
How does a neural net, work?

Philipp Zettl

2. Januar 2021

At some point one can write a preamble to explain what a NN is, what to
use it for and why it’s actually better for us to use them then old numerical
methods like the euler method to calculate the root(s) of a function

2

Kapitel 1

Neural Networks

Neural networks are a widely used technique to solve complex problems in a
very simplified mathematical way. There are many different implementations of
neural networks, but they all share the same core idea.

Feed forward neural networks, a type or neural network, are a great entry
point to start discovering neural networks. The following chapter will introduce
the idea of general neural networks and use this motivation to discover the first
type of neural networks.

1.1 Motivation

Unlike us humans computers have rather a hard time recognizing handwritten
characters, digits or even full words. Humans taught themselves over millions of
years of evolution how to recognize things.
Since handwriting is mostly unique to a person one will have a hard time imple-
menting an algorithm to detect digits from handwritten text, using an enormous
amount of if /else conditions will be the least problem, but figuring out how
to provide a stable algorithmically solution to this problem seems impossible.
Nowadays we can use neural networks to mock this behavior and create models
to do that task for us. In the following chapter I will describe how to create such
model as well as how to train it using real live examples.

To train a NN one uses a so called ”Training-Set”of data to ”teach”the
network what prediction to give for a given input. In some way we can assume
achieving similar results using equal training data sets.
But wait, how does a neural net, work?
Now let us construct a basic neural network.

1.2 General NN

To define the structure of Neural Networks we need to define a bunch of technical
terms. In biology we differentiate between different types of neurons. Percep-

3

1.2. GENERAL NN KAPITEL 1. NEURAL NETWORKS

trons, a type of neuron, are basically binary decision makers having n input
values and a single output value. We can illustrate them using the following
notation. This model was introduced in 1958 by Frank Rosenblatt. He proposed

x1

x2

x3

p1 o1

Abbildung 1.1: Simple illustration of a single perceptron.

a simple, yet complicate, rule to compute the output value of a perceptron. He
introduced weights wi to express the importance of an input value xi to compute
the output value oi.

oi =

{
0 if

∑
j wixi ≤ t

1 if
∑

j wixi > t
(1.1)

with t a threshold. Obviously a single perceptron is not even close to real human
decision making and building a neural net out of a single perceptron seems
simply too unflexible and stiff. But it works great to illustrate the idea behind
a complex model without using too complicated notations, we can imagine a
perceptron being a single element of a complex model to make a more detailed
decision.
Hence a NN in the from

i1

i2

o1

Abbildung 1.2: Simple illustration of a NN using multiple perceptrons.

will perform a more detailed analysis then (Figure 1.1).
A network consists of the input values ij , several columns of perceptrons – we

4

KAPITEL 1. NEURAL NETWORKS 1.2. GENERAL NN

will call them from now on layers – and the output oj . The above illustrated
network contains 3 layers of perceptrons. The first layer is making three simple
decisions out of the input data, then forwards these decisions to the second
layer of perceptrons, which will make 5 decisions out of each of the previous 3
decisions by weighting their outputs. Before we can analyse the above displayed
network in more detail we need to introduce a good notation, how to call a
single perceptron. Say we have l > 0 layers in our network and use n input
values i1, i2, ..., in to predict m output values o1, o2, ..., om. Then we call the ith

perceptron of the lth layer

pli (1.2)

Now let’s take a more detailed look at our network and calculate the amount
of decisions we actually perform.
We have two input values i1 and i2, based on each we perform 3 decisions, so
after processing the first layer l = 1 of perceptrons we made

nl · nl−1︸︷︷︸
=n

= 3 · 2 = 6 (1.3)

decisions. Moving on to the second layer we again count the number of percep-
trons in the current layer n2 = 5 and multiply it with the amount of perceptrons
in the previous layer

⇒ n2 · n1 = 5 · 3 = 15 (1.4)

And for the third layer l = 3 with one perceptron we perform 5 decision.
We also need to include the last layer into the calculation with a single percep-
tron. Adding those values together 6 + 15 + 5 + 1 = 27, we actually perform 27
decisions for a single output.

This makes us assume that increasing the amount of layers and perceptrons
per layer will increase the complexity behind a decision and therefor a big neural
network the way to compute complex and sophisticated decisions.

In (1.1) we introduced a way how to calculate the output of a perceptron,
we will change this notation a bit to achieve a way to calculate the outcome
of a whole NN, not just a single perceptron of it. The previous notation of∑

j wjxj > t can be written as a dot product w · x, where w and x are vectors
whose components are the weights and input values respectively. The second
change is to move the threshold from the right side of the inequality. But before
we do that we rename it to its widely used name ”Bias”, b = −t using these
changes we can write a perceptron now using

oi =

{
0 if w · x+ b ≤ 0
1 if w · x+ b > 0

(1.5)

Think of the bias as how easy it is to get 1 out of the perceptron. Or in a more
biological way, the bias is a measure of how easy it is to get the perceptron to
fire.

5

1.2. GENERAL NN KAPITEL 1. NEURAL NETWORKS

Previous descriptions of perceptrons were based on the idea that a perceptron
implements a method of weighting input values to make decisions. A more CS
way to use perceptrons would be to compute elementary logical functions such
as AND, OR, NOR, XOR, ... So we can for example build a network having the
weights −2 and the bias of 3, like this The above displayed NN 1.3 implements a

−2

−2

x1

x2

p1 o1

Abbildung 1.3: Logical NAND gate.

so called NAND-Gate. An input of x =
(
0, 0
)T

results in (−2) ·0+(−2) ·0+3 =

3⇒ o1 = 1. Similar calculations reveal that the inputs
(
0, 1
)T
,
(
1, 0
)T

produce

the output 1, but
(
1, 1
)T

results in (−2) · 1 + (−2) · 1 + 3 = −1 therefor o1 = 0.
To make it even more obvious lets take a look at a simple truth table from the
first semester, some of you might even know that stuff since their born, anyway.

A B A&B !(A&B)
1 0 0 1
1 1 1 0
0 0 0 1
0 1 0 1

as we can see the above mentioned results of our NN are equal to a regular
NAND operation.

This NAND example shows that we can use perceptrons to compute simple
logical functions. In fact we can use perceptrons to compute any logical func-
tion. But the reason for this is not the flexibility or any other aspect of neural
networks or perceptrons per se, this is due to the universal definition of logical
operations. Since we can recreate these universal definitions it follows that a
perceptron is a similar universal definition of an operation. This fact is actual-
ly quite disappointing because it seems it’s merely possible achieve something
more complex then combinations of NAND gates and other logical operations.
But on the other hand it might be reassuring to know that NNs are as powerful
as modern computers.

But don’t take this introduction too serious, keep in mind we did not co-
ver learning algorithms yet. Which open up a whole new world. We will use
these learning algorithms to adjust weights and biases automatically within a
network of artificial neurons. There are several methods of training all respond
to external stimuli and do not require manual adjustments by a programmer.
These algorithms allow us to use artificial neurons in a way which is radically

6

KAPITEL 1. NEURAL NETWORKS 1.3. ACTIVATED NEURONS

different from logical gates. Instead of explicitly laying out a logical function
our networks can simply learn to solve problems, which are way beyond simple
conventional logical gates.

1.3 Activated Neurons

Writing a learning algorithm sounds scary on first glance, but how can one
achieve such behavior for a neural network? Suppose we have a network of
perceptrons as previously described which we want to use to solve a problem.
For example, the inputs to the network might be raw pixels from a scanned,
handwritten image of a digit. And we’d like our network to learn it’s weights
and biases so that the output correctly classifies the digit within the image. To
illustrate how learning might work we make small adjustments to the weights
(or biases) of the network. We want those changes in the weights to be small to
cause only small changes in the corresponding output from the network. Those
changes will be called ∆w,∆b and ∆o. Suppose we input an image of a 9 and
the network classifies this input as a 8, we then could figure out how to make a
small change to the weights or biases so the network gets a bit closer to classify
the image as a 9. We then repeat this process over and over again. The network
is learning.

Unfortunately our current definition of neural networks is not able to achieve
this behavior using the perceptron model. Doing small adjustments on their
weights and values will cause big changes in the networks output. This is due
to the restriction in the binary output of perceptrons. Sometimes a change in a
single weight flips a perceptrons output and the results in a complete different
output of the network. So while the expected 9 might be classified correctly the
behavior of the network in respect to other inputs might vary drastically. That
makes it difficult to see how to gradually modify the weights and biases so the
network achieves expected results.

We simply overcome this issue with introducing a new type of neuron, the
sigmoid neuron. Sigmoids are similar to perceptrons, with the small difference
that small changes in their weights and biases cause only small changes in the
networks output. That’s a necessary feature to allow networks of sigmoids to
learn. We depict sigmoids the same way as perceptrons.

x1

x2

x3

p1 o1

Abbildung 1.4: Illustration of a Sigmoid Neuron.

7

1.3. ACTIVATED NEURONS KAPITEL 1. NEURAL NETWORKS

Just like the perceptron the sigmoid neuron gets n input values xi, i = 1, ..., n
but instead of forcing those values to be binary, they can be any number between
0 and 0, so xi ∈ [0, 1] as well as the perceptron the sigmoid neuron has a weight
w for each input and overall biases b. But it’s output is again not binary. Instead
it’s σ(w ·x+ b), where σ is the sigmoid function (also called logistical function),

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sigmoid

σ(z) =
1

1 + e−z
(1.6)

to be more precise the output of a sigmoid neuron is

1

1 + e−w·x−b
(1.7)

To understand the similarity between the previously discussed perceptron neu-
ron and the sigmoid neuron, suppose z = w · x + b is a large positive number.
Then e−z ≈ 0 so σ(z) ≈ 1. Or just ”Is z large and positive, the output is ap-
proximately 1”, just like for the perceptron. So σ is a way to enforce values
being ∈ [0, 1]. One can achieve the behavior of perceptrons by redefining σ as in
(1.5). So Sigmoid Neurons are ”just”smoothened perceptrons. But exactly this
smoothening is the crucial fact which allows learning. This smoothness means
that small changes in weights ∆w and biases ∆b will produce a small change
in the output ∆o. Hence we achieve the same behavior of perceptrons with the
additional effect of being able to predict the change in output which will occur
while modifying a weight or bias within the network. In fact, calculus tells us
how to calculate that change as

∆o ≈
n∑

j=1

∂o

∂wj
∆wj +

∂o

∂b
∆b (1.8)

where ∂o
∂wj

denote partial derivatives of the output with respect to wj and b

respectively. This might sound overwhelming in the beginning and partial deri-
vatives aren’t that easy to understand. But what we can see from here is that
∆o is a linear function, since it’s a combination of the linear function ∆w and
∆b. Therefor a small change in weights or biases will cause only a small change
in the output. So while sigmoid neurons have much of the same quality as per-
ceptrons, they make it easier to figure out which weights and biases to adjust
in order to achieve a small change of the output into a desired direction.

8

KAPITEL 1. NEURAL NETWORKS 1.4. SUMMARY

1.4 Summary

We’ve discussed two types of neurons in this chapter. The perceptron which is
ideal to reconstruct logical functions and the sigmoid neuron, which has exactly
the same features as the perceptron with the addition that we can perform
small adjustments to modify the used weights and biases in order to ”train ”the
model. This brings one big conclusion. When we talk about neurons we can
assume these given values:

1. n := Number input elements

2. m := Number output elements

3. nl := Number desired ”layers”of neurons

4. Type of neurons in layer l

Depending on the type of neuron, the behavior differs. But what is the actual
difference between the sigmoid neuron and the perceptron? The answer is quite
easy. The main and mostly only difference is their activation function. Both

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

Activation functions

Sigmoid Neuron

Perceptron

clamp the values o ∈ [0, 1], but the smoothness of the sigmoid function allows
learning behavior.

9

1.5. NETWORK ARCHITECTURE KAPITEL 1. NEURAL NETWORKS

1.4.1 Important things to remember

Imagine having a big network of perceptrons. Multiplying every weight and bias
within this network with a constant c > 0 will not change the overall network
output.

1.5 Network architecture

Over the next section we will introduce a neural network that can do a pretty
good job classifying handwritten digits. It helps to first introduce some termi-
nology that lets us name different parts of the network. Suppose we have the
previously mentioned network

i1

i2

o1

Input layer
Hidden layers

Output layer

Abbildung 1.5: Simple illustration of a NN.

The most left layer is called the input layer and the neurons within this layer
are called input neurons. The outermost right layer is called the output layer,
and as you can guess it’s neurons are called output neurons, in this case a single
neuron. The layers in between are called hidden layers since their neurons are
neither input nor output neurons. The term ”hidden”might sound magical or
deeply philosophical the first time you hear about it, but it’s nothing else then
another word for ”not an input/output”. This might be somewhat confusion,
and I just mention it for historical reason, some people call these networks ML-
Ps, multiple layer perceptron networks, despite the fact that some of them hold
sigmoid neurons, this should be mentioned so you’re aware of that term.
Important to note, I might call sigmoid neurons every now and then
activated neurons, this is due to the nature of sigmoid neurons which
use the sigmoid function as activation function. Whenever this acti-
vation function differs I will explicitly name this activation function.
Other then that activated neurons are sigmoid neurons.

10

KAPITEL 1. NEURAL NETWORKS 1.5. NETWORK ARCHITECTURE

1.5.1 Input and output layers

The design for input and output layers is straight forward. Depending on the
problem we want to solve we figure out the number of input values. For the
example of classifying handwritten digits we have a dataset of 64x64 px images
therefor we have n = 64 ·64 = 4096 input parameters, which need to be clamped
into [0, 1]. To normalize the data we can use

x̃i =
xi −min(x)

max(x)−min(x)
(1.9)

The output layer will contain m neurons, to simplify for now we want to classify
if a picture shows a 9 or not, so a single neuron with values o ≤ 0.5 indicating
it is not a 9 and o > 0.5 that the input image is a 9.

1.5.2 Hidden Layers

Albeit the design of input- and output layers is straight forward, it is kind of
an art to architect hidden layers. To be more precise it is impossible to state
a rule of thumb for hidden layer architectures. Instead researchers have found
several heuristics to describe models which help solving different problems. As
an example for the use of these heuristics they can be used to determine how to
trade off hidden layers against the time required training the model. We’ll meet
several such design heuristics later.

1.5.3 Prospects

For now we learned about networks of layers of neurons where the output of
one layer is used as the input of the next layer. These networks are called Feed
Forward Neural Networks (FFNNs). The net works in a single operation
forward feeding the input values to gain output values. No loops are involved.
Actually it would be very hard to achieve loops with this design, so we don’t
allow them. However there are other designs of neural networks which allow
these kind of designs.

These models are called Recurrent Neural Networks (RNNs). The idea
in these models is to have neurons which fire for some limited duration of time,
before becoming quiescent. That firing can stimulate other neurons, which may
fire a little while later, also for a limited duration. That causes still more neu-
rons to fire, and so over time we get a cascade of neurons firing. Loops don’t
cause problems in such a model, since a neuron’s output only affects its input
at some later time, not instantaneously. Recurrent neural nets have been less
influential than feedforward networks, in part because the learning algorithms
for recurrent nets are (at least to date) less powerful. But recurrent networks
are still extremely interesting. They’re much closer in spirit to how our brains
work than feedforward networks. And it’s possible that recurrent networks can
solve important problems which can only be solved with great difficulty by feed-
forward networks. However, to limit our scope, we’re going to concentrate for
now on the more widely-used feedforward networks.

11

1.5. NETWORK ARCHITECTURE KAPITEL 1. NEURAL NETWORKS

12

Kapitel 2

NN to classifying
handwritten digits

After this long and very dry introduction to neural networks, lets get our hands
dirty and build something fun! In the following chapter we will implement the
example we previously used to motivate the idea behind NNs. Classifying hand-
written digits.

2.1 Problem description

We can split the problem of recognizing handwritten digits into two sub-problems.
First we want to split an image of multiple handwritten digits into separate
images, each containing a single digit.

So for example we want this num-
ber

To be split into 3 seperate images
like

A human solves this quite easily, but we want to solve this using the com-
puter. Once the image has been segmented, the program then needs to classify
each digit individually. So for example we’d like the program to recognize the
first digit in the image above to be 4.

For now we focus on writing a program to solve the second problem. There
are many approaches to solve the segmentation problem, but after we discussed
the classification you will have a good idea how to tackle the segmentation. One
method can be to generate many ”trial” segmentations and use an individually
trained classifier to score each segmentation. A trial gets a higher score when the

13

2.1. PROBLEM DESCRIPTIONKAPITEL 2. NN TO CLASSIFYING HANDWRITTEN DIGITS

classifier is more certain about the classification and a lower score whenever it
is uncertain about the classification. The idea is that if the classifier has trouble
classifying then the segmentation is not good enough. So instead of worrying
about the first problem in the beginning, we assume for now that we have in
fact already segmented training sets and can come back to the segmentation
model later.

To solve the more interesting problem, to namely classify handwritten digits
we will use a three-layer neural network. It consists of one input layer having
784 input neurons (one for each pixel of a 28x28 px image), a hidden layer with
15 neurons and an output layer with 10 output neurons (one for each digit 0-9
;-))

The input pixels are greyscale, with values of 0.0 representing white and 1.0
black. Values in between are different shades of grey.

You might wonder why the output layer consists of 10 neurons and not the
minimum amount required being 4. In fact using 4 neurons can be a lightweight
solution here since we can encode the output as a binary value since 1112 =
7 < no < 13 = 11112. The ultimate justification is empirical so let’s try out
both approaches later on and compare the results, but it will turn out that
the network with 10 output values will achieve better results then the network
using 4 output values. That leaves us with the big question: Does the number
of output values influence the general behavior of the network? Is there maybe
some heuristic which gives us a direction to chose the number of output values?
And can this heuristic possibly tell us upfront which solution fits better?

Many resources online and books start now to describe how NNs work by
using a explicit example. Most of them start splitting the image of a digit into
several parts and justify the way how the neurons ”learn”their weights/biases
by using these segments and saying ”This weight is for the top arch of this
digit...”but that’s just a useless simplification. Imagine that in fact weights
represent features of the images fed into the network during the training period.
But the odds that you will chose the right weight which actually describes this
particular feature is very low. Imagine weights and biases as feature parts of the
fed data. This can be a line, a cloud of pixels anything within the data. But their
explanation motivates the decision to chose 10 output neurons, by claiming

If the combination of hidden neurons is responsible to classify mul-
tiple digits it will get very hard for the output neuron to figure out
which digit do chose from, since 1000 and 1001 aren’t that different.
But 0000000001 and 0000000010 do very much.

This description works as an heuristic and is widely used. Although I disagree
with the detailed description it is a nice simplification to remember.

Note that in case you want to achieve the same results as the 10 output
neuron model, you can add an additional layer to the end of your model having
4 output neurons. You can use the perceptron neurons for that and manually
precalculate the weights for it.

14

KAPITEL 2. NN TO CLASSIFYING HANDWRITTEN DIGITS2.2. GRADIENT DECENT

2.2 Gradient decent

After we defined the design of our network, how can we train it?
Hold your horses, first we need a dataset which we want to use to train our
model. For this purpose we use the dataset provided by MNIST for handwritten
digits. The MNIST dataset comes in split into two parts, training with 60k
images of handwritten digits by 25 individuals. The images are greyscaled and
28 by 28 pixel in size. The second part is a test set containing 10k images with
the same features. We will use the test set to validate the quality of our network.
To make it a good test set it has been acquired by 250 individuals. This helps
building confidence in the current state during the training phase.

What we’d like is an algorithm which lets us find the weights and biases so
that the output approximates o(x) for all training inputs x. To quantify how
well we’re achieving this goal at the moment we define the cost-function:

C(w, b) =
1

2n

n∑
x

||o(x)− a||2 (2.1)

w denotes the collection of all weights in the network, b all the biases, n the
total number of training inputs, a is a vector of outputs from the network when
x is input (so the current estimation) and the sum is over all training inputs x.
We call C the quadratic cost function or mean square error (MSE). Nice to see
is that for o(x) ≈ a we get C ≈ 0 and for big differences between o(x) and a
we get big values for C. This is nice! Whenever the model is good the cost is
significantly lower then whenever we do a bad prediction. So the aim of training
is to minimize C, in other words we want the weights and biases that produce
the least possible C. We do that using the gradient decent algorithm.

Why introduce the quadratic cost? After all, aren’t we primarily interested
in the number of images correctly classified by the network? Why not try to ma-
ximize that number directly, rather than minimizing a proxy measure like the
quadratic cost? The problem with that is that the number of images correctly
classified is not a smooth function of the weights and biases in the network. For
the most part, making small changes to the weights and biases won’t cause any
change at all in the number of training images classified correctly. That makes
it difficult to figure out how to change the weights and biases to get improved
performance. If we instead use a smooth cost function like the quadratic cost it
turns out to be easy to figure out how to make small changes in the weights and
biases so as to get an improvement in the cost. That’s why we focus first on mini-
mizing the quadratic cost, and only after that will we examine the classification
accuracy.

It turns out that we can understand a tremendous amount by ignoring most
of that structure, and just concentrating on the minimization aspect. So for
now we’re going to forget all about the specific form of the cost function, the
connection to neural networks, and so on. Instead, we’re going to imagine that
we’ve simply been given a function of many variables and we want to minimize
that function. We’re going to develop a technique called gradient descent which

15

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

2.2. GRADIENT DECENTKAPITEL 2. NN TO CLASSIFYING HANDWRITTEN DIGITS

can be used to solve such minimization problems. Then we’ll come back to the
specific function we want to minimize for neural networks.

Gradient decent is an algorithm which you can imagine the following. You
have a plane with minima and maxima in it, some places are higher some are
lower, now you place a ball on that plane and gradient decent will find for
you the minima of your plane. It uses derivatives of the function on which to
calculate the extreme on to ensure convergence into the direction of the minima.

So how can we apply it to neural networks? The idea is to use it to fit
the models weights wk and biases bl during the training phase and therefor to
minimize the cost function C. Writing the gradient decent update rule in terms
of components we get

w′k = wk − η
∂C

∂wk
(2.2)

b′l = bl − η
∂C

∂bl
(2.3)

By repeatedly applying this update rule we can roll down the hill”, and hopefully
find a minimum of the cost function. In other words, this is a rule which can be
used to learn in a neural network.
There are several challenges applying the gradient decent rule. In following
chapters we will take a look at some of them in depth. But for now I just want
to mention one problem. To understand the problem we need to take a look
at (2.1) again. To compute the proper gradient of C, ∇C, we need to compute
the gradients ∇Cx, separately the cost for each input x. This will become a
big problem for big training sets. Hence we need to use a different approach to
calculate ∇C.

The solution for this problem is simple, we use statistical tools to calculate
the gradient, to be precise we use the stochastic gradient decent. The idea is to
make a proper estimation of ∇C by computing ∇Cx for a small, random, subset
of the training set. By averaging over the small subset we can achieve a pretty
well result for the true gradient ∇C, which helps speeding up the computation
of the gradient as well as the time spent to train the model.

To give a proper explanation, stochastic gradient decent is using a small
subset of the training set with m randomly chosen elements X1, X2, ..., Xm, we
refer to them as a mini-batch. For a sample size m, which needs to be large
enough, but not too large, we expect that the average value for ∇CXj will be
roughly equal to the over all average of ∇Cx, or∑m

j=1∇Cx

m︸ ︷︷ ︸
Gradient of mini batch

≈
∑

x∇Cx

n︸ ︷︷ ︸
Gradient of complete training set

= ∇C︸︷︷︸
overall gradient

(2.4)

Hence we can use the gradient of the mini-batch to estimate the overall gradient!
Applied to the cost calculation for weights and biases (2.3) we get

16

KAPITEL 2. NN TO CLASSIFYING HANDWRITTEN DIGITS2.3. IMPLEMENTATION

w′k = wk −
η

m

∑
j

∂CXj

∂wk
(2.5)

b′l = bl −
η

m

∑
j

∂CXj

∂bl
(2.6)

where the sums are over all the training examples Xj of the mini-batch. Then
we pick out the next m elements for the next mini-batch. And so on, until we
exhausted the whole dataset, which then completes an epoch. At that point we
start over with a new training epoch.
It’s worth noting that the implementation of (2.1) might vary. We scaled the
cost function using the factor 1

n people sometimes omit this scaling and compute
the sum of cost of the current mini-batch. In a similar way the equations (2.3)
sometimes omit the term 1

m . Conceptually this makes little difference in the
result, since it’s equivalent of scaling the learning rate η.

2.3 Implementation

Alright, lets get them hands dirty and implement a program which learns how
to recognize handwritten digits using gradient decision and the MNIST dataset.

Download the repository

g i t c lone https :// github . com/MichalDanielDobrzanski /DeepLearningPython35

which contains python 3 compatible code for a neural network as well as the
training dataset by MNIST. Initially I stated that we split the training set into
60k training and 10k testing sets, but that’s the official dataset form. We’ll do
it a bit different and keep the test set as is and split the training set into 50k
training and 10k validation sets. We won’t use the validation set for now, but
later on it will come in handy.

Check out the code in the repository, II will only explain certain features of
it, so it’s quite necessary that you understand how to read python code. The
heavy lifting in form of mathematical operations is mostly lifted by the library
numpy. But no worries, I will explain implementation parts of the code whenever
it’s necessary and will provide the mathematical representation in those cases
to enable the reader to implement the example in any programming language.

So without any further ado, here goes nothing!
For now the main focus is on network.py. Let’s run the statistic gradient de-

cent training algorithm. In order to do so, include the network and mnist loader
scripts into a python shell. Afterwards use lnist loader .load data wrapper()
method to

>>> import network
>>> import mn i s t l oade r
>>> t r a in ing da ta , va l i da t i on da ta , t e s t d a t a \

= mni s t l oade r . load data wrapper ()

17

2.4. BACKPROPAGATIONKAPITEL 2. NN TO CLASSIFYING HANDWRITTEN DIGITS

>>> nn=network . Network ([7 8 4 , 3 0 , 1 0])
>>> nn .SGD(t ra in ing da ta , 30 , 10 , 3 . 0 , t e s t d a t a=t e s t d a t a)

2.4 Backpropagation

2.4.1 Notation

Das Gewicht w, welches die Verbindung zwischen dem k-ten Neuron des l−1-ten
Layers und dem j-ten Neuron des l-ten Layers wird geschrieben als

18

	Neural Networks
	Motivation
	General NN
	Activated Neurons
	Summary
	Important things to remember

	Network architecture
	Input and output layers
	Hidden Layers
	Prospects

	NN to classifying handwritten digits
	Problem description
	Gradient decent
	Implementation
	Backpropagation
	Notation

