Hc

HashCloak

Security assessment and code review

Initial Delivery: May 30, 2022

Prepared for:
Shao-Kang Lee | Perpetual Protocol
Yenwen Feng | Perpetual Protocol

Prepared by:
Thomas Steeger | HashCloak Inc
Karl Yu | HashCloak Inc



Table Of Contents

Executive Summary

Findings
Confusing variable naming

General Recommendations
Multiply operations first and then apply division
Public vs External Function
Named return statements

N N N N N



Executive Summary

Perpetual Protocol is building a protocol for enabling decentralized and trustless
perpetual futures contracts on Ethereum. At the core of their protocol is a concept
called the virtual automated market maker (vAMM) that enables one to mint virtual
tokens for accounting purposes with no value. In v2 of their protocol, they leverage the
increased capital efficiency guarantees of Uniswap V3 in order to build a more capital
efficient vAMM.

Perpetual Protocol Team engaged HashCloak Inc for an audit of their smart contracts
written in Solidity. The codebase was audited by 2 auditors for 2 weeks, from May 16
to May 30, 2022. The scope of the audit was:

> diff of perp-lushan repository at commit 86b766...a20fb5 to previous audit.

> periphery contracts at commit d32380...e00f67; only contracts in folders

interface, 1imitOrder and storage
> oracle contracts at commit e4a64c...105b74; without the contract
EmergencyPriceFeed.sol

These commits added the following features to Perpetual Protocol:
> BLP: Liquidations nhow move positions from trader to liquidator
> |ntroduction of limit orders via periphery contracts
> Caching of TWAP price feeds

We found a variety of issues ranging from critical to informational.

Severity Number of findings
Critical 0
High 0
Medium 0
Low 0
Informational 1



https://github.com/perpetual-protocol/perp-lushan/tree/86b766ae2622ffcbaffa6a20b464192580a20fb5
https://github.com/perpetual-protocol/perp-curie-periphery-contract/tree/d323802ecda7620dfbdef0ff7eb66a370ce00f67
https://github.com/perpetual-protocol/perp-oracle-contract/tree/e4a64cfb9e3dbf416141067b4d262df85a105b74

Findings

Confusing variable naming

Type: Informational
Files affected: CumulativeTwap.sol, CachedTwap.sol

During our audit we were a little bit confused by the variable naming
lastUpdatedTimestamp or latestUpdatedTimestamp in the functions _update,
_cacheTwap and _getCachedTwap.

Impact: No impact on protocol security. It just makes it harder for new people to
understand the code.

Suggestion: We recommend renaming the variables to something like e.g.
lastTimestamp or latestTimestamp.

General Recommendations

Multiply operations first and then apply division

When dealing with floating/fixed point numbers , we need to do multiplication
operations before division in order to reserve as much precision as possible.

Since Perpetual Protocol is backed by SafeMath , we have no worries about overflow
problems. As such, we need to minimize loss of precision.

Public vs External Function

Public functions which are solely called from external (other smart contracts or
externally owned accounts) should be marked external instead of public, since it
saves gas costs.

Named return statements

The code makes heavy use of named return statements. This feature of solidity is
primarily used for documentation purposes in the codebases, since in these cases also
explicit return statements are used. We want to point out that there is a possibility of
variable shadowing, when not using explicit return statements. In these cases the



compiler will issue a warning, which should be taken seriously. We give an example of
this behavior:

function sqrt(uint x) public pure returns (uint y) {

uint z = (x + 1) / 2;
uint y = x;
while (z < vy) {
y = z;
z=(x/z+2z)/ 2;
}



