
The Go Language

 Department of Information Systems 2011/12/05 Dominique Gigon – Raphael Odienne - Laurent Wartel

What is the
Go Language ?

The Go language was developed by Google, it became a
public open source project on November 10, 2009.

The developers realized that the existing languages did not
have all the good points we can want. In fact, when you are
developing, you were forced to choose between efficient
compilation, efficient execution or ease of programming.
Obviously, as a program, we want all of those three good
points and this is why the Go Language has been created.

It supports a mixture of static and dynamic typing, and is
designed to be safe and efficient. The most important
question you might have is: is Go an object oriented
language? There are two answers, yes and no. The Go
language offers an object-oriented style of programming,
however there is no type of hierarchy in this language.

Is this language really efficient ?

Presentation of our tests

To verify what Google claims, we decided to implement a test in order to
compare the Go language with Java and C language.

The purpose of the test is to compare the execution time between different
languages using the same algorithm. We decided to implement a classic
sort of an array of integers. To have significant runtime values the size of
the array is 10000.

First, we created a binary file containing the values to be sorted. This file is
loaded in each program. Thus, the three arrays sorted are exactly the same,
to have the best possible comparison.

Then, the array is sorted using a classic and easy to implement bubble sort
(performance O(n2)).

Some Go Code

For example, here is the code used in Go to sort the array :

 var temp int = 0;

 for j:=0; j<9999; j++ {

 for i:=0; i<9999; i++ {

 if(tableInt[i]>tableInt[i+1]) {

 temp = tableInt[i];

 tableInt[i] = tableInt[i+1];

 tableInt[i+1] = temp;

 }

 }

 }

Results of the tests

The execution of the three programs gives us the following results (average
of 100 executions):

The Go language is the slower with 0.91s, followed by Java with 0.82s. The
faster is the C language with 0.71s.

This test is, obviously, showing the performance of some very simple
operation (comparison, assignments) and doesn’t take into consideration
all the aspect of programming. Some benchmark have been realized with
more algorithms, structures, and handle memory patterns.

Conclusion

The error margin of all this comes from the multi-thread tools of Go
which has not been properly tested. If it’s powerful enough and if
the need is real, it could become necessary to code in a language
that has been design to handle multi-threading. As actually,
processors mostly progress by adding new cores rather than
upgrading the single performance of cores, a complete use of those
multi-thread may be necessary to take advantages of it.

Go seems to be a language with good performances and which
responds to some needs in the programming world. However, it is
difficult to change a standard, and even if Go could become a new
widely used language in various systems, it would not be in the next
few years, except if some universities begin to use it in courses
which is very unlikely. Go is very young and some improvement may
occur in the next few years, in terms of compilers, resources,
capabilities and libraries. The real need of Go language may be for
next years.

What are the claimed
advantages

As said in the description part, the Go language tries to
make developing more simple and more efficient. For that,
it regroups the three points a developer is looking for:
efficient compilation, efficient execution and ease of
programming.

In order to see if the Go language really achieves these
goals we will do several tests in the third part. However, we
can analyze the complexity of the language without doing
tests and comparing it to other languages. Why is the Go
language easy to program?

There are several reasons for that. One of them is the fact
that there are no more forwarded declarations, no header
files ; everything is declared only once. The syntax is clear
and easy to understand. This is very important, as trying to
find the keywords can be a real pain when you have
hundreds if not more of lines of code.

The Go language has a different approach to programming
than the totally object-oriented languages. Usually, when
coding with those languages we think too much on the
relations between types. In Go we do not have to declare
everything ahead to make everything work, Go satisfies any
interface that specifies a subset of its methods. Go’s
approach is relations are important in the code, not the
objects (classes). In other words, Go allows you to have
types which contain data and methods that operate on that
data and it allows you to create interfaces in which you can
place those types. Interfaces are abstract representations
of behavior (sets of methods). If an object implements the
methods of an interface, then it has that interface as a
type. The developer has nothing to do.

Other benchmark realized :

We also studied a benchmark realized in C++, Java and Go among others. The benchmark has been realized by Robert Hundt from Google. The algorithm on
which the benchmark was done used : structures (lists, maps, lists and arrays of sets and lists), a few algorithms (union/find, dfs/deep recursion, and loop
recognition based on Tarjan), iterations over collection types, some object oriented features, and interesting memory allocation patterns.. It allows comparison
of language features, code complexity, compile time, binary sizes, run-time and memory footprint. It is important to notice that it does not cover the multi-
thread, which is not optimal because the go as been designed to easily handle the multi-thread requirements which C++ and Java had not. It’s a point on which
Google communicate a lot but which apparently has not be tested in benchmarks.

The study had two versions in each languages, the standard version which is the version made by the author himself, and the optimized version, which
implements the same functions but had been corrected and improved by some external programmers. We focused on the non optimized version of these study
as the optimized version can't not be done by the average programmers and because those 3 languages has not been optimized with the same effort as C++
requires more effort to be fully optimized.

These results lead us to conclude that Go offers an interesting overall performance in terms of running time, compile time and number of lines while it suffers a
lack of optimization in the binary size and the virtual memory handling. It appears that Go is not the revolution that Google pretended it to be, however, the fact
that the Go compilers are still immature can lead to a lack of optimization that can reflect both on the executing time and the binary size.

0,91
0,82

0,71

0 0,2 0,4 0,6 0,8 1

Runtime (seconds)

C Java Go

902

1068

850

0 500 1000 1500

Number of lines

C Java Go

1249101

13215

592892

0 500000 1000000 1500000

Size of the executable (bytes)

C Java Go

1,2

3,1

3,9

0 1 2 3 4 5

Compile time (seconds)

C Java Go

16200

1109

474

0 5000 10000 15000 20000

Virtual Memory Usage (mega bytes)

C Java Go

501

617

452

0 200 400 600 800

Real Memory Usage (mega bytes)

C Java Go

161

290

197

0 100 200 300 400

Run time (seconds)

C Java Go

