
Initial Delivery: November 2, 2021

Table Of Contents
Executive Summary 3

Overview 4

Findings 5
Potential Replay attack on L1 or L2 5
Unchecked transfers in uniswapV3MintCallback and uniswapV3SwapCallback 5
Unchecked return values in_cancelExcessOrders and removeLiquidity 5
Equality in deposit should be <= 6
More elegant baseDebt expressions 6

General Recommendations 7
Multiply operations first and then apply division 7
Check address parameters are not 0 7
Public vs External Function 7

Executive Summary

Perpetual Protocol is building a protocol for enabling decentralized and trustless
perpetual futures contracts on Ethereum. At the core of their protocol is a concept called
the virtual automated market maker (vAMM) that enables one to mint virtual tokens for
accounting purposes with no value. In v2 of their protocol, they leverage the increased
capital efficiency guarantees of Uniswap V3 in order to build a more capital efficient
vAMM.

Perpetual Protocol Team engaged HashCloak Inc for an audit of their Perpetual v2
smart contracts written in Solidity. The audit was done with 3 auditors over a 4 week
period, from October 3, 2021 to November 1, 2021.

The version of the codebase that was audited is at commit hash
4edd53fd183ac86f848b38ba22494dddde116456. The scope of the audit were all files
that ended in .sol with the exception of libraries such as OpenZeppelin’s contracts and
interfaces for integrating with other protocols such as Chainlink’s oracle and Uniswap
v3.

During the first two weeks of the audit, we familiarized ourselves with the Perpetual
smart contracts and started our manual analysis of the smart contracts. In the final two
weeks of the audit, we further investigated the code base, reporting our confusions and
concerns to the Perpetual team.

We found a variety of issues ranging from critical to informational.

Severity Number of Findings

Critical 0

High 1

Medium 3

Low 0

Informational 1

https://github.com/perpetual-protocol/perp-lushan/commit/4edd53fd183ac86f848b38ba22494dddde116456

Overview

Perpetual protocol is an on-chain DEX for trading perpetual futures contracts. Perpetual
futures contracts are a kind of futures contract in which parties agree to either buy or
sell assets at some undetermined point in the future without having their options
expire. Further, it allows traders to have long and short positions without having to have
custody of the underlying assets.

Perpetual protocol v2 enables traders to trade perpetual futures contracts through its
virtual AMM (vAMM) mechanism that uses the newly released Uniswap v3 protocol to
guarantee better capital efficiency on trades. The vAMM mints virtual tokens which are
virtual versions of supported tokens on Uniswap v3. These virtual tokens hold no value
themselves and are solely for accounting purposes.

The Perpetual protocol v2 contracts consists of following main smart contracts:
● Clearing House.sol: Manages of trader’s activities such as opening/closing

positions and position liquidations. Traders can also add/remove liquidity
to/from the vAMM pools.

● Exchange.sol: Manages creating vAMM-based exchanges for Uniswap v3.
Traders settle funds with their base tokens, and then swap them for arbitrage in
the exchange .

● MarketRegistry.sol: Manages the handling of markets for use within Perpetual
Protocol v2 such as setting fees and adding pools.

● Vault.so: Manages and stores all the collateral used throughout the protocol.
● Orderbook.sol: The orderbook is the underlying data structure used in Uniswap

v3 for handling buy and sell orders and each orderbook is attached to a
respective exchange.

● InsuranceFund.sol : Manages the insurance fund that traders can use to
increase their leverage for their positions. Mainly used within the vault contract.

The smart contracts for handling virtual tokens and account balances are
● VirtualToken.sol
● AccountBalance.sol
● BaseToken.sol

Findings

Potential Replay attack on L1 or L2

Type: High
Files affected: MetaTxGateway.sol

On lines 125 to 129, executeMetaTransaction requires a signature for both L1 and
L2. If Perpetual Protocol were to be deployed on both an L1 and L2 at the same time,
there is a potential that transaction could be replayed on both chains.

Impact: Replaying transactions across an L1 and L2 may lead to loss of funds through
double spend attacks.
Suggestion: The main way to solve this is to ensure that Perpetual Protocol is
deployed only on either L1 or L2 but not both at the same time. If Perpetual Protocol
needs to be deployed on both L1 and L2, then ensure that meta transactions contain
enough information that ensure that transactions are unique across chains.

Unchecked transfers in uniswapV3MintCallback and
uniswapV3SwapCallback

Type: Medium
Files affected: ClearingHouse.sol

On lines 419, 423 and 447, a transfer is made upon either minting or swapping.
However, the return value of these transfers is not checked to ensure that these
transfers have succeeded or failed.

Impact: An attacker can deposit into the protocol for free potentially leading up to
other kinds of attacks that can be executed on the protocol.
Suggestion: Check the return values of each of these transfers and ensure that they
revert upon failure.

Unchecked return values in_cancelExcessOrders and removeLiquidity

Type: Medium
Files affected: ClearingHouse.sol

On lines 220 and 522 of ClearingHouse.sol,

IExchange(_exchange).settleFunding(...) is called before the rest of the
functions are executed. However, since this is an external call, the return value of
settleFunding should be checked.

Impact: An attacker may be able to cancel excess orders or remove liquidity for free
without settling funding payments.
Suggestion: Check the return value of settleFunding and revert accordingly.

Equality in deposit should be <=

Type: Medium
Files affected: Vault.sol

When depositing funds into the Vault, special care is taken to take into account
deflationary tokens, tokens that charge a fee upon transfers. However, on line 105 of
deposit, the following check is made:
balanceBefore.sub(IERC20Metadata(token).balanceOf(from)) == amount. This
makes the assumption that the transfer fee is fixed for this deflationary token and that
once the transfer is done that the difference between the before balance and after
balance is strictly equal to the amount transferred.

Impact: The balance of the vault for this token will not include the charge fee which
may lead to not having enough liquidity being available for this token.
Suggestion: We suggest moving the strict equality to a <= in order to take into account
the transfer fees.

More elegant baseDebt expressions

Type: Informational
Files affected: AccountBalance.sol

It would be more elegant if we set baseBalance > 0 as baseBalance >= 0 .
As such , when baseBalance is equal to 0 , the condition would turn to consider
(-0).toUint256() .

Impact: This won’t have any real impact on the security of the protocol .
Suggestion: Set baseBalance >= 0 ? 0 : (- baseBalance) . toUint256()
instead of baseBalance > 0 ? 0 : (- baseBalance) . toUint256() .

General Recommendations

Multiply operations first and then apply division

When dealing with floating/fixed point numbers , we need to do multiplication
operations before division in order to reserve as much precision as possible .
Since Perpetual Protocol is backed by SafeMath , we have no worries about overflow
problems. As such, we need to minimize loss of precision.

Check address parameters are not 0
It is crucial to check the validity of addresses before using them. For example, we need to check
trader addresses that have been used in any functions as input is not zero. This is not done
consistently throughout the codebase.

Public vs External Function

Public functions which are solely called from external (other smart contracts or
externally owned accounts) should be marked external instead of public, since it
saves gas costs.

