
Perpetual Protocol V2
Security Assessment

March 22, 2022

Prepared for:

Perpetual Finance

Prepared by: Michael Colburn, Paweł Płatek, and Maciej Domański

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Perpetual
Finance under the terms of the project statement of work and has been made public at
Perpetual Finance’s request. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and mutually agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Perpetual Protocol V2 Security Assessment
PUBLIC

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 5

Project Summary 6

Project Goals 7

Project Targets 8

Project Coverage 9

Codebase Maturity Evaluation 10

Summary of Findings 12

Detailed Findings 13

1. Lack of zero-value checks on functions 13

2. Solidity compiler optimizations can be problematic 14

3. mulDiv reverts instead of returning MIN_INT 15

4. Discrepancies between code and specification 16

5. Missing Chainlink price feed safety checks 17

6. Band price feed may return invalid prices in two edge cases 19

7. Ever-increasing priceCumulative variables 22

8. Lack of rounding in Emergency price feed 23

9. It is possible to pollute the observations array 24

Summary of Recommendations 25

A. Vulnerability Categories 26

Trail of Bits 3 Perpetual Protocol V2 Security Assessment
PUBLIC

B. Code Maturity Categories 28

C. Code Quality Recommendations 30

D. Preliminary System Properties 31

E. Token Integration Checklist 32

Contract Composition 32

Owner Privileges 33

ERC20 Tokens 33

ERC721 Tokens 35

Trail of Bits 4 Perpetual Protocol V2 Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Perpetual Finance engaged Trail of Bits to review the security of its Perpetual Protocol V2
smart contracts. From February 14 to March 4, 2022, a team of three consultants
conducted a security review of the client-provided source code, with six person-weeks of
effort. Details of the project’s timeline, test targets, and coverage are provided in
subsequent sections of this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the target system, including access to the source code and
documentation. We performed static testing of the target system, using both automated
and manual processes.

Summary of Findings
The audit did not uncover any significant flaws or defects that could impact system
confidentiality, integrity, or availability. A summary of the findings is provided below.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 4

Low 0

Informational 5

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Data Validation 6

Undefined Behavior 3

Trail of Bits 5 Perpetual Protocol V2 Security Assessment
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Sam Greenup, Project Manager
dan@trailofbits.com sam.greenup@trailofbits.com

The following engineers were associated with this project:

Michael Colburn, Consultant Paweł Płatek, Consultant
michael.colburn@trailofbits.com pawel.platek@trailofbits.com

Maciej Domański, Consultant
maciej.domanski@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

February 10, 2022 Pre-project kickoff call

February 18, 2022 Status update meeting #1

February 25, 2022 Status update meeting #2

March 4, 2022 Delivery of report draft

March 4, 2022 Report readout meeting

March 14, 2022 Delivery of final report

Trail of Bits 6 Perpetual Protocol V2 Security Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:sam.greenup@trailofbits.com
mailto:michael.colburn@trailofbits.com
mailto:pawel.platek@trailofbits.com
mailto:maciej.domanski@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of the Perpetual Protocol V2
smart contracts. Specifically, we sought to answer the following non-exhaustive list of
questions:

● Are there any flaws or inconsistencies in the internal accounting?

● Are the various fees applied correctly?

● Does the system’s modular architecture introduce any classes of bugs?

● Can tokens be moved from the vault outside of the expected flows?

● Is it possible to trigger a liquidation outside of the intended parameters?

● Do the contracts perform appropriate input validation and access control checks?

Trail of Bits 7 Perpetual Protocol V2 Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

perp-lushan

Repository https://github.com/perpetual-protocol/perp-lushan

Version bac1ae0b6dd633275b175e06169c5cb02896b8e5

Type Solidity

Platform Ethereum

perp-oracle

Repository https://github.com/perpetual-protocol/perp-oracle

Version ba78a5b87098dcffb7285fc585afff1001a87232

Type Solidity

Platform Ethereum

Trail of Bits 8 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/perpetual-protocol/perp-lushan
https://github.com/perpetual-protocol/perp-lushan

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and their results include the following:

● ClearingHouse. The ClearingHouse contract is the main entry point of the
protocol for users. It allows users to manage liquidity, open and close long or short
positions, and perform liquidations of underwater positions. We reviewed this
contract to ensure that it correctly updates liquidity in the protocol, that it properly
modifies long and short positions, and that the interactions with the other core
contracts are sound.

● Exchange and OrderBook. These contracts function as wrappers for performing
swaps and managing liquidity in the Uniswap V3 pools for the protocol's virtual
tokens. We reviewed these contracts to ensure that they properly interact with
Uniswap, that orders are tracked consistently internally, and that fee amounts are
calculated correctly.

● AccountBalance. This contract serves as a ledger to track the internal accounting
for the protocol. We reviewed the contract to ensure that all of the bookkeeping is
consistent and that the calculations are sound.

● Vault. The Vault contract stores user collateral. We reviewed this contract to
ensure that tokens are handled properly within it and that they cannot be accessed
without permission.

● Oracles. The oracle contracts serve as wrappers to external price feeds for the
Perpetual Protocol system. We reviewed the various price feed contracts to ensure
that they properly interact with the external systems and cannot be manipulated.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we were unable to perform comprehensive testing of the
following system elements, which may warrant further review:

● Automated testing of the protocol with Echidna

Trail of Bits 9 Perpetual Protocol V2 Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The contracts use safe arithmetic libraries to prevent
overflows and to ensure safe casting between integer
types. Any instances that do not use these libraries either
cannot overflow or have comments indicating the
intended behavior.

Satisfactory

Auditing Many functions in the contracts emit events when
necessary. In addition to this measure, we encourage the
Perpetual Finance team to develop an incident response
plan and implement on-chain monitoring (if not already
implemented).

Satisfactory

Authentication /
Access Controls

There are appropriate access controls in place for
privileged operations, both for operations between
contracts and for operations regarding contract
ownership.

Satisfactory

Complexity
Management

The functions and contracts are organized and scoped
appropriately and contain inline documentation that
explains their workings. Though there is a clear separation
of duties between each of the core contracts in the
system, this can cause some interactions to be difficult to
follow as they pass between different contracts.

Satisfactory

Cryptography
and Key
Management

This category was not in scope for this assessment. Not
Considered

Trail of Bits 10 Perpetual Protocol V2 Security Assessment
PUBLIC

Decentralization The contracts have several parameters that can be
updated by the contract owner after deployment.
Additionally, the contracts are deployed behind proxies,
which allows the implementations to be upgraded in the
future. Ownership of the contracts is transferred to a
Gnosis multisignature wallet at the end of the deployment
process.

Satisfactory

Documentation The project has good high-level documentation, a
specification indicating the derivations for the formulas
used by the system, and good use of NatSpec and inline
comments.

Satisfactory

Front-Running
Resistance

The Perpetual Finance team informed us of front-running
issues that they were already aware of. We did not identify
any other front-running issues during this review, but this
category requires further investigation.

Further
Investigation
Required

Low-Level Calls The contracts do not use assembly or make low-level calls
aside from their use of the delegatecall proxy pattern.

Not
Applicable

Testing and
Verification

The codebase includes test cases for a wide variety of
scenarios, though we could not determine the exact
coverage rate. There are several “TODO” comments
throughout the test files that should be addressed. We
also suggest looking into augmenting the test suite with
automated testing.

Moderate

Trail of Bits 11 Perpetual Protocol V2 Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Lack of zero-value checks on functions Data
Validation

Informational

2 Solidity compiler optimizations can be problematic Undefined
Behavior

Informational

3 mulDiv reverts instead of returning MIN_INT Data
Validation

Informational

4 Discrepancies between code and specification Undefined
Behavior

Informational

5 Missing Chainlink price feed safety checks Data
Validation

Medium

6 Band price feed may return invalid prices in two
edge cases

Data
Validation

Medium

7 Ever-increasing priceCumulative variables Undefined
Behavior

Medium

8 Lack of rounding in Emergency price feed Data
Validation

Informational

9 It is possible to pollute the observations array Data
Validation

Medium

Trail of Bits 12 Perpetual Protocol V2 Security Assessment
PUBLIC

Detailed Findings

1. Lack of zero-value checks on functions

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-1

Target: ClearingHouseCallee.sol, OrderBook.sol

Description
The ClearingHouseCallee contract's setClearingHouse function and the OrderBook
contract's setExchange function fail to validate some of their incoming arguments, so
callers can accidentally set important state variables to the zero address.

function setClearingHouse(address clearingHouseArg) external onlyOwner {
_clearingHouse = clearingHouseArg;
emit ClearingHouseChanged(clearingHouseArg);

}

Figure 1.1: Missing zero-value check
(perp-lushan/contracts/base/ClearingHouseCallee.sol#30–33)

function setExchange(address exchangeArg) external onlyOwner {
_exchange = exchangeArg;
emit ExchangeChanged(exchangeArg);

}

Figure 1.2: Missing zero-value check
(perp-lushan/contracts/OrderBook.sol#93–96)

Exploit Scenario
Alice, a Perpetual Finance team member, mistakenly provides the zero address as an
argument when configuring a ClearingHouseCallee contract. As a result, the
_clearingHouse for this instance is set to the zero address instead of the intended
ClearingHouse, and some contract functionality fails unexpectedly until it is reconfigured.

Recommendations
Short term, add zero-value or other contract existence checks for all function arguments to
ensure that users cannot mistakenly set incorrect values, misconfiguring the system.

Long term, use Slither, which will catch functions that do not have zero-value checks.

Trail of Bits 13 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/base/ClearingHouseCallee.sol#L30-L33
https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/OrderBook.sol#L93-L96

2. Solidity compiler optimizations can be problematic

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PERP-2

Target: perp-lushan/hardhat.config.ts, perp-oracle/hardhat-config.ts

Description
The Perpetual Protocol V2 contracts have enabled optional compiler optimizations in
Solidity.

There have been several optimization bugs with security implications. Moreover,
optimizations are actively being developed. Solidity compiler optimizations are disabled by
default, and it is unclear how many contracts in the wild actually use them. Therefore, it is
unclear how well they are being tested and exercised.

High-severity security issues due to optimization bugs have occurred in the past. A
high-severity bug in the emscripten-generated solc-js compiler used by Truffle and
Remix persisted until late 2018. The fix for this bug was not reported in the Solidity
CHANGELOG. Another high-severity optimization bug resulting in incorrect bit shift results
was patched in Solidity 0.5.6. More recently, another bug due to the incorrect caching of
keccak256 was reported.

A compiler audit of Solidity from November 2018 concluded that the optional optimizations
may not be safe.

It is likely that there are latent bugs related to optimization and that new bugs will be
introduced due to future optimizations.

Exploit Scenario
A latent or future bug in Solidity compiler optimizations—or in the Emscripten transpilation
to solc-js—causes a security vulnerability in the Perpetual Protocol V2 contracts.

Recommendations
Short term, measure the gas savings from optimizations and carefully weigh them against
the possibility of an optimization-related bug.

Long term, monitor the development and adoption of Solidity compiler optimizations to
assess their maturity.

Trail of Bits 14 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/ethereum/solidity/pull/11093
https://solidity.readthedocs.io/en/v0.7.0/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://github.com/ethereum/solidity/releases/tag/v0.5.6
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.zeppelin.solutions/solidity-compiler-audit-8cfc0316a420
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn

3. mulDiv reverts instead of returning MIN_INT

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-3

Target: PerpMath.sol

Description
The mulDiv function cannot return the minimum signed value (-2255); it reverts on receiving
this value.

The function takes as arguments signed numbers, internally operates on the unsigned
type, and then converts the result to the signed type, as shown in figure 3.1.

result = negative ? neg256(unsignedResult) : PerpSafeCast.toInt256(unsignedResult);

Figure 3.1: Final conversion in mulDiv
(perp-lushan/contracts/lib/PerpMath.sol#84)

The neg256 function converts a number to the signed type and negates it. The toInt256
method checks whether the number is less or equal to the maximal signed value (2255 - 1).
So if the unsigned result passed to neg256 is 2255, then the function will revert.

function neg256(uint256 a) internal pure returns (int256) {
return -PerpSafeCast.toInt256(a);

}

Figure 3.2: Casting to int256
(perp-lushan/contracts/lib/PerpMath.sol#45–47)

function toInt256(uint256 value) internal pure returns (int256) {
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an

int256");
return int256(value);

}

Figure 3.3: The check that incorrectly fails for type(int256).max value
(perp-lushan/contracts/lib/PerpSafeCast.sol#183–186)

Recommendations
Short term, ensure that this behavior is documented and will not cause unexpected
reverts.

Trail of Bits 15 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/lib/PerpMath.sol#L84
https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/lib/PerpMath.sol#L45-L47
https://github.com/perpetual-protocol/perp-lushan/blob/bac1ae0b6dd633275b175e06169c5cb02896b8e5/contracts/lib/PerpSafeCast.sol#L183-L186

4. Discrepancies between code and specification

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PERP-4

Target: ClearingHouse.sol

Description
While reviewing the Perpetual Protocol contracts, we compared the implementation
against the provided specification. We noted some minor discrepancies between the two.

In the “Account Specs” section of the specification, account value is calculated in the
following way:

accountValue = collateral + owedRealizedPnl + pendingFundingPayment +
pendingFee + unrealizedPnl

However, in ClearingHouse.getAccountValue, the pendingfundingPayment amount
is subtracted instead of added.

In the “Liquidation” section of the specification, the liquidation fee is calculated in the
following way:

liquidationFee = exchangePositionNotional * liquidationPenaltyRatio

However, in ClearingHouse._liquidate, liquidationFee uses the absolute value of
exchangedPositionNotional instead.

Recommendations
Short term, update or clarify the specification to match the implementation, or vice versa.

Long term, regularly review the specification and corresponding implementation to ensure
they accurately reflect the system as designed.

Trail of Bits 16 Perpetual Protocol V2 Security Assessment
PUBLIC

5. Missing Chainlink price feed safety checks

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-5

Target: ChainlinkPriceFeed.sol

Description
Certain safety checks that should be used to validate data returned from
latestRoundData and getRoundData are missing:

● require(updatedAt > 0): This checks whether the requested round is valid and
complete; an example use of the check can be found in the
historical-price-feed-data project, and a description of the parameter
validation can be found in Chainlink’s documentation.

● latestPrice > 0: While price is expected to be greater than zero, the code may
consume zero prices, as shown in figures 5.1 and 5.2. This check should be added
before all return calls.

if (interval == 0 || round == 0 || latestTimestamp <= baseTimestamp) {
return latestPrice;

}

Figure 5.1: The code could return a price of zero.
(perp-oracle/contracts/ChainlinkPriceFeed.sol#47–49)

if (latestPrice < 0) {
_requireEnoughHistory(round);
(round, finalPrice, latestTimestamp) = _getRoundData(round - 1);

}
return (round, finalPrice, latestTimestamp);

Figure 5.2: The code could return a price of zero.
(perp-oracle/contracts/ChainlinkPriceFeed.sol#95–99)

● require(answeredInRound == roundId): As the documentation specifies, “If
answeredInRound is less than roundId, the answer is being carried over. If
answeredInRound is equal to roundId, then the answer is fresh.”

Trail of Bits 17 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/pappas999/historical-price-feed-data/blob/37d6ee1245dae871ab7a96bd9b70ffd20f57086e/contracts/contracts/Historical-Price-Consumer.sol#L102
https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/ChainlinkPriceFeed.sol#L47-L49
https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/ChainlinkPriceFeed.sol#L95-L99
https://docs.chain.link/docs/historical-price-data/#historical-rounds

● require(latestTimestamp > baseTimestamp): Currently, the oracle may return
a very outdated price, as shown in figure 5.1. The code should revert if no fresh
price is available.

Also note that, according to the documentation, roundId “increases with each new round,”
but the “increase might not be monotonic” (probably meaning that roundId does not
increase by one). Currently, the code iterates backward over round values one by one,
which may be incorrect. There should be checks for returned updatedAts:

● If updatedAt values are decreasing (e.g., as shown in the
historical-price-feed-data project)

● If updatedAt values are zero, if expected

○ updatedAt may be equal to zero for missing rounds, which may indicate that
the requested roundId is invalid. For example, see these checks in the
historical-price-feed-data project. Please note that requesting invalid
round details may revert instead of returning empty data.

Exploit Scenario
Because of a bug in Chainlink, latestRoundData returns uninitialized data. The round
variable equals zero, so zero is returned as the price. The bug is noticed by an attacker who
uses it to drain the protocol.

Recommendations
Short term, implement checks for the scenarios described above.

Long term, add a requirement for a minimum number of calls to the _getRoundData
method to ensure that enough data is used to compute weightedPrice. Add tests for the
Chainlink price feed with various edge cases, possibly with specially crafted random data.
Review the specific implementation of Chainlink Aggregator that the system will use and
adjust the system to its semantic.

Trail of Bits 18 Perpetual Protocol V2 Security Assessment
PUBLIC

https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://github.com/pappas999/historical-price-feed-data/blob/37d6ee1245dae871ab7a96bd9b70ffd20f57086e/contracts/contracts/Historical-Price-Consumer.sol#L129-L135
https://github.com/pappas999/historical-price-feed-data/blob/37d6ee1245dae871ab7a96bd9b70ffd20f57086e/contracts/contracts/Historical-Price-Consumer.sol#L137-L160
https://github.com/pappas999/historical-price-feed-data/blob/37d6ee1245dae871ab7a96bd9b70ffd20f57086e/contracts/contracts/Historical-Price-Consumer.sol#L137-L160
https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://github.com/smartcontractkit/chainlink/blob/69dc56f1f0b0282e08149791971d0f74324d7e0c/contracts/src/v0.7/dev/AggregatorProxy.sol#L114-L118

6. Band price feed may return invalid prices in two edge cases

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-6

Target: BandPriceFeed.sol

Description
The Band price feed returns a price instead of reverting in the following two edge cases: 1)
there is not enough historical data and an entry in the observations array is empty, and
2) the historical data is very old. The prices returned in the context of these edge cases
could be incorrect.

As shown in figure 6.1, if there is not enough data, the code reverts. However, if at the
same time an observations entry is empty, the code will not revert, as shown in figure
6.2, but will continue executing the code, taking the branch in figure 6.3.

// not enough historical data to query
if (i == observationLen) {

// BPF_NEH: no enough historical data
revert("BPF_NEH");

}

Figure 6.1: The code reverts if there is not enough historical data.
(perp-oracle/contracts/BandPriceFeed.sol#220–224)

// if the next observation is empty, using the last one
// it implies the historical data is not enough
if (observations[index].timestamp == 0) {

atOrAfterIndex = beforeOrAtIndex = index + 1;
break;

}

Figure 6.2: There is not enough historical data, but the condition in figure 6.1 will not be met.
(perp-oracle/contracts/BandPriceFeed.sol#207–212)

// case1. not enough historical data or just enough (`==` case)
if (targetTimestamp <= beforeOrAt.timestamp) {

targetTimestamp = beforeOrAt.timestamp;
targetPriceCumulative = beforeOrAt.priceCumulative;

}

Trail of Bits 19 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L220-L224
https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L207-L212

Figure 6.3: This branch executes if there is not enough historical data and not enough
observations. (perp-oracle/contracts/BandPriceFeed.sol#119–123)

So, the price may be computed with a shorter time period (interval) than the user expected.
This indicates that it is easier than expected to manipulate the price of a newly added
token.

The second edge case is when the historical data is very old. In this case, the code will
compute the price using the oldest observation and the recently requested data, as shown
in figures 6.4 and 6.5.

uint256 currentPriceCumulative =
lastestObservation.priceCumulative +

(lastestObservation.price * (latestBandData.lastUpdatedBase -
lastestObservation.timestamp)) +

(latestBandData.rate * (currentTimestamp - latestBandData.lastUpdatedBase));

[redacted]

// case2. the latest data is older than or equal the request
else if (atOrAfter.timestamp <= targetTimestamp) {

targetTimestamp = atOrAfter.timestamp;
targetPriceCumulative = atOrAfter.priceCumulative;

}

[redacted]

return (currentPriceCumulative - targetPriceCumulative) / (currentTimestamp -
targetTimestamp);

Figure 6.4: Computation of the price with old data
(perp-oracle/contracts/BandPriceFeed.sol#105–139)

Because atOrAfter is the latest entry in the observations array
(lastestObservation), we can reduce the equation in the following way:

price * (currentTimestamp - targetTimestamp) =

currentPriceCumulative - targetPriceCumulative =

lastestObservation.priceCumulative +
(lastestObservation.price * (latestBandData.lastUpdatedBase - lastestObservation.timestamp)) +
(latestBandData.rate * (currentTimestamp - latestBandData.lastUpdatedBase)) -
atOrAfter.priceCumulative =

(lastestObservation.price * (latestBandData.lastUpdatedBase - lastestObservation.timestamp)) +
(latestBandData.rate * (currentTimestamp - latestBandData.lastUpdatedBase))

Trail of Bits 20 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L119-L123
https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L105-L139

Figure 6.5: Reduced equations in the case of old data

The result of currentTimestamp - latestBandData.lastUpdatedBase should be
small, and the result of latestBandData.lastUpdatedBase -
lastestObservation.timestamp can be large. So the final price will be determined by
the oldest observation—the lastestObservation.price variable. Moreover, if the last
update of the Band price was made in the same block as the call to getPrice, then we
have currentTimestamp - latestBandData.lastUpdatedBase == 0; therefore, the
returned price will equal the outdated lastestObservation.price.

Exploit Scenario
The Band price feed is not updated for a long time for a certain token. An attacker observes
this fact and drains the protocol using the wrongly priced token.

Recommendations
Short term, take the following actions:

● Modify the code so that it always reverts if it does not receive enough historical
data, even if there are not yet enough observations. Change the condition in figure
6.3 so that it handles only cases of equality and reverts if targetTimestamp is less
than beforeOrAt.timestamp.

● Modify the code so that it always reverts if the latest data is older than requested
and executes only when the latest data is equal to the requested data.

Long term, add tests for the Band price feed with various edge cases, possibly with
specially crafted random data.

Trail of Bits 21 Perpetual Protocol V2 Security Assessment
PUBLIC

7. Ever-increasing priceCumulative variables

Severity: Medium Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PERP-7

Target: BandPriceFeed.sol

Description
In the Band price feed, observations.priceCumulative variables can increase
indefinitely and overflow. Every call to the update method adds to one of the
observations.priceCumulative variables, and there is neither a check for overflows
nor a way to reset the variable (or the whole observations array).

uint256 elapsedTime = bandData.lastUpdatedBase - lastObservation.timestamp;
observations[currentObservationIndex] = Observation({

priceCumulative: lastObservation.priceCumulative + (lastObservation.price *
elapsedTime),

timestamp: bandData.lastUpdatedBase,
price: bandData.rate

});

Figure 7.1: Part of the update method
(perp-oracle/contracts/BandPriceFeed.sol#76–81)

Exploit Scenario
For a short period of time, Band reports a very high, incorrect price for a certain token. The
time-weighted average price (TWAP) mechanism reduces the impact of this bug; however,
priceCumulative variables become large. After some time, they overflow silently,
breaking internal invariants. The Band price feed starts returning high, incorrect prices for
the token. An attacker exploits this issue to drain the protocol.

Recommendations
Short term, add a check for overflows of priceCumulative variables. If an overflow is
detected, the code should disable the price feed or handle the overflow correctly.

Trail of Bits 22 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/BandPriceFeed.sol#L76-L81

8. Lack of rounding in Emergency price feed

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-8

Target: EmergencyPriceFeed.sol

Description
The Emergency price feed does not round down negative arithmetic mean ticks, as the
Uniswap’s OracleLibrary does. Computations done by the Emergency price feed are
shown in figure 8.1.

// tick(imprecise as it's an integer) to price
return TickMath.getSqrtRatioAtTick(int24((tickCumulatives[1] - tickCumulatives[0]) /
twapInterval));

Figure 8.1: Emergency price feed computations of arithmetic mean ticks
(perp-oracle/contracts/EmergencyPriceFeed.sol#65–66)

Computations performed in the OracleLibrary’s consult method are shown in figure
8.2.

arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgo);
// Always round to negative infinity
if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgo != 0))
arithmeticMeanTick--;

Figure 8.2: Uniswap computations of arithmetic mean ticks
(v3-periphery/contracts/libraries/OracleLibrary.sol#34–36)

Recommendations
Short term, consider modifying the Emergency price feed so that it rounds down negative
arithmetic mean ticks before calling the getSqrtRatioAtTick method.

Trail of Bits 23 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/ba78a5b87098dcffb7285fc585afff1001a87232/contracts/EmergencyPriceFeed.sol#L65-L66
https://github.com/Uniswap/v3-periphery/blob/ee7982942e4397f67e32c291ebed6bcf7210a8f5/contracts/libraries/OracleLibrary.sol#L34-L36

9. It is possible to pollute the observations array

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-PERP-9

Target: CumulativeTwap.sol

Description
In new versions of the Chainlink and Band price feeds, it is possible to pollute the
observations array with a single observation because the strict equality in require’s
condition was changed to a loose equality, as shown in figure 9.1.

// add `==` in the require statement in case that two or more price with the same
timestamp
// this might happen on Optimism bcs their timestamp is not up-to-date
Observation memory lastObservation = observations[currentObservationIndex];
require(lastUpdatedTimestamp >= lastObservation.timestamp, "CT_IT");

Figure 9.1: The insecure require condition in the _update method in the new version of the
code

(perp-oracle/contracts/CumulativeTwap.sol#43–46)

Exploit Scenario
An attacker calls the update method 256 times in a single transaction. The price feeds do
not have historical data and either use only a single price for the TWAP (making price
manipulation easy) or stop working.

Recommendations
Short term, use a strict inequality in the require statement. Research how to handle
Optimism timestamps securely. Alternatively, require a strictly greater timestamp or equal
timestamp and a different price; this should prevent attackers from polluting the
observations array with the same data and should work correctly in Optimism. Make
sure to review and mitigate risks introduced by such changes.

Trail of Bits 24 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/e0dc3afc0af924449525a5f28bd2e6422392bf7b/contracts/CumulativeTwap.sol#L43-L46

Summary of Recommendations

Trail of Bits recommends that Perpetual Finance address the findings detailed in this report
and take the following additional steps prior to deployment:

● Continue to develop the test suite, including the areas marked with “TODO”
comments. Integrate automated testing into the development workflow.

● Integrate Slither into the CI process.

● Regularly review and update the documentation to ensure it matches the current
codebase.

● If not already in place, set up a blockchain monitoring system to detect issues with
oracles, potentially malicious liquidations, and similar scenarios.

● Develop an incident response plan to address the above scenarios and other
scenarios that may necessitate an emergency response from the Perpetual Finance
team.

Trail of Bits 25 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/marketplace/actions/slither-action

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 26 Perpetual Protocol V2 Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 27 Perpetual Protocol V2 Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level Calls The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Trail of Bits 28 Perpetual Protocol V2 Security Assessment
PUBLIC

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 29 Perpetual Protocol V2 Security Assessment
PUBLIC

C. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of future vulnerabilities.

General

● Address outstanding “@audit” and “TODO” notes in contract comments or add them
to the issue tracker.

perp-oracle/BandPriceFeed

● There is a typo in the lastestObservation variable in the getPrice function. It
should be updated to latestObservation.

● The code relies on overflows to work correctly. If the Solidity compiler is updated to
version 0.8.0 or higher, the code will break. Figure C.1 shows an example of where
the code relies on overflows.

// overflow of currentObservationIndex is desired since currentObservationIndex is
uint8 (0 - 255),
// so 255 + 1 will be 0
currentObservationIndex++;

Figure C.1: Expected overflows (contracts/BandPriceFeed.sol#72–74)

perp-oracle/EmergencyPriceFeed

● The pool variable could be declared as immutable as a minor gas optimization
measure.

perp-lushan

● Consider replacing 1e6 in the checkRatio modifier in ClearingHouseConfig and
MarketRegistry as well as 18 in the initialize function in Vault with named
constants to improve readability.

Trail of Bits 30 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/perpetual-protocol/perp-oracle/blob/9f36018b71d846aa43264cd65e1c8d65ad2cdec8/contracts/BandPriceFeed.sol#L72-L74

D. Preliminary System Properties

While reviewing the codebase, we identified initial system properties that could be tested
using Echidna, our smart contract fuzzer. Due to time constraints, we did not have the
opportunity to write the tests, but we encourage the Perpetual Finance team to consider
doing so going forward.

VirtualToken

● Addresses that are not allowlisted cannot send tokens.

● totalySupply is fixed at uint256(max).

● Only the contract owner can add or remove users from the allowlist.

BaseToken

● Only the contract owner can pause the token.

● Only the contract owner can change the price feed.

● The token can always be closed after MAX_WAITING_PERIOD.

● Once paused or closed, the token cannot be returned to the open state.

OrderBook

● updateFundingGrowthAndLiquidityCoefficientInFundingPayment and
getLiquidityCoefficientInFundingPayment calculate the same values outside
of state updates.

Exchange

● getPendingFundingPayment and _updateFundingGrowth calculate the same
values outside of state updates.

AccountBalance

● getTotalAbsPositionValue is greater than or equal to
getTotalPositionValue.

InsuranceFund

● The contract's balance does not decrease if a borrower has not been set.

Trail of Bits 31 Perpetual Protocol V2 Security Assessment
PUBLIC

E. Token Integration Checklist

The following checklist provides recommendations for interactions with arbitrary tokens.
Every unchecked item should be justified, and its associated risks, understood. For an
up-to-date version of the checklist, see crytic/building-secure-contracts.

For convenience, all Slither utilities can be run directly on a token address, such as the
following:

slither-check-erc 0xdac17f958d2ee523a2206206994597c13d831ec7 TetherToken --erc erc20
slither-check-erc 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d KittyCore --erc erc721

To follow this checklist, use the below output from Slither for the token:

slither-check-erc [target] [contractName] [optional: --erc ERC_NUMBER]
slither [target] --print human-summary
slither [target] --print contract-summary
slither-prop . --contract ContractName # requires configuration, and use of Echidna
and Manticore

General Considerations
❏ The contract has a security review. Avoid interacting with contracts that lack a

security review. Check the length of the assessment (i.e., the level of effort), the
reputation of the security firm, and the number and severity of the findings.

❏ You have contacted the developers. You may need to alert their team to an
incident. Look for appropriate contacts on blockchain-security-contacts.

❏ They have a security mailing list for critical announcements. Their team should
advise users (like you!) when critical issues are found or when upgrades occur.

Contract Composition
❏ The contract avoids unnecessary complexity. The token should be a simple

contract; a token with complex code requires a higher standard of review. Use
Slither’s human-summary printer to identify complex code.

❏ The contract uses SafeMath. Contracts that do not use SafeMath require a higher
standard of review. Inspect the contract by hand for SafeMath usage.

❏ The contract has only a few non-token-related functions. Non-token-related
functions increase the likelihood of an issue in the contract. Use Slither’s
contract-summary printer to broadly review the code used in the contract.

Trail of Bits 32 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/crytic/building-secure-contracts/blob/master/development-guidelines/token_integration.md
https://github.com/crytic/slither#tools
https://github.com/crytic/blockchain-security-contacts
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#contract-summary

❏ The token has only one address. Tokens with multiple entry points for balance
updates can break internal bookkeeping based on the address (e.g.,
balances[token_address][msg.sender] may not reflect the actual balance).

Owner Privileges
❏ The token is not upgradeable. Upgradeable contracts may change their rules over

time. Use Slither’s human-summary printer to determine if the contract is
upgradeable.

❏ The owner has limited minting capabilities. Malicious or compromised owners
can abuse minting capabilities. Use Slither’s human-summary printer to review
minting capabilities, and consider manually reviewing the code.

❏ The token is not pausable. Malicious or compromised owners can trap contracts
relying on pausable tokens. Identify pausable code by hand.

❏ The owner cannot blacklist the contract. Malicious or compromised owners can
trap contracts relying on tokens with a blacklist. Identify blacklisting features by
hand.

❏ The team behind the token is known and can be held responsible for abuse.
Contracts with anonymous development teams or teams that reside in legal shelters
require a higher standard of review.

ERC20 Tokens
ERC20 Conformity Checks

Slither includes a utility, slither-check-erc, that reviews the conformance of a token to
many related ERC standards. Use slither-check-erc to review the following:

❏ Transfer and transferFrom return a boolean. Several tokens do not return a
boolean on these functions. As a result, their calls in the contract might fail.

❏ The name, decimals, and symbol functions are present if used. These functions
are optional in the ERC20 standard and may not be present.

❏ Decimals returns a uint8. Several tokens incorrectly return a uint256. In such
cases, ensure that the value returned is below 255.

❏ The token mitigates the known ERC20 race condition. The ERC20 standard has a
known ERC20 race condition that must be mitigated to prevent attackers from
stealing tokens.

Slither includes a utility, slither-prop, that generates unit tests and security properties
that can discover many common ERC flaws. Use slither-prop to review the following:

Trail of Bits 33 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/ERC-Conformance
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/crytic/slither/wiki/Property-generation

❏ The contract passes all unit tests and security properties from slither-prop.
Run the generated unit tests and then check the properties with Echidna and
Manticore.

Risks of ERC20 Extensions

The behavior of certain contracts may differ from the original ERC specification. Conduct a
manual review of the following conditions:

❏ The token is not an ERC777 token and has no external function call in
transfer or transferFrom. External calls in the transfer functions can lead to
reentrancies.

❏ Transfer and transferFrom should not take a fee. Deflationary tokens can lead
to unexpected behavior.

❏ Potential interest earned from the token is taken into account. Some tokens
distribute interest to token holders. This interest may be trapped in the contract if
not taken into account.

Token Scarcity
Reviews of token scarcity issues must be executed manually. Check for the following
conditions:

❏ The supply is owned by more than a few users. If a few users own most of the
tokens, they can influence operations based on the tokens’ repartition.

❏ The total supply is sufficient. Tokens with a low total supply can be easily
manipulated.

❏ The tokens are located in more than a few exchanges. If all the tokens are in one
exchange, a compromise of the exchange could compromise the contract relying on
the token.

❏ Users understand the risks associated with a large amount of funds or flash
loans. Contracts relying on the token balance must account for attackers with a
large amount of funds or attacks executed through flash loans.

❏ The token does not allow flash minting. Flash minting can lead to substantial
swings in the balance and the total supply, which necessitate strict and
comprehensive overflow checks in the operation of the token.

Trail of Bits 34 Perpetual Protocol V2 Security Assessment
PUBLIC

https://github.com/crytic/echidna
https://manticore.readthedocs.io/en/latest/verifier.html

ERC721 Tokens
ERC721 Conformity Checks

The behavior of certain contracts may differ from the original ERC specification. Conduct a
manual review of the following conditions:

❏ Transfers of tokens to the 0x0 address revert. Several tokens allow transfers to
0x0 and consider tokens transferred to that address to have been burned; however,
the ERC721 standard requires that such transfers revert.

❏ safeTransferFrom functions are implemented with the correct signature.
Several token contracts do not implement these functions. As a result, a transfer of
NFTs to one of those contracts can result in a loss of assets

❏ The name, decimals, and symbol functions are present if used. These functions
are optional in the ERC721 standard and may not be present.

❏ If it is used, decimals returns a uint8(0). Other values are invalid.

❏ The name and symbol functions can return an empty string. This behavior is
allowed by the standard.

❏ The ownerOf function reverts if the tokenId is invalid or is set to a token that
has already been burned. The function cannot return 0x0. This behavior is
required by the standard, but it is not always properly implemented.

❏ A transfer of an NFT clears its approvals. This is required by the standard.

❏ The token ID of an NFT cannot be changed during its lifetime. This is required
by the standard.

Common Risks of the ERC721 Standard

To mitigate the risks associated with ERC721 contracts, conduct a manual review of the
following conditions:

❏ The onERC721Received callback is taken into account. External calls in the
transfer functions can lead to reentrancies, especially when the callback is not
explicit (e.g., in safeMint calls).

❏ When an NFT is minted, it is safely transferred to a smart contract. If there is a
minting function, it should behave similarly to safeTransferFrom and properly
handle the minting of new tokens to a smart contract. This will prevent a loss of
assets.

Trail of Bits 35 Perpetual Protocol V2 Security Assessment
PUBLIC

https://www.paradigm.xyz/2021/08/the-dangers-of-surprising-code

❏ The burning of a token clears its approvals. If there is a burning function, it
should clear the token’s ​​previous approvals.

Trail of Bits 36 Perpetual Protocol V2 Security Assessment
PUBLIC

