
List Evolution
Public Documentation

(DRAFT)

Visibility: Public
Status: Draft
Authors: bdiamond
Last updated: 2021-04-26

Objective
This document is intended to serve as a draft for the public List Evolution README. The focus
will be in documenting the List Evolution DOM.

Imminent Changes
Note that several of the tokens described below are subject to change. These tokens are
correct as of the “last updated” date (above). However, certain changes are expected in the
coming weeks:

● The word “evolution” will be removed from all class names.
○ E.g., mdc-evolution-list will become mdc-list

● The word “deprecated” will be added to all existing (non-evolution) class names.
○ E.g., mdc-list will become mdc-deprecated-list

● Evolution will become the default.
○ E.g., data-evolution=”true” will not be needed to opt-into evolution. Instead,

data-deprecated=”true” will be needed to opt-into old behavior.
○ If possible, better to avoid support for deprecated code if unnecessary.

DOM structure

Each section describes the tokens (classes, attributes, and other properties) supported by a
given element in the DOM. Tokens apply to the element associated with the containing section;
subsections correspond to nested elements.

Paths

Each section includes a “path”, which summarizes the corresponding element’s position within
the list DOM. These can be interpreted as follows:

● Carets are used to indicate parent/child relationships (parent > child).
● The underlined item corresponds to the element being documented (e.g, ul > li).
● Brackets are used to indicate ordering; siblings must be arranged in ascending order

(there may be gaps if certain blocks aren’t included).
● Parens specify clarifying labels (e.g., ul > span(start) > span).
● Bars indicate alternatives when a block may appear in multiple parents (e.g., ul >

span(start) | span(end) > span); only affects one entry in the path.

As an example, consider the path for primary text:

ul > li > span(content) > span[1]

This path indicates that primary text is contained within the content span of a list item in an
unordered list. The number in brackets (e.g., [1]) indicates the primary text’s relative position in
its parent. Elements with lower numbers (e.g., overline text at 0) rank before the primary text
and elements with higher numbers (e.g., secondary text at 2) rank after. Note that these
numbers are only considered when the corresponding element is present (e.g., most list items
don’t have overline text and therefore the primary text will always be the first child).

Aspects

Aspects are used to express dependencies between tokens. These appear in brackets (e.g.,
“[start]”) in the type column. Usage notes reference these to characterize how a particular group
of tokens interact (because they all affect the same aspect, or property, of the element).

For example, “Mutually exclusive with [control], [start] aspects” indicates that only one token
tagged with the “[control]” or “[start]” aspects can be added to an element at a time. This
specific constraint is useful because items can only contain a single leading control or media
type (e.g, an icon).

Lists

List Element

Path: ul

Though discouraged, lists may contain items with different layouts (e.g., leading and trailing
media, control position, number of lines, etc.).

Accessibility roles must never be mixed (e.g., every item in a single selection list should have a
radio button). A listbox should only contain option items, a menu should only contain
menuitem items, and a basic list should only contain items without a role.

Token Type Usage

mdc-evolution-list Class All evolution lists must have this class.

data-evolution=“true” Attribute Opt into evolution (will be removed after
dogfood; evolution will be the default)

role Attribute Requirements:
● Non-interactive: do not specify
● Menu list: menu
● Option list: listbox
● Single-selection list: listbox
● Multiple-selection list: listbox (see

below for other requirements)

aria-multiselectable=“true
”

Attribute Only specify for multiple-selection lists.

aria-label Attribute Encouraged for a11y.

tabindex Attribute The list container should delegate focus to
items. Focus is assigned in this order: (1) the
last selected item, (2) the last focused item,
(3) the first selectable item.

Items

Item Element

Path: ul > li

Lists must include a minimum of one item.

Token Type Usage

mdc-evolution-list Class All evolution items must have this class.

mdc-evolution-list-item--d
isabled

Class Required by disabled interactive items, with
or without a control.

mdc-evolution-list-item--s
elected

Class Required by selected interactive items
without a control.

Items with controls delegate selection state to
the control.

We currently do not

mdc-evolution-list-item--a
ctivated

Class Alternate styling for selected interactive
items without a control.

Has different semantics than selected:

● Selection represents a choice that
might change frequently (e.g., option
in a list)

● Activation represents a status with
more permanence (e.g., current page
in a navigation list).

mdc-evolution-list-item--n
on-interactive

Class Should be added to non-interactive lists to
apply correct styling.

Can only be used with the basic list type (not
menu, option, single, or multiple selection
lists).

mdc-evolution-list-item--w
ith-one-line

Class

[lines]

Required for one-line items.

Mutually exclusive with [lines]; must choose
one.

mdc-evolution-list-item--w
ith-two-lines

Class

[lines]

Required for two-line items.

Mutually exclusive with [lines]; must choose
one.

mdc-evolution-list-item--w
ith-three-lines

Class

[lines]

Required for three-line items.

Not yet supported.

Mutually exclusive with [lines]; must choose
one.

mdc-evolution-list-item--w
ith-leading-checkbox

Class

[start]
[control]

Add to allow room for a leading checkbox.

Can only be used in a multiple selection list.

Mutually exclusive with [start], [control].

mdc-evolution-list-item--w
ith-leading-radio

Class

[start]
[control]

Add to allow room for a leading radio
button.

Can only be used in a single selection list.

Mutually exclusive with [start], [control].

mdc-evolution-list-item--w
ith-leading-switch

Class

[start]
[control]

Add to allow room for a leading switch.

Not yet supported.

Can only be used in a single selection list.

Mutually exclusive with [start], [control].

mdc-evolution-list-item--w
ith-leading-icon

Class

[start]

Add to allow room for a leading icon.

Mutually exclusive with [start].

mdc-evolution-list-item--w
ith-leading-image

Class

[start]

Add to allow room for a leading image.

Mutually exclusive with [start].

mdc-evolution-list-item--w
ith-leading-thumbnail

Class

[start]

Add to allow room for a leading thumbnail.

Mutually exclusive with [start].

mdc-evolution-list-item--w
ith-leading-video

Class

[start]

Add to allow room for a leading video.

Mutually exclusive with [start].

mdc-evolution-list-item--w
ith-leading-avatar

Class

[start]

Add to allow room for a leading avatar.

Mutually exclusive with [start].

mdc-evolution-list-item--w
ith-trailing-meta

Class

[end]

Add to allow room for trailing meta text.

Mutually exclusive with [end].

mdc-evolution-list-item--w
ith-trailing-icon

Class Add to allow room for trailing icon.

[end] Mutually exclusive with [end].

mdc-evolution-list-item--w
ith-trailing-checkbox

Class

[end]
[control]

Add to allow room for a trailing checkbox.

Can only be used in a multiple selection list.

Mutually exclusive with [end], [control]
aspects.

mdc-evolution-list-item--w
ith-trailing-radio

Class

[end]
[control]

Add to allow room for a trailing radio button.

Can only be used in a single selection list.

Mutually exclusive with [end], [control]
aspects.

mdc-evolution-list-item--w
ith-trailing-switch

Class

[end]
[control]

Add to allow room for a trailing switch.

Not yet supported.

Can only be used in a single selection list.

Mutually exclusive with [end], [control].

role Attribute Requirements:
● Non-interactive: do not specify
● Menu item: menuitem
● Option item: option
● Single selection item: option
● Multiple selection item: option

aria-disabled=“true” Attribute Must be set for disabled items. Omit if
enabled.

aria-label Attribute Encouraged for a11y.

tabindex=“-1” Attribute Item focus is managed by the component.
Items should not be focusable; the controller
will alter this programmatically.

Ripple

Path: ul > li > span[0]

The ripple should be the item’s first child. Non-interactive items should not include a ripple.

Token Type Usage

mdc-evolution-list-item__r
ipple

Class Required by the ripple.

Start block

Path: ul > li > span[1]

A start block should only be included if the item contains leading content (icon, checkbox,
avatar, etc.). It must appear immediately after the ripple within interactive items. Otherwise, it
must be the first child.

A selection control or piece of media must appear in the start block. Both are described in their
own sections, below.

Token Type Usage

mdc-evolution-list-item__s
tart

Class Required by the start block.

Content block

Path: ul > li > span[2]

The content block is required and must appear between the start and end blocks, if present.

Text should not be added directly to the content block but to the appropriate containers (see
subsections).

Token Type Usage

mdc-evolution-list-item__c
ontent

Class Required by the content block.

id Attribute A leading or trailing control may use
aria-labelledby or aria-describedby to
reference the item’s content (e.g., as its
label).

This ID must be applied to the content block,
not the item.

Overline text
Path: ul > li > span(content) > span[0]

An optional line of text appearing before all other text. Must be the first child of the content
block; must not be the only child. Contains plain text. Not yet implemented.

Token Type Usage

mdc-evolution-list-item__o
verline-text

Class Required by overline text.

Primary text
Path: ul > li > span(content) > span[1]

The list item’s primary text; required. Must be the first child or, if overline text is present, the
second child. Contains plain text.

Token Type Usage

mdc-evolution-list-item__p
rimary-text

Class Required by primary text.

Secondary text
Path: ul > li > span(content) > span[2]

The list item’s secondary text. If specified, must appear directly below primary text as the
content block’s last child. Contains plain text.

Token Type Usage

mdc-evolution-list-item__s
econdary-text

Class Required by secondary text.

End block

Path: ul > li > span[3]

An end block should only be included if the item contains trailing content (icon, checkbox, meta
text, etc.). It must be the last child.

A single selection control, piece of media, or meta text must appear in the end block. Meta text
is included directly (e.g., text is added to the end block). Media and controls are described in
their own sections, below.

Token Type Usage

mdc-evolution-list-item__e
nd

Class Required by the end block.

Media

Media refers to graphical content (including icons, avatars, videos, images, and more) that can
be added to an item’s start or end block. These blocks (if present) must contain a single media
or control child.

Items may contain both leading and trailing media simultaneously.

Icon Media

Path: ul > li > span(start) | span(end) > i | span | img

Standard 24 x 24dp Material icons are supported. Fonts, SVG, and images have been tested.

Avatar Media

Path: ul > li > span(start) | span(end) > span | img

Images and spans have been tested. Must be 40 x 40dp and suitable for cropping to a circle.

Image Media

Path: ul > li > span(start) | span(end) > img

Images have been tested. Must be 56 x 56dp.

Thumbnail Media

Path: ul > li > span(start) | span(end) > img

Images have been tested. Must be 40 x 40dp.

Video Media

Path: ul > li > span(start) | span(end) > img | video | iframe

Images have been tested; video and iframes work but are not recommended. Must be 100 x
56dp.

Controls

Media refers to selection controls (including radio buttons, checkboxes, and switches) that can
be added to an item’s start or end block. These blocks (if present) must contain a single media
or control child.

Items may only contain a single control, either in the start block or the end block.

Checkbox

Path: ul > li > span(start) | span(end) > div

Standard Material checkboxes are supported. Certain attributes are useful when embedded
within a list item; these are summarized, below.

Token Type Usage

aria-labelledby=“<content
block ID>”

Attribute Used to associate the control with the item’s
content block. Set to the content block’s ID.

aria-label Attribute An explicit label; may be used instead of
other techniques.

checked Attribute The item’s selection state is established by
the control’s checked attribute, not the item’s
selected class.

disabled Attribute The item’s disabled state is established by
the control’s disabled attribute and the
item’s disabled class.

name Attribute Useful for distinguishing options.

value Attribute Useful for distinguishing options.

tabindex=“-1” Attribute The control should not be tabbable; items are
selectable, not the controls.

Controls should still display a ripple.

Radio Button

Path: ul > li > span(start) | span(end) > div

Standard Material radio buttons are supported. Certain attributes are useful when embedded
within a list item; these are summarized, below.

Token Type Usage

aria-labelledby=“<content
block ID>”

Attribute Used to associate the control with the item’s
content block. Set to the content block’s ID.

aria-label Attribute An explicit label; may be used instead of
other techniques.

checked Attribute The item’s selection state is determined by
the control’s checked attribute, not the item’s
selected class.

disabled Attribute The item’s disabled state is established by
the control’s disabled attribute and the
item’s disabled class.

name Attribute Required to establish a radio group (i.e., to
link the list’s radio buttons together into a
single selection group).

value Attribute Useful for distinguishing options.

tabindex=“-1” Attribute The control should not be tabbable; items are
selectable, not the controls.

Controls should still display a ripple.

Switch

Path: ul > li > span(start) | span(end) > div

Standard Material switches will be supported. Not yet implemented.

Auxiliary

Dividers

Path: ul > li

A variety of dividers are supported. At most one divider should appear between items. It is not
recommended to include a divider at the start or end of a list.

Token Type Usage

mdc-evolution-list-divider Class Required by dividers.

mdc-evolution-list-divider
--with-leading-padding

Class

[leading]

Add to align the divider’s leading edge with
the item’s leading padding.

Otherwise, the divider has no leading space.

Mutually exclusive with [leading].

mdc-evolution-list-divider
--with-leading-inset

Class

[leading]

Add to align the divider’s leading edge with
the item’s content block.

Otherwise, the divider has no leading space.

Mutually exclusive with [leading]; requires
one [inset].

mdc-evolution-list-divider
--with-trailing-inset

Class Add to align the divider’s trailing edge with
the item’s trailing padding.

Otherwise, the divider has no trailing space.

mdc-evolution-list-divider
--with-leading-icon

Class

[Inset]

Inset the divider’s leading edge to account for
a leading icon (i.e., to visually align with an
adjacent item).

Must be used in conjunction with
mdc-evolution-list-divider--with-lea
ding-inset.

Mutually exclusive with [inset].

mdc-evolution-list-divider
--with-leading-avatar

Class

[Inset]

Inset the divider’s leading edge to account for
a leading avatar (i.e., to visually align with an
adjacent item).

Must be used in conjunction with
mdc-evolution-list-divider--with-lea
ding-inset.

Mutually exclusive with [inset].

mdc-evolution-list-divider
--with-leading-thumbnail

Class

[Inset]

Inset the divider’s leading edge to account for
a leading thumbnail (i.e., to visually align with
an adjacent item).

Must be used in conjunction with
mdc-evolution-list-divider--with-lea
ding-inset.

Mutually exclusive with [inset].

mdc-evolution-list-divider
--with-leading-image

Class

[Inset]

Inset the divider’s leading edge to account for
a leading image (i.e., to visually align with an
adjacent item).

Must be used in conjunction with
mdc-evolution-list-divider--with-lea
ding-inset.

Mutually exclusive with [inset].

mdc-evolution-list-divider
--with-leading-video

Class

[Inset]

Inset the divider’s leading edge to account for
a leading video (i.e., to visually align with an
adjacent item).

Must be used in conjunction with
mdc-evolution-list-divider--with-lea
ding-inset.

Mutually exclusive with [inset].

mdc-evolution-list-divider
--with-leading-checkbox

Class

[Inset]

Inset the divider’s leading edge to account for
a leading checkbox (i.e., to visually align with
an adjacent item).

Must be used in conjunction with
mdc-evolution-list-divider--with-lea
ding-inset.

Mutually exclusive with [inset].

mdc-evolution-list-divider
--with-leading-radio

Class

[Inset]

Inset the divider’s leading edge to account for
a leading radio button (i.e., to visually align
with an adjacent item).

Must be used in conjunction with
mdc-evolution-list-divider--with-lea
ding-inset.

Mutually exclusive with [inset].

mdc-evolution-list-divider
--with-leading-switch

Class

[Inset]

Inset the divider’s leading edge to account for
a leading switch (i.e., to visually align with an
adjacent item).

Must be used in conjunction with
mdc-evolution-list-divider--with-lea
ding-inset.

Mutually exclusive with [inset].

role=“separator” Attribute Required by dividers.

aria-hidden=“true” Attribute Add if the divider does not establish logical
groups (e.g., because it is purely decorative).

