
DEDAUB.COM

Perpetual Protocol
Smart Contract Security Assessment

27.04.2021



DEDAUB.COM

ABSTRACT
Dedaub was commissioned to perform a security audit of the new multi-collateral Vault
of the Perpetual V2 protocol.

The scope of the audit focused mainly on the Vault and CollateralManager contracts of
the at the time private repository https://github.com/perpetual-protocol/perp-lushan,
up to commit 6da1e589d4be3e28588b0a96460b0ed777261123. Two auditors worked
over the codebase over 8 days.

Security Opinion
The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than regular use of the protocol. Functional
correctness (i.e., issues in "regular use") was a secondary consideration, however
intensive efforts were made to check the correct application of the mathematical
formulae in the reviewed code. Functional correctness relative to low-level calculations
(including units, scaling, quantities returned from external protocols) is generally most
effectively done through thorough testing rather than human auditing.

The scope of this audit was limited to the collateral vault and its liquidation mechanism.
There are desirable characteristics to the way multi-collateral support has been
designed in Perpetual Protocol. Mainly, (1) it reduces the reliance of position liquidations,
(2) improves overall UX, and finally, (3) it reduces the risk of bad debt. Regarding (1) it
has been recognized several times, both in our audits and also by the team that position
liquidations are especially problematic, due to complexity when triggering, gas
requirements and in some cases bypassing of price checks (e.g., the liquidation slippage
sandwich attack).

On the other hand, after this change, users and other services interacting with Perpetual
Protocol should be aware that there are 3 separate liquidation mechanisms (for Makers,
for Takers and for Collateral). In turn, each mechanism might require several steps,

01

https://github.com/perpetual-protocol/perp-lushan


DEDAUB.COM

perhaps in separate blocks, with implicit ordering between these steps. For instance, a
user that has both a maker and taker position, and multiple forms of collateral may need
to be liquidated multiple times. In this case, first by liquidating each collateral type, then
canceling the orders, and finally liquidation of taker positions. Liquidation of taker
positions may also require multiple steps if the position is large enough. Monitoring the
behavior of these liquidations under market conditions may reveal that there are limited
liquidation market participants, due to the complexity of liquidations.

02



DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES
This section details issues that affect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL Can be profitably exploited by any knowledgeable third party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe  loss of funds may result.

HIGH Third party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM Examples:
-User or system funds can be lost when third party systems misbehave.
-DoS, under specific conditions.
-Part of the functionality becomes unusable due to programming error.

LOW Examples:
-Breaking important system invariants, but without apparent
consequences.
-Buggy functionality for trusted users where a workaround exists.
-Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

03



DEDAUB.COM

CRITICAL SEVERITY:

[No critical severity issues]

HIGH SEVERITY:

[No high severity issues]

MEDIUM SEVERITY:

ID Description STATUS

M1
Vault::depositFor can be used to prevent a user from
depositing

OPEN

Vault allows users to make deposits for another user via the depositFor method. This
functionality in combination with the limit imposed on the number of different
collateral tokens a user can deposit could be exploited by an adversary to prevent the
user from depositing into their Vault.

The parameter imposing the limit on the different collaterals a user can deposit is
defined in CollateralManager as _maxCollateralTokensPerAccount and is used
in Vault::_modifyBalance, which is called by Vault::deposit.

The attack could be a griefing attack, i.e., just making the user’s life harder by forcing
them to withdraw the irrelevant collateral before being able to deposit, but it could
also be much more serious. For example, an attacker could target a user that is close
to becoming liquidatable and is trying to deposit a number of new collateral tokens to
prevent their liquidation. The attacker could frontrun the user and deposit tiny amounts
of different collateral tokens on behalf of them using the method depositFor until no

04



DEDAUB.COM

further deposits are possible. By doing this the attacker would greatly increase the
chance of the user becoming liquidatable and they could then proceed with the
liquidation to make a nice profit.

LOW SEVERITY:

ID Description STATUS

L1 Vault::receive allows any msg.sender to send Ether OPEN

ETH deposited into the Vault contract is converted to WETH by being deposited into the
WETH contract. A user wishing to withdraw their ETH needs to call the withdrawEther
method, which in turn calls the withdraw method of the WETH contract. As part of the
unwrapping procedure of WETH, ETH is sent back to the Vault contract, which needs to
be able to receive it and thus defines the special receive() method. It is expected
(mentioned in a comment) that the receive() method will only be used to receive
funds sent by the WETH contract. However, there is no check enforcing this
assumption, allowing practically anyone to send ETH to the contract. We believe that
the current version of the code is not susceptible to any attacks that could try to
manipulate the accounting of ETH performed by the Vault. Still, we cannot guarantee
that no attack vectors will arise as the codebase evolves and thus suggest adding a
check on the msg.sender as follows:

receive() external payable {
require(_msgSender() == _WETH9, "msg.sender is not WETH");

}

05



DEDAUB.COM

OTHER/ ADVISORY ISSUES:
This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them.

A1 Vault allows 0 value withdrawals OPEN

The Vault contract allows 0 value withdrawals through its external withdraw and
withdrawEther methods. We believe that adding a requirement that a withdrawal’s
amount should be greater than 0 would improve user experience and prevent the
unnecessary spending of gas on user error.

A2 Vault allows 0 value liquidations INFO

The Vault contract allows 0 value liquidations through its liquidateCollateral
method. Disallowing such liquidations will protect users from unnecessarily spending
gas in case they make a mistake.

A3 Vault::_modifyBalance gas optimization INFO

Internal method Vault::_modifyBalance allows the mount parameter to be 0. This
behavior is intended, as it is clearly documented in a comment. Nevertheless, when
amount is 0, no changes are applied to the contract's state, as can be seen below:

function _modifyBalance(
address trader,
address token,
int256 amount

) internal {
// Dedaub: code has no effects on storage, still consumes some gas
int256 oldBalance = _balance[trader][token];
int256 newBalance = oldBalance.add(amount);
_balance[trader][token] = newBalance;

if (token == _settlementToken) {
return;

06



DEDAUB.COM

}

// register/deregister non-settlement collateral tokens
if (oldBalance != 0 && newBalance == 0) {

// Dedaub: execution will not reach here when amount is 0
// ..

} else if (oldBalance == 0 && newBalance != 0) {
// Dedaub: execution will not reach here when amount is 0
// ..

}
}

oldBalance and newBalance are equal when amount is 0, thus no state changes get
applied. Still some gas is consumed, which can be avoided if the method is changed to
return early if amount is 0.

A4
Vault::_getAccountValueAndTotalCollateralValue
gas optimization

INFO

Method _getAccountValueAndTotalCollateralValue calls the AccountBalance
contract’s method getPnlAndPendingFee twice, once directly and once in the call to
_getSettlementTokenBalanceAndUnrealizedPnl in _getTotalCollateralValue.
The first call to getPnlAndPendingFee to get the unrealized PnL could be removed if
the code was restructured appropriately to reuse the same value returned by
_getSettlementTokenBalanceAndUnrealizedPnl.

A5 INFO

A6 Compiler known issues INFO

The contracts were compiled with the Solidity compiler v0.7.6 which, at the time of
writing, has a few known bugs. We inspected the bugs listed for this version and
concluded that the subject code is unaffected.

07

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json


DEDAUB.COM

CENTRALIZATION ASPECTS
As is common in many new protocols, the owner of the smart contracts yields
considerable power over the protocol, including changing the contracts holding the
user’s funds and adding tokens, which potentially means borrowing tokens using fake
collateral, etc.

In addition, the owner of the protocol has total control of several protocol parameters:
- the collateral ratio of tokens
- the discount ratio (applicable in liquidation)
- the deposit cap of tokens
- the maximum number of different collateral tokens for an account
- the maintenance margin buffer ratio
- the allowed ratio of debt in non settlement tokens
- the liquidation ratio
- the insurance fund fee ratio
- the debt threshold
- the collateral value lower (dust) limit

In case the aforementioned parameters are decided by governance in future versions of
the protocol, collateral ratios should be approached in a really careful and methodical
way. We believe that a more decentralized approach would be to alter these weights in a
specific way defined by predetermined formulas (taking into consideration the on-chain
volatility and liquidity available on-chain) and allow only small adjustments by
governance.

08



DEDAUB.COM

DISCLAIMER
The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB
Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure the most prominent protocols in the space. The founders,
as well as many of Dedaub's auditors, have a strong academic research background
together with a real-world hacker mentality to secure code. Prominent blockchain
protocols hire us for our foundational analysis tools and deep expertise in program
analysis, reverse engineering, DeFi exploits, cryptography and financial mathematics.

09


