Some Trucs and Machins about Google Go

Narbel

The Cremi’s Saturdays, Saison |

University of Bordeaux 1

April 2010

(v.1.01)

/41

A “New"” Language in a Computerizationed World

» A magnificent quartet...:

v

Microsoft: Windows, Internet Explorer (Gazelle?),
Microsoft Office, Windows Mobile, C#/F#.

Sun: Solaris, HotJava, StarOffice, Savale, Java.
Apple: MacQS, Safari, iWork, iPhoneQS, Objective-C.
Google: ChromeQOS, Chrome, Google Docs, Android, Go.

v

v

v

» Go: the last brick (born in November 2009).

N

41

Position | Position Do o Ratings Delta e
Apr 2010 | Apr 2009 5 Apr 2010 | Apr 2009

1 2 1 ® 18.058% | +2.59% | A
2 1] Java 18.051% | -129% | A
3 3 C++ 9.707% | -1.03% | A
4 4 PHP 9.662% | -0.23% | A
5 5 (Visual) Basic 6392% | -2.70% | A

7 1 c# 4435% | +0.38% | A
7 6 [] Python 4205% | -188% | A
8] 1 Perl 3553% | +0.09% | A
9 1 11 Delphi 2715% | +044% | A
10 8 u JavaScript 2469% | -1.21% | A
11 a2 | TEETEEETET | Ovjectivec 2288% | +2.15% | A
12 10 u Ruby 2221% | -0.35% | A
13 14 1 SAS 0.717% | -0.07% | A
14 12 u PL/SQL 0.710% | -0.38% | A
15 - Ittt | e 0.710% | +0.71% | A
16 15 [] Pascal 0.648% | -007% | B
17 17 ABAP 0625% | -0.03% | B
18 20 11} MATLAB 0616% | +0.13% | B
19 22 11} ActionScript 0.545% | +0.09% | B
20 19 ! Lua 0521% | +0.03% | B

Objective-C and Go: a

new kind of progression...(from www.tiobe.com, April 2010)

41

Creating New Languages and Tactics...

» “Securing” languages for oneself, a modern tactics? e.g.:

» Java « C# (Microsoft).
» OCaml «— F# (Microsoft).
» C «— Go ? (Google).

» In the Go team, some “C/Unix-stars”:
» Ken Thompson (Multics, Unix, B, Plan 9, ed, UTF-8,
etc. — Turing Award).
» Rob Pike (Plan 9, Inferno, Limbo, UTF-8, etc.)

41

One of the Underlying Purposes of Go...!?

Many recent successful languages are dynamic-oriented,
i.e. Python, Ruby, etc. or extensions/avatars of Java, like
Clojure and Groovy.

In the official Go tutorial: "It feels like a dynamic
language but has the speed and safety of a static
language.”

Even if there exist dynamic languages with very efficient
compilers (cf. CLOS), Go takes a step out of the current
dynamic-oriented trend, and proposes more type-safe
programming, while at once focussing on fast compilation
and code execution... (i.e. towards high-performance web
programming?).

5/41

Aparté: Compiled, Interpreted, Tomato-Souped...

» In “A Tutorial for the Go Programming Language', one
finds “Go is a compiled language” ... (no more meaning
than “interpreted language”...).

» For instance, consider the Wikipedia entry about Python:

» At first: “Python is an interpreted, interactive
programming language created by Guido van Rossum.”

» Next (at 16:37, 16 Sept. 2006), the truth took over...:
“Python is a programming language created by Guido
van Rossum in 1990. Python is fully dynamically typed
and uses automatic memory management.” [...] “The
de facto standard for the language is the CPython
implementation, which is a bytecode compiler and
interpreter [...] run the program using the Psyco
just-in-time compiler.”

6/41

References about Go

Bibliography about Go is still rather short...:

» Official doc (on golang.org):

>

>

>

The Go Programming Language Specification.

Package Documentation (the standard lib doc).

A Tutorial for the Go Programming Language.

Effective Go : the main text on the official site (could be
better...)

Various FAQs and
groups.google.com/group/golang-nuts/.

The Go Programming Language, slides of Rob Pike,
2000.

» A lot of bloggy internet stuff...

Yet Another Hello Hello

package main
import "fmt” // formatted /0.

func main() {
fmt.Printf (" Hello Hello\n")

}

41

Echo Function in Go

package main

import (
" og
"flag” // command line option parser
)
var omitNewline = flag.Bool("n”, false, "no final newline”)
const (
Space = " "
Newline = "\n")

func main() {
flag.Parse() // Scans the arg list and sets up flags

var s string = ""
for i := 0; i < flag.NArg(); i++ {
if i >0 {
s += Space

s += flag.Arg(i)

if !xomitNewline {
s += Newline
}

os.Stdout.WriteString(s)

Echo Function in C (not much of a difference...)

int
main(int argc, char xargv[]) {
int nflag;

if (x++argv && !strcmp(xargv, "—n")) {

+targv;
nflag = 1;
}
else
nflag = 0;

while (xargv) {
(void)printf ("%s" , xargv);
if (x++argv)
(void)putchar(' ');

if (nflag = 0)
(void)putchar('\n");

fflush(stdout);

if (ferror(stdout))
exit (1);

exit (0);

10/41

Some Interesting Points about Go...

» A language should not in general be compared from its
syntax, sugar gadgets, construct peculiarities...
(we skip them).

» And even if Go does not include revolutionary ideas, there
are some points worth to be discussed, e.g.:

» Polymorphic functions (CLOS-Haskell-like).
» Typed functional programming.

» Easy to use multi-threading.

11/41

Functions

» Basic function header:

func <function name>(<typed args>) <return type> {}

» Basic function header with multiple returns:

func <function name>(<typed args>) (<return types>) {}

» For instance:

func f(int i) (int, string) {
return (i+1) ("supergenial”)

12 /41

Functions with Multiple Return Values

» A common use of functions with multiple return values:
error management... (there are no exceptions in Go).

» For instance:

func ReadFull(r Reader, buf []byte) (n int, err os.Error) {

for len(buf) > 0 && err == nil {
var nr int;
nr, err = r.Read(buf);
n += nr;
buf = buf[nr:len(buf)];
}

return;

}

13 /41

Functions Associated to a Type

» Header for a function to be associated to a type T:

func (<arg> T) <functionName>(<typed args>) <return type> {}

The argument arg of type T can be used in the body of
the function like the other arguments. For instance:

type Point struct {
x, y float64

}

func (p Point) Norm() float64 {
return math.Sqrt(p.x * p.x + p.y * pP.y);

}
p := Point{l, 2};
[...] p-Norm() [...]:

» = Similar syntax to C++/Java: the associated type

argument is privileged, as is an object rel. to its methods.
14 /41

Interfaces : Towards Polymorphism

» An example of interface:

type Truc interface {
F1() int;
F2(int, int);

}
= Truc is then a registered type (in fact, a type of types).

» Rule: Every data type T with associated functions as
declared in the interface Truc is compatible with Truc.

< Every instance of type T is also an instance of type
Truc.

» = A type can satisfy more than one interface.

15 /41

Interfaces : Towards Polymorphism

type PrintableTruc interface {
PrintStandard ();
}

type T1 struct { a int; b float; c string; }
type T2 struct { x int; y int; }

func (t1 *T1) PrintStandard() {
fmt.Printf ("%d %g %q \n", til.a, ti.b, tl.c);
}

func (t2 %T2) PrintStandard() {
fmt.Printf("%d %d \n", t2.x, t2.y);
}

func F(p *PrintableTruc) { // polymorphic
p.PrintStandard();
}

func main() {
nuplel := &T1{ 7, —2.35, "blueberries” };
nuple2 := &T2{ 1, 2};
nuplel.PrintStandard();
F(nuplel); // output: 7 —2.35 "blueberries”
F(nuple2); // output: 1 2
} 16 /41

Type compatibility and Upcasts

Type compatibility and type-safe implicit upcasting:

[
type T3 struct {d float}

(-]

var nuple PrintableTruc;
nuplel := &T1{ 7, —2.35, "blueberries” };
nuple3d := &T3{ 1.43242 };

nuple
nuple

nuplel // ok
nuple3; // statically not ok: xT3 is not PrintableTruc

17 /41

Dynamic Selection

Function selection can be dynamic (and still type-safe):

func main() {
var nuple PrintableTruc;
nuplel := &T1{ 7, —2.35, "blueberries” };

nuple2 := &T2{ 1, 2};

for i := 0 ; i< 10; i++ {
if (rand.Int() %2) = 1 { nuple = nuplel }
else { nuple = nuple2 }
nuple.PrintStandard();

18 /41

How to Use Existing Interfaces: a Basic Example

» In the package sort, there is an interface definition:

type Interface interface {
Len() int
Less(i, j int) bool
Swap(i, j int)

(idiomatic: here, the complete name is sort. Interface).

» There is also a polymorphic function:

func Sort(data Interface) {

for i := 1; i < data.Len(); i++ {
for j := i; j > 0 && data.Lless(j, j—1); j— {
data.Swap(j, j—1)
}
}

}

19/41

How to Use Existing Interfaces: a Basic Example

= Using sorting for a user-defined type:

import (”fmt”
"sort")

type IntSequence []int

//IntSequence as a sort.lInterface:

func (p IntSequence) Len() int { return len(p) }

func (p IntSequence) Less(i, j int) bool { return p[i] < p[j] }
func (p IntSequence) Swap(i, j int) { p[i]. p[j] = p[j]. p[i] }

func main() {
var data IntSequence = []int{l, 3, 4, -1, 5, 333}

sort.Sort(data) // data called as a sort.Interface
fmt.Println(data);

}

Output:

[-1 1 3 4 5 333]

20 /41

Maximum Polymorphism and Reflection

» In C: maximum polymorphism through voidsx.
In Go: maximum polymorphism through the empty
interface, i.e. “interface {}".

» For example, the printing functions in fmt use it.
» = Need for some reflection mechanisms, i.e. ways to

check at runtime that instances satisfy types, or are
associated to functions.

» For instance, to check that x0 satisfies the interface I:

x1, ok := x0.(I);

(ok is a boolean, and if true, x1 is x0O with type I)

21/41

Duck Typing

>

Go functional polymorphism is a type-safe realization of
“duck typing".

Implicit Rule: If something can do this, then it can be
used here.

Naively: "When | see a bird that walks like a duck and
swims like a duck and quacks like a duck, | call that bird
a duck.”

= Opportunistic behavior of the type instances.
= Dynamic OO languages like CLOS or Groovy include
duck typing in a natural way.

In static languages: duck typing is realized as a
structural typing mechanism (instead of nominal in
which all type compatibilities should be made explicit —
see e.g., implements, extends in Java).

Go Interfaces and Structuration Levels

» Go interfaces = A type-safe overloading mechanism
where sets of overloaded functions make type instances
compatible or not to the available types (interfaces).

» The effect of an expression like:
x.F(..)

depends on all the available definitions of F, on the type
of x, and on the set of available interfaces where F occurs.

» About the grain of structuration dilemma between the
functional and modular levels: Go votes for the functional
level, but less than CLOS, a little more than Haskell, and
definitely more than Java/C# (where almost every type is
implemented as an encapsulating class)...

23 /41

Other Languages

» Go interface-based mechanism is not new, neither very
powerful...

» For instance, Haskell type classes:

class SmallClass a where // similar to a Go interface
f1 :: a —> a
f2 :: a —> Int

instance SmallClass Char where // implementation
f1 x = chr ((ord x) + 1)
£f2 = ord

instance SmallClass Bool where // another implementation
f1 _ = True
f2 True =1
f2 False = 0

» Haskell offers type inference with constrained genericity,
and inheritance...

24 /41

Other Languages

» Go structural-oriented type system is not new, neither
very powerful...

» For instance, inferred Ocam| open object types:

let f x =
(x#£1 1) || (x#£2 "a')i;
//val f : < fl1 : int —> bool;
// f2 : char —> bool; .. > —> bool

» OCaml offers type and interface inference with
constrained genericity, and inheritance...

25 /41

Interface Unions

» In Go, no explicit inheritance mechanism.

» The only possibility: some implicit behavior inheritance
through interface unions (called “embedding"):

type Trucl interface {

F1() int;
}
type Truc2 interface {
F2() int;
}
type Truc interface {
Tructi; // inclusionf
Truc?2; // inclusion
}

= Rule: If type T is compatible with Truc, it is
compatible with Truc1 and Truc?2 too.

26 /41

Functional Programming

» Functional programming (FP) has two related
characteristics:

» First-class functions. Functions/methods are first-class
citizens, i.e. they can be (0) named by a variable;
(1) passed to a function as an argument; (2) returned
from a function as a result; (3) stored in any kind of
data structure.

» Closures. Functions/methods definitions are associated
to some/all of the environment when they are defined.

» When these are available = Most of the FP techniques
are possible

» Caveat: Only full closures can ensure pure FP
(and in particular, referential transparency).

27 /41

Go Functions are First-Class

type IntFun func(int) int;

func funpassing(f0 IntFun) {
fmt.Printf (" Passed : %d \n", £0(100));
}

func funproducer(i int) IntFun {
return func(j int) int {return i+j;}
}

func main() {
f := func (i int) int {return i + 1000;} //anonymous function
funpassing(f);
fmt . Printf (" %d %d \n”, £(5), funproducer (100)(5));

var funMap = map[string] IntFun {"fl”: funproducer(l),
"f2": funproducer (2)};
fmt.Printf (" %d \n", funMap["f1"](5));

}

Output:

Passed : 1100
1005 105

6
28 /41

Closures are Weak in Go

Go closures are not as strong as required by pure FP:

func main() {
counter := O0;

f1
f2

= func (x int) int { counter 4= x; return counter };
= func (y int) int { counter 4= y; return counter };
fmt . Printf (" %d \n", £1(1));
fmt . Printf (" %d \n", £2(1));
fmt.Printf (" %d \n", £1(1));

}

Output:

1

2

3 // => no referential transparency !

29 /41

Concurrence

» The idea: to impose a sharing model where processes do
not share anything implictly (cf. Hoare's CSP).

» Motto: “Do not communicate by sharing memory;
instead, share memory by communicating.”

» A consequence: to reduce the synchronization problems
(sometimes at the expense of performance).

» Only two basic constructs:

» “Goroutines’ are similar to threads, coroutines,
processes, (Google men claimed they are sufficiently
different to give them a new name)

» Channels: a typed FIFO-based mechanism to make
goroutines communicate and synchronize.

30/41

Goroutines

» To spawn a goroutine from a function or an expression,
just prefix it by go (in Limbo, it was spawn):

go £()
go func () { ...} // call with an anonymous function
go list.Sort()

Goroutines are then automatically mapped to the OS host
concurrency primitives (e.g. POSIX threads).

» NB: A goroutine does not return anything (side-effects
are needed)

31/41

Channels

» Basics operation on channels:

ch := make(chan int) // initialization

/* Sending a value to a channel,
ch <— 333

/* Reading a value, blocked until a value
i = <— ch

blocked until it is read x/

is available x/

» = Implicit synchronization through the channel

semantics.

32/41

Concurrent Programming

Example of a simple goroutine without any synchronization
(NB: recall that a goroutine cannot return a value):

var res int = 0;

func comput(from int, to int) int {

tmp := 0

for i := from; i < to; i++ {
tmp += i

res = tmp

}

func main() {
go comput (0, 1000000);
time.Sleep(1000000);
fmt.Println(”" The result:”, res)

}

(without time.Sleep, the printed result will be 0...).

33 /41

Concurrent Programming

Example of a simple goroutine with synchronization
(using anonymous functions is the idiomatic way of calling
expressions as a goroutine):

func comput(from int, to int) int {

tmp = 0
for i := from; i < to; i+ {
tmp += i
return tmp
}
func main() {
ch := make(chan int)
go func(){ ch <— comput (0, 1000000) }()
res := <— ch // blocked until the calculation is done
fmt.Println(”" The result:”, res)
}

34 /41

Concurrent Programming

A producer/consumer agreement: (ispired from . coutark. con)

var ch chan int = make(chan int);

func prod() {

counter := O0;
for {
fmt.Println(” produced: ", counter)
ch <— counter;
counter-++
}
}
func consum() {
for {
res := <— ch;
fmt.Println (" consumed: ", res);

}

func main() {
wait := make(chan int)
go prod();
go consum();
<— wait // wait to infinity ...

}

35/41

Channel Behavior Customization

Customizing the blocking behavior is possible. In particular:

» By specifying a FIFO buffer size, that is, by using a
buffered channel:

» Sending data to such a channel blocks if the buffer is
full.

» Reading from such a channel will not block unless the
buffer is empty.

» Declaration example:

ch := make(chan int, 100)

36

41

Parallelization with Channels
Computations with some parallelization: (inspired from Effective Go)

const NCPU=4
var ch chan int = make(chan int, NCPU)

func comput(from int, to int, ch chan int) {

tmp 0
for i := from; i < to; i+ {
tmp += i
}
ch <— tmp
}
func main()
iterat := 10000000;
for i := 0; i < NCPU; it++ {
go comput(ikxiterat/NCPU, (i+1)*xiterat/NCPU, ch)
tmp = O0;
for i :=0; i < NCPU; it++ {
tmp += <— ch;
}
fmt.Println("The result:”, tmp)
}

37 /41

Goroutines and FP

» Very naturally comes the idea of mixing multi-threading
and functional programming (use of anonymous
functions).

» At least two difficulties in doing that in Go:
» Goroutines do not return any result
(= side-effects are needed).

» Closures are weak.

» For instance, the following variation of the preceding
example does not work:

for i := 0; i < NCPU; it+ {
go func() {
ch <— comput(ixiterat/NCPU, (i+1l)*xiterat/NCPU)
1O
}

(i is shared by all the processes...)

38 /41

A Partial Presentation...

Go has other points of interest which could have been
presented and/or more discussed here:

Reflection.

The standard library.

Memory management and pointers.
Executable building.

vV v v v v

Error system (e.g., functions panic/recover, package
unsafe, etc.),

39 /41

Next Time...

The subject of the talk will be...:

» “D is a systems programming language. Its focus is on
combining the power and high performance of C and
C++ with the programmer productivity of modern
languages like Ruby and Python.”[..17]

» “The D language is statically typed and compiles directly
to machine code. It's multiparadigm, supporting many
programming styles: imperative, object oriented, and
metaprogramming. It's a member of the C syntax family,
and its appearance is very similar to that of C++."[..17]

» “It adds to the functionality of C4++ by also implementing
design by contract, unit testing, true modules, garbage
collection, first class arrays, associative arrays, dynamic
arrays, array slicing, nested functions, inner classes,
closures, anonymous functions, compile time function

execution, lazy evaluation and has a reengineered [..17]"
40 /41

Go Installation

» Go is quite easy to install (be careful about the four
environment variables GOROOT, GOARCH, GOQS,
GOBIN).

» Fully available for Linux, FreeBSD, Darwin.
(NaCl : on its way)
(Windows : on its way + partial Cygwin distribution).

» Needed : Mercurial (the VCS chosen by Go).

» To make a basic Go program be useful:

» Source code file extension is “.go".

» Compilation with “8g” = object file with extension “.8".

» Linking with “8I" = exec file “8.out".

» Replace the above “8"'s by "6"'s for 64 bits
architectures.

41 /41

