
Perpetual Protocol V2
Security Assessment

March 21, 2022

Prepared for:

Perpetual Finance

Prepared by: Michael Colburn, Paweł Płatek

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Perpetual
Finance under the terms of the project statement of work and has been made public at
Perpetual Finance’s request. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and mutually agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

When undertaking a retesting project, Trail of Bits reviews the fixes implemented for issues
identified in the original report. Retesting involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

Trail of Bits 2 Perpetual Protocol V2 Retest Report
PUBLIC

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 4

Project Summary 5

Project Methodology 6

Project Targets 7

Summary of Retest Results 8

Detailed Retest Results 9

1. Lack of zero-value checks on functions 9

2. Solidity compiler optimizations can be problematic 10

3. mulDiv reverts instead of returning MIN_INT 11

4. Discrepancies between code and specification 13

5. Missing Chainlink price feed safety checks 14

6. Band price feed may return invalid prices in two edge cases 16

7. Ever-increasing priceCumulative variables 19

8. Lack of rounding in Emergency price feed 20

9. It is possible to pollute the observations array 21

A. Status Categories 22

B. Vulnerability Categories 23

Trail of Bits 3 Perpetual Protocol V2 Retest Report
PUBLIC

Executive Summary

Engagement Overview
Perpetual Finance engaged Trail of Bits to review the security of its Perpetual Protocol V2
smart contracts. From February 14 to March 4, 2022, a team of three consultants
conducted a security review of the client-provided source code, with six person-weeks of
effort. Details of the project’s scope, timeline, test targets, and coverage are provided in the
original audit report.

Perpetual Finance contracted Trail of Bits to review the fixes implemented for issues
identified in the original report. On March 21, 2022, a team of two consultants conducted a
review of the client-provided source code.

Summary of Findings
The audit did not uncover any significant flaws or defects that could impact system
confidentiality, integrity, or availability. A summary of the findings is provided below.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 4

Low 0

Informational 5

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Data Validation 6

Undefined Behavior 3

Overview of Retest Results
Perpetual Finance has sufficiently addressed a few of the issues described in the original
audit report.

Trail of Bits 4 Perpetual Protocol V2 Retest Report
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Sam Greenup, Project Manager
dan@trailofbits.com sam.greenup@trailofbits.com

The following engineers were associated with this project:

Michael Colburn, Consultant Paweł Płatek, Consultant
michael.colburn@trailofbits.com pawel.platek@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

February 10, 2022 Pre-project kickoff call

February 18, 2022 Status update meeting #1

February 25, 2022 Status update meeting #2

March 4, 2022 Delivery of report draft

March 4, 2022 Report readout meeting

March 14, 2022 Delivery of final report

March 31, 2022 Delivery of retest report

Trail of Bits 5 Perpetual Protocol V2 Retest Report
PUBLIC

mailto:dan@trailofbits.com
mailto:sam.greenup@trailofbits.com
mailto:michael.colburn@trailofbits.com
mailto:pawel.platek@trailofbits.com

Project Methodology

Our work in the retesting project included the following:

● A review of the findings in the original audit report

● A manual review of the client-provided source code and fix-related documentation

Trail of Bits 6 Perpetual Protocol V2 Retest Report
PUBLIC

Project Targets

The engagement involved retesting of the targets listed below.

perp-lushan

Repository https://github.com/perpetual-protocol/perp-lushan

Version bac1ae0b6dd633275b175e06169c5cb02896b8e5

Type Solidity

Platform Ethereum

perp-oracle

Repository https://github.com/perpetual-protocol/perp-oracle

Version ba78a5b87098dcffb7285fc585afff1001a87232

Type Solidity

Platform Ethereum

Trail of Bits 7 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/perpetual-protocol/perp-lushan
https://github.com/perpetual-protocol/perp-lushan

Summary of Retest Results

The table below summarizes each of the original findings and indicates whether the issue
has been sufficiently resolved.

ID Title Status

1 Lack of zero-value checks on functions Unresolved

2 Solidity compiler optimizations can be problematic Resolved

3 mulDiv reverts instead of returning MIN_INT Resolved

4 Discrepancies between code and specification Resolved

5 Missing Chainlink price feed safety checks Partially
Resolved

6 Band price feed may return invalid prices in two edge cases Partially
Resolved

7 Ever-increasing priceCumulative variables Resolved

8 Lack of rounding in Emergency price feed Unresolved

9 It is possible to pollute the observations array Undetermin
ed

Trail of Bits 8 Perpetual Protocol V2 Retest Report
PUBLIC

Detailed Retest Results

1. Lack of zero-value checks on functions

Status: Unresolved

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-1

Target: ClearingHouseCallee.sol, OrderBook.sol

Description
The ClearingHouseCallee contract's setClearingHouse function and the OrderBook
contract's setExchange function fail to validate some of their incoming arguments, so
callers can accidentally set important state variables to the zero address.

function setClearingHouse(address clearingHouseArg) external onlyOwner {
_clearingHouse = clearingHouseArg;
emit ClearingHouseChanged(clearingHouseArg);

}

Figure 1.1: Missing zero-value check
(perp-lushan/contracts/base/ClearingHouseCallee.sol#30–33)

function setExchange(address exchangeArg) external onlyOwner {
_exchange = exchangeArg;
emit ExchangeChanged(exchangeArg);

}

Figure 1.2: Missing zero-value check
(perp-lushan/contracts/OrderBook.sol#93–96)

Fix Analysis
The Perpetual Finance team acknowledged the issue and decided to postpone the fix.

Trail of Bits 9 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/base/ClearingHouseCallee.sol#L30-L33
https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/OrderBook.sol#L93-L96

2. Solidity compiler optimizations can be problematic

Status: Resolved

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PERP-2

Target: perp-lushan/hardhat.config.ts, perp-oracle/hardhat-config.ts

Description
The Perpetual Protocol V2 contracts have enabled optional compiler optimizations in
Solidity.

There have been several optimization bugs with security implications. Moreover,
optimizations are actively being developed. Solidity compiler optimizations are disabled by
default, and it is unclear how many contracts in the wild actually use them. Therefore, it is
unclear how well they are being tested and exercised.

High-severity security issues due to optimization bugs have occurred in the past. A
high-severity bug in the emscripten-generated solc-js compiler used by Truffle and
Remix persisted until late 2018. The fix for this bug was not reported in the Solidity
CHANGELOG. Another high-severity optimization bug resulting in incorrect bit shift results
was patched in Solidity 0.5.6. More recently, another bug due to the incorrect caching of
keccak256 was reported.

A compiler audit of Solidity from November 2018 concluded that the optional optimizations
may not be safe.

It is likely that there are latent bugs related to optimization and that new bugs will be
introduced due to future optimizations.

Fix Analysis
The Perpetual Finance team acknowledged the issue.

Trail of Bits 10 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/ethereum/solidity/pull/11093
https://solidity.readthedocs.io/en/v0.7.0/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://github.com/ethereum/solidity/releases/tag/v0.5.6
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.zeppelin.solutions/solidity-compiler-audit-8cfc0316a420
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn

3. mulDiv reverts instead of returning MIN_INT

Status: Resolved

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-3

Target: PerpMath.sol

Description
The mulDiv function cannot return the minimum signed value (-2255); it reverts on receiving
this value.

The function takes as arguments signed numbers, internally operates on the unsigned
type, and then converts the result to the signed type, as shown in figure 3.1.

result = negative ? neg256(unsignedResult) : PerpSafeCast.toInt256(unsignedResult);

Figure 3.1: Final conversion in mulDiv
(perp-lushan/contracts/lib/PerpMath.sol#84)

The neg256 function converts a number to the signed type and negates it. The toInt256
method checks whether the number is less or equal to the maximal signed value (2255 - 1).
So if the unsigned result passed to neg256 is 2255, then the function will revert.

function neg256(uint256 a) internal pure returns (int256) {
return -PerpSafeCast.toInt256(a);

}

Figure 3.2: Casting to int256
(perp-lushan/contracts/lib/PerpMath.sol#45–47)

function toInt256(uint256 value) internal pure returns (int256) {
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an

int256");
return int256(value);

}

Figure 3.3: The check that incorrectly fails for type(int256).max value
(perp-lushan/contracts/lib/PerpSafeCast.sol#183–186)

Trail of Bits 11 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/lib/PerpMath.sol#L84
https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/lib/PerpMath.sol#L45-L47
https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/lib/PerpSafeCast.sol#L183-L186

Fix Analysis
The Perpetual Finance team concluded that the revert is expected.

Trail of Bits 12 Perpetual Protocol V2 Retest Report
PUBLIC

4. Discrepancies between code and specification

Status: Resolved

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PERP-4

Target: ClearingHouse.sol

Description
While reviewing the Perpetual Protocol contracts, we compared the implementation
against the provided specification. We noted some minor discrepancies between the two.

In the “Account Specs” section of the specification, account value is calculated in the
following way:

accountValue = collateral + owedRealizedPnl + pendingFundingPayment +
pendingFee + unrealizedPnl

However, in ClearingHouse.getAccountValue, the pendingfundingPayment amount
is subtracted instead of added.

In the “Liquidation” section of the specification, the liquidation fee is calculated in the
following way:

liquidationFee = exchangePositionNotional * liquidationPenaltyRatio

However, in ClearingHouse._liquidate, liquidationFee uses the absolute value of
exchangedPositionNotional instead.

Fix Analysis
The Perpetual Finance team concluded that discrepancies between the code and
specification are intended because the discrepancies are only implementation details.

Trail of Bits 13 Perpetual Protocol V2 Retest Report
PUBLIC

5. Missing Chainlink price feed safety checks

Status: Partially Resolved

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-5

Target: ChainlinkPriceFeed.sol

Description
Certain safety checks that should be used to validate data returned from
latestRoundData and getRoundData are missing:

● require(updatedAt > 0): This checks whether the requested round is valid and
complete; an example use of the check can be found in the
historical-price-feed-data project, and a description of the parameter
validation can be found in Chainlink’s documentation.

● latestPrice > 0: While price is expected to be greater than zero, the code may
consume zero prices, as shown in figures 5.1 and 5.2. This check should be added
before all return calls.

if (interval == 0 || round == 0 || latestTimestamp <= baseTimestamp) {
return latestPrice;

}

Figure 5.1: The code could return a price of zero.
(perp-oracle/contracts/ChainlinkPriceFeed.sol#47–49)

if (latestPrice < 0) {
_requireEnoughHistory(round);
(round, finalPrice, latestTimestamp) = _getRoundData(round - 1);

}
return (round, finalPrice, latestTimestamp);

Figure 5.2: The code could return a price of zero.
(perp-oracle/contracts/ChainlinkPriceFeed.sol#95–99)

● require(answeredInRound == roundId): As the documentation specifies, “If
answeredInRound is less than roundId, the answer is being carried over. If
answeredInRound is equal to roundId, then the answer is fresh.”

Trail of Bits 14 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/pappas999/historical-price-feed-data/blob/37d6ee1245dae871ab7a96bd9b70ffd20f57086e/contracts/contracts/Historical-Price-Consumer.sol#L102
https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/ChainlinkPriceFeed.sol#L47-L49
https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/ChainlinkPriceFeed.sol#L95-L99
https://docs.chain.link/docs/historical-price-data/#historical-rounds

● require(latestTimestamp > baseTimestamp): Currently, the oracle may return
a very outdated price, as shown in figure 5.1. The code should revert if no fresh
price is available.

Also note that, according to the documentation, roundId “increases with each new round,”
but the “increase might not be monotonic” (probably meaning that roundId does not
increase by one). Currently, the code iterates backward over round values one by one,
which may be incorrect. There should be checks for returned updatedAts:

● If updatedAt values are decreasing (e.g., as shown in the
historical-price-feed-data project)

● If updatedAt values are zero, if expected

○ updatedAt may be equal to zero for missing rounds, which may indicate that
the requested roundId is invalid. For example, see these checks in the
historical-price-feed-data project. Please note that requesting invalid
round details may revert instead of returning empty data.

Fix Analysis
The first and third bullets from the description have been resolved: Perpetual Finance’s
smart contracts are supposed to use Chainlink’s AggregatorFacade contract, which
includes the relevant safety checks. If Perpetual Finance decides to change the Chainlink
contract, then the safety checks will have to be implemented.

For the latestPrice > 0 check, the Perpetual Finance team decided that returning a zero
price is better than pausing the system.

For the require(latestTimestamp > baseTimestamp) check, the Perpetual Finance
team indicated that the “Chainlink contract returns the same value of startedAt and
updatedAt.” However, the baseTimestamp is not returned from the Chainlink contract;
rather, a block’s timestamp minus the TWAP interval is returned. So the team’s response
does not address the issue that the oracle may return a very outdated price.

The Perpetual Finance team did not address the problem of “not monotonic” roundIds.

Trail of Bits 15 Perpetual Protocol V2 Retest Report
PUBLIC

https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://github.com/pappas999/historical-price-feed-data/blob/37d6ee1245dae871ab7a96bd9b70ffd20f57086e/contracts/contracts/Historical-Price-Consumer.sol#L129-L135
https://github.com/pappas999/historical-price-feed-data/blob/37d6ee1245dae871ab7a96bd9b70ffd20f57086e/contracts/contracts/Historical-Price-Consumer.sol#L137-L160
https://github.com/pappas999/historical-price-feed-data/blob/37d6ee1245dae871ab7a96bd9b70ffd20f57086e/contracts/contracts/Historical-Price-Consumer.sol#L137-L160
https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://github.com/smartcontractkit/chainlink/blob/develop/contracts/src/v0.6/AggregatorFacade.sol#L203

6. Band price feed may return invalid prices in two edge cases

Status: Partially Resolved

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-6

Target: BandPriceFeed.sol

Description
The Band price feed returns a price instead of reverting in the following two edge cases: 1)
there is not enough historical data and an entry in the observations array is empty, and
2) the historical data is very old. The prices returned in the context of these edge cases
could be incorrect.

As shown in figure 6.1, if there is not enough data, the code reverts. However, if at the
same time an observations entry is empty, the code will not revert, as shown in figure
6.2, but will continue executing the code, taking the branch in figure 6.3.

// not enough historical data to query
if (i == observationLen) {

// BPF_NEH: no enough historical data
revert("BPF_NEH");

}

Figure 6.1: The code reverts if there is not enough historical data.
(perp-oracle/contracts/BandPriceFeed.sol#220–224)

// if the next observation is empty, using the last one
// it implies the historical data is not enough
if (observations[index].timestamp == 0) {

atOrAfterIndex = beforeOrAtIndex = index + 1;
break;

}

Figure 6.2: There is not enough historical data, but the condition in figure 6.1 will not be met.
(perp-oracle/contracts/BandPriceFeed.sol#207–212)

Trail of Bits 16 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L220-L224
https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L207-L212

// case1. not enough historical data or just enough (`==` case)
if (targetTimestamp <= beforeOrAt.timestamp) {

targetTimestamp = beforeOrAt.timestamp;
targetPriceCumulative = beforeOrAt.priceCumulative;

}

Figure 6.3: This branch executes if there is not enough historical data and not enough
observations. (perp-oracle/contracts/BandPriceFeed.sol#119–123)

So, the price may be computed with a shorter time period (interval) than the user expected.
This indicates that it is easier than expected to manipulate the price of a newly added
token.

The second edge case is when the historical data is very old. In this case, the code will
compute the price using the oldest observation and the recently requested data, as shown
in figures 6.4 and 6.5.

uint256 currentPriceCumulative =
lastestObservation.priceCumulative +

(lastestObservation.price * (latestBandData.lastUpdatedBase -
lastestObservation.timestamp)) +

(latestBandData.rate * (currentTimestamp - latestBandData.lastUpdatedBase));

[redacted]

// case2. the latest data is older than or equal the request
else if (atOrAfter.timestamp <= targetTimestamp) {

targetTimestamp = atOrAfter.timestamp;
targetPriceCumulative = atOrAfter.priceCumulative;

}

[redacted]

return (currentPriceCumulative - targetPriceCumulative) / (currentTimestamp -
targetTimestamp);

Figure 6.4: Computation of the price with old data
(perp-oracle/contracts/BandPriceFeed.sol#105–139)

Because atOrAfter is the latest entry in the observations array
(lastestObservation), we can reduce the equation in the following way:

price * (currentTimestamp - targetTimestamp) =

currentPriceCumulative - targetPriceCumulative =

Trail of Bits 17 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L119-L123
https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L105-L139

lastestObservation.priceCumulative +
(lastestObservation.price * (latestBandData.lastUpdatedBase - lastestObservation.timestamp)) +
(latestBandData.rate * (currentTimestamp - latestBandData.lastUpdatedBase)) -
atOrAfter.priceCumulative =

(lastestObservation.price * (latestBandData.lastUpdatedBase - lastestObservation.timestamp)) +
(latestBandData.rate * (currentTimestamp - latestBandData.lastUpdatedBase))

Figure 6.5: Reduced equations in the case of old data

The result of currentTimestamp - latestBandData.lastUpdatedBase should be
small, and the result of latestBandData.lastUpdatedBase -
lastestObservation.timestamp can be large. So the final price will be determined by
the oldest observation—the lastestObservation.price variable. Moreover, if the last
update of the Band price was made in the same block as the call to getPrice, then we
have currentTimestamp - latestBandData.lastUpdatedBase == 0; therefore, the
returned price will equal the outdated lastestObservation.price.

Fix Analysis
According to the Perpetual Finance team’s response, the first edge case (in which there is
not enough historical data and an entry in the observations array is empty) is handled
manually: the team will open new markets only after enough historical data is acquired.

For the second edge case (in which the historical data is very old), the Perpetual Finance
team responded with the following: “Also, the current implementation seems correct, as
this is what the function _getSurroundingObservations is expected to do: return the
two closest timestamp to our target one!” However, the issue does not concern the
correctness of the implementation, but describes a general risk that the price feed could
return outdated prices.

Trail of Bits 18 Perpetual Protocol V2 Retest Report
PUBLIC

7. Ever-increasing priceCumulative variables

Status: Resolved

Severity: Medium Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PERP-7

Target: BandPriceFeed.sol

Description
In the Band price feed, observations.priceCumulative variables can increase
indefinitely and overflow. Every call to the update method adds to one of the
observations.priceCumulative variables, and there is neither a check for overflows
nor a way to reset the variable (or the whole observations array).

uint256 elapsedTime = bandData.lastUpdatedBase - lastObservation.timestamp;
observations[currentObservationIndex] = Observation({

priceCumulative: lastObservation.priceCumulative + (lastObservation.price *
elapsedTime),

timestamp: bandData.lastUpdatedBase,
price: bandData.rate

});

Figure 7.1: Part of the update method
(perp-oracle/contracts/BandPriceFeed.sol#76–81)

Fix Analysis
This issue was fixed in PR#20 with the use of SafeMath for relevant arithmetic operations.

Trail of Bits 19 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L76-L81
https://github.com/perpetual-protocol/perp-oracle-contract/pull/20

8. Lack of rounding in Emergency price feed

Status: Unresolved

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-8

Target: EmergencyPriceFeed.sol

Description
The Emergency price feed does not round down negative arithmetic mean ticks, as the
Uniswap’s OracleLibrary does. Computations done by the Emergency price feed are
shown in figure 8.1.

// tick(imprecise as it's an integer) to price
return TickMath.getSqrtRatioAtTick(int24((tickCumulatives[1] - tickCumulatives[0]) /
twapInterval));

Figure 8.1: Emergency price feed computations of arithmetic mean ticks
(perp-oracle/contracts/EmergencyPriceFeed.sol#65–66)

Computations performed in the OracleLibrary’s consult method are shown in figure
8.2.

arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgo);
// Always round to negative infinity
if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgo != 0))
arithmeticMeanTick--;

Figure 8.2: Uniswap computations of arithmetic mean ticks
(v3-periphery/contracts/libraries/OracleLibrary.sol#34–36)

Fix Analysis
The Perpetual Finance team acknowledged the issue and decided to postpone the fix.

Trail of Bits 20 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/EmergencyPriceFeed.sol#L65-L66
https://github.com/Uniswap/v3-periphery/blob/ee7982942e4397f67e32c291ebed6bcf7210a8f5/contracts/libraries/OracleLibrary.sol#L34-L36

9. It is possible to pollute the observations array

Status: Undetermined

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-9

Target: CumulativeTwap.sol

Description
In new versions of the Chainlink and Band price feeds, it is possible to pollute the
observations array with a single observation because the strict equality in require’s
condition was changed to a loose equality, as shown in figure 9.1.

// add `==` in the require statement in case that two or more price with the same
timestamp
// this might happen on Optimism bcs their timestamp is not up-to-date
Observation memory lastObservation = observations[currentObservationIndex];
require(lastUpdatedTimestamp >= lastObservation.timestamp, "CT_IT");

Figure 9.1: The insecure require condition in the _update method in the new version of the
code

(perp-oracle/contracts/CumulativeTwap.sol#43–46)

Fix Analysis
The finding was not considered during the retest because the vulnerability is relevant only
for a newer version of the code that was not part of the original audit.

Trail of Bits 21 Perpetual Protocol V2 Retest Report
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/e0dc3afc0af924449525a5f28bd2e6422392bf7b/contracts/CumulativeTwap.sol#L43-L46

A. Status Categories

The following table describes the statuses used to indicate whether an issue has been
sufficiently addressed.

Retest Status

Status Description

Undetermined The status of the issue was not determined during this engagement.

Unresolved The issue persists and has not been resolved.

Partially Resolved The issue persists but has been partially resolved.

Resolved The issue has been sufficiently resolved.

Trail of Bits 22 Perpetual Protocol V2 Retest Report
PUBLIC

B. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Trail of Bits 23 Perpetual Protocol V2 Retest Report
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 24 Perpetual Protocol V2 Retest Report
PUBLIC

