-Type: text/html; charset=utf-8
Date: Tue, 14 Sep 2010 05:34:29 GMT
Cache-Control: public, max-age=3600
Expires: Tue, 14 Sep 2010 06:34:29 GMT
Server: Google Frontend

Usually, we are want to retrieve a resource rather than just get informat ion about it . The "GET" request will do this, and this can be
done using

func Get(url string) (r *Response, finalURL string, err os.Error)

The content of the response is in the response field Body which is of type io.ReadCloser. We can print the content to the screen
with the following program

/* Get
 */

package main

import (
 "fmt"
 "net/http"
 "net/http/httputil"
 "os"
 "strings"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 url := os.Args[1]

 response, err := http.Get(url)
 if err != nil {
 fmt.Println(err.Error())
 os.Exit(2)
 }

 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 os.Exit(2)
 }

 b, _ := httputil.DumpResponse(response, false)
 fmt.Print(string(b))

 contentTypes := response.Header["Content-Type"]
 if !acceptableCharset(contentTypes) {
 fmt.Println("Cannot handle", contentTypes)
 os.Exit(4)
 }

 var buf [512]byte
 reader := response.Body
 for {
 n, err := reader.Read(buf[0:])
 if err != nil {
 os.Exit(0)
 }
 fmt.Print(string(buf[0:n]))

HTTP

Version 1.0 Page 72©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 }
 os.Exit(0)
}

func acceptableCharset(contentTypes []string) bool {
 // each type is like [text/html; charset=UTF-8]
 // we want the UTF-8 only
 for _, cType := range contentTypes {
 if strings.Index(cType, "UTF-8") != -1 {
 return true
 }
 }
 return false
}

Note that there are important character set issues of the type discussed in the previous chapter. The server will deliver the content
using some character set encoding, and possibly some transfer encoding. Usually this is a matter of negot iat ion between user
agent and server, but the simple Get command that we are using does not include the user agent component of the negot iat ion. So
the server can send whatever character encoding it wishes.

At the t ime of first writ ing, I was in China. When I t ried this program on www.google.com, Google's server t ried to be helpful by
guessing my locat ion and sending me the text in the Chinese character set Big5! How to tell the server what character encoding is
okay for me is discussed later.

8.4 Configuring HTTP requests
Go also supplies a lower-level interface for user agents to communicate with HTTP servers. As you might expect, not only does it
give you more control over the client requests, but requires you to spend more effort in building the requests. However, there is only
a small increase.

The data type used to build requests is the type Request. This is a complex type, and is given in the Go documentat ion as

type Request struct {
 Method string // GET, POST, PUT, etc.
 RawURL string // The raw URL given in the request.
 URL *URL // Parsed URL.
 Proto string // "HTTP/1.0"
 ProtoMajor int // 1
 ProtoMinor int // 0

 // A header maps request lines to their values.
 // If the header says
 //
 // accept-encoding: gzip, deflate
 // Accept-Language: en-us
 // Connection: keep-alive
 //
 // then
 //
 // Header = map[string]string{
 // "Accept-Encoding": "gzip, deflate",
 // "Accept-Language": "en-us",
 // "Connection": "keep-alive",
 // }
 //
 // HTTP defines that header names are case-insensitive.
 // The request parser implements this by canonicalizing the
 // name, making the first character and any characters
 // following a hyphen uppercase and the rest lowercase.
 Header map[string]string

 // The message body.
 Body io.ReadCloser

 // ContentLength records the length of the associated content.
 // The value -1 indicates that the length is unknown.
 // Values >= 0 indicate that the given number of bytes may be read from Body.
 ContentLength int64

 // TransferEncoding lists the transfer encodings from outermost to innermost.
 // An empty list denotes the "identity" encoding.
 TransferEncoding []string

 // Whether to close the connection after replying to this request.
 Close bool

 // The host on which the URL is sought.
 // Per RFC 2616, this is either the value of the Host: header
 // or the host name given in the URL itself.
 Host string

 // The referring URL, if sent in the request.
 //
 // Referer is misspelled as in the request itself,
 // a mistake from the earliest days of HTTP.

HTTP

Version 1.0 Page 73©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 // This value can also be fetched from the Header map
 // as Header["Referer"]; the benefit of making it
 // available as a structure field is that the compiler
 // can diagnose programs that use the alternate
 // (correct English) spelling req.Referrer but cannot
 // diagnose programs that use Header["Referrer"].
 Referer string

 // The User-Agent: header string, if sent in the request.
 UserAgent string

 // The parsed form. Only available after ParseForm is called.
 Form map[string][]string

 // Trailer maps trailer keys to values. Like for Header, if the
 // response has multiple trailer lines with the same key, they will be
 // concatenated, delimited by commas.
 Trailer map[string]string
}

There is a lot of informat ion that can be stored in a request. You do not need to fill in all fields, only those of interest . The simplest
way to create a request with default values is by for example

request, err := http.NewRequest("GET", url.String(), nil)

Once a request has been created, you can modify fields. For example, to specify that you only wish to receive UTF-8, add an
"Accept-Charset" field to a request by

request.Header.Add("Accept-Charset", "UTF-8;q=1, ISO-8859-1;q=0")

(Note that the default set ISO-8859-1 always gets a value of one unless ment ioned explicit ly in the list .).

A client set t ing a charset request is simple by the above. But there is some confusion about what happens with the server's return
value of a charset. The returned resource should have a Content-Type which will specify the media type of the content such as
text/html. If appropriate the media type should state the charset, such as text/html; charset=UTF-8. If there is no charset
specificat ion, then according to the HTTP specificat ion it should be treated as the default ISO8859-1 charset. But the HTML 4
specificat ion states that since many servers don't conform to this, then you can't make any assumptions.

If there is a charset specified in the server's Content-Type, then assume it is correct . if there is none specified, since 50% of pages
are in UTF-8 and 20% are in ASCII then it is safe to assume UTF-8. Only 30% of pages may be wrong :-(.

8.5 The Client object
To send a request to a server and get a reply, the convenience object Client is the easiest way. This object can manage mult iple
requests and will look after issues such as whether the server keeps the TCP connect ion alive, and so on.

This is illustrated in the following program

/* ClientGet
 */

package main

import (
 "fmt"
 "net/http"
 "net/url"
 "os"
 "strings"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "http://host:port/page")
 os.Exit(1)
 }
 url, err := url.Parse(os.Args[1])
 checkError(err)

 client := &http.Client{}

 request, err := http.NewRequest("GET", url.String(), nil)
 // only accept UTF-8
 request.Header.Add("Accept-Charset", "UTF-8;q=1, ISO-8859-1;q=0")
 checkError(err)

 response, err := client.Do(request)

HTTP

Version 1.0 Page 74©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 os.Exit(2)
 }

 chSet := getCharset(response)
 fmt.Printf("got charset %s\n", chSet)
 if chSet != "UTF-8" {
 fmt.Println("Cannot handle", chSet)
 os.Exit(4)
 }

 var buf [512]byte
 reader := response.Body
 fmt.Println("got body")
 for {
 n, err := reader.Read(buf[0:])
 if err != nil {
 os.Exit(0)
 }
 fmt.Print(string(buf[0:n]))
 }

 os.Exit(0)
}

func getCharset(response *http.Response) string {
 contentType := response.Header.Get("Content-Type")
 if contentType == "" {
 // guess
 return "UTF-8"
 }
 idx := strings.Index(contentType, "charset:")
 if idx == -1 {
 // guess
 return "UTF-8"
 }
 return strings.Trim(contentType[idx:], " ")
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

8.6 Proxy handling

Simple proxy

HTTP 1.1 laid out how HTTP should work through a proxy. A "GET" request should be made to a proxy. However, the URL
requested should be the full URL of the dest inat ion. In addit ion the HTTP header should contain a "Host" field, set to the proxy. As
long as the proxy is configured to pass such requests through, then that is all that needs to be done.

Go considers this to be part of the HTTP transport layer. To manage this it has a class Transport. This contains a field which can
be set to a function that returns a URL for a proxy. If we have a URL as a string for the proxy, the appropriate t ransport object is
created and then given to a client object by

proxyURL, err := url.Parse(proxyString)
transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}
client := &http.Client{Transport: transport}

The client can then cont inue as before.

The following program illustrates this:

/* ProxyGet
 */

package main

import (
 "fmt"
 "io"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
)

func main() {
 if len(os.Args) != 3 {

HTTP

Version 1.0 Page 75©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 fmt.Println("Usage: ", os.Args[0], "http://proxy-host:port http://host:port/page")
 os.Exit(1)
 }
 proxyString := os.Args[1]
 proxyURL, err := url.Parse(proxyString)
 checkError(err)
 rawURL := os.Args[2]
 url, err := url.Parse(rawURL)
 checkError(err)

 transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}
 client := &http.Client{Transport: transport}

 request, err := http.NewRequest("GET", url.String(), nil)

 dump, _ := httputil.DumpRequest(request, false)
 fmt.Println(string(dump))

 response, err := client.Do(request)

 checkError(err)
 fmt.Println("Read ok")

 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 os.Exit(2)
 }
 fmt.Println("Reponse ok")

 var buf [512]byte
 reader := response.Body
 for {
 n, err := reader.Read(buf[0:])
 if err != nil {
 os.Exit(0)
 }
 fmt.Print(string(buf[0:n]))
 }

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 if err == io.EOF {
 return
 }
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

If you have a proxy at , say, XYZ.com on port 8080, test this by

go run ProxyGet.go http://XYZ.com:8080/ http://www.google.com

If you don't have a suitable proxy to test this, then download and install the Squid proxy to your own computer.

The above program used a known proxy passed as an argument to the program. There are many ways in which proxies can be
made known to applicat ions. Most browsers have a configurat ion menu in which you can enter proxy informat ion: such informat ion is
not available to a Go applicat ion. Some applicat ions may get proxy informat ion from an autoproxy.pac file somewhere in your
network: Go does not (yet) know how to parse these JavaScript files and so cannot use them. Linux systems using Gnome have a
configurat ion system called gconf in which proxy informat ion can be stored: Go cannot access this. But it can find proxy informat ion
if it is set in operat ing system environment variables such as HTTP_PROXY or ht tp_proxy using the funct ion

func ProxyFromEnvironment(req *Request) (*url.URL, error)

If your programs are running in such an environment you can use this funct ion instead of having to explicit ly know the proxy
parameters.

Authenticating proxy

Some proxies will require authent icat ion, by a user name and password in order to pass requests. A common scheme is "basic
authent icat ion" in which the user name and password are concatenated into a string "user:password" and then BASE64 encoded.
This is then given to the proxy by the HTTP request header "Proxy-Authorisat ion" with the flag that it is the basic authent icat ion

The following program illlustrates this, adding the Proxy-Authent icat ion header to the previous proxy program:

/* ProxyAuthGet

HTTP

Version 1.0 Page 76©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 */

package main

import (
 "encoding/base64"
 "fmt"
 "io"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
)

const auth = "jannewmarch:mypassword"

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Usage: ", os.Args[0], "http://proxy-host:port http://host:port/page")
 os.Exit(1)
 }
 proxy := os.Args[1]
 proxyURL, err := url.Parse(proxy)
 checkError(err)
 rawURL := os.Args[2]
 url, err := url.Parse(rawURL)
 checkError(err)

 // encode the auth
 basic := "Basic " + base64.StdEncoding.EncodeToString([]byte(auth))

 transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}
 client := &http.Client{Transport: transport}

 request, err := http.NewRequest("GET", url.String(), nil)

 request.Header.Add("Proxy-Authorization", basic)
 dump, _ := httputil.DumpRequest(request, false)
 fmt.Println(string(dump))

 // send the request
 response, err := client.Do(request)

 checkError(err)
 fmt.Println("Read ok")

 if response.Status != "200 OK" {
 fmt.Println(response.Status)
 os.Exit(2)
 }
 fmt.Println("Reponse ok")

 var buf [512]byte
 reader := response.Body
 for {
 n, err := reader.Read(buf[0:])
 if err != nil {
 os.Exit(0)
 }
 fmt.Print(string(buf[0:n]))
 }

 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 if err == io.EOF {
 return
 }
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

8.7 HTTPS connections by clients
For secure, encrypted connect ions, HTTP uses TLS which is described in the chapter on security. The protocol of HTTP+TLS is
called HTTPS and uses ht tps:// urls instead of ht tp:// urls.

Servers are required to return valid X.509 cert ificates before a client will accept data from them. If the cert ificate is valid, then Go
handles everything under the hood and the clients given previously run okay with ht tps URLs.

Many sites have invalid cert ificates. They may have expired, they may be self-signed instead of by a recognised Cert ificate
Authority or they may just have errors (such as having an incorrect server name). Browsers such as Firefox put a big warning not ice
with a "Get me out of here!" button, but you can carry on at your risk - which many people do.

HTTP

Version 1.0 Page 77©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Go present ly bails out when it encounters cert ificate errors. There is caut ious support for carrying on but I haven't got it working
yet. So there is no current example for "carrying on in the face of adversity :-)". Maybe later.

8.8 Servers
The other side to building a client is a Web server handling HTTP requests. The simplest - and earliest - servers just returned
copies of files. However, any URL can now trigger an arbit rary computat ion in current servers.

File server

We start with a basic file server. Go supplies a multi-plexer, that is, an object that will read and interpret requests. It hands out
requests to handlers which run in their own thread. Thus much of the work of reading HTTP requests, decoding them and
branching to suitable funct ions in their own thread is done for us.

For a file server, Go also gives a FileServer object which knows how to deliver files from the local file system. It takes a "root"
directory which is the top of a file t ree in the local system, and a pattern to match URLs against . The simplest pattern is "/" which is
the top of any URL. This will match all URLs.

An HTTP server delivering files from the local file system is almost embarrassingly t rivial given these objects. It is

/* File Server
 */

package main

import (
 "fmt"
 "net/http"
 "os"
)

func main() {
 // deliver files from the directory /var/www
 //fileServer := http.FileServer(http.Dir("/var/www"))
 fileServer := http.FileServer(http.Dir("/home/httpd/html/"))

 // register the handler and deliver requests to it
 err := http.ListenAndServe(":8000", fileServer)
 checkError(err)
 // That's it!
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

This server even delivers "404 not found" messages for requests for file resources that don't exist !

Handler functions

In this last program, the handler was given in the second argument to ListenAndServe. Any number of handlers can be registered
first by calls to Handle or handleFunc, with signatures

func Handle(pattern string, handler Handler)
func HandleFunc(pattern string, handler func(*Conn, *Request))

The second argument to HandleAndServe could be nil, and then calls are dispatched to all registered handlers. Each handler
should have a different URL pattern. For example, the file handler might have URL pattern "/" while a funct ion handler might have
URL pattern "/cgi-bin". A more specific pattern takes precedence over a more general pattern.

Common CGI programs are test-cgi (writ ten in the shell) or printenv (writ ten in Perl) which print the values of the environment
variables. A handler can be writ ten to work in a similar manner.

/* Print Env
 */

package main

import (
 "fmt"
 "net/http"
 "os"
)

func main() {
 // file handler for most files
 fileServer := http.FileServer(http.Dir("/var/www"))

HTTP

Version 1.0 Page 78©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 http.Handle("/", fileServer)

 // function handler for /cgi-bin/printenv
 http.HandleFunc("/cgi-bin/printenv", printEnv)

 // deliver requests to the handlers
 err := http.ListenAndServe(":8000", nil)
 checkError(err)
 // That's it!
}

func printEnv(writer http.ResponseWriter, req *http.Request) {
 env := os.Environ()
 writer.Write([]byte("<h1>Environment</h1>\n<pre>"))
 for _, v := range env {
 writer.Write([]byte(v + "\n"))
 }
 writer.Write([]byte("</pre>"))
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Note: for simplicity this program does not deliver well-formed HTML. It is missing html, head and body tags.

Using the cgi-bin directory in this program is a bit cheeky: it doesn't call an external program like CGI scripts do. It just calls a Go
funct ion. Go does have the ability to call external programs using os.ForkExec, but does not yet have support for dynamically
linkable modules like Apache's mod_perl

Bypassing the default multiplexer

HTTP requests received by a Go server are usually handled by a mult iplexer the examines the path in the HTTP request and calls
the appropriate file handler, etc. You can define your own handlers. These can either be registered with the default mult iplexer by
calling http.HandleFunc which takes a pattern and a funct ion. The funct ions such as ListenAndServe then take a nil handler
funct ion. This was done in the last example.

If you want to take over the mult iplexer role then you can give a non-zero funct ion as the handler funct ion. This funct ion will then be
totally responsible for managing the requests and responses.

The following example is t rivial, but illustrates the use of this: the mult iplexer funct ion simply returns a "204 No content" for all
requests:

/* ServerHandler
 */

package main

import (
 "net/http"
)

func main() {

 myHandler := http.HandlerFunc(func(rw http.ResponseWriter, request *http.Request) {
 // Just return no content - arbitrary headers can be set, arbitrary body
 rw.WriteHeader(http.StatusNoContent)
 })

 http.ListenAndServe(":8080", myHandler)
}

Arbit rarily complex behaviour can be built , of course.

Low-level servers

Go also supplies a lower-level interface for servers. Again, this means that as the programmer you have to do more work. You first
make a TCP server, and then wrap a ServerConn around it . Then you read Request's and write Response's.

Basic server

The simplest response is to return a "204 No Content". The following server reads requests and dumps them to standard output
while returning a 204. More complex handling could be done: [an error occurred while processing this direct ive]

8.9 Conclusion
Go has extensive support for HTTP. This is not surprising, since Go was part ly invented to fill a need by Google for their own
servers.

HTTP

Version 1.0 Page 79©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

HTTP

Version 1.0 Page 80©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 9 Templates
Many languages have mechanisms to convert strings from one form to another. Go
has a template mechanism to convert strings based on the content of an object
supplied as an argument. While this is often used in rewrit ing HTML to insert object
values, it can be used in other situat ions. Note that this material doesn't have
anything explicit ly to do with networking, but may be useful to network programs.

9.1 Introduction
Most server-side languages have a mechanism for taking predominant ly stat ic pages and insert ing a dynamically generated
component, such as a list of items. Typical examples are scripts in Java Server Pages, PHP script ing and many others. Go has
adopted a relat ively simple script ing language in the template package.

At the t ime of writ ing a new template package has been adopted. There is very lit t le documentat ion on the template packages.
There is a small amount on the old package, which is current ly st ill available in the old/template. There is no documentat ion on the
new package as yet apart from the reference page. The template package changed with r60 (released 2011/09/07).

We describe the new package here. The package is designed to take text as input and output different text , based on
transforming the original text using the values of an object . Unlike JSP or similar, it is not restricted to HTML files but it is likely to
find greatest use there.

The original source is called a template and will consist of text that is t ransmit ted unchanged, and embedded commands which can
act on and change text . The commands are delimited by {{ ... }} , similar to the JSP commands <%= ... =%> and PHPs <?php
... ?>.

9.2 Inserting object values
A template is applied to a Go object . Fields from that Go object can be inserted into the template, and you can 'dig" into the
object to find subfields, etc. The current object is represented as '.', so that to insert the value of the current object as a string, you
use {{.}}. The package uses the fmt package by default to work out the string used as inserted values.

To insert the value of a field of the current object , you use the field name prefixed by '.'. For example, if the object is of type

type Person struct {
 Name string
 Age int
 Emails []string
 Jobs []*Jobs
}

then you insert the values of Name and Age by

The name is {{.Name}}.
The age is {{.Age}}.

We can loop over the elements of an array or other list using the range command. So to access the contents of the Emails array
we do

{{range .Emails}}
 ...
{{end}}

if Job is defined by

type Job struct {
 Employer string
 Role string
}

and we want to access the fields of a Person's Jobs, we can do it as above with a {{range .Jobs}}. An alternat ive is to switch the
current object to the Jobs field. This is done using the {{with ...}} ... {{end}} construct ion, where now {{.}} is the Jobs field,
which is an array:

{{with .Jobs}}
 {{range .}}
 An employer is {{.Employer}}
 and the role is {{.Role}}
 {{end}}
{{end}}

Version 1.0 Page 81©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

http://golang.org/doc/devel/release.html#r60

You can use this with any field, not just an array.

<.

9.3 Using templates
Once we have a template, we can apply it to an object to generate a new string, using the object to fill in the template values. This
is a two-step process which involves parsing the template and then applying it to an object . The result is output to a Writer, as in

t := template.New("Person template")
t, err := t.Parse(templ)
if err == nil {
 buff := bytes.NewBufferString("")
 t.Execute(buff, person)
}

An example program to apply a template to an object and print to standard output is

/**
 * PrintPerson
 */

package main

import (
 "fmt"
 "html/template"
 "os"
)

type Person struct {
 Name string
 Age int
 Emails []string
 Jobs []*Job
}

type Job struct {
 Employer string
 Role string
}

const templ = `The name is {{.Name}}.
The age is {{.Age}}.
{{range .Emails}}
 An email is {{.}}
{{end}}

{{with .Jobs}}
 {{range .}}
 An employer is {{.Employer}}
 and the role is {{.Role}}
 {{end}}
{{end}}
`

func main() {
 job1 := Job{Employer: "Monash", Role: "Honorary"}
 job2 := Job{Employer: "Box Hill", Role: "Head of HE"}

 person := Person{
 Name: "jan",
 Age: 50,
 Emails: []string{"jan@newmarch.name", "jan.newmarch@gmail.com"},
 Jobs: []*Job{&job1, &job2},
 }

 t := template.New("Person template")
 t, err := t.Parse(templ)
 checkError(err)

 err = t.Execute(os.Stdout, person)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The output from this is
Version 1.0 Page 82©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

The name is jan.
The age is 50.

 An email is jan@newmarch.name

 An email is jan.newmarch@gmail.com

 An employer is Monash
 and the role is Honorary

 An employer is Box Hill
 and the role is Head of HE

Note that there is plenty of whitespace as newlines in this printout. This is due to the whitespace we have in our template. If we
wish to reduce this, eliminate newlines in the template as in

{{range .Emails}} An email is {{.}} {{end}}

In the example, we used a string in the program as the template. You can also load templates from a file using the funct ion
template.ParseFiles(). For some reason that I don't understand (and which wasn't required in earlier versions), the name
assigned to the template must be the same as the basename of the first file in the list of files. Is this a bug?

9.4 Pipelines
The above transformat ions insert pieces of text into a template. Those pieces of text are essent ially arbit rary, whatever the string
values of the fields are. If we want them to appear as part of an HTML document (or other specialised form) then we will have to
escape part icular sequences of characters. For example, to display arbit rary text in an HTML document we have to change "<" to
"< ;". The Go templates have a number of built in funct ions, and one of these is the funct ion html. These funct ions act in a similar
manner to Unix pipelines, reading from standard input and writ ing to standard output.

To take the value of the current object '.' and apply HTML escapes to it , you write a "pipeline" in the template

{{. | html}}

and similarly for other funct ions.

Mike Samuel has pointed out a convenience funct ion current ly in the exp/template/html package. If all of the entries in a template
need to be passed through the html template funct ion, then the Go funct ion Escape(t *template.Template) can take a template
and add the html funct ion to each node in the template that doesn't already have one. This will be useful for templates used for
HTML documents and can form a pattern for similar funct ion uses elsewhere.

9.5 Defining functions
The templates use the string representat ion of an object to insert values, using the fmt package to convert the object to a string.
Sometimes this isn't what is needed. For example, to avoid spammers gett ing hold of email addresses it is quite common to see
the symbol '@' replaced by the word " at ", as in "jan at newmarch.name". If we want to use a template to display email addresses
in that form, then we have to build a custom funct ion to do this t ransformat ion.

Each template funct ion has a name that is used in the templates themselves, and an associated Go funct ion. These are linked by
the type

type FuncMap map[string]interface{}

For example, if we want our template funct ion to be "emailExpand" which is linked to the Go funct ion EmailExpander then we add
this to the funct ions in a template by

t = t.Funcs(template.FuncMap{"emailExpand": EmailExpander})

The signature for EmailExpander is typically

func EmailExpander(args ...interface{}) string

In the use we are interested in, there should only be one argument to the funct ion which will be a string. Exist ing funct ions in the Go
template library have some init ial code to handle non-conforming cases, so we just copy that. Then it is just simple string

Version 1.0 Page 83©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

manipulat ion to change the format of the email address. A program is

/**
 * PrintEmails
 */

package main

import (
 "fmt"
 "os"
 "strings"
 "text/template"
)

type Person struct {
 Name string
 Emails []string
}

const templ = `The name is {{.Name}}.
{{range .Emails}}
 An email is "{{. | emailExpand}}"
{{end}}
`

func EmailExpander(args ...interface{}) string {
 ok := false
 var s string
 if len(args) == 1 {
 s, ok = args[0].(string)
 }
 if !ok {
 s = fmt.Sprint(args...)
 }

 // find the @ symbol
 substrs := strings.Split(s, "@")
 if len(substrs) != 2 {
 return s
 }
 // replace the @ by " at "
 return (substrs[0] + " at " + substrs[1])
}

func main() {
 person := Person{
 Name: "jan",
 Emails: []string{"jan@newmarch.name", "jan.newmarch@gmail.com"},
 }

 t := template.New("Person template")

 // add our function
 t = t.Funcs(template.FuncMap{"emailExpand": EmailExpander})

 t, err := t.Parse(templ)

 checkError(err)

 err = t.Execute(os.Stdout, person)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The output is

The name is jan.

 An email is "jan at newmarch.name"

 An email is "jan.newmarch at gmail.com"

9.6 Variables
The template package allows you to define and use variables. As mot ivat ion for this, consider how we might print each person's
email address prefixed by their name. The type we use is again

Version 1.0 Page 84©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

type Person struct {
 Name string
 Emails []string
}

To access the email strings, we use a range statement such as

{{range .Emails}}
 {{.}}
{{end}}

But at that point we cannot access the Name field as '.' is now traversing the array elements and the Name is outside of this scope.
The solut ion is to save the value of the Name field in a variable that can be accessed anywhere in its scope. Variables in templates
are prefixed by '$'. So we write

{{$name := .Name}}
{{range .Emails}}
 Name is {{$name}}, email is {{.}}
{{end}}

The program is

/**
 * PrintNameEmails
 */

package main

import (
 "html/template"
 "os"
 "fmt"
)

type Person struct {
 Name string
 Emails []string
}

const templ = `{{$name := .Name}}
{{range .Emails}}
 Name is {{$name}}, email is {{.}}
{{end}}
`

func main() {
 person := Person{
 Name: "jan",
 Emails: []string{"jan@newmarch.name", "jan.newmarch@gmail.com"},
 }

 t := template.New("Person template")
 t, err := t.Parse(templ)
 checkError(err)

 err = t.Execute(os.Stdout, person)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

with output

 Name is jan, email is jan@newmarch.name

 Name is jan, email is jan.newmarch@gmail.com

9.7 Conditional statements
Cont inuing with our Person example, supposing we just want to print out the list of emails, without digging into it . We can do that
with a template

Name is {{.Name}}
Emails are {{.Emails}}

Version 1.0 Page 85©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This will print

Name is jan
Emails are [jan@newmarch.name jan.newmarch@gmail.com]

because that is how the fmt package will display a list .

In many circumstances that may be fine, if that is what you want. Let 's consider a case where it is almost right but not quite. There
is a JSON package to serialise objects, which we looked at in Chapter 4. This would produce

{"Name": "jan",
 "Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com"]
}

The JSON package is the one you would use in pract ice, but let 's see if we can produce JSON output using templates. We can do
something similar just by the templates we have. This is almost right as a JSON serialiser:

{"Name": "{{.Name}}",
 "Emails": {{.Emails}}
}

It will produce

{"Name": "jan",
 "Emails": [jan@newmarch.name jan.newmarch@gmail.com]
}

which has two problems: the addresses aren't in quotes, and the list elements should be ',' separated.

How about this: looking at the array elements, putt ing them in quotes and adding commas?

{"Name": {{.Name}},
 "Emails": [
 {{range .Emails}}
 "{{.}}",
 {{end}}
]
}

which will produce

{"Name": "jan",
 "Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com",]
}

(plus some white space.).

Again, almost correct , but if you look carefully, you will see a t railing ',' after the last list element. According to the JSON syntax
(see ht tp://www.json.org/, this t railing ',' is not allowed. Implementat ions may vary in how they deal with this.

What we want is "print every element followed by a ',' except for the last one." This is actually a bit hard to do, so a better way is
"print every element preceded by a ',' except for the first one." (I got this t ip from "brianb" at Stack Overflow.). This is easier,
because the first element has index zero and many programming languages, including the Go template language, t reat zero as
Boolean false.

One form of the condit ional statement is {{if pipeline}} T1 {{else}} T0 {{end}}. We need the pipeline to be the index into
the array of emails. Fortunately, a variat ion on the range statement gives us this. There are two forms which introduce variables

{{range $elmt := array}}
{{range $index, $elmt := array}}

So we set up a loop through the array, and if the index is false (0) we just print the element, otherwise print it preceded by a ','. The
template is

{"Name": "{{.Name}}",
 "Emails": [
 {{range $index, $elmt := .Emails}}
 {{if $index}}
 , "{{$elmt}}"
 {{else}}
 "{{$elmt}}"

Version 1.0 Page 86©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

../serialisation/chapter.html
http://www.json.org
http://stackoverflow.com/questions/201782/can-you-use-a-trailing-comma-in-a-json-object

 {{end}}
 {{end}}
]
}

and the full program is

/**
 * PrintJSONEmails
 */

package main

import (
 "html/template"
 "os"
 "fmt"
)

type Person struct {
 Name string
 Emails []string
}

const templ = `{"Name": "{{.Name}}",
 "Emails": [
{{range $index, $elmt := .Emails}}
 {{if $index}}
 , "{{$elmt}}"
 {{else}}
 "{{$elmt}}"
 {{end}}
{{end}}
]
}
`

func main() {
 person := Person{
 Name: "jan",
 Emails: []string{"jan@newmarch.name", "jan.newmarch@gmail.com"},
 }

 t := template.New("Person template")
 t, err := t.Parse(templ)
 checkError(err)

 err = t.Execute(os.Stdout, person)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

This gives the correct JSON output.

Before leaving this sect ion, we note that the problem of formatt ing a list with comma separators can be approached by defining
suitable funct ions in Go that are made available as template funct ions. To re-use a well known saying, "There's more than one way
to do it !". The following program was sent to me by Roger Peppe:

/**
 * Sequence.go
 * Copyright Roger Peppe
 */

package main

import (
 "errors"
 "fmt"
 "os"
 "text/template"
)

var tmpl = `{{$comma := sequence "" ", "}}
{{range $}}{{$comma.Next}}{{.}}{{end}}
{{$comma := sequence "" ", "}}
{{$colour := cycle "black" "white" "red"}}
{{range $}}{{$comma.Next}}{{.}} in {{$colour.Next}}{{end}}
`

var fmap = template.FuncMap{
 "sequence": sequenceFunc,

Version 1.0 Page 87©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 "cycle": cycleFunc,
}

func main() {
 t, err := template.New("").Funcs(fmap).Parse(tmpl)
 if err != nil {
 fmt.Printf("parse error: %v\n", err)
 return
 }
 err = t.Execute(os.Stdout, []string{"a", "b", "c", "d", "e", "f"})
 if err != nil {
 fmt.Printf("exec error: %v\n", err)
 }
}

type generator struct {
 ss []string
 i int
 f func(s []string, i int) string
}

func (seq *generator) Next() string {
 s := seq.f(seq.ss, seq.i)
 seq.i++
 return s
}

func sequenceGen(ss []string, i int) string {
 if i >= len(ss) {
 return ss[len(ss)-1]
 }
 return ss[i]
}

func cycleGen(ss []string, i int) string {
 return ss[i%len(ss)]
}

func sequenceFunc(ss ...string) (*generator, error) {
 if len(ss) == 0 {
 return nil, errors.New("sequence must have at least one element")
 }
 return &generator{ss, 0, sequenceGen}, nil
}

func cycleFunc(ss ...string) (*generator, error) {
 if len(ss) == 0 {
 return nil, errors.New("cycle must have at least one element")
 }
 return &generator{ss, 0, cycleGen}, nil
}

9.8 Conclusion
The Go template package is useful for certain kinds of text t ransformat ions involving insert ing values of objects. It does not have
the power of, say, regular expressions, but is faster and in many cases will be easier to use than regular expressions

Copyright © Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Version 1.0 Page 88©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 10 A Complete Web Server
This chapter is principally a lengthy illustrat ion of the HTTP chapter, building a
complete Web server in Go. It also shows how to use templates in order to use
expressions in text files to insert variable values and to generate repeated sect ions.

skip table of contents

Show table of contents

10.1 Introduction
I am learning Chinese. Rather, after many years of t rying I am st ill attempting to learn Chinese. Of course, rather than buckling down
and gett ing on with it , I have tried all sorts of technical aids. I t ried DVDs, videos, flashcards and so on. Eventually I realised that
there wasn't a good computer program for Chinese flashcards, and so in the interests of learning, I needed to build one.

I had found a program in Python to do some of the task. But sad to say it wasn't well writ ten and after a few at tempts at turning it
upside down and inside out I came to the conclusion that it was better to start from scratch. Of course, a Web solut ion would be
far better than a standalone one, because then all the other people in my Chinese class could share it , as well as any other learners
out there. And of course, the server would be writ ten in Go.

The flashcards server is running at cict .bhtafe.edu.au:8000. The front page consists of a list of flashcard sets current ly available,
how you want a set displayed (random card order, Chinese, English or random), whether to display a set, add to it , etc. I've spent
too much t ime building it - somehow my Chinese hasn't progressed much while I was doing it ... It probably won't be too excit ing as
a program if you don't want to learn Chinese, but let 's get into the structure.

10.2 Static pages
Some pages will just have stat ic content. These can be managed by a fileServer. For simplicity I put all of the stat ic HTML
pages and CSS files in the html directory and all of the JavaScript files in the jscript directory. These are then delivered by the Go
code

fileServer := http.FileServer("jscript", "/jscript/")
http.Handle("/jscript/", fileServer)

fileServer = http.FileServer("html", "/html/")
http.Handle("/html/", fileServer)

10.3 Templates
The list of flashcard sets is open ended, depending on the number of files in a directory. These should not be hardcoded into an
HTML page, but the content should be generated as needed. This is an obvious candidate for templates.

The list of files in a directory is generated as a list of strings. These can then be displayed in a table using the template

<table>
 {{range .}}
 <tr>
 <td>
 {{.}}
 </td>
 </tr>
</table>

10.4 The Chinese Dictionary
Chinese is a complex language (aren't they all :-(). The writ ten form is hieroglyphic, that is "pictograms" instead of using an
alphabet. But this writ ten form has evolved over t ime, and even recent ly split into two forms: "t radit ional" Chinese as used in
Taiwan and Hong Kong, and "simplified" Chinese as used in mainland China. While most of the characters are the same, about
1,000 are different. Thus a Chinese dict ionary will often have two writ ten forms of the same character.

Most Westerners like me can't understand these characters. So there is a "Lat inised" form called Pinyin which writes the
characters in a phonet ic alphabet based on the Lat in alphabet. It isn't quite the Lat in alphabet, because Chinese is a tonal
language, and the Pinyin form has to show the tones (much like acccents in French and other European languages). So a typical
dict ionary has to show four things: the t radit ional form, the simplified form, the Pinyin and the English. For example,
Tradit ional Simplified Pinyin English
好 好 hǎo good

But again there is a lit t le complicat ion. There is a free Chinese/English dict ionary and even better, you can download it as a UTF-8
file, which Go is well suited to handle. In this, the Chinese characters are writ ten in Unicode but the Pinyin characters are not:

Complete Web Server

Version 1.0 Page 89©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

cict.bhtafe.edu.au:8000
http://www.mandarintools.com/worddict.html

although there are Unicode characters for let ters such as 'ǎ', many dict ionaries including this one use the Lat in 'a' and place the
tone at the end of the word. Here it is the third tone, so "hǎo" is writ ten as "hao3". This makes it easier for those who only have US
keyboards and no Unicode editor to st ill communicate in Pinyin.

This data format mismatch is not a big deal: just that somewhere along the line, between the original text dict ionary and the
display in the browser, a data massage has to be performed. Go templates allow this to be done by defining a custom template,
so I chose that route. Alternat ives could have been to do this as the dict ionary is read in, or in the Javascript to display the final
characters.

The code for the Pinyin formatter is given below. Please don't bother reading it unless you are really interested in knowing the rules
for Pinyin formatt ing.

package pinyin

import (
 "io"
 "strings"
)

func PinyinFormatter(w io.Writer, format string, value ...interface{}) {
 line := value[0].(string)
 words := strings.Fields(line)
 for n, word := range words {
 // convert "u:" to "ü" if present
 uColon := strings.Index(word, "u:")
 if uColon != -1 {
 parts := strings.SplitN(word, "u:", 2)
 word = parts[0] + "ü" + parts[1]
 }
 println(word)
 // get last character, will be the tone if present
 chars := []rune(word)
 tone := chars[len(chars)-1]
 if tone == '5' {
 words[n] = string(chars[0 : len(chars)-1])
 println("lost accent on", words[n])
 continue
 }
 if tone < '1' || tone > '4' {
 continue
 }
 words[n] = addAccent(word, int(tone))
 }
 line = strings.Join(words, ` `)
 w.Write([]byte(line))
}

var (
 // maps 'a1' to '\u0101' etc
 aAccent = map[int]rune{
 '1': '\u0101',
 '2': '\u00e1',
 '3': '\u01ce', // '\u0103',
 '4': '\u00e0'}
 eAccent = map[int]rune{
 '1': '\u0113',
 '2': '\u00e9',
 '3': '\u011b', // '\u0115',
 '4': '\u00e8'}
 iAccent = map[int]rune{
 '1': '\u012b',
 '2': '\u00ed',
 '3': '\u01d0', // '\u012d',
 '4': '\u00ec'}
 oAccent = map[int]rune{
 '1': '\u014d',
 '2': '\u00f3',
 '3': '\u01d2', // '\u014f',
 '4': '\u00f2'}
 uAccent = map[int]rune{
 '1': '\u016b',
 '2': '\u00fa',
 '3': '\u01d4', // '\u016d',
 '4': '\u00f9'}
 üAccent = map[int]rune{
 '1': 'ǖ',
 '2': 'ǘ',
 '3': 'ǚ',
 '4': 'ǜ'}
)

func addAccent(word string, tone int) string {
 /*
 * Based on "Where do the tone marks go?"
 * at http://www.pinyin.info/rules/where.html
 */

 n := strings.Index(word, "a")

Complete Web Server

Version 1.0 Page 90©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 n := strings.Index(word, "a")
 if n != -1 {
 aAcc := aAccent[tone]
 // replace 'a' with its tone version
 word = word[0:n] + string(aAcc) + word[(n+1):len(word)-1]
 } else {
 n := strings.Index(word, "e")
 if n != -1 {
 eAcc := eAccent[tone]
 word = word[0:n] + string(eAcc) +
 word[(n+1):len(word)-1]
 } else {
 n = strings.Index(word, "ou")
 if n != -1 {
 oAcc := oAccent[tone]
 word = word[0:n] + string(oAcc) + "u" +
 word[(n+2):len(word)-1]
 } else {
 chars := []rune(word)
 length := len(chars)
 // put tone onthe last vowel
 L:
 for n, _ := range chars {
 m := length - n - 1
 switch chars[m] {
 case 'i':
 chars[m] = iAccent[tone]
 break L
 case 'o':
 chars[m] = oAccent[tone]
 break L
 case 'u':
 chars[m] = uAccent[tone]
 break L
 case 'ü':
 chars[m] = üAccent[tone]
 break L
 default:
 }
 }
 word = string(chars[0 : len(chars)-1])
 }
 }
 }

 return word
}

How this is used is illustrated by the funct ion lookupWord. This is called in response to an HTML Form request to find the English
words in a dict ionary.

func lookupWord(rw http.ResponseWriter, req *http.Request) {
 word := req.FormValue("word")
 words := d.LookupEnglish(word)

 pinyinMap := template.FormatterMap {"pinyin": pinyin.PinyinFormatter}
 t, err := template.ParseFile("html/DictionaryEntry.html", pinyinMap)
 if err != nil {
 http.Error(rw, err.String(), http.StatusInternalServerError)
 return
 }
 t.Execute(rw, words)
}

The HTML code is

<html>
 <body>
 <table border="1">
 <tr>
 <th>Word</th>
 <th>Traditional</th>
 <th>Simplified</th>
 <th>Pinyin</th>
 <th>English</th>
 </tr>
 {{with .Entries}}
 {{range .}}
 {.repeated section Entries}
 <tr>
 <td>{{.Word}}</td>
 <td>{{.Traditional}}</td>
 <td>{{.Simplified}}</td>
 <td>{{.Pinyin|pinyin}}</td>
 <td>
 <pre>
 {.repeated section Translations}

Complete Web Server

Version 1.0 Page 91©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 {@|html}
 {.end}
 </pre>
 </td>
 </tr>
 {.end}
 {{end}}
 {{end}}
 </table>
 </body>
</html>

The Dictionary type

The text file containing the dict ionary has lines of the form
traditional simplified [pinyin] /translation/translation/.../
For example,
好 好 [hao3] /good/well/proper/good to/easy to/very/so/(suffix indicat ing complet ion or readiness)/

We store each line as an Entry within the Dictionary package:

type Entry struct {
 Traditional string
 Simplified string
 Pinyin string
 Translations []string
}

The dict ionary itself is just an array of these entries:

type Dictionary struct {
 Entries []*Entry
}

Building the dict ionary is easy enough. Just read each line and break the line into its various bits using simple string methods. Then
add the line to the dict ionary slice.

Looking up entries in this dict ionary is straightforward: just search through unt il we find the appropriate key. There are about
100,000 entries in this dict ionary: brute force by a linear search is fast enough. If it were necessary, faster storage and search
mechanisms could easily be used.

The original dict ionary grows by people on the Web adding in entries as they see fit . Consequent ly it isn't that well organised and
contains repet it ions and mult iple entries. So looking up any word - either by Pinyin or by English - may return mult iple matches. To
cater for this, each lookup returns a "mini dict ionary", just those lines in the full dict ionary that match.

The Dict ionary code is

package dictionary

import (
 "bufio"
 //"fmt"
 "os"
 "strings"
)

type Entry struct {
 Traditional string
 Simplified string
 Pinyin string
 Translations []string
}

func (de Entry) String() string {
 str := de.Traditional + ` ` + de.Simplified + ` ` + de.Pinyin
 for _, t := range de.Translations {
 str = str + "\n " + t
 }
 return str
}

type Dictionary struct {
 Entries []*Entry
}

func (d *Dictionary) String() string {
 str := ""
 for n := 0; n < len(d.Entries); n++ {
 de := d.Entries[n]
 str += de.String() + "\n"
 }

Complete Web Server

Version 1.0 Page 92©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 return str
}

func (d *Dictionary) LookupPinyin(py string) *Dictionary {
 newD := new(Dictionary)
 v := make([]*Entry, 0, 100)
 for n := 0; n < len(d.Entries); n++ {
 de := d.Entries[n]
 if de.Pinyin == py {
 v = append(v, de)
 }
 }
 newD.Entries = v
 return newD
}

func (d *Dictionary) LookupEnglish(eng string) *Dictionary {
 newD := new(Dictionary)
 v := make([]*Entry, 0, 100)
 for n := 0; n < len(d.Entries); n++ {
 de := d.Entries[n]
 for _, e := range de.Translations {
 if e == eng {
 v = append(v, de)
 }
 }
 }
 newD.Entries = v
 return newD
}

func (d *Dictionary) LookupSimplified(simp string) *Dictionary {
 newD := new(Dictionary)
 v := make([]*Entry, 0, 100)

 for n := 0; n < len(d.Entries); n++ {
 de := d.Entries[n]
 if de.Simplified == simp {
 v = append(v, de)
 }
 }
 newD.Entries = v
 return newD
}

func (d *Dictionary) Load(path string) {

 f, err := os.Open(path)
 r := bufio.NewReader(f)
 if err != nil {
 println(err.Error())
 os.Exit(1)
 }

 v := make([]*Entry, 0, 100000)
 numEntries := 0
 for {
 line, err := r.ReadString('\n')
 if err != nil {
 break
 }
 if line[0] == '#' {
 continue
 }
 // fmt.Println(line)
 trad, simp, pinyin, translations := parseDictEntry(line)

 de := Entry{
 Traditional: trad,
 Simplified: simp,
 Pinyin: pinyin,
 Translations: translations}

 v = append(v, &de)
 numEntries++
 }
 // fmt.Printf("Num entries %d\n", numEntries)
 d.Entries = v
}

func parseDictEntry(line string) (string, string, string, []string) {
 // format is
 // trad simp [pinyin] /trans/trans/.../
 tradEnd := strings.Index(line, " ")
 trad := line[0:tradEnd]
 line = strings.TrimSpace(line[tradEnd:])

 simpEnd := strings.Index(line, " ")
 simp := line[0:simpEnd]
 line = strings.TrimSpace(line[simpEnd:])

Complete Web Server

Version 1.0 Page 93©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 pinyinEnd := strings.Index(line, "]")
 pinyin := line[1:pinyinEnd]
 line = strings.TrimSpace(line[pinyinEnd+1:])

 translations := strings.Split(line, "/")
 // includes empty at start and end, so
 translations = translations[1 : len(translations)-1]

 return trad, simp, pinyin, translations
}

10.5 Flash cards
Each individual flash card is of the type Flashcard

type FlashCard struct {
 Simplified string
 English string
 Dictionary *dictionary.Dictionary
}

At present we only store the simplified character and the english t ranslat ion for that character. We also have a Dictionary which
will contain only one entry for the entry we will have chosen somewhere.

A set of flash cards is defined by the type

type FlashCards struct {
 Name string
 CardOrder string
 ShowHalf string
 Cards []*FlashCard
}

where the CardOrder will be "random" or "sequent ial" and the ShowHalf will be "RANDOM_HALF" or "ENGLISH_HALF" or
"CHINESE_HALF" to determine which half of a new card is shown first .

The code for flash cards has nothing novel in it . We get data from the client browser and use JSON to create an object from the
form data, and store the set of flashcards as a JSON string.

10.6 The Complete Server
The complete server is

/* Server
 */

package main

import (
 "fmt"
 "io/ioutil"
 "net/http"
 "os"
 "regexp"
 "text/template"
)

import (
 "dictionary"
 "flashcards"
 "templatefuncs"
)

var d *dictionary.Dictionary

func main() {
 if len(os.Args) != 2 {
 fmt.Fprint(os.Stderr, "Usage: ", os.Args[0], ":port\n")
 os.Exit(1)
 }
 port := os.Args[1]

 // dictionaryPath := "/var/www/go/chinese/cedict_ts.u8"
 dictionaryPath := "cedict_ts.u8"
 d = new(dictionary.Dictionary)
 d.Load(dictionaryPath)
 fmt.Println("Loaded dict", len(d.Entries))

 http.HandleFunc("/", listFlashCards)
 //fileServer := http.FileServer("/var/www/go/chinese/jscript", "/jscript/")

Complete Web Server

Version 1.0 Page 94©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 fileServer := http.StripPrefix("/jscript/", http.FileServer(http.Dir("jscript")))
 http.Handle("/jscript/", fileServer)
 // fileServer = http.FileServer("/var/www/go/chinese/html", "/html/")
 fileServer = http.StripPrefix("/html/", http.FileServer(http.Dir("html")))
 http.Handle("/html/", fileServer)

 http.HandleFunc("/wordlook", lookupWord)
 http.HandleFunc("/flashcards.html", listFlashCards)
 http.HandleFunc("/flashcardSets", manageFlashCards)
 http.HandleFunc("/searchWord", searchWord)
 http.HandleFunc("/addWord", addWord)
 http.HandleFunc("/newFlashCardSet", newFlashCardSet)

 // deliver requests to the handlers
 err := http.ListenAndServe(port, nil)
 checkError(err)
 // That's it!
}

func indexPage(rw http.ResponseWriter, req *http.Request) {
 index, _ := ioutil.ReadFile("html/index.html")
 rw.Write([]byte(index))
}

func lookupWord(rw http.ResponseWriter, req *http.Request) {
 word := req.FormValue("word")
 words := d.LookupEnglish(word)

 //t := template.New("PinyinTemplate")
 t := template.New("DictionaryEntry.html")
 t = t.Funcs(template.FuncMap{"pinyin": templatefuncs.PinyinFormatter})
 t, err := t.ParseFiles("html/DictionaryEntry.html")
 if err != nil {
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 t.Execute(rw, words)
}

type DictPlus struct {
 *dictionary.Dictionary
 Word string
 CardName string
}

func searchWord(rw http.ResponseWriter, req *http.Request) {
 word := req.FormValue("word")
 searchType := req.FormValue("searchtype")
 cardName := req.FormValue("cardname")

 var words *dictionary.Dictionary
 var dp []DictPlus
 if searchType == "english" {
 words = d.LookupEnglish(word)
 d1 := DictPlus{Dictionary: words, Word: word, CardName: cardName}
 dp = make([]DictPlus, 1)
 dp[0] = d1
 } else {
 words = d.LookupPinyin(word)
 numTrans := 0
 for _, entry := range words.Entries {
 numTrans += len(entry.Translations)
 }
 dp = make([]DictPlus, numTrans)
 idx := 0
 for _, entry := range words.Entries {
 for _, trans := range entry.Translations {
 dict := new(dictionary.Dictionary)
 dict.Entries = make([]*dictionary.Entry, 1)
 dict.Entries[0] = entry
 dp[idx] = DictPlus{
 Dictionary: dict,
 Word: trans,
 CardName: cardName}
 idx++
 }
 }
 }

 //t := template.New("PinyinTemplate")
 t := template.New("ChooseDictionaryEntry.html")
 t = t.Funcs(template.FuncMap{"pinyin": templatefuncs.PinyinFormatter})
 t, err := t.ParseFiles("html/ChooseDictionaryEntry.html")
 if err != nil {
 fmt.Println(err.Error())
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 t.Execute(rw, dp)
}

Complete Web Server

Version 1.0 Page 95©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

func newFlashCardSet(rw http.ResponseWriter, req *http.Request) {
 defer http.Redirect(rw, req, "http:/flashcards.html", 200)

 newSet := req.FormValue("NewFlashcard")
 fmt.Println("New cards", newSet)
 // check against nasties:
 b, err := regexp.Match("[/$~]", []byte(newSet))
 if err != nil {
 return
 }
 if b {
 fmt.Println("No good string")
 return
 }

 flashcards.NewFlashCardSet(newSet)
 return
}

func addWord(rw http.ResponseWriter, req *http.Request) {
 url := req.URL
 fmt.Println("url", url.String())
 fmt.Println("query", url.RawQuery)

 word := req.FormValue("word")
 cardName := req.FormValue("cardname")
 simplified := req.FormValue("simplified")
 pinyin := req.FormValue("pinyin")
 traditional := req.FormValue("traditional")
 translations := req.FormValue("translations")

 fmt.Println("word is ", word, " card is ", cardName,
 " simplified is ", simplified, " pinyin is ", pinyin,
 " trad is ", traditional, " trans is ", translations)
 flashcards.AddFlashEntry(cardName, word, pinyin, simplified,
 traditional, translations)
 // add another card?
 addFlashCards(rw, cardName)
}

func listFlashCards(rw http.ResponseWriter, req *http.Request) {

 flashCardsNames := flashcards.ListFlashCardsNames()
 t, err := template.ParseFiles("html/ListFlashcards.html")
 if err != nil {
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 t.Execute(rw, flashCardsNames)
}

/*
 * Called from ListFlashcards.html on form submission
 */
func manageFlashCards(rw http.ResponseWriter, req *http.Request) {

 set := req.FormValue("flashcardSets")
 order := req.FormValue("order")
 action := req.FormValue("submit")
 half := req.FormValue("half")
 fmt.Println("set chosen is", set)
 fmt.Println("order is", order)
 fmt.Println("action is", action)

 cardname := "flashcardSets/" + set

 //components := strings.Split(req.URL.Path[1:], "/", -1)
 //cardname := components[1]
 //action := components[2]
 fmt.Println("cardname", cardname, "action", action)
 if action == "Show cards in set" {
 showFlashCards(rw, cardname, order, half)
 } else if action == "List words in set" {
 listWords(rw, cardname)
 } else if action == "Add cards to set" {
 addFlashCards(rw, set)
 }
}

func showFlashCards(rw http.ResponseWriter, cardname, order, half string) {
 fmt.Println("Loading card name", cardname)
 cards := new(flashcards.FlashCards)
 //cards.Load(cardname, d)
 //flashcards.SaveJSON(cardname + ".json", cards)
 flashcards.LoadJSON(cardname, &cards)
 if order == "Sequential" {
 cards.CardOrder = "SEQUENTIAL"
 } else {
 cards.CardOrder = "RANDOM"

Complete Web Server

Version 1.0 Page 96©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 }
 fmt.Println("half is", half)
 if half == "Random" {
 cards.ShowHalf = "RANDOM_HALF"
 } else if half == "English" {
 cards.ShowHalf = "ENGLISH_HALF"
 } else {
 cards.ShowHalf = "CHINESE_HALF"
 }
 fmt.Println("loaded cards", len(cards.Cards))
 fmt.Println("Card name", cards.Name)

 //t := template.New("PinyinTemplate")
 t := template.New("ShowFlashcards.html")
 t = t.Funcs(template.FuncMap{"pinyin": templatefuncs.PinyinFormatter})
 t, err := t.ParseFiles("html/ShowFlashcards.html")
 if err != nil {
 fmt.Println(err.Error())
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 err = t.Execute(rw, cards)
 if err != nil {
 fmt.Println("Execute error " + err.Error())
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
}

func listWords(rw http.ResponseWriter, cardname string) {
 fmt.Println("Loading card name", cardname)
 cards := new(flashcards.FlashCards)
 //cards.Load(cardname, d)
 flashcards.LoadJSON(cardname, cards)
 fmt.Println("loaded cards", len(cards.Cards))
 fmt.Println("Card name", cards.Name)

 //t := template.New("PinyinTemplate")
 t := template.New("ListWords.html")
 if t.Tree == nil || t.Root == nil {
 fmt.Println("New t is an incomplete or empty template")
 }
 t = t.Funcs(template.FuncMap{"pinyin": templatefuncs.PinyinFormatter})
 t, err := t.ParseFiles("html/ListWords.html")
 if t.Tree == nil || t.Root == nil {
 fmt.Println("Parsed t is an incomplete or empty template")
 }

 if err != nil {
 fmt.Println("Parse error " + err.Error())
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 err = t.Execute(rw, cards)
 if err != nil {
 fmt.Println("Execute error " + err.Error())
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 fmt.Println("No error ")
}

func addFlashCards(rw http.ResponseWriter, cardname string) {
 t, err := template.ParseFiles("html/AddWordToSet.html")
 if err != nil {
 fmt.Println("Parse error " + err.Error())
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }
 cards := flashcards.GetFlashCardsByName(cardname, d)
 t.Execute(rw, cards)
 if err != nil {
 fmt.Println("Execute error " + err.Error())
 http.Error(rw, err.Error(), http.StatusInternalServerError)
 return
 }

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

10.7 Other Bits: JavaScript and CSS
On request, a set of flashcards will be loaded into the browser. A much abbreviated set is shown below. The display of these cards

Complete Web Server

Version 1.0 Page 97©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

is controlled by JavaScript and CSS files. These aren't relevant to the Go server so are omit ted. Those interested can download
the code.

<html>
 <head>
 <title>
 Flashcards for Common Words
 </title>

 <link type="text/css" rel="stylesheet"
 href="/html/CardStylesheet.css">
 </link>

 <script type="text/javascript"
 language="JavaScript1.2" src="/jscript/jquery.js">
 <!-- empty -->
 </script>

 <script type="text/javascript"
 language="JavaScript1.2" src="/jscript/slideviewer.js">
 <!-- empty -->
 </script>

 <script type="text/javascript"
 language="JavaScript1.2">
 cardOrder = RANDOM;
 showHalfCard = RANDOM_HALF;
 </script>
 </head>
 <body onload="showSlides();">
 <h1>
 Flashcards for Common Words
 </h1>
 <p>
 <div class="card">

 <div class="english">
 <div class="vcenter">
 hello
 </div>
 </div>

 <div class="pinyin">
 <div class="vcenter">
 nǐ hǎo
 </div>

 </div>

 <div class="traditional">
 <div class="vcenter">
 你好
 </div>
 </div>

 <div class="simplified">
 <div class="vcenter">
 你好
 </div>

 </div>

 <div class ="translations">
 <div class="vcenter">
 hello

 hi

 how are you?

 </div>

 </div>
 </div>
 <div class="card">
 <div class="english">
 <div class="vcenter">
 hello (interj., esp. on telephone)
 </div>
 </div>

 <div class="pinyin">

 <div class="vcenter">
 wèi
 </div>
 </div>

 <div class="traditional">
 <div class="vcenter">
 喂
 </div>

Complete Web Server

Version 1.0 Page 98©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 </div>

 <div class="simplified">

 <div class="vcenter">
 喂
 </div>
 </div>

 <div class ="translations">
 <div class="vcenter">
 hello (interj., esp. on telephone)

 hey

 to feed (sb or some animal)

 </div>
 </div>
 </div>
 </p>

 <p class ="return">
 Press <Space> to continue

 Return to Flash Cards list
 </p>
 </body>
</html>

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Complete Web Server

Version 1.0 Page 99©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 11 HTML
The Web was originally created to serve HTML documents. Now it is used to serve
all sorts of documents as well as data of dirrent kinds. Nevertheless, HTML is st ill the
main document type delivered over the Web Go has basic mechanisms for parsing
HTML documents, which are covered in this chapter

skip table of contents

Show table of contents

11.1 Introduction
The Web was originally created to serve HTML documents. Now it is used to serve all sorts of documents as well as data of
dirrent kinds. Nevertheless, HTML is st ill the main document type delivered over the Web

HTML has been through a large number of versions, and HTML 5 is current ly under development. There have also been many
"vendor" versions of HTML, introducing tags that never made it into standards.

HTML is simple enough to be edited by hand. Consequent ly, many HTML documents are "ill formed", not following the syntax of
the language. HTML parsers generally are not very strict , and will accept many "illegal" documents.

There wasn't much in earlier versions of Go about handling HTML documents - basically, just a tokenizer. The incomplete nature of
the package has led to its removal for Go 1. It can st ill be found in the exp (experimental) package if you really need it . No doubt
some improved form will become available in a later version of Go, and then it will be added back into this book.

There is limited support for HTML in the XML package, discussed in the next chapter.

11.2 Conclusion
There isn't anything to this package at present as it is st ill under development.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

HTML

Version 1.0 Page 100©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 12 XML
skip table of contents

Show table of contents

XML is a significant markup language mainly intended as a means of serialising data
structures as a text document. Go has basic support for XML document processing.

12.1 Introduction
XML is now a widespread way of represent ing complex data structures serialised into text format. It is used to describe
documents such as DocBook and XHTML. It is used in specialised markup languages such as MathML and CML (Chemistry Markup
Language). It is used to encode data as SOAP messages for Web Services, and the Web Service can be specified using WSDL
(Web Services Descript ion Language).

At the simplest level, XML allows you to define your own tags for use in text documents. Tags can be nested and can be
interspersed with text . Each tag can also contain at t ributes with values. For example,

<person>
 <name>
 <family> Newmarch </family>
 <personal> Jan </personal>
 </name>
 <email type="personal">
 jan@newmarch.name
 </email>
 <email type="work">
 j.newmarch@boxhill.edu.au
 </email>
</person>

The structure of any XML document can be described in a number of ways:

A document type definit ion DTD is good for describing structure
XML schema are good for describing the data types used by an XML document
RELAX NG is proposed as an alternat ive to both

There is argument over the relat ive value of each way of defining the structure of an XML document. We won't buy into that, as Go
does not suport any of them. Go cannot check for validity of any document against a schema, but only for well-formedness.

Four topics are discussed in this chapter: parsing an XML stream, marshalling and unmarshalling Go data into XML, and XHTML.

12.2 Parsing XML
Go has an XML parser which is created using NewParser. This takes an io.Reader as parameter and returns a pointer to Parser.
The main method of this type is Token which returns the next token in the input stream. The token is one of the types
StartElement, EndElement, CharData, Comment, ProcInst or Directive.

The types are

StartElement

The type StartElement is a structure with two field types:

type StartElement struct {
 Name Name
 Attr []Attr
}

type Name struct {
 Space, Local string
}

type Attr struct {
 Name Name
 Value string
}

EndElement

This is also a structure

type EndElement struct {
 Name Name
}

CharData

This type represents the text content enclosed by a tag and is a simple type

XML

Version 1.0 Page 101©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

type CharData []byte

Comment

Similarly for this type

type Comment []byte

ProcInst

A ProcInst represents an XML processing instruct ion of the form <?target inst?>

type ProcInst struct {
 Target string
 Inst []byte
}

Directive

A Direct ive represents an XML direct ive of the form <!text>. The bytes do not include the <! and > markers.

type Directive []byte

A program to print out the t ree structure of an XML document is

/* Parse XML
 */

package main

import (
 "encoding/xml"
 "fmt"
 "io/ioutil"
 "os"
 "strings"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "file")
 os.Exit(1)
 }
 file := os.Args[1]
 bytes, err := ioutil.ReadFile(file)
 checkError(err)
 r := strings.NewReader(string(bytes))

 parser := xml.NewDecoder(r)
 depth := 0
 for {
 token, err := parser.Token()
 if err != nil {
 break
 }
 switch t := token.(type) {
 case xml.StartElement:
 elmt := xml.StartElement(t)
 name := elmt.Name.Local
 printElmt(name, depth)
 depth++
 case xml.EndElement:
 depth--
 elmt := xml.EndElement(t)
 name := elmt.Name.Local
 printElmt(name, depth)
 case xml.CharData:
 bytes := xml.CharData(t)
 printElmt("\""+string([]byte(bytes))+"\"", depth)
 case xml.Comment:
 printElmt("Comment", depth)
 case xml.ProcInst:
 printElmt("ProcInst", depth)
 case xml.Directive:
 printElmt("Directive", depth)
 default:
 fmt.Println("Unknown")
 }
 }
}

func printElmt(s string, depth int) {
 for n := 0; n < depth; n++ {
 fmt.Print(" ")
 }
 fmt.Println(s)
}

XML

Version 1.0 Page 102©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Note that the parser includes all CharData, including the whitespace between tags.

If we run this program against the person data structure given earlier, it produces

person
 "
 "
 name
 "
 "
 family
 " Newmarch "
 family
 "
 "
 personal
 " Jan "
 personal
 "
 "
 name
 "
 "
 email
 "
 jan@newmarch.name
 "
 email
 "
 "
 email
 "
 j.newmarch@boxhill.edu.au
 "
 email
 "
"
person
"
"

Note that as no DTD or other XML specificat ion has been used, the tokenizer correct ly prints out all the white space (a DTD may
specify that the whitespace can be ignored, but without it that assumption cannot be made.)

There is a potent ial t rap in using this parser. It re-uses space for strings, so that once you see a token you need to copy its value if
you want to refer to it later. Go has methods such as func (c CharData) Copy() CharData to make a copy of data.

12.3 Unmarshalling XML
Go provides a funct ion Unmarshal and a method func (*Parser) Unmarshal to unmarshal XML into Go data structures. The
unmarshalling is not perfect : Go and XML are different languages.

We consider a simple example before looking at the details. We take the XML document given earlier of

<person>
 <name>
 <family> Newmarch </family>
 <personal> Jan </personal>
 </name>
 <email type="personal">
 jan@newmarch.name
 </email>
 <email type="work">
 j.newmarch@boxhill.edu.au
 </email>
</person>

We would like to map this onto the Go structures

type Person struct {
 Name Name
 Email []Email
}

type Name struct {
 Family string
 Personal string
}

XML

Version 1.0 Page 103©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

type Email struct {
 Type string
 Address string
}

This requires several comments:

1. Unmarshalling uses the Go reflect ion package. This requires that all fields by public i.e. start with a capital let ter. Earlier
versions of Go used case-insensit ive matching to match fields such as the XML string "name" to the field Name. Now, though,
case-sensitive matching is used. To perform a match, the structure fields must be tagged to show the XML string that will be
matched against . This changes Person to

type Person struct {
 Name Name `xml:"name"`
 Email []Email `xml:"email"`
}

2. While tagging of fields can at tach XML strings to fields, it can't do so with the names of the structures. An addit ional field is
required, with field name "XMLName". This only affects the top-level struct , Person

type Person struct {
 XMLName Name `xml:"person"`
 Name Name `xml:"name"`
 Email []Email `xml:"email"`
}

3. Repeated tags in the map to a slice in Go
4. Attributes within tags will match to fields in a structure only if the Go field has the tag ",at t r". This occurs with the field Type of

Email, where matching the at t ribute "type" of the "email" tag requires `xml:"type,attr"`
5. If an XML tag has no at t ributes and only has character data, then it matches a string field by the same name (case-

sensit ive, though). So the tag `xml:"family"` with character data "Newmarch" maps to the string field Family
6. But if the tag has at t ributes, then it must map to a structure. Go assigns the character data to the field with tag ,chardata.

This occurs with the "email" data and the field Address with tag ,chardata

A program to unmarshal the document above is

/* Unmarshal
 */

package main

import (
 "encoding/xml"
 "fmt"
 "os"
 //"strings"
)

type Person struct {
 XMLName Name `xml:"person"`
 Name Name `xml:"name"`
 Email []Email `xml:"email"`
}

type Name struct {
 Family string `xml:"family"`
 Personal string `xml:"personal"`
}

type Email struct {
 Type string `xml:"type,attr"`
 Address string `xml:",chardata"`
}

func main() {
 str := `<?xml version="1.0" encoding="utf-8"?>
<person>
 <name>
 <family> Newmarch </family>
 <personal> Jan </personal>
 </name>
 <email type="personal">
 jan@newmarch.name
 </email>
 <email type="work">
 j.newmarch@boxhill.edu.au
 </email>
</person>`

 var person Person

 err := xml.Unmarshal([]byte(str), &person)
 checkError(err)

XML

Version 1.0 Page 104©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 // now use the person structure e.g.
 fmt.Println("Family name: \"" + person.Name.Family + "\"")
 fmt.Println("Second email address: \"" + person.Email[1].Address + "\"")
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

(Note the spaces are correct .). The strict rules are given in the package specificat ion.

12.4 Marshalling XML
Go 1 also has support for marshalling data structures into an XML document. The funct ion is

func Marshal(v interface}{) ([]byte, error)

This was used as a check in the last two lines of the previous program.

12.5 XHTML
HTML does not conform to XML syntax. It has unterminated tags such as '
'. XHTML is a cleanup of HTML to make it
compliant to XML. Documents in XHTML can be managed using the techniques above for XML.

12.6 HTML
There is some support in the XML package to handle HTML documents even though they are not XML-compliant. The XML parser
discussed earlier can handle many HTML documents if it is modified by

 parser := xml.NewDecoder(r)
 parser.Strict = false
 parser.AutoClose = xml.HTMLAutoClose
 parser.Entity = xml.HTMLEntity

12.7 Conclusion
Go has basic support for dealing with XML strings. It does not as yet have mechanisms for dealing with XML specificat ion
languages such as XML Schema or Relax NG.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

XML

Version 1.0 Page 105©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 13 Remote Procedure Call
skip table of contents

Show table of contents

13.1 Introduction
Socket and HTTP programming use a message-passing paradigm. A client sends a message to a server which usually sends a
message back. Both sides ae responsible for creat ing messages in a format understood by both sides, and in reading the data out
of those messages.

However, most standalone applicat ions do not make so much use of message passing techniques. Generally the preferred
mechanism is that of the function (or method or procedure) call. In this style, a program will call a funct ion with a list of
parameters, and on complet ion of the funct ion call will have a set of return values. These values may be the funct ion value, or if
addresses have been passed as parameters then the contents of those addresses might have been changed.

The remote procedure call is an at tempt to bring this style of programming into the network world. Thus a client will make what
looks to it like a normal procedure call. The client-side will package this into a network message and transfer it to the server. The
server will unpack this and turn it back into a procedure call on the server side. The results of this call will be packaged up for return
to the client .

Diagrammatically it looks like

where the steps are

1. The client calls the local stub procedure. The stub packages up the parameters into a network message. This is called
marshalling.

2. Networking funct ions in the O/S kernel are called by the stub to send the message.
3. The kernel sends the message(s) to the remote system. This may be connect ion-oriented or connect ionless.
4. A server stub unmarshals the arguments from the network message.
5. The server stub executes a local procedure call.
6. The procedure completes, returning execut ion to the server stub.
7. The server stub marshals the return values into a network message.
8. The return messages are sent back.
9. The client stub reads the messages using the network funct ions.

10. The message is unmarshalled. and the return values are set on the stack for the local process.

There are two common styles for implement ing RPC. The first is typified by Sun's RPC/ONC and by CORBA. In this, a
specificat ion of the service is given in some abstract language such as CORBA IDL (interface definit ion language). This is then
compiled into code for the client and for the server. The client then writes a normal program containing calls to a
procedure/funct ion/method which is linked to the generated client-side code. The server-side code is actually a server itself, which
is linked to the procedure implementat ion that you write.

In this way, the client-side code is almost ident ical in appearance to a normal procedure call. Generally there is a lit t le extra code to
locate the server. In Sun's ONC, the address of the server must be known; in CORBA a naming service is called to find the address
of the server; In Java RMI, the IDL is Java itself and a naming service is used to find the address of the service.

In the second style, you have to make use of a special client API. You hand the funct ion name and its parameters to this library on
the client side. On the server side, you have to explicit ly write the server yourself, as well as the remote procedure implementat ion.

This approach is used by many RPC systems, such as Web Services. It is also the approach used by Go's RPC.

13.2 Go RPC
Go's RPC is so far unique to Go. It is different to the other RPC systems, so a Go client will only talk to a Go server. It uses the

RPC

Version 1.0 Page 106©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Gob serialisat ion system discussed in chapter X, which defines the data types which can be used.

RPC systems generally make some restrict ions on the funct ions that can be called across the network. This is so that the RPC
system can properly determine what are value arguments to be sent, what are reference arguments to receive answers, and how
to signal errors.

In Go, the restrict ion is that

the funct ion must be public (begin with a capital let ter);
have exact ly two arguments, the first is a pointer to value data to be received by the funct ion from the client , and the second
is a pointer to hold the answers to be returned to the client ; and
have a return value of type os.Error

For example, a valid funct ion is

 F(&T1, &T2) os.Error

The restrict ion on arguments means that you typically have to define a structure type. Go's RPC uses the gob package for
marshalling and unmarshalling data, so the argument types have to follow the rules of gob as discussed in an earlier chapter.

We shall follow the example given in the Go documentat ion, as this illustrates the important points. The server performs two
operat ions which are t rivial - they do not require the "grunt" of RPC, but are simple to understand. The two operat ions are to
mult iply two integers, and the second is to find the quot ient and remainder after dividing the first by the second.

The two values to be manipulated are given in a structure:

type Values struct {
 X, Y int
}

The sum is just an int, while the quot ient /remainder is another structure

type Quotient struct {
 Quo, Rem int
}

We will have two funct ions, mult iply and divide to be callable on the RPC server. These funct ions will need to be registered with the
RPC system. The funct ion Register takes a single parameter, which is an interface. So we need a type with these two funct ions:

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) os.Error {
 *reply = args.A * args.B
 return nil
}

func (t *Arith) Divide(args *Args, quo *Quotient) os.Error {
 if args.B == 0 {
 return os.ErrorString("divide by zero")
 }
 quo.Quo = args.A / args.B
 quo.Rem = args.A % args.B
 return nil
}

The underlying type of Arith is given as int. That doesn't matter - any type could have done.

An object of this type can now be registered using Register, and then its methods can be called by the RPC system.

HTTP RPC Server

Any RPC needs a t ransport mechanism to get messages across the network. Go can use HTTP or TCP. The advantage of the
HTTP mechanism is that it can leverage off the HTTP suport library. You need to add an RPC handler to the HTTP layer which is
done using HandleHTTP and then start an HTTP server. The complete code is

/**
* ArithServer
 */

package main

import (
 "fmt"
 "net/rpc"
 "errors"
 "net/http"
)

type Args struct {

RPC

Version 1.0 Page 107©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 A, B int
}

type Quotient struct {
 Quo, Rem int
}

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
 *reply = args.A * args.B
 return nil
}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
 if args.B == 0 {
 return errors.New("divide by zero")
 }
 quo.Quo = args.A / args.B
 quo.Rem = args.A % args.B
 return nil
}

func main() {

 arith := new(Arith)
 rpc.Register(arith)
 rpc.HandleHTTP()

 err := http.ListenAndServe(":1234", nil)
 if err != nil {
 fmt.Println(err.Error())
 }
}

HTTP RPC client

The client needs to set up an HTTP connect ion to the RPC server. It needs to prepare a structure with the values to be sent, and
the address of a variable to store the results in. Then it can make a Call with arguments:

The name of the remote funct ion to execute
The values to be sent
The address of a variable to store the result in

A client that calls both funct ions of the arithmet ic server is

/**
* ArithClient
 */

package main

import (
 "net/rpc"
 "fmt"
 "log"
 "os"
)

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "server")
 os.Exit(1)
 }
 serverAddress := os.Args[1]

 client, err := rpc.DialHTTP("tcp", serverAddress+":1234")
 if err != nil {
 log.Fatal("dialing:", err)
 }
 // Synchronous call
 args := Args{17, 8}
 var reply int
 err = client.Call("Arith.Multiply", args, &reply)
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)

RPC

Version 1.0 Page 108©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 var quot Quotient
 err = client.Call("Arith.Divide", args, ")
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B, quot.Quo, quot.Rem)

}

TCP RPC server

A version of the server that uses TCP sockets is

/**
* TCPArithServer
 */

package main

import (
 "fmt"
 "net/rpc"
 "errors"
 "net"
 "os"
)

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
 *reply = args.A * args.B
 return nil
}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
 if args.B == 0 {
 return errors.New("divide by zero")
 }
 quo.Quo = args.A / args.B
 quo.Rem = args.A % args.B
 return nil
}

func main() {

 arith := new(Arith)
 rpc.Register(arith)

 tcpAddr, err := net.ResolveTCPAddr("tcp", ":1234")
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 /* This works:
 rpc.Accept(listener)
 */
 /* and so does this:
 */
 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 rpc.ServeConn(conn)
 }

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Note that the call to Accept is blocking, and just handles client connect ions. If the server wishes to do other work as well, it should
call this in a gorout ine.

RPC

Version 1.0 Page 109©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

TCP RPC client

A client that uses the TCP server and calls both funct ions of the arithmet ic server is

/**
* TCPArithClient
 */

package main

import (
 "net/rpc"
 "fmt"
 "log"
 "os"
)

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "server:port")
 os.Exit(1)
 }
 service := os.Args[1]

 client, err := rpc.Dial("tcp", service)
 if err != nil {
 log.Fatal("dialing:", err)
 }
 // Synchronous call
 args := Args{17, 8}
 var reply int
 err = client.Call("Arith.Multiply", args, &reply)
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)

 var quot Quotient
 err = client.Call("Arith.Divide", args, ")
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B, quot.Quo, quot.Rem)

}

Matching values

We note that the types of the value arguments are not the same on the client and server. In the server, we have used Values while
in the client we used Args. That doesn't matter, as we are following the rules of gob serialisat ion, and the names an types of the
two structures' fields match. Better programming pract ise would say that the names should be the same!

However, this does point out a possible t rap in using Go RPC. If we change the structure in the client to be, say,

type Values struct {
 C, B int
}

then gob has no problems: on the server-side the unmarshalling will ignore the value of C given by the client , and use the default
zero value for A.

Using Go RPC will require a rigid enforcement of the stability of field names and types by the programmer. We note that there is no
version control mechanism to do this, and no mechanism in gob to signal any possible mismatches.

13.3 JSON
This sect ion adds nothing new to the earlier concepts. It just uses a different "wire" format for the data, JSON instead of gob. As
such, clients or servers could be writ ten in other languasge that understand sockets and JSON.

JSON RPC client

A client that calls both funct ions of the arithmet ic server is

RPC

Version 1.0 Page 110©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

/* JSONArithCLient
 */

package main

import (
 "net/rpc/jsonrpc"
 "fmt"
 "log"
 "os"
)

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "server:port")
 log.Fatal(1)
 }
 service := os.Args[1]

 client, err := jsonrpc.Dial("tcp", service)
 if err != nil {
 log.Fatal("dialing:", err)
 }
 // Synchronous call
 args := Args{17, 8}
 var reply int
 err = client.Call("Arith.Multiply", args, &reply)
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)

 var quot Quotient
 err = client.Call("Arith.Divide", args, ")
 if err != nil {
 log.Fatal("arith error:", err)
 }
 fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B, quot.Quo, quot.Rem)

}

JSON RPC server

A version of the server that uses JSON encoding is

/* JSONArithServer
 */

package main

import (
 "fmt"
 "net/rpc"
 "net/rpc/jsonrpc"
 "os"
 "net"
 "errors"
)
//import ("fmt"; "rpc"; "os"; "net"; "log"; "http")

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
 *reply = args.A * args.B
 return nil
}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
 if args.B == 0 {
 return errors.New("divide by zero")
 }
 quo.Quo = args.A / args.B

RPC

Version 1.0 Page 111©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 quo.Rem = args.A % args.B
 return nil
}

func main() {

 arith := new(Arith)
 rpc.Register(arith)

 tcpAddr, err := net.ResolveTCPAddr("tcp", ":1234")
 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)
 checkError(err)

 /* This works:
 rpc.Accept(listener)
 */
 /* and so does this:
 */
 for {
 conn, err := listener.Accept()
 if err != nil {
 continue
 }
 jsonrpc.ServeConn(conn)
 }

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

13.4 Conclusion
RPC is a popular means of distribut ing applicat ions. Several ways of doing it have been presented here. What is missing from Go is
support for the current ly fashionable (but extremely badly enginereed) SOAP RPC mechanism.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

RPC

Version 1.0 Page 112©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 14 Network channels
skip table of contents

Show table of contents

14.1 Warning
The netchan package is being reworked. While it was in earlier versions of Go, it is not in Go 1. It is available in the old/netchan
package if you st ill need it . This chapter describes this old version. Do not use it for new code.

14.1 Introduction
There are many models for sharing informat ion between communicat ing processes. One of the more elegant is Hoare's concept of
channels. In this, there is no shared memory, so that none of the issues of accessing common memory arise. Instead, one process
will send a message along a channel to another process. Channels may be synchronous, or asynchronous, buffered or unbuffered.

Go has channels as first order data types in the language. The canonical example of using channels is Erastophene's prime sieve:
one gorout ine generates integers from 2 upwards. These are pumped into a series of channels that act as sieves. Each filter is
dist inguished by a different prime, and it removes from its stream each number that is divisible by its prime. So the '2' gorout ine
filters out even numbers, while the '3' gorout ine filters out mult iples of 3. The first number that comes out of the current set of filters
must be a new prime, and this is used to start a new filter with a new channel.

The efficacy of many thousands of gorout ines communicat ing by many thousands of channels depends on how well the
implementat ion of these primit ives is done. Go is designed to opt imise these, so this type of program is feasible.

Go also supports distributed channels using the netchan package. But network communicat ions are thousands of t imes slower than
channel communicat ions on a single computer. Running a sieve on a network over TCP would be ludicrously slow. Nevertheless, it
gives a programming opt ion that may be useful in many situat ions.

Go's network channel model is somewhat similar in concept to the RPC model: a server creates channels and registers them with
the network channel API. A client does a lookup for channels on a server. At this point both sides have a shared channel over which
they can communicate. Note that communicat ion is one-way: if you want to send informat ion both ways, open two channels one
for each direct ion.

14.2 Channel server
In order to make a channel visible to clients, you need to export it . This is done by creat ing an exporter using NewExporter with no
parameters. The server then calls ListenAndServe to lsiten and handle responses. This takes two parameters, the first being the
underlying transport mechanism such as "tcp" and the second being the network listening address (usually just a port number.

For each channel, the server creates a normal local channel and then calls Export to bind this to the network channel. At the t ime of
export , the direct ion of communicat ion must be specified. Clients search for channels by name, which is a string. This is specified to
the exporter.

The server then uses the local channels in the normal way, reading or writ ing on them. We illustrate with an "echo" server which
reads lines and sends them back. It needs two channels for this. The channel that the client writes to we name "echo-out". On the
server side this is a read channel. Similarly, the channel that the client reads from we call "echo-in", which is a write channel to the
server.

The server program is

/* EchoServer
 */
package main

import (
 "fmt"
 "os"
 "old/netchan"
)

func main() {

 // exporter, err := netchan.NewExporter("tcp", ":2345")
 exporter := netchan.NewExporter()
 err := exporter.ListenAndServe("tcp", ":2345")
 checkError(err)

 echoIn := make(chan string)
 echoOut := make(chan string)
 exporter.Export("echo-in", echoIn, netchan.Send)
 exporter.Export("echo-out", echoOut, netchan.Recv)
 for {
 fmt.Println("Getting from echoOut")

Network channels

Version 1.0 Page 113©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 s, ok := <-echoOut
 if !ok {
 fmt.Printf("Read from channel failed")
 os.Exit(1)
 }
 fmt.Println("received", s)

 fmt.Println("Sending back to echoIn")
 echoIn <- s
 fmt.Println("Sent to echoIn")
 }

}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Note: at the time of writing, the server will sometimes fail with an error message "netchan export: error encoding client response".
This is logged as Issue 1805

14.3 Channel client
In order to find an exported channel, the client must import it . This is created using Import which takes a protocol and a network
service address of "host:port". This is then used to import a network channel by name and bind it to a local channel. Note that
channel variables are references, so you do not need to pass their addresses to funct ions that change them.

The following client gets two channels to and from the echo server, and then writes and reads ten messages:

/* EchoClient
 */
package main

import (
 "fmt"
 "old/netchan"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 importer, err := netchan.Import("tcp", service)
 checkError(err)

 fmt.Println("Got importer")
 echoIn := make(chan string)
 importer.Import("echo-in", echoIn, netchan.Recv, 1)
 fmt.Println("Imported in")

 echoOut := make(chan string)
 importer.Import("echo-out", echoOut, netchan.Send, 1)
 fmt.Println("Imported out")

 for n := 0; n < 10; n++ {
 echoOut <- "hello "
 s, ok := <-echoIn
 if !ok {
 fmt.Println("Read failure")
 break
 }
 fmt.Println(s, n)
 }
 close(echoOut)
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

14.4 Handling Timeouts
Because these channels use the network, there is alwasy the possibility of network errors leading to t imeouts. Andrew Gerrand
points out a solut ion using t imeouts: "[Set up a t imeout channel.] We can then use a select statement to receive from either ch or

Network channels

Version 1.0 Page 114©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

http://code.google.com/p/go/issues/detail?id=1805
http://blog.golang.org/2010/09/go-concurrency-patterns-timing-out-and.html

t imeout. If nothing arrives on ch after one second, the t imeout case is selected and the at tempt to read from ch is abandoned."

timeout := make(chan bool, 1)
go func() {
 time.Sleep(1e9) // one second
 timeout <- true
}()

select {
case <- ch:
 // a read from ch has occurred
case <- timeout:
 // the read from ch has timed out
}

14.5 Channels of channels
The online Go tutorial at ht tp://golang.org/doc/go_tutorial.html has an example of mult iplexing, where channels of channels are
used. The idea is that instread of sharing one channel, a new communicator is given their own channel to have a privagye
conversat ion. That is, a client is sent a channel from a server through a shared channel, and uses that private channel.

This doesn't work direct ly with network channels: a channel cannot be sent over a network channel. So we have to be a lit t le more
indirect . Each t ime a client connects to a server, the server builds new network channels and exports them with new names. Then
it sends the names of these new channels to the client which imports them. It uses these new channels for communicaiton.

A server is

/* EchoChanServer
 */
package main

import (
 "fmt"
 "os"
 "old/netchan"
 "strconv"
)

var count int = 0

func main() {

 exporter := netchan.NewExporter()
 err := exporter.ListenAndServe("tcp", ":2345")
 checkError(err)

 echo := make(chan string)
 exporter.Export("echo", echo, netchan.Send)
 for {
 sCount := strconv.Itoa(count)
 lock := make(chan string)
 go handleSession(exporter, sCount, lock)

 <-lock
 echo <- sCount
 count++
 exporter.Drain(-1)
 }
}

func handleSession(exporter *netchan.Exporter, sCount string, lock chan string) {
 echoIn := make(chan string)
 exporter.Export("echoIn"+sCount, echoIn, netchan.Send)

 echoOut := make(chan string)
 exporter.Export("echoOut"+sCount, echoOut, netchan.Recv)
 fmt.Println("made " + "echoOut" + sCount)

 lock <- "done"

 for {
 s := <-echoOut
 echoIn <- s
 }
 // should unexport net channels
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

Network channels

Version 1.0 Page 115©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

and a client is

/* EchoChanClient
 */
package main

import (
 "fmt"
 "old/netchan"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 importer, err := netchan.Import("tcp", service)
 checkError(err)

 fmt.Println("Got importer")
 echo := make(chan string)
 importer.Import("echo", echo, netchan.Recv, 1)
 fmt.Println("Imported in")

 count := <-echo
 fmt.Println(count)

 echoIn := make(chan string)
 importer.Import("echoIn"+count, echoIn, netchan.Recv, 1)

 echoOut := make(chan string)
 importer.Import("echoOut"+count, echoOut, netchan.Send, 1)

 for n := 1; n < 10; n++ {
 echoOut <- "hello "
 s := <-echoIn
 fmt.Println(s, n)
 }
 close(echoOut)
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

14.6 Conclusion
Network channels are a distributed analogue of local channels. They behave approximately the same, but due to limitat ions of the
model some things have to be done a lit t le different ly.

Copyright Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Network channels

Version 1.0 Page 116©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Chapter 15 Web sockets
Web sockets are designed to answer a common problem with web systems: the
server is unable to init iate or push content to a user agent such as a browser. Web
sockets allow a full duplex connect ion to be established to allow this. Go has nearly
complete support for them.

skip table of contents

Show table of contents

15.1 Warning
The Web Sockets package is not current ly in the main Go 1 t ree and is not included in the current distribut ions. To use it , you need
to install it by

go get code.google.com/p/go.net/websocket

15.1 Introduction
The websockets model will change for release r61. This describes the new package, not the package in r60 and earlier. If you do
not have r61, at the t ime of writ ing, use hg pull; hg update weekly to download it .

The standard model of interact ion between a web user agent such as a browser and a web server such as Apache is that the user
agent makes HTTP requests and the server makes a single reply to each one. In the case of a browser, the request is made by
clicking on a link, entering a URL into the address bar, clicking on the forward or back buttons, etc. The response is t reated as a
new page and is loaded into a browser window.

This t radit ional model has many drawbacks. The first is that each request opens and closes a new TCP connect ion. HTTP 1.1
solved this by allowing persistent connect ions, so that a connect ion could be held open for a short period to allow for mult iple
requests (e.g. for images) to be made on the same server.

While HTTP 1.1 persistent connect ions alleviate the problem of slow loading of a page with many graphics, it does not improve the
interact ion model. Even with forms, the model is st ill that of submit t ing the form and displaying the response as a new page.
JavaScript helps in allowing error checking to be performed on form data before submission, but does not change the model.

AJAX (Asynchronous JavaScript and XML) made a significant advance to the user interact ion model. This allows a browser to
make a request and just use the response to update the display in place using the HTML Document Object Model (DOM). But
again the interact ion model is the same. AJAX just affects how the browser manages the returned pages. There is no explicit extra
support in Go for AJAX, as none is needed: the HTTP server just sees an ordinary HTTP POST request with possibly some XML
or JSON data, and this can be dealt with using techniques already discussed.

All of these are st ill browser to server communicat ion. What is missing is server init iated communicat ions to the browser. This can
be filled by Web sockets: the browser (or any user agent) keeps open a long-lived TCP connect ion to a Web sockets server. The
TCP connect ion allows either side to send arbit rary packets, so any applicat ion protocol can be used on a web socket.

How a websocket is started is by the user agent sending a special HTTP request that says "switch to web sockets". The TCP
connect ion underlying the HTTP request is kept open, but both user agent and server switch to using the web sockets protocol
instead of gett ing an HTTP response and closing the socket.

Note that it is st ill the browser or user agent that init iates the Web socket connect ion. The browser does not run a TCP server of
its own. While the specificat ion is complex, the protocol is designed to be fairly easy to use. The client opens an HTTP connect ion
and then replaces the HTTP protocol with its own WS protocol, re-using the same TCP connect ion.

15.2 Web socket server
A web socket server starts off by being an HTTP server, accept ing TCP conect ions and handling the HTTP requests on the TCP
connect ion. When a request comes in that switches that connect ion to a being a web socket connect ion, the protocol handler is
changed from an HTTP handler to a WebSocket handler. So it is only that TCP connect ion that gets its role changed: the server
cont inues to be an HTTP server for other requests, while the TCP socket underlying that one connect ion is used as a web socket.

One of the simple servers HHTP we discussed in Chapter 8: HTTP registered varous handlers such as a file handler or a funct ion
handler. To handle web socket requests we simply register a different type of handler - a web socket handler. Which handler the
server uses is based on the URL pattern. For example, a file handler might be registered for "/", a funct ion handler for "/cgi-bin/..."
and a web sockets handler for "/ws".

An HTTP server that is only expect ing to be used for web sockets might run by

func main() {
 http.Handle("/", websocket.Handler(WSHandler))

Web Sockets

Version 1.0 Page 117©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17

 err := http.ListenAndServe(":12345", nil)
 checkError(err)
}

A more complex server might handle both HTTP and web socket requests simply by adding in more handlers.

15.3 The Message object
HTTP is a stream protocol. Web sockets are frame-based. You prepare a block of data (of any size) and send it as a set of
frames. Frames can contain either strings in UTF-8 encoding or a sequence of bytes.

The simplest way of using web sockets is just to prepare a block of data and ask the Go websocket library to package it as a set
of frame data, send them across the wire and receive it as the same block. The websocket package contains a convenience object
Message to do just that . The Message object has two methods, Send and Receive which take a websocket as first parameter. The
second parameter is either the address of a variable to store data in, or the data to be sent. Code to send string data would look
like

 msgToSend := "Hello"
 err := websocket.Message.Send(ws, msgToSend)

 var msgToReceive string
 err := websocket.Message.Receive(conn, &msgToReceive)

Code to send byte data would look like

 dataToSend := []byte{0, 1, 2}
 err := websocket.Message.Send(ws, dataToSend)

 var dataToReceive []byte
 err := websocket.Message.Receive(conn, &dataToReceive)

An echo server to send and receive string data is given below. Note that in web sockets either side can init iate sending of
messages, and in this server we send messages from the server to a client when it connects (send/receive) instead of the more
normal receive/send server. The server is

/* EchoServer
 */
package main

import (
 "fmt"
 "net/http"
 "os"
 // "io"
 "code.google.com/p/go.net/websocket"
)

func Echo(ws *websocket.Conn) {
 fmt.Println("Echoing")

 for n := 0; n < 10; n++ {
 msg := "Hello " + string(n+48)
 fmt.Println("Sending to client: " + msg)
 err := websocket.Message.Send(ws, msg)
 if err != nil {
 fmt.Println("Can't send")
 break
 }

 var reply string
 err = websocket.Message.Receive(ws, &reply)
 if err != nil {
 fmt.Println("Can't receive")
 break
 }
 fmt.Println("Received back from client: " + reply)
 }
}

func main() {

 http.Handle("/", websocket.Handler(Echo))
 err := http.ListenAndServe(":12345", nil)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)

Web Sockets

Version 1.0 Page 118©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 }
}

A client that talks to this server is

/* EchoClient
 */
package main

import (
 "code.google.com/p/go.net/websocket"
 "fmt"
 "io"
 "os"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "ws://host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := websocket.Dial(service, "", "http://localhost")
 checkError(err)
 var msg string
 for {
 err := websocket.Message.Receive(conn, &msg)
 if err != nil {
 if err == io.EOF {
 // graceful shutdown by server
 break
 }
 fmt.Println("Couldn't receive msg " + err.Error())
 break
 }
 fmt.Println("Received from server: " + msg)
 // return the msg
 err = websocket.Message.Send(conn, msg)
 if err != nil {
 fmt.Println("Coduln't return msg")
 break
 }
 }
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

The url for the client running on the same machine as the server should be ws://localhost:12345/

15.4 The JSON object
It is expected that many websocket clients and servers will exchange data in JSON format. For Go programs this means that a Go
object will be marshalled into JSON format as described in Chapter 4: Serialisat ion and then sent as a UTF-8 string, while the
receiver will read this string and unmarshal it back into a Go object .

The websocket convenience object JSON will do this for you. It has methods Send and Receive for sending and receiving data, just
like the Message object .

A client that sends a Person object in JSON format is

/* PersonClientJSON
 */
package main

import (
 "code.google.com/p/go.net/websocket"
 "fmt"
 "os"
)

type Person struct {
 Name string
 Emails []string
}

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "ws://host:port")

Web Sockets

Version 1.0 Page 119©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

../serialisation/chapter.html

 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := websocket.Dial(service, "",
 "http://localhost")
 checkError(err)

 person := Person{Name: "Jan",
 Emails: []string{"ja@newmarch.name", "jan.newmarch@gmail.com"},
 }

 err = websocket.JSON.Send(conn, person)
 if err != nil {
 fmt.Println("Couldn't send msg " + err.Error())
 }
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

and a server that reads it is

/* PersonServerJSON
 */
package main

import (
 "code.google.com/p/go.net/websocket"
 "fmt"
 "net/http"
 "os"
)

type Person struct {
 Name string
 Emails []string
}

func ReceivePerson(ws *websocket.Conn) {
 var person Person
 err := websocket.JSON.Receive(ws, &person)
 if err != nil {
 fmt.Println("Can't receive")
 } else {

 fmt.Println("Name: " + person.Name)
 for _, e := range person.Emails {
 fmt.Println("An email: " + e)
 }
 }
}

func main() {

 http.Handle("/", websocket.Handler(ReceivePerson))
 err := http.ListenAndServe(":12345", nil)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

15.5 The Codec type
The Message and JSON objects are both instances of the type Codec. This type is defined by

type Codec struct {
 Marshal func(v interface{}) (data []byte, payloadType byte, err os.Error)
 Unmarshal func(data []byte, payloadType byte, v interface{}) (err os.Error)
}

The type Codec implements the Send and Receive methods used earlier.

It is likely that websockets will also be used to exchange XML data. We can build an XML Codec object by wrapping the XML
marshal and unmarshal methods discussed in Chapter 12: XML to give a suitable Codec object .

Web Sockets

Version 1.0 Page 120©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

../xml/chapter.html

We can create a XMLCodec package in this way:

package xmlcodec

import (
 "encoding/xml"
 "code.google.com/p/go.net/websocket"
)

func xmlMarshal(v interface{}) (msg []byte, payloadType byte, err error) {
 //buff := &bytes.Buffer{}
 msg, err = xml.Marshal(v)
 //msgRet := buff.Bytes()
 return msg, websocket.TextFrame, nil
}

func xmlUnmarshal(msg []byte, payloadType byte, v interface{}) (err error) {
 // r := bytes.NewBuffer(msg)
 err = xml.Unmarshal(msg, v)
 return err
}

var XMLCodec = websocket.Codec{xmlMarshal, xmlUnmarshal}

We can then serialise Go objects such as a Person into an XML document and send it from a client to a server by

/* PersonClientXML
 */
package main

import (
 "code.google.com/p/go.net/websocket"
 "fmt"
 "os"
 "xmlcodec"
)

type Person struct {
 Name string
 Emails []string
}

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Usage: ", os.Args[0], "ws://host:port")
 os.Exit(1)
 }
 service := os.Args[1]

 conn, err := websocket.Dial(service, "", "http://localhost")
 checkError(err)

 person := Person{Name: "Jan",
 Emails: []string{"ja@newmarch.name", "jan.newmarch@gmail.com"},
 }

 err = xmlcodec.XMLCodec.Send(conn, person)
 if err != nil {
 fmt.Println("Couldn't send msg " + err.Error())
 }
 os.Exit(0)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

A server which receives this and just prints informat ion to the console is

/* PersonServerXML
 */
package main

import (
 "code.google.com/p/go.net/websocket"
 "fmt"
 "net/http"
 "os"
 "xmlcodec"
)

Web Sockets

Version 1.0 Page 121©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

type Person struct {
 Name string
 Emails []string
}

func ReceivePerson(ws *websocket.Conn) {
 var person Person
 err := xmlcodec.XMLCodec.Receive(ws, &person)
 if err != nil {
 fmt.Println("Can't receive")
 } else {

 fmt.Println("Name: " + person.Name)
 for _, e := range person.Emails {
 fmt.Println("An email: " + e)
 }
 }
}

func main() {

 http.Handle("/", websocket.Handler(ReceivePerson))
 err := http.ListenAndServe(":12345", nil)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)
 }
}

15.6 Web sockets over TLS
A web socket can be built above a secure TLS socket. We discussed in Chapter 8: HTTP how to use a TLS socket using the
cert ificates from Chapter 7: Security. That is used unchanged for web sockets. that is, we use http.ListenAndServeTLS instead of
http.ListenAndServe.

Here is the echo server using TLS

/* EchoServer
 */
package main

import (
 "code.google.com/p/go.net/websocket"
 "fmt"
 "net/http"
 "os"
)

func Echo(ws *websocket.Conn) {
 fmt.Println("Echoing")

 for n := 0; n < 10; n++ {
 msg := "Hello " + string(n+48)
 fmt.Println("Sending to client: " + msg)
 err := websocket.Message.Send(ws, msg)
 if err != nil {
 fmt.Println("Can't send")
 break
 }

 var reply string
 err = websocket.Message.Receive(ws, &reply)
 if err != nil {
 fmt.Println("Can't receive")
 break
 }
 fmt.Println("Received back from client: " + reply)
 }
}

func main() {

 http.Handle("/", websocket.Handler(Echo))
 err := http.ListenAndServeTLS(":12345", "jan.newmarch.name.pem",
 "private.pem", nil)
 checkError(err)
}

func checkError(err error) {
 if err != nil {
 fmt.Println("Fatal error ", err.Error())
 os.Exit(1)

Web Sockets

Version 1.0 Page 122©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

../http/chapter.html
../security

 }
}

The client is the same echo client as before. All that changes is the url, which uses the "wss" scheme instead of the "ws" scheme:

 EchoClient wss://localhost:12345/

15.7 Conclusion
The web sockets standard is nearing complet ion and no major changes are ant icipated. This will allow HTTP user agents and
servers to set up bi-direct ional socket connect ions and should make certain interact ion styles much easier. Go has nearly complete
support for web sockets.

Copyright © Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flat t r
or donate using PayPal

Web Sockets

Version 1.0 Page 123©Jan Newmarch - Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

	Network programming with Go
	Contents

	Architecture
	Overview of the Go language
	Socket-level Programming
	Data serialisation
	Application-Level Protocols
	Managing character sets and encodings
	Security
	HTTP
	Templates
	A Complete Web Server
	HTML
	XML
	Remote Procedure Call
	Network Channels
	Web Sockets
	Changes
	version 1.0
	version 0.5
	version 0.4
	version 0.3
	version 0.2
	version 0.1

	Architecture
	Introduction
	Protocol Layers
	ISO OSI Protocol
	OSI layers
	TCP/IP Protocol
	Some Alternative Protocols

	Networking
	Gateways
	Packet encapsulation
	Connection Models
	Connection oriented
	Connectionless

	Communications Models
	Message passing
	Remote procedure call

	Distributed Computing Models
	Client/Server System
	Client/Server Application
	Server Distribution
	Component Distribution
	Gartner Classification
	Example: Distributed Database
	Example: Network File Service
	Example: Web
	Example: Terminal Emulation
	Example: Expect
	Example: X Window System
	Three Tier Models
	Fat vs thin

	Middleware model
	Middleware
	Middleware examples
	Middleware functions

	Continuum of Processing
	Points of Failure
	Acceptance Factors
	Transparency
	Eight fallacies of distributed computing

	Overview of the Go language
	Introduction

	Socket-level Programming
	Introduction
	The TCP/IP stack
	IP datagrams
	UDP
	TCP

	Internet adddresses
	IPv4 addresses
	IPv6 addresses

	IP address type
	The type IP
	The type IPmask
	The type IPAddr
	Host lookup

	Services
	Ports
	The type TCPAddr

	TCP Sockets
	TCP client
	A Daytime server
	Multi-threaded server

	Controlling TCP connections
	Timeout
	Staying alive

	UDP Datagrams
	Server listening on multiple sockets
	The types Conn, PacketConn and Listener
	Raw sockets and the type IPConn
	Conclusion

	Data serialisation
	Introduction
	Mutual agreement
	Self-describing data
	ASN.1
	ASN.1 daytime client and server

	JSON
	A client and server

	The gob package
	A client and server

	Encoding binary data as strings

	Application-Level Protocols
	Introduction
	Protocol Design
	Version control
	The Web

	Message Format
	Data Format
	Byte format
	Character Format

	Simple Example
	Alternative presentation aspects
	Protocol - informal
	Text protocol
	Server code
	Client code

	State
	Application State Transition Diagram
	Client state transition diagrams
	Server state transition diagrams
	Server pseudocode

	Summary

	Managing character sets and encodings
	Introduction
	Definitions
	Character
	Character repertoire/character set
	Character code
	Character encoding
	Transport encoding

	ASCII
	ISO 8859
	Unicode
	UTF-8, Go and runes
	UTF-8 client and server
	ASCII client and server

	UTF-16 and Go
	Little-endian and big-endian
	UTF-16 client and server

	Unicode gotcha's
	ISO 8859 and Go
	Other character sets and Go
	Conclusion

	Security
	Introduction
	ISO security architecture
	Functions and levels
	Mechanisms

	Data integrity
	Symmetric key encryption
	Public key encryption
	X.509 certificates
	TLS
	Conclusion

	HTTP
	Introduction
	Overview of HTTP
	URLs and resources
	HTTP characteristics
	Versions
	HTTP 0.9
	Request format
	Response format

	HTTP 1.0
	Request format
	Response format

	HTTP 1.1

	Simple user-agents
	Configuring HTTP requests
	The Client object
	Proxy handling
	Simple proxy
	Authenticating proxy

	HTTPS connections by clients
	Servers
	File server
	Handler functions
	Bypassing the default multiplexer
	Basic server

	Conclusion

	Templates
	Introduction
	Inserting object values
	Using templates
	Pipelines
	Defining functions
	Variables
	Conditional statements
	Conclusion

	A Complete Web Server
	Introduction
	Static pages
	Templates
	The Chinese Dictionary
	The Dictionary type

	Flash cards
	The Complete Server
	Other Bits: JavaScript and CSS

	HTML
	Introduction
	Conclusion

	XML
	Introduction
	Parsing XML
	Unmarshalling XML
	Marshalling XML
	XHTML
	HTML
	Conclusion

	Remote Procedure Call
	Introduction
	Go RPC
	HTTP RPC Server
	HTTP RPC client
	TCP RPC server
	TCP RPC client
	Matching values

	JSON
	JSON RPC client
	JSON RPC server

	Conclusion

	Network channels
	Warning
	Introduction
	Channel server
	Channel client
	Handling Timeouts
	Channels of channels
	Conclusion

	Web sockets
	Warning
	Introduction
	Web socket server
	The Message object
	The JSON object
	The Codec type
	Web sockets over TLS
	Conclusion

