<Bhnse:>

Phing User Guide

Andreas Aderhold <andi @i narycl oud. conp
Alex Black <eni gma@ uri ngst udi o. conp
Manuel Holtgrewe <gri n@nx. net >
Hans Lellelid <hans@npl . or g>
Michiel Rook <nr ook @hp. net >
Johan Persson <j ohanl62@nuai | . conP

Phing User Guide

by Andreas Aderhold, Alex Black, Manuel Holtgrewe, Hans Lellelid, Michiel Rook, and Johan Persson

Publication date 2015-12-04
Copyright © 2007-2015 The Phing Project

=Y 7= o < XV

Y o To 1U L T o o T |G 1
O T {3 T PP 1
7 @])Y/ T | | PPN 1
R TR N o =T o L~ PP 1
S T Yo = T Yo | PP 1

1.4.1. Building the doCUumMENtatioNiiiiiiiiiiiii e 2
1.4.2. Template for NEW tasKSoiiiiiiiiii i 4
1.4.3. Customization of the look & feel of the rendered outputscccoceveveviieiinnnnnnn. 4
1.4.4. DocBook v5 elements used in the manual and their meaningccceeeevnnenee. 5

P22 [11 oo [1 Tox 1T o I SPPPIN 11
2% VLo - Y 11 o N 11
2.2. Phing & BinaryCloud: HIiSTOIYiiiiiiiiiiciie e e e 11
A T o [0V A = 1 T YAV 11
2.4, C0o0l, SO hOW CaN | NEIP? covniii s 12

2.4.1. Participating in the developmentcoii i 12

3. SEttNG-UP PRING oonii e e r e 15

3.1, SYStEM REQUIFEMENTS ...iiiiiiiiieiiii et e e e e e e e e e e et e e et e e et e e et eeaneaennaaes 15
3.1.1. Operating SYSEIMSciuuieiiii et e e e e e e e e e e e e e e eaa s 15
3.1.2. Software DEPENUENCIESciuuieiiiieeie e e e 15

3.2, ObtaiNIiNg PRiNG ...oeii e 16
3.2.1. DIStribUtiON FilESuiiiiiiiiie e e 16
3.2.2. Getting the latest source from Phing Git repositoryc.cccoveviiiieiiiiiiiieeineennn, 16

R T o Y = [T - | PP 17

3.4, ComPOSEr INSLAIl ...ouiieie e 17

3.5. Other Install MEthOUScoouiiiii e 17
70 N U o1 PP 18
.52, WINGOWS ..ottt e e e e ettt e e e et s e e e et r e e e eatn e e eeeatnaaaees 18
3B.5.30 AQVANCEA ...t 18

3.6. Calling PRiNG ..o 19
GG T I @0 o 1] 1T T o To I IR o = PP 19
3.6.2. Supported command line arguMENEScoevviiiiiiiiii e 19

O =1 11T) = L4 (T [N 21
T Y I AN o T I = o1 o Vo PSP 21
4.2. Writing A SIMple BUIIfIlE ..o e 21

4.2.1. ProjeCt EIBMENTiieii i 22
4.2.2. Target EIBMENT ...oe e 22
e T I 1~ S = 1= T | £ PP 23
4.2.4. Property EIBMENT ..o 24

4.3. More Complex BUIIFilecouniiiiiii e 24
4.3.1. Handling source dependenCiescc.uveiiiiieiiieiiieeiiie e e e e e e e e e e 25

o =P Nl N\ [€1 = 7 1= PP 25

LT o (o =Tt o] 1 g 0 To) 1= 1 27
L0 I = 0 =T o 27
L YT £~ (o] o SRS 27
5.3. Project Components iN GENETAlccouuiiiii e e e e aans 27
LR 1= (0= PP 28
LT TR 1= T 2T PSPPSR 28
L S 1Y/ 0 1< PP 29

LT B = -] o SRt 29
5.6.2. REfErENCING TYPES vttt ettt e e e e e e e eaaas 29

LT = T] o 1Y o= 30
L A T T =T PP 30
L A T = I T PR 30
57.3. FilterChai ns and Filtersooooiiiiiiiii e 30
LA 1L Y o o] o 1T £ 31

LTS I O o] oo 111 o 1= P 32
LR 700 I 0T | PP PP PP 32

Phing User Guide

D82, BNA et 32
LR JEC T 0 1 S PP PPPIP 32
RS FE T o | PP PPTPRP 32

D B D, D i e 33
LS LG T =Y o [- 33
R T A V=T G T I oY oo o = L = 33
LTS TR TR o 10 A o PP 33
B.8.0. SOCK L it e 34
5.8.10. NAST I BESPACE ..uiiiii i 34
LTS 00 I IO == = PRSP 34
LS I i oo T | - Y 1= SO PT 34
LTS B0 T = O U= SRSt 35
B8, 1 ST @Al SO i 35
5.8.15. I ef B ENCEEXI ST S ittt e 35
B5.8.16. @vai | @bl € ooveiiii i 35
B.8.AT7. Fil @SIMBL CH couiiiii e 35
D818, 1 ST @l | UM B oo e 36

ST (1= o T To T = o113 Vo [P 37
6.1. EXtENSION POSSIDIILIEScieeeiiiiiiii e 37
L 0 O I 1 PSSP 37

LG T Y/ o 1= PP 37
LI T AV =T o] o= £ PP 37

(OIS o 1 [(ol I Yo 1 | PP 37
6.2.1. FileS AN DIr€CIOTIESuuiiiiiiiiieeiii et e et e e e e eeea e e e eatn e aeeees 37
6.2.2. File Naming CONVENLIONSc.uiiiiiieiiiee e e e e e e e e e e e 38
6.2.3. CodiNG STANAAIASuiiiiiiii e 39

6.3. System INIIAliZAtIONcouniiiii e 39
Lo VAV = o o 1= G T] o] £ PP 39
6.3.2. The Main Application (PhiNg.pPhP) ..ccovniiiiii e 39
(SR T I (= o a1 o [O F= 1 PPN 40

B.4. SYSIEM SEIVICES ..uiiiiiiiiiieii ettt e e e e e et e e e e e e e e et e e e e aans 40
6.4.1. The EXCEPLION SYSIEMiiiiiiii it e e e e e e 40

6.5. BUIIA LIfECYCIE ..uniiiiii e et e e e e 40
6.5.1. How Phing Parses BUIldfilesccccuiiiiiiiiii e 40

B.6. WIILING TaASKS ..iiiuiiiiiiii it e e e e e e e e e e et e e et e e ean e eanas 41
6.6.1. Creating A TasK ... 41
6.6.2. USING the TaSK ...uuiiiiiiii e e 42
6.6.3. SOUICE DISCUSSION ..uuiiiiiiiiieeeiii ettt e e e et e e et e e e et eeaeaan s 42
B.6.4. TASK STITUCIUIE ...oeviiiiiii et e et e et e e e et e e eeanns 42
B.6.5. INCIUAES ...euniiiiiiie e e e e e e et e e e e e 42
6.6.6. Class DECIAratiONooieeuuiiiiiiii ettt e et e e aaan s 43
6.6.7. ClasS PrOPEITIESuiiiiiiiiiee et e e e e e e e e e e e e et e e et e aaaaaes 43
6.6.8. The CONSIIUCTIOT ...iieiiieiiii e e e e et e s 43
6.6.9. Setter MEtNOASuiiiiii i e e e e e e e 43
6.6.10. Creator MEthOUSuuiiiiiiiie e e et e e 44
6.6.11. i Nit () MEthOdcouiiiii e 44
6.6.12. MAI N() MethOd ..o 44
6.6.13. Arbitrary MethOOSccouiiiii i e 44
LS4 o 17 1= 44
6.7.1. Creating @ DataTyPe ..ouuiiiiii it e e e 45
6.7.2. USING the DataTYPe . ccvvuiiiiiiiiiiei et e e e e e e e e ean s 46
6.7.3. SOUICE DISCUSSION ...uuiiiiiiiiieeiiii ettt e e e e e et e e et e e e et eeeeaan s 47

(SR T A1 (] o I =T o] o =1 £ PPN 47
6.8.1. Creating @ MaPPEEoiiii i e e e 48
6.8.2. USING the MaPPEE . .couniiiiiiii et e e e e aaas 49

N - Vo S 1= = PP 51
y N I = 10 1 ol T T = o] =T 4 =T 51

A.2. Command LiNE AFQUMENTSuuiiiiiieiieeii et e e e e e e e e e e e e et e e e e et e e et e eaanaas 51

Phing User Guide

A.3. Distribution File LAYOULccouniiiii it e e e e e e e e e e aanees 52
y N B o (0T [= 10 ¢ T (L A O To [53
A5, The LGPL LICENSE ...vuiiiiiiiieeei ettt et e e e et e e e e et e e e e eataeeeees 53
A.B. The GFDL LICENSE ...uiiiiiiiieeiiii ettt e et e e et e e e e et r e e e et e e e aeteaeeeees 60
2 T 0o 1= =] (PP 69
B.1. ADhOCTASKABTTASK ...uuiiiiiiiiiiie e e e eeeaa e e eees 69
B.L.1. EXAMPIES ..eiiiiiii e 69

T2 o | g To Tl 1Y/ o T=To 1= i 1= T 69
B.2.1. EXAMPIE ..eeeiiiii e 70

2T Y o] 01T o I T P 70
B.3.1. EXAMPIES ..ot 70
B.3.2. SUPPOrted NESIEA TAQS ...cvvuiiiiieiiii e e e e e e e et e e e eaaas 70

2 T N o] o] Y I T PP 71
B.4.1. EXAMPIES ..ot 72
B.4.2. SUPPOrEd NESIEA TAQS ...civuiiiiieiiii e e e e e e e e e e e e e e eanas 72

B.5. AT ASK .oeiiei e e 73
B.5.1. EXAMPIE ..eneiiiiiii e 73
B.5.2. SUPPOrEd NESIEA TAQS ...cvvueiiiieiiii e e e e e e e e e et e e e eanas 74

B.6. AVAIIADIETASK ..ooveiiiiiii e 74
B.6.1. EXAMPIES ...eoeiiiiiiii e 74

B. 7. BASENAIME ...oiiiiiiii it ans 75
B.7.1. EXAMPIES ..o 75

TR T O o1 ¢ [o T i 1= T PP 75
B.8.1. EXAMPIES ...eoiiiiii i 75
B.8.2. SUPPOrted NESIEA TAQS ...cvvuiiiiieiiii e e e e e e e et e e e eanas 76

TN T O 0T 1Y o I - T 76
B.9.1. EXAMPIES ..eeiiiiiii e 76
B.9.2. SUPPOrted NESIEA TaAQS ...civueiiiieiiii e ee e e e e e e e e e e e eaaas 76
70 K0 IR @0 o [1 o] 0 1 1=] PRSP 76
B.10.1. EXAMPIES .oeiiiiiiiii et 77
B.10.2. SUPPOrted NESEA TAUS ...ucvvviiiiiieiiii e e e e e e aaa s 77

2 300 R @0) Y I T S 77
B.L11.1. EXAMPIES oeiiiiiiiiieii et 78
B.11.2. SUPPOrted NESEA TAUS ..uuovvviiiiiieiii e e e e e e e e e e aaa s 78

2 T OV 1=]SSPSR 79
B.12.1. EXAMPIES .ouiiiiieiiiii e 79
B.13. CVSPASSTASK ...eiiiiiiiiiiiiii ettt e ettt e e et et e et aaann 80
B.13.1. EXAMPIES ..ot 80
B.14. DEIBIETASK ..eiiiiiieeiiiii et 80
B.14. 1. EXAMPIES .ouiiiiiiii et 81
B.14.2. SUPPOrted NESEA TAGS ..uuivvviiiiiieiii e e e e e e e 81

T ST B - To [[0 1) 1ot 81
B.15.1. EXAMPIE ..oeiieiiiii e 81

2T ST I T ¢ =T TSP 81
B.16.1. EXAMPIE ..oeeiiiiieii e 82

2 700 R o] o =T SR 82
2 T 0 I e Ty o = 82
B.17.2. SUPPOrted NESEA TAUS ..uuevvriiiiiieiiiiei e e e e e e e e e aan s 83
TS = Tod gL o] (o] =T £ 11T PN 83
B.18.1. EXAMPIE ..oeeiiieiii e 83
TR T = Tol I 1] U 84
B.1O.1. EXAMPIES ..eiiiiiiiiiiii e 85
B.19.2. SUppOrted NESEA TAUS ...ucvvviiiiiieiii e e e e e e e e e 85
2P T = T I 1=]SSP 85
B.20.1. EXAMPIES ..uiiiiiiiiieei e 86

2 P B o 1T Lol 1 1= 1] SRR 86
2 T O I - T4 o L= 86
B.21.2. SUPPOrted NESEA TAUS ..uucvvvniiiiiieii e e e e e e e e e aa s 87

Phing User Guide

S0 | 1= T 87
B.22.1. EXAMPIES ..uiiiiieiii et 87
2 T2 T [4T o To o 1=] 88
B.23.1. Target OVEITIAINGceeuuiiiiieii et e e e e e e e e e e e e aaaas 88
B.23.2. SpecCial PrOPEILIEScuuiiiiieii it e e 88
B.23.3. Resolving Files Against the Imported Filecooiiiiiiiiii e, 88
B.23.4. EXAMPIES ..uiiiiieiii et 89
P B [ol [N T [T = 11 I 1=] PP 89
B.24. 1. EXAMPIES ..uiiiiieiii e 90
2 T2 T [T 01U I T PN 90
B.25.1. EXAMPIES ..uiiiiiiiii i 90
B.26. LOAUFIETASKceeeiiieiiiii et e et s e e ettt s e e e et e e e eata e eeeee 90
B.26.1. EXAMPIES ..uiiiiiiiii et 91
B.26.2. SUPPOrted NEStEA TagS: ..uuiieriiiiiieii e e e e e e e e e e e 91
2 P G | o [T I T PP 91
B.27.1. EXAMPIES ..uiiiiieii et 91
B.28. MOVETASK ..oeeiiiiiiii et aaaas 91
B.28.1. EXAMPIES ..uiiiiiiiiiiiii et 91
B.28.2. Attributes and Nested EIEMENtScoovvuiiiiiiiiiii e 92
B.29. PaAtNTOFIESEITASK ... eiiiiiieeiiii e e et e e e et s e e e eaeaeeees 92
B.29.1. EXAMPIES ..uiiiiieiiiiiei e 92
2T 10 R o o111 1= =) PP 92
B.30.1. EXAMPIES .ouiiiiiiiiiei e 93
B.30.2. SUPPOrted NESEA TAUS ...uovvvniiiiiieiiiei e e e e e e e e s 93
B.30.3. Base directory of the NeW Projectcooviiiiiiiiiiiiiiecce e 93
2T N I = o1 T [@F= | 1= T G 94
B.3L.1. EXAMPIES .oeiiiiiiiiiie e 94
B.31.2. SUPPOrted NESEA TAUS ..uuovvvniiiiii et ee e e e e e 94
T 2 = o119 T V=T £ o] o 94
B.32.1. EXAMPIE ..orniiiiiii e 95
B.33. PHPEVAITASK ...t et 95
B.33.1. EXAMPIES oeiiiiiiiii et 95
B.33.2. SUPPOrted NESEA TAUS ...uovvvnieiiiieiii et e e e e e e 96
TR 7B o o o 1= 4V 1= =) 96
B.34.1. EXAMPIES ..uiiiiieiii et 97
B.34.2. SUPPOrted NEStEA TagS: ..vuciveeiiii e e e e e e e e s 97
B.35. PropertyPromptTaskcc.iiiiiiii e 97
B.35.1. EXAMPIES ..uiiiiiiiiiiie e 97
e ST = L= o o] (o PP 98
B.36.1. EXAMPIE ..ooeiiiieii e 98
B.37. REFIEXIVETASKiiiiiiiiiiiii et e s 99
B.37.1. EXAMPIES ouiiiiiiii it 99
B.37.2. SUPPOrted NESEA TagS: ..vucieeeiiiieiii e et e e e e e e e 99
B.38. RESOIVEPAINTASKciiiiiiiiiiiiiii et e e et e et e e eaeens 99
B.38.1. EXAMPIES ..uniiiiiii e 100
ST TR = L1 1 YT 100
B.39.1. EXAMPIE ..oriiiiiiiiii i 100
B.40. SWILCRTASK .uuuiiiiiii et 100
B.40.1. Supported NESEA TAGS ...ucvvvreiiiieei i e e e e e e e e eaes 101
B.40.2. EXAMPIES ..vniiiieiiie et 101
2R N 1=] o (= 1=] PRSPPI 101
2 3 O R e T a1 o L= PP 102
B.41.2. SUPPOrted NESEA TAGS ..uivvvneiiiieii it e e e e e e e e e e eees 102
B.42. TeMPFlE TASK ..ccvveiiiiici e e 102
B.42.1. EXAMPIE ..oeniiiiiieii e 102
2R T o TH] o I =] PP 103
B.43. 1. EXAMPIES .uniiiieii e 103
B.43.2. SUPPOrted NESEA TAGS ..uivvviieiiiieii i e e e e e e eaes 103

vi

Phing User Guide

B.44. TryCatCRTaSKciiiiiii i e e e e e e e e e e e eaneees 103
B.44. 1. EXAMPIES ..uniiiieiii it 104
B.45. TStAMPTASK .uuiiiiiii e 104
B.45.1. EXAMPIES ..uniiiiiiii it 104
B.45.2. SUPPOrted NESEA TAGS ...uivvvnieiiiieiii it e e e e e e e e e eaas 105

2 I T Y/ 0 T=To (= 1= 1) G 105
B.46.1. EXAMPIES ..uuiiiieiiiii e 105
B.46.2. SUPPOrted NESEA TAGS ...uovvvnieiiiieiii i e e e e e e e eaas 106
B.47. UPTODAETASK ...uiiiiiiiiii it e e e e e e e e e 106
B.47.1. EXAMPIES ..uniiiiiiii i 106
B.47.2. SUPPOrted NESEA TAGS ...uovvvieiiiieii it e e e e e e e aaas 107
B.48. WatFOITASK ..oeuuiiiiiiiie ittt e e e e e e aa s 107
B.48.1. EXAMPIES ..uuiiiieiii it 107
B.48.2. SUPPOrted NESEA TAGS ...uivvvneiiiieii it e e e e e e e e e eaas 107
IR T] | I T PSP 107
B.49.1. EXAMPIES ..uniiiiieii i 108
B.49.2. SUppOrted NESEA TAGS ...uovvvnieiiiieiii et e e e e e e e eeaas 108

(O @ o) o] 0 F= L = 1S 4 PPN 109
(O I Y o1 1= o 1 1= T S 109
L I R =2 11 o] = PP 110

(O3 T (o] (o= To (=T g - T PP 110
C.2.1. EXAMPIE oo 111

(O T @10] o Jo 1=l 1= 1) PN 111
(O I ST o] o To 4 (=0 I AV L=T) (= To BN 1= Vo 1= 111

C.4. COVErageMErGEITASK ...civuiiiiiieii e e e e e e e e e e e e e e e e e e eaa s 111
L I I =2 11 o] = PP 112
C.4.2. SUPPOrtEd NESIEA TAQS ...civveiiiieiiii et e e e e e e e e e et e eeaaaaee 112

OB T 0101V - To [=] ==Y o To] o i 1=V N 112
C.5.1. EXAMPIE e 112
C.5.2. SUPPOrtEd NEStEA TAQS ...civueiiiieiii e et e e e e e e e e e et eeaaaaee 112

C.6. COVEraAgESEIUPTASK ..cvvvuiiiiieiiiieii et e e e e e e e e e e e e e e e e e e et e e et e e et e e aaneeeens 113
C.6.1. EXAMPIE ..oeeiiiiiii e 113
C.6.2. SUPPOrtEd NESIEA TAQS ...civueiiiieiii et e e e e e e e e e e e e aees 113

C.7. CoverageThreSholdTaskcc..oeiiiiiiiiii e e 113
L A I -T2 11 o] = PP 114
C.7.2. SUPPOrtEd NEStEA TAQS ...civueiiiieiii e e e e e e e e e e e e et eeaaaaees 114

(O ST B o1 LT o] (o) Y IV 114
C.8.1. EXAMPIE ..eeiiiiii e 115

ORI S d ool g1 ad (o] o= g [=TY Y= 1) 115
CLO.1. EXAMPIE e 116

LT K 1 1= o =] o 1= 1] PN 116
(O 0 O - 11 o = PP 116
O B 1 1= T 2= 1= 1] PSPPSR 116
(O 0 O - 13 o = P 117

O I 1 o0 V7 (o I T 117
(O o I e 41 o] (=P 118
(O T {0 1T o] o)V I T PPN 118
(O e B0 R - 11 o = P 119
C.13.2. SUPPOrted NESEA TAUS ..uucvvrniiiiiieiiiee e e e e e e e e e e et e e eaens 119
O3 S €111 1 1= L] PSR 119
(O R - T ¢ 1 o] = P 120
C.15. GItCIONETASK oottt e e et e e e as 120
(O 300 I e T 1 1 o = P 120
O3 N ST €11 (o =T PP 121
(O T R - T 1o o = PP 121
(O A €112 = T [od 4 1= T SRR 122
(O A R - T 13 o = P 123
(O R T €111 (ol o I T OSSP PRT 123

Vii

Phing User Guide

(O T R e 13 o] =P 124
C.19. GItCNECKOULTASK ...iivtiieiiiiie ettt et e e et e e e et e e e eaan s 125
(O L TR R e 43 o] = P 126
L0320 B €11 (0] 41111 = 1] PP 126
(O 0 5 I e T ¢ 1 o] = P 126
C.20.2. SUPPOrted NESEA TAGS ..uucivvniiiriieii et e e e e e e e e e e e e e e e eeens 127
O N €111V =T [I T P 127
LS 0 R e T 13 o] = P 128
LR 111 T I 1) PP 128
(O T e T 111 o] = P 129
O T 111 U I T ST 130
C.23.1. EXAMPIE ..oeiiii e 130
O | I To -V G 131
(O T e T 11 o] = P 132
(O ST 1 1 o o [1= 1) PPN 132
C.25.1. EXAMPIE ..oriiii e 133
C.26. GrOWINOTYTASK ..evvuiiiiiieiiiie i e e e e e e e e e e e e e e e e e et e e eanaee 133
C.26.1. EXAMPIES ..oiiiieiii et 135
O A o 111 0] 1= I T 136
(O A T e T 111 o] = P 136
C.27.2. SUPPOIrtEd NESEA TAGS ..uueivvniiiiiieiiiei e e e e e e e e e e e e e e e eaens 136
C.27.3. Global configurationccuuiiiiiiiiie e e e 137
C.28. HIPREQUESTTASK ...ovuiiiiiiii et e e e e e e e e e e e e e et e e e e e eanes 137
C.28.1. EXAMPIE ..oeiiiiiei e 138
C.28.2. SUPPOrtEd NESEA TAUS ..uuevvvniiirieeii et ee e e e e e e e e e e e e e e e eeens 138
C.28.3. Global configurationcc.uiiiiiiiiii e e 139
C.29. INIFIETASK ...eeeeiiiiee et e et et e e e et e e e et eeeanans 139
C.29.1. SUPPOrted NESEA TAGS ..uuevvrnieiiieii et e e et e e e e e e e e e e e aaens 140
C.29.2. EXAMPIE ..oeeiiieei e 140
C.30. 10NCUDEENCOUEITASKuiiiiiiiiieeeiii ettt e e et e e e et e e e eateneeeenes 140
(O 10 0 R = 43 o] = P 142
C.30.2. SUPPOrted NESEA TAUS ..uucivvniiiriieii et e e e e e e e e e e e e e e e e aaens 142
C.31. 10NCUDELICENSETASKuiiiieiiieeeiii ettt et e e e et e e e e e et e e eeeanns 143
(O 0 R e 03 o = P 143
C.31.2. SUPPOrted NESEA TAGS ..uucivvnieiiiieii et e e e e e e e e e e e e e e eeens 143
O N L] o 11 i 1= £ PP 143
(O 2 I e 11 o] = P 144
LT 1 TN 1] | I o 1= T PSPPI 144
C.33.L. EXAMPIE oeniei e 145
C.33.2. SUPPOrted NESEA TAUS ..uuevvvniiiriieeiiei e e e e e e e e e e e e eaens 145
O B 11V 1o 1 I 1] PSP P 145
(O 7 I - ¢ o] = P 145
C.34.2. SUPPOrtEd NESEA TAGS ..uucvvrniiiriieiiiei e e e e e e e e e e e e e e e eaens 145
C.35. LIiQUIDASETASK ...uiiiiiiiiii e 145
C.35.1. EXAMPIE ..oeeiiiiei e 146
C.35.2. SUPPOrted NESEA TAUS ..uueivvniiiiiieii et e et e e e e e e e e e e aaens 147
C.36. LiquibaseChangeLogTaskiiiiiiiiiiiei e e e e e 147
C.36.1. EXAMPIE ..oeeiiiieii e 148
C.36.2. SUPPOrted NESEA TAGS ..uucvvrniiiriieiiiei e e et e e e e e e e e e e e e e eaens 148
(O iy I To 81 o 7= TY=T] o] B o ol =T P 148
(O A I - 13 o] = P 149
C.37.2. SUPPOrted NESEA TAUS ..uucivrnieiiiieii et et e e et e e e e e e e e e e aaens 149
C.38. LiqUIbaseDIffTaSKccuuiiiiiiii e 149
C.38.1. EXAMPIE ..oeeieiieii e 150
C.38.2. SUPPOrtEd NESEA TAGS ..uucivrnieiriieiiiei e e et e e e e e e e e e e e eaens 150
C.39. LiquibaseROIIDACKTASKccuuiiiiiieiiice e e e e e e aens 151
(O 1 I R - 43 o] = P 151
C.39.2. SUPPOrtEd NESEA TAGS ..uuevvvniiiriieiiiei e e e e e e e e e e e e aeens 152

viii

Phing User Guide

(O L0 I I To 011 7= Y 1= Vo [I T PN 152
(O 10 R e T 1o o] = P 152
C.40.2. SUPPOrted NESEA TAUS ..uuevvrniiirieeii et e e e e et e e e e e e e e eaens 153

C.4L. LiquIbaseUpPAatETaSKccuuiiiiiieiiiei e e e e e e e e e e e eeens 153
(O I R e T 11 o] = P 154
C.41.2. SUPPOIrtEd NESEA TAUS ..uuevvrniiiiieii et e e e e e e e e e e e e e e eaens 154

O |V - 1 1= T PR 154
(O I e T 111 o = P 154
C.42.2. SUPPOItEd NESEA TAUS ..uueivrniiiiiieiiiei e e e e e e e e e e e e e e eeens 155

(O T - T 1 (=] I T ST PR 155
C.43.1. SUPPOrted NESEA TAGS ..uucvvvniiiinieii et e e e et e e e e e e e e e e e eaens 155

C.44., PackageASPatNTaSKc..iiiiiiiii e 155
(O I e T 11 o] = P 155

C.45. NOUIYSENATASK ...evuiiiiiiiiiii et e e e e e e e e e e e e et e e e e eeen 155

CLAB. PaArAllElTASKoeieeiieeiii et e e e e et e e e e e e 156
CLAB.1. EXAMPIE .ooeiiii e 156

LRy o (o o I =T PSPPI 157
(O A T e T 11 o] = P 157

C.48. PDOSQLEXECTASK ..uuuiiieeiitiiiiiiisieeeeeteeeiiis s e e e e et eeataes s e e e e e e eeaaat s e s e eeaeeasnnnnnaaaeeeees 157
(O T I e T 1 1] o] = P 158
C.48.2. SUPPOIrtEd NESEA TAGS ..uuevvrniiiiiieiiiee e e e e e e e e e e e e eaens 159

O I T 1 o= o3 - 1o [I T PN 160
C.49.1. EXAMPIE .ooeiiii e 160
C.49.2. SUPPOIrtEd NESEA TAUS ..uucvvvniiiiiieei et e e e e e e e e e e e e eaens 161

C.50. PEArPACKAGE2TASK ..u.ivuniiiiiieii e et e et e e e e e e e e e e e et e e et e e aanees 161
(O] 0 5 I e T 1 o o] = P 162
C.50.2. SUPPOrted NESEA TAYS ..uucvvvniiiiiieii et e et e e e e e e e e e eaens 162

(O N B o T T B = | = 1=] PP 164
(O 0 R e T 11 o] = P 165
C.51.2. SUPPOrted NESEA TAUS ..uucvvrniiiiieiiiei e e e e e e e e e e e e e e eaens 165

C.52. PharPacCKagETaSKcciuuuiiiieeiiieiie et e ettt et e e e e e e e e e e et e e e e eanaeeeen 165
C.52.1. EXAMPIE .ooeiiii e 166
C.52.2. SUPPOIrtEd NESEA TAUS ..uuevvrniiiiiieiieei e e e e e e e e e e e e e eaens 166

C.53. PhKPACKAGETASK ..uuiieiiiiii it e e e e e e et e e e eeas 166
C.53.1. EXAMPIE .oeeniei e 167
C.53.2. SUPPOIrtEd NESEA TAGS ..uucvvrniiirieeii et e e e e e e e e e e e e eaens 167

C.54. PhPCOAESNIffEITASK ...evuuiiiiiiiii et e e e e e e e e e ean s 167
(O I e 111 o] (=P 168
C.54.2. SUPPOIrtEd NESEA TAGS ..uucivrniiiiiieiiiei e e e e e e e e e e e e e e eaens 169

C.55. PHPCPDTASK ...ciiiiiiiiiiiie ettt e e et a e e e e e ettt e s e e e e e e eaaratnaeees 170
C.55.1. EXAMPIES .oeiiiiiieii e 170
C.55.2. SUPPOIrted NESEA TAGS ..uucivrniiiiiieiii et e ee et e e e e e e e e e eaens 171

(O T o | 0Tl - T 171
C.56.1. EXAMPIES .ouiiiiiieii it 172
C.56.2. SUPPOIrted NESEA TAUS ..uucivrniiitiieiiieiie e e e e e e e e e e e e e eaens 172

C.57. PHPIMDTASK ...vttuiiiiieeeiitiiiiii st e e e e e ettt s e e e e e e e ettt s e s e e e e e e aaaasaa s s e e e eeeeestnannnaaeeeeaenes 173
(O A I e T 111 o = P 173
C.57.2. SUPPOIrtEd NESEA TAUS ..uuevvrniiiiiieiiieiii e e e e e e e e e e e e e e e e eaens 174

(O S I o aT'o] D I=T o= g o I 1= 1) N 174
C.58.1. EXAMPIE ..ooeiiei e 175
C.58.2. SUPPOrtEd NESEA TAYS ..uuevvrniiiiiieiiiei e e e e e e e e e e e et e e e e eaens 175

OB I = ol o] o olW] e =T a1 (o] gl I T P 176
C.59.1. EXAMPIE ..ooeiiii e 177
C.59.2. SUPPOIrted NESEA TAYS ..uucivrniiiiiieiiiiei e e e e e e e e e e e eaens 177

(O GT0 R =d ol o] o TolN] =T o) (o] w2l Ir- T N 177
C.B0.1. EXAMPIE ..ooeiiii e 178
C.60.2. SUPPOrted NESEA TAUS ..uucvvvniiirieei et e e e e e e e e e e e e eaens 178

C.61. PhpDocumentorEXIErNAITASKccuuiiiiiiiie e e e e 178

Phing User Guide

(O 3 O - 13 o] = P 178
(O G2 o o1 oI g1 =T 179
C.B2.1. EXAMPIE ..ooeeiiieeii e 179
C.62.2. SUPPOrtEd NESEA TAGS ..uuevvrniiiriieiiiei e et e e e e e e e e e e e e e eaens 180
O T T o o | U 01 i 1=] PP 180
C.63.1. SUPPOrted NESEA TAGS ..uuevvvnieiriieii i ee e et e e e e e e e e e e e e e eeens 181
C.83.2. EXAMPIE ..oeeieiiei e 182
C.63.3. SUPPOrted NESEA TAGS ..uucivrniiiiiieiiiei e e e e e e e e e e e e e eaens 182
(O G 7/ o o 1= U 711 T=] o o] o AN 182
(O 7 I e 13 o] = P 183
O G TSI = To 1=t I T N 183
C.65.1. MAtCh EXPIrESSIONS ...uuiiiiiiiiiieiiie e et e e e e e e e e e e e et e et e e aaeeeenas 184
C.85.2. REPIACE . civti it 184
C.65.3. EXAMPIE ..oviiei e 184
(O ST 1S B =]SSP 185
C.B6.1. FRALUIES ...eeiiitii it ettt ettt e e e 186
C.66.2. EXAMPIES ...iciiieiii et 186
C.66.3. SUPPOIrted NESEA TAGS ..uucivrniiiiiieiiiei i ee e e e e e e e e e e e e eaens 188
O Sy S| | I T PSP 188
(O G0 I e 11 o = P 189
C.67.2. SUPPOrtEd NESEA TAGS ..uueivvniiiiieeiiiei i ee e e e e e e e e e e e e e e eaens 189
.88, SGITASK oevuiiiiiiti i e e e e e et aen 190
C.B8.1. EXAMPIE ..ouiiiieeii e 190
C.89. SCPTASK et 190
(O ST IR R - 131 o] = P 191
C.69.2. SUPPOrted NESEA TAGS ..uuevvrniiirieii i e e e e e e e e e e e eaens 191
O S o 1= L] PP 192
LS4 0 5 R e 43 o = P 193
C.70.2. SUPPOrted NESEA TAUS ..uueivrnieiiiieii i e e e e e e e e e e e e eeens 193
C.71. SIMPIETESITASK ..ivuiiiiiiiiii et e e e e e e e e e et r e et eeanaeeeen 193
Ly 0 R e 13 o] =P 194
C.71.2. SUPPOIrtEd NESEA TAGS ..uuevvvnieiiiieiiiei e e et e e e e e e e e e e e eaens 194
C.72. SUNCRNECKOULTASK ...uieiiiiiieee i e e e et e e et eeeae s 195
(O T e T 111 o] = P 195
C.73. SVNCOMMILTASK ..uuieiiiiiieeeeii ettt e e e et e e e et e e e eate e e e eatn s eeeenes 196
(O 4 B0 I e 11 o] = P 196
Oy 2 (O] o)V 1= =) PN 196
O I e T 11 o] = P 197
C.75. SVNEXPOMTASK ..ievuiitiiiiiiei et e et e e e e e e e e e e e e e et e e et e e e et e e aaeeeenns 197
(O 430 I e T 111 o] = P 198
C.76. SVNINFOTASK ettt e et e e et e e e e eas 198
(O T I e T 13 o] = P 199
C.77. SUNLASIREVISIONTASK ...eeiiiiiiiiiie e e s 199
O A T e T 13 o = P 199
O TS o) 1= 1] PR 200
C.78.1. EXAMPIE ..oeniii et 200
(O 4 I T o To I =T G 201
C.79.1. EXAMPIE .oeeiii e 201
(O {0 IV 0 oo F= L (= 1= T 201
(O 10 0 R - 13 o] = P 202
C.81. SVNSWILCNTASK ..ovuiiiiiiiiii e e et e eeees 202
(O S O - 03 o] = P 203
(O] (o] 0111 = L (o1 I T N 203
C.82.1. EXAMPIE ..oeiiiieeii e 203
C.83. SYMONYCONSOIETASK ...vuuiiiiiiii e e e e e e e et eean s 203
C.83.1. EXAMPIES ..ot 204
C.83.2. SUPPOrted NESEA TAYS ..uucvvrnieiriieii et e et e e e e e e e e e e e e eaens 204

(O 7 Y1 110 = 1= 204

Phing User Guide

C.84. 1. EXAMPIE ..ooeiiii e 204
C.84.2. SUPPOIrtEd NESEA TAUS ..uuevvrniiiiiieiiiei e e e et e e e e e e e e e eaens 205
(O ST 1= 1 - T ST 205
C.85.1. EXAMPIE ..ooeiiii e 206
C.85.2. SUPPOIrtEd NESEA TAUS ..uucvvrniiiiiieiiieii e e e et e e e e e e e e et e e e e eaens 206
(ORI I] (01T 1= £ PP 206
C.86.1. EXAMPIE ..oeiieiieii et 206
(O R | = g I T PSPPSR 207
(O S I e T 11 o] = P 207
C.87.2. SUPPOIrtEd NESEA TAYS ..uucivrniiiiiieiiieii et e e e e e e e e e e e eaens 207
(O 1S T U T 4 o 1 1= 1= G 207
C.88.1. EXAMPIE ..oeiiii e 208
C.88.2. SUPPOrtEd NESEA TAUS ..uueivvniiiiiieiiiei e e e e e e e e e e e e e e eaens 208
(O Y =T T o I T PSP 208
C.89.1. EXAMPIE ..oeiiii e 208
C.90. WIKIPUBIISNTASKoiiiiiiiieiii e e e eeee 208
C.90.1. EXAMPIE ..oouiiii et 209
C.92. XMILINETASK .vueeeiitiee ettt e e et e e e et e e e e et s e e e et e e e e eatnaeeeesanaeaees 209
(O R e 11 o] (=P 209
C.91.2. SUPPOrted NESEA TAUS ..uucvvrniiiiiieiiiei e e e e e e e e e e e et e e e eaens 210
(O 2 1311 (0] 01T Y 1= T G 210
C.02.1. EXAMPIE .ooeiieieeii et 210
C.93. ZendCodEANAIYZEITASK ...ccuuiiiieiiii et e e e e e e e e e e aaaas 211
C.93.1. EXAMPIE .ooeniii e 211
C.93.2. SUPPOrtEd NESEA TAGS ..uuevvrniiiiiieiiiei e e e e e e e e e e e e e e eaens 212
C.94. ZendGUArdENCOUETASKciiiiiiieeiiiie ettt e e 212
(O I e T 11 o] = P 213
C.94.2. SUPPOIrtEd NESEA TAGS ..uueivrniiiiiieiiiei e e e e e e e e e et e e e eaens 214
C.95. ZendGUArdLICENSETASKuuiiiiiiiieiiiii e e e 214
CLO5.1. EXAMPIES .oeiiiiiieii et 215

O LT o - T PP 215
CL96.1. EXAMPIE ..ooeiiii e 216
C.96.2. SUPPOIrtEd NESEA TAUS ..uuevvrniiiiieii et e e e et e e e e e e e et e e e eaens 216
O A B == Ted g I T SR 216
(O A I - T 11 o = P 217
C.98. ZSDTVAIUAETASKuiiieeiiieiiiiee et e et e e et e e e e aan s 217
CL98.1. EXAMPIE ..ooeeiii e 217

D o (I 1Y/ o= PP RPRPRPES 219
D 0 T o] 11 o = PP 219
D 200 O O L= (<o I 7 Vo £ PSP 219
D.1.2. Usage EXAMPIESociiiiiiiiiii e 219

D 1 = = PSP 219
D.2.1. Usage EXAMPIESoiiiiiiiiiiiii e 220

DG T 1 o PP 220
D.3.1. USING WIlACAITSouiiiiiiii i e e e e e e aens 221
D.3.2. Usage EXAMPIESociiiiiiiiiciii e 221
DG TR T L= (<o I 7 T £ PP 221
D.3.4. REIAEA LYPES ovniiiiiiiii et 221

D4, PAEINSEL ...oeniiiii ittt ettt et e ees 221
D.4.1. USage EXAMPIEcoeiiiiiiiiii e 222

D2 N N L= (<o I 7 T £ PSP 222

D.5. Path / Classpathccouiiiiiiiii e e 222
D 2R TNt O L= (<o I 7 Vo £ PP 222

D.6. PearPackageRileSetcciiiiiiii i 223
D.6.1. Usage EXAMPIESociiiiiiiiiii et 223
DT N L= (=T I 7 T £ PP 223

I 0o = 111 (T £ PP 225
O o 01T Vo | 1 (=T == Vo =T 225

Xi

Phing User Guide

I O AN = Ty 1= o I = o 226
O Ao AV T oo =T o PP UPPRN 226

R o eq o =Yg T = o o= 1= 226
G T O] o [ox= 11 1 (= PP 226
R B o= 1o | =T PP 227
ST (oo T 1 = PP 227
S ST T L= @) o) = 1] PSP 227
TR0 I A\ =Ty 1= o I = T 227

E.7. LINECONAINSREGEXD .uuiiiieiiiiieit et e et e e e e e e e e e e e e e e e e e ean s 227
A R N\ = Ty 1= o I = Vo 228

EL8. PrefiXLINES ..o 228
E.9. REPIACETOKENS ...t et e e 228
I O AN = Ty 1= o I =T 228
E.10. ReplaceToKeNSWIIFIIEcoovniiiie e 229
I 0 O =T (=T = Vo Pt 229
I O = =T o] F= Tod = =T 1= o P 229
I O O N =T (=T = Vo Pt 230
S Yo = PP 230
E.13. SHHPLINEBIEAKS .. couiiiiiiiii e et e 231
E.14. StriPLINECOMMENTS ..ivuiiiii e e e e e e e e e e e e e e e e et e e e e e et e e e eeanns 231
I I N =Ty (=T = Vo Pt 231
E.15. StHIPPhPCOMMENTS ...iiiiiiii et e e e e e e et e et e e eeaens 231
E.16. StHPWHITESPACE ...vuiiiiiiiiii et et e e e e e e e e e e et e eean e eaes 231
R - o [0 1] = Lo PN 232
IS T 1= V1 | (T PP 232
e TR T)Y (= PSP 232
I TR I =T (=T I =T Pt 233
2 T] o] 18 o L= 1 T PR 233
S B € 1| T (= PRSP 233
2 O I =T (=T = Vo Pt 234

e 0] (¢ 4 T=T o] o 1= £ PP 235
F.1. COMMON ALMDULES ...t e e e e e et e e e e e e e ennes 235
A O o= 11 U= 1LY/ F= T 1= 235
e T = 11 1] [P 235

G T @] 141 010 11 (=11, = o] o 1= 236
0 T = 11 0] [PP 236

I T 53 11V = L (o 0117/ = T 1= S 236
T = 11 0] o [P 236

T o 1 (=1 117 F= T L= PN 237
0 T = 11 1] [P 237

T €1 (0] o1V F= '] = 237
G 0 T = 11 1] [P 237

e [0 =T a1 1) /Y = o] o= 238
[BV (=T o=\ =T o] [T PP PRPPRPR 238
S 0 T = 11 1] [P 238

[B L=To (o> d 0] \Y =T o] o 1= PR 238
e T = 11 0] [P 238

T o] (Y= =Tt (o] PR 241
LC 00 @0 01 -1 = PP 241
LT B -1 L= PP TPPP PP 242
LT T =7 o -1 o T N 242
L S 0= o i o 243
LRI 1 =T o F= o T TP 243
CI ST o (=1]= o | AT PPN 244
LT A 00 g1 7= 11 £ =T 1= o P 244
LS TS . T PP 245
TR TR I o < 245
L0010 R Y o PP 245

Xii

Phing User Guide

L0 I O | =V o] 2P 246

LT B o] o = PP UPP PP 246

L 00 T o) PP 246
L0 O PSP 246

L TS [T o (o PP 247

[TR o (o 1= Tod @0 T] o] 1T | £ 249
[00 O = o 1 0 To T = o] [= o £ P 249

o T O IO o U 4 [P 249

0 P 249

H. 1.3, ALHOULES ..o e s 249

o N 1= U0 = 249

o T2t O o 1 4]][P 249

H.2.2. ALHDULES ..ot e s 250

I (I o] 04T L £SO 251
0 O =T 1] Fo B 1 L= o 4 = O SUPPRTPN 251

1.2. Property File FOrMALooiiiiiiiii e e e e e e e e e e aaas 252

2T 1110 = o] o)Y/ 253

Xiii

Xiv

Preface

PHing Is Not GNU make; it's a PHP project build system or build tool based on Apache Ant. You can
do anything with it that you could do with a traditional build system like GNU make, and its use of
simple XML build files and extensible PHP "task" classes make it an easy-to-use and highly flexible
build framework. Features include running PHPUnit and SimpleTest unit tests (including test result and
coverage reports), file transformations (e.g. token replacement, XSLT transformation, Smarty template
transformations), file system operations, interactive build support, SQL execution, CVS/SVN opera-
tions, tools for creating PEAR packages, documentation generation (DocBlox, PhpDocumentor) and
much more.

If you find yourself writing custom scripts to handle the packaging, deploying, or testing of your applica-
tions, then we suggest looking at the Phing framework. Phing comes packaged with numerous out-of-
the-box operation modules (tasks), and an easy-to-use OO model for adding your own custom tasks.

Phing provides the following high level features:

» Easy to read XML buildfiles

 Rich set of predefined tasks

» Easily extendible via PHP classes

 Platform-independent: works on UNIX, Windows, MacOSX

» No required external dependencies apart from a working PHP5 installation

* Built & optimized for ZendEngine2/PHP5

XV

XVi

Chapter 1. About this book

1.1. Authors

» Andreas Aderhold, andi@binarycloud.com
» Alex Black, enigma@turingstudio.com

» Manuel Holtgrewe, grin@gmx.net

* Hans Lellelid, hans@xmpl.org

* Michiel Rook, mrook@php.net

» Johan Persson, johan162@gmail.com

1.2. Copyright

Copyright 2002-2015, The Phing Project.

1.3. License

This documentation is made available under the GNU Free Document License (see Section A.6, “The
GFDL License”)

Copyright (c) 2002 - 2015, The Phing G oup

Perm ssion is granted to copy, distribute and/or nmodify this docunment
under the terns of the GNU Free Docunentation License, Version 1.1 or
any |l ater version published by the Free Software Foundati on;

1.4. DocBook

All Phing reference documentation is written using the DocBook5 XML markup (see DocBook Project
[http://docbook.sourceforge.net/]). The main advantage with DocBook is that it is a single source but
multiple outputs. These document sources can be rendered into many possible output formats such
as (X)HTML, PDF, EPub, Webhelp, RTF, Text and many more. Another advantage, inherit with the

http://docbook.sourceforge.net/
http://docbook.sourceforge.net/

Building the documentation

text based XML format, is that the document sources are all completely text based written using UTF-8
encoding. Only a plain text editor is required to extend or edit this documentation.

However, XML tends to be quite verbose and even if a plain text editor technically is all that is needed
the actual entering of text will be made much easier with custom XML editor. These editors can be
used to hide the XML tags and do auto-completion and on-the-fly validation to make sure that what is
written is a valid DocBook5 document.

To work with the documentation we recommend to use one of the free XML/DocBook aware editors
available. For example

» Emacs with the nXML mode (see nXML mode [http://www.thaiopensource.com/nxml-mode/])

» Serna Free, (Free of charge) A Java based XML editor with extended support for DocBook5 (see
Serna Free - Open Source XML Editor [http://www.syntext.com/products/serna-free/])

« XMLMind XML Editor, Personal Edition (Free of charge), A java based XML editor with ex-
tended support for DocBook5 (see XMLMind Personal Edition [http://www.xmImind.com/xmledi-
tor/persoedition.html])

The sources for the documentation are included under the docs/ docbook5 directory. The DocBook
sources are split into several files in order to make it more maintainable using the XML standard XI n-
cl ude (see XML Inclusions (XInclude) Version 1.0 [http://www.w3.org/TR/xinclude/]).

For the writing of the book only a subset of all available DocBook elements are used as shown in
Section 1.4.4, “DocBook v5 elements used in the manual and their meaning”

As of this writing the build process has been validated using version 1.78.1 of the DocBook5 stylesheets.

c Important

Make sure all documentation is written using UTF-8 text encoding.

1.4.1. Building the documentation

In order to build the documentation it is necessary to have the DocBook5 XSL stylesheets installed
together with "xsl t pr oc" which is used to transform the source into various output formats. In addition,
to build the versions (either HTML or PDF) that supports highlighting of included source (within the
<progranl i sting> element) the Saxon 6.5.5 XSL processor must be used. This is necessary
since the syntax highlighting in DocBook is based on a Java extension (xsl t hl - 2. x. x) which requires
a Java based processor (such as Saxon).

@ Tip

The easiest way to setup a complete build environment for DocBook5 for people new to DocBook is
to install a clean version of Debian 7.x and then run the "deb- set up. sh" shell script. This will create
a fully tested and working build environment for DocBook5 as it is used with Phing. This could easily
be done using a virtual setup (for example using VirtualBox).

All DocBook sources are structured in a tree under docs/ docbook5. The top level is the language of
the manual. As of this writing only an English manual is available and hence the only top level direc-

http://www.thaiopensource.com/nxml-mode/
http://www.thaiopensource.com/nxml-mode/
http://www.syntext.com/products/serna-free/
http://www.syntext.com/products/serna-free/
http://www.xmlmind.com/xmleditor/persoedition.html
http://www.xmlmind.com/xmleditor/persoedition.html
http://www.xmlmind.com/xmleditor/persoedition.html
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xinclude/

Building the documentation

tory available is "en". Under this directory the following structure applies (also for any new language
translation that is added):

|-- scripts
| -- source
| | -- appendi xes
| “-- chapters
“-- styl esheets
| -- css
| --ing
T-- xsl
T-- imges

All document sources are stored under the subdirectory "sour ce" and the master document is aptly
named "mast er . xm ". This document pulls in all chapters and appendixes in the right order. For
example, new tasks added should normally be documented in the "appendi x/ opti onal t asks. xmi "
file. Look at the existing tasks and follow the same structure.

Q Important

In order to get highlighting to work both the "xsl t hl - 2. x. x. j ar" package must be installed as
well as Saxon 6.5.x. The jar file must be installed somewhere in the CLASSPATH , for example "/
usr/ shar e/ j ava" if you run this on Linux. The xslthl package is available on SourceForge, please
see XSLT syntax highlighting [http://sourceforge.net/projects/xslthl/]. By using the automated setup
for Debian 7.x all these dependencies will be taken care of!

The customized stylesheets used are stored under "st y| esheet s" which uses one sub-folder for the
customized XSL stylesheets (responsible for the transformation from DocBook to the chosen output
format) and one sub-folder for the CSS stylesheets used to give the generated HTML documents there
"look & feel".

Finally the "scr i pt s" directory stores utility scripts. This currently contains two scripts, deb- set up. sh
and "hl saxon". The first scripts helps to create a full build environment for DocBook5 starting with
a clean Debian 7 installation. This is meant to help people new to DocBook5 to get a working build
environment as easy as possible. This script takes care of all detailed setup and will make a fulloy
working DocBook5 build environment out-of-the-box.

The second script (hl saxon) is wrapper file used from the buildfiles to call the Saxon translator (a Java
based XSL procesor) with highlighting enabled and suitable paths to supporting libraries In this script
the path to the DocBook installed stylesheets must be adjusted depending on your system (unless
the automated setup have been used - with the deb- set up. sh file which takes care of that setup
automatically). Mutatis mutandis.

In order to drive the transformation a Phing build script is available in the docbook root, bui | d. xm .
The build script supports the following public targets

al | * Builds all available targets (default)

chunk Bui | ds the chunked HTML

cl ean Rermoves all output files

epub Bui | ds t he EPUB version

hl ht m Buil ds the HTM. version with syntax highlight

hl pdf Bui | ds the PDF version with syntax highlight

ht m Bui | ds the HTM. version

ht m f ancy Builds the HTM. version with an alternative styling for screen output

pdf Bui | ds t he PDF version

webhel p Bui | ds t he webhel p version (Note: This requires Java and Ant
to be installed!)

val i dat e Val i dates all sources agai nst the DocBook5 grammar

http://sourceforge.net/projects/xslthl/
http://sourceforge.net/projects/xslthl/

Template for new tasks

All generated output is stored under the directory "out put " (which is created if it doesn't exist) with a
subdirectory corresponding to the name of the chosen output format.

1.4.2. Template for new tasks

For creating documentation for new tasks the easistes thing is to use the included template
tenpl ate_for_tasks. xm which is a skeleton tasks with all commonly used elements. This will en-
sure a correct setting of all attributes. The skeleton can then be added to a suitable appendix as heeded.

Note

All new task description should go into one of the Appendices.

1.4.3. Customization of the look & feel of the rendered outputs

Note

The following section is only meant for the maintainers that work on the core layout of the offi-
cial Phing manual and is not necessary for developers adding documentation for new tasks of
improving documentation for existing tasks.

Furthermore, by necessity this assumes a rudimentary knowledge of Docbook5 bubild process and
what XSL and CSS stylesheets are. It is not possible in this short space to give a full description of
that setup.

XSL Customization layer

All DocBook5 renderings are started from one of the customized XSL stylesheet under
"styl esheet s/ xsl ". All commonly adjusted properties should go into the appropriate stylesheet for
that rendering. No properties should be passed on via the command line. To keep the customization
layer as future proof as possible only in very rare circumstances should any cores XSL templates be
copied and modified. As usual the recommended way is to use the provided hooks.

CSS styelsheets

The CSS stylesheets are used to create the look & feel for the HTML based renderings. These are
entirely standard CSS files which by design are kept very simple. It should be noted that a few styling
option depends in turn of the modified XSL transformations in the XSL customization layer. This had
to be done in order to gain some more detialed control not provided by DocBook5 out-of-the-box.

Webhelp

The webhel p output rendering is a bit of a special case. This rendering depends not only on DocBook5
but also on Java as well as Ant build processor. These dependencies are inherited from the official
DocBook5 webhelp process and will remain. Unfortunately adjusting the look & fell for this rendering is
not as simple as for the other outputs since a fair amount of the layout (as well as look & feel) are hard-
coded in the Webhelp build system. While it is perfectly possible to adjust the hard coded values and
design choises it is not future proof. Since the Webhelp rendering is the newest and fastest improving
output from DocBook the intention for the Phing documentation is to track these improvements and not
spend time ourself to duplicate this effor with a parallell development.

DocBook v5 elements used in
the manual and their meaning

1.4.4. DocBook v5 elements used in the manual and their meaning

To keep things simple the manual uses only a small subset of all available elements in the DocBook
schema. This makes it fairly easy to quickly get up to speed with adding and editing the manual. It
also helps to keep the look&feel consistent and makes the writing of the CSS and XSL stylesheets a

little bit easer.

The following list shows the supported elements and how they should be used in the manual

<chapt er >, <appendi x>

<sect N>

This is the top element for each chapter and appendix in the manual.
Each <chapter> or <appendix> must also have a title.

Table 1.1: Required attributes

Attribute Value

http://
docbook. or g/ ns/
docbook

http://
www. w3. or g/ 2001/
Xl ncl ude

xm ns: x| ihtk p: //
W, W3. or g/ 1999/
xIl i nk

xm ns

xm ns: xi

version 5.0

Description

Name space for DocBook. Always
needed.

Name space for Xl ncl ude. Need-
ed since we use Xl ncl ude to split
the manual into different files.

Name space for x| i nk. Needed
sine we make use of link and xref
elements to link to other sites and
cross references within the manu-
al.

Versions of DocBook. Always

needed

xm:id app. XXX, ch. XXX Theid for the chapter or the appen-
dix. Used in other part of the manu-
al to refer to this chapter/appendix
with an <xr ef > element.

Table 1.2: Required nested elements

Element Value

<title> The title of the chapter/appendix

Example:

versi on="5. 0"

</ appendi x>

<appendi x xm ns="htt p://docbook. or g/ ns/ docbook"
xm ns: xi ="http://ww. w3. org/ 2001/ Xl ncl ude"
xm ns: xl'i nk="htt p://ww. w3. or g/ 1999/ xI i nk"

xm ;i d="app. coret asks">
<title>Core tasks</title>

The section tags divides each chapter and appendix into logical parts.
Each task description must be contained in a <sect 1> element and
each example section for the task must be contained within a <sect 2>
element. Depending on the description needed for each task addi-
tional <sect 2> may be added as needed to make the text logically
structured. If needed, a further nesting level may be used by using

DocBook v5 elements used in
the manual and their meaning

<sect 3> elements within each <sect 2> element. No deeper nest-
ings than <sect 3> should ever be used.

Each top level section must have the xm : i d attribute which is used to
reference the section from other parts of the document. Each section
must have a nested title element.

Table 1.3: Required attributes

Attribute Value Description

rol e t askdef Thisis only used and required for <sect 1> el-
ements for task description. This role is not cur-
rently used in the any of the XSL sheets. This
is for future use.

xm :id Name ofThe id for task definition should be the same
section as the task name for task description. For other
sections the id should be a logical name that

descrobes the content.

Table 1.4: Required nested elements

Element Value
<title> The title of the section
Example:

<sect1 rol e="taskdef" xm :id="AdhocTaskdef Task">
<titl e>AdhocTaskdef Task</titl e>

</ sect 1>

<par a> Division between paragraphs in flowing text.
<screen> Used to mark command lines and multi-line computer output. For inline

screen output use the <literal> element

<prograniisting> Used for all PHP and XML program listings in the manual. Please note
that this tag should not be used for command lines as entered in a
terminal. Use the <scr een> element for this.

Note: Remember to write all opening '<'as &l t ;

Table 1.5: Required attributes

Attribute Value Description

l an- php,xm The language attribute should indicate what pro-

guage gramming language the programlisting contains.
This is used to control what syntax highlighting
should be used.

Example:

<program i sting | anguage="xm ">
<append
dest Fi | e="${ process. outputfile}">
<filterchai n>
<xsltfilter style="${process.styl esheet}">
<par am nane="node"
expressi on="${ process. xsl t. node}"/ >
</xsltfilter>

DocBook v5 elements used in
the manual and their meaning

<acronymp

<literal >

<fil enane>

<li nk>

<xref >

<t abl e>

</filterchai n>

<filelist dir="book/"

listfile="book/PhingCGui de. book"/>
</ append></ prograni i sti ng>

Used to indicate acronym in running text

Used to indicate literal names in running text such as program vari-
ables, name of attributes, XML-elements etc.

Used to indicate a file- or directory name in running text.

Table 1.6: Required attributes

Attribute Value Description

role dir Used when the file-
name is a directory

Example:

<fil enanme rol e="dir">/etc/php5</fil enane>

Used to include a URL link to other sites or documents outside the
manual.

Table 1.7: Required attributes

Attribute Value Description

x| i nk: hr ef URL Link The link to an external
reference

Example:

<link xlink:href="http://qgbnz.com highlighter/"
>GeSHi Homepage</| i nk>

A link to another part of the document. When the link is generated in
the rendered document the name of the section, chapter or appendix
that the link refers to is included literal.

Table 1.8: Required attributes

Attribute Value Description
xli nk: href Internal reference to aninternal links must be
ID element prefixed with a '#' char-
acter.
Example:

<xref xlink: href="#ch. proj conponents"/>

The CALS model for table should be used. The generated rendered
version will be styled by the CSS stylesheet automatically. For this
to work as expected for the required attribute for a task the columns
needs to have the following names (they are used in the CSS sheets).
The column width specified is not important since that will be overrid-
den by the CSS stylesheets.

DocBook v5 elements used in
the manual and their meaning

<col spec col name="nane" col nun¥"1" col wi dth="1.5*"/>

<col spec col name="type" col nun"2" col wi dt h="0.8*"/>

<col spec col name="descri ption" col num="3" col w dt h="3. 5*"/}>
<col spec col name="defaul t" col nun¥"4" col wi dth="0.8*"/>
<col spec col name="requi red" col num="5" col w dt h="1.2*"/>

A CALS model table should have the following required nested el-
emenets. For more information on more advanced CALS formatting
such as joining rows or columns please see Chapter 30. Tables
[http://www.sagehill.net/docbookxsl/CellSpans.html] in Bob Stayton's
book "DocBook XSL: The Complete Guide - 4th Edition" [http://
www.sagehill.net/docbookxsl/]

Table 1.9: Required nested elements

Attribute Description
title The descriptive title for the table.
tgroup Groups a set of columns together
colspec Defines the sizing of the table
thead Header row for table
tbody Body of table
Example:

<t abl e>

<title>Required attributes</title>
<tgroup col s="3">

<col spec col nane="attri bute" col nume" 1"
col wi dt h="1.0*"/>
<col spec col nane="val ue" col nume" 2"

col wi dt h="1.0*"/ >
<col spec col nane="descri ption" col num="3"
col wi dt h="1.0*"/>
<t head>
<r ow>
<entry>Attribute</entry>
<entry>Val ue</entry>
<ent ry>Descri pti on</entry>
</ row>
</t head>
<t body>
<r ow>
<entry>...</entry>
<entry>...</entry>
<entry>...</entry>
</ row>
<r ow>
<entry>...</entry>
<entry>...</entry>
<entry>...</entry>
</ row>
</t body>
</t group>
</tabl e>

<enphasi s rol e="bol d"> Should only be used when certain effects in flowing text are wanted
that warrents the text to be rendered in a bold style to be shown as
emphasised.

Example:

http://www.sagehill.net/docbookxsl/CellSpans.html
http://www.sagehill.net/docbookxsl/CellSpans.html
http://www.sagehill.net/docbookxsl/
http://www.sagehill.net/docbookxsl/
http://www.sagehill.net/docbookxsl/

DocBook v5 elements used in
the manual and their meaning

<enphasi s rol e="bol d">PH</ enphasi s>i ng <enphasi s
rol e="bol d">I </ enphasi s>s <enphasi s

rol e="bol d">N</ enphasi s>ot <enphasi s

rol e="bol d">G\</ enphasi s>U nake;

The above example will then be rendered as: "PHing Is Not GNU
make;"

<appl i cation> This tag is used to indicate the name of a application. The line between
a command (marked with <l i t er al >) and an application is not cut in
stone but an application is usually a complex computer program with its
own user interface. Examples of what we would mark as applications
are "Emacs", "OpenOffice", "MatLab" etc.

This element is rarely used.

10

Chapter 2. Introduction

2.1. What Phing Is

Phing is a project build system based on Apache ant (See ant). You can do anything with Phing that you
could do with a traditional build system like Gnu make (See gnumake), and Phing's use of simple XML
build files and extensible PHP task classes make it an easy-to-use and highly flexible build framework.

Because Phing is based on Ant, parts of this manual are also adapted from the ant manual (see ant).
We are extremely grateful to the folks in the Ant project for creating (and continuing to create) such an
inspiring build system model, and for the open-source licensing that makes it possible for us to learn
from each other and build increasingly better tools.

2.2. Phing & Binarycloud: History

Phing was originally a subproject of Binarycloud. Binarycloud is a highly engineered application frame-
work, designed for use in enterprise environments. Binarycloud uses XML extensively for storing meta-
data about a project (configuration, nodes, widgets, site structure, etc.). Because Binarycloud is built
for PHP, performing extensive XML processing and transformations on each page request is an unre-
alistic proposition. Phing is used to "compile" the XML metadata into PHP arrays that can be processed
without overhead by PHP scripts.

Of course, XML compilation is only one of many ways that Binarycloud uses the Phing build system.
The Phing build system makes it possible for you to:

 Build multi language pages from one source tree,

» Centralize metadata (e.g. your data model) in one XML file and generate several files from that XML
with different XSLT.

It the beginning, Binarycloud used the GNU make system; however, this approach had some draw-
backs: The space-before-tab-problem in makefiles, the fact that it is only natively available for Unix
systems etc. So, the need for a better build system arose. Due to its XML build files and modular design,
Apache Ant was a logical choice. The problem was that Ant is written in Java, so you need to install
a JVM on your computer to use it. Besides the need for yet another interpreter (i.e. besides PHP),
there was also legal/ideological conflict in requiring a commercial JVM (there were problems with Ant
on JVMs other than Sun's) for an LGPL'd Binarycloud.

So, the development of Phing began. Phing is a build system written in PHP and uses the ideas of
Ant. The first release was designed & developed simultaneously, and thus not very sophisticated. This
original system was quickly pushed to its limits and the need for a better Phing became a priority.
Andreas Aderhold, who was responsible for Phing/rl, designed and wrote much of the Phing/r2 that
followed. Phing/r2 became the Phing-1.0 that exists today for PHP4.

The current development version of Phing 2.x, requires PHP5 (at least 5.2.x) and makes use of many
of the available features in PHP5.2 to achieve a high degree of modularization, code efficiency as well
as stability and testability.

2.3. How Phing Works

Phing uses XML buildfiles that contain a description of the things to do. The buildfile is structured into
targets that contain the actual commands to perform (e.g. commands to copy a file, delete a directory,

11

Cool, so how can | help?

perform a DB query, etc.). So, to use Phing, you would first write your buildfile and then you would run
phing, specifying the target in your buildfile that you want to execute.

% phing -f nybuildfile.xm nytarget

By default Phing will look for a buildfile named bui | d. xm (so you don't have to specify the buildfile
name unless it is not bui | d. xm) and if no target is specified Phing will try to execute the default
target, as specified in the <pr oj ect > tag.

In the same way as traditional make files (but without most of the traditional drawbacks) targets can
have dependencies. They can depend on both other targets as well as other files.

2.4. Cool, so how can | help?

Phing is under active development and there are many things to be done. The project will also welcome
non-coders to help keep the documentation up to date. If you don't already know about DocBook par-
ticipaating in the documentation is a great opportunity to get experience!

To get involved start by doing the following:
* Read this manual to understandPhing ;-)

» Go to http://phing.tigris.org and subscribe to the Phi ng dev mailing list (this is usually a low volume,
high quality mailing list)

* Visit the Phing website (http://www.phing.info/) [http://www.phing.info/] and look for open bugs / tick-
ets

... and of course, start to actively participate in the development by forking the repository (see below)

2.4.1. Participating in the development

As of 1 January 2012 all Phing development is based on Git and the project is hosted at GitHub (https://
github.com/)

In order to participate in the development you will only need to follow three basic steps
1. Register a free account at GitHub [https://github.com/]
2. Clone the Official Git repository [https://github.com/phingofficial/phing]

3. Read up on the (very well written) documentation at GitHub on how to setup your own repository
and do things like cloning an existing repository and creating pull requests asking the official Phing
maintainers to take in your proposed additions/changes.

The chances to have a change set accepted greatly increases if you adhere to the following recom-
mendations

» Follow the naming and coding principle used by Phing
» Make sure you have added documentation for all your additions, including examples.
» Make sure you have added unit-test code as needed

» Be polite in all communication!

12

http://phing.tigris.org
http://www.phing.info/
http://www.phing.info/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/phingofficial/phing
https://github.com/phingofficial/phing

Participating in the development

Note

If you have not worked with Git before and are coming from subversion there is a bit of re-adjust-
ment needed. Fortunately there are several SVN-To-Git re-learning guides available (for example
http://git.or.cz/course/svn.html which might make the initial transition easier.

However, it is probably best to forget about your mental picture on Subversion and realize that
Gitis a different animal. So trying to think of everything in terms of Subversion is not really helpful
in the long run. You should therefore take the time to read the (free!) book "Pro Git", by Scott
Chacon available from http://progit.org/.

13

http://git.or.cz/course/svn.html
http://progit.org/

14

Chapter 3. Setting-up Phing

The goal of this chapter is to help you obtain and correctly setup and execute Phing on your operating
system. Once you setup Phing properly you shouldn't need to revisit this chapter, unless you're re-
installing or moving your installation to another platform.

3.1. System Requirements

To use Phing you must have installed PHP version 5.2 or above compiled - -wi t h-11i bxm 2, as well
as - -with-xsl if you want to make use of advanced functionality.

For more information on PHP and the required modules see the PHP [php] [Bibliography.html#php]
website. For a brief list of software dependencies see below.

3.1.1. Operating Systems

Designed for portability from the get go, Phing runs on all platforms that run PHP. However some
advanced functionality may not work properly or is simply ignored on some platforms (i.e. chnod on
the Windows platform).

To get the most out of Phing, a Unix style platform is recommended. Namely: Linux, FreeBSD, Open-
BSD, etc.

3.1.2. Software Dependencies

For a detailed list of required and/or optional software and libraries, refer to the following table of Soft-
ware Dependencies.

NB: This list is not exhaustive, please refer to individual Phing tasks to find out additional software
requirements.

Table 3.1: Software Dependencies

Software Required for Source
PHP 5.2+ Execution http://www.php.net
PHPUnNIt 3.6.0+ Optional; enables addi-http://www.phpunit.de

tional task(s)

Xdebug 2.0.5+ Optional; enables addi-http://www.xdebug.org
tional task(s)

SimpleTest 1.0.1 beta+ Optional; enables addi-http://simpletest.sourceforge.net
tional task(s)

phpDocumentor Optional; enables addi-http://pear.phpdoc.org

2.0.0b7+ (PEAR pack-tional task(s)

age)

VersionControl_SVN Optional; enables addi-http://pear.php.net/package/VersionControl_SVN
(PEAR package) tional task(s)

VersionControl_Git Optional; enables addi-http://pear.php.net/package/VersionControl_Git
(PEAR package) tional task(s)

15

Bibliography.html#php
Bibliography.html#php
http://www.php.net
http://www.phpunit.de
http://www.xdebug.org
http://simpletest.sourceforge.net
http://pear.phpdoc.org
http://pear.php.net/package/VersionControl_SVN
http://pear.php.net/package/VersionControl_Git

Obtaining Phing

Software Required for Source
PHP_CodeSniffer (PEAROptional; enables addi-http://pear.php.net/package/PHP_CodeSniffer
package) tional task(s)
Archive_Tar (PEAROptional; enables addi-http://pear.php.net/package/Archive_Tar
package) tional task(s)
Services_Amazon_S3 Optional; enables addi-http://pear.php.net/package/Services_Amazon_S3
(PEAR package) tional task(s)
HTTP_Request2 (PEAROptional; enables addi-http://pear.php.net/package/HTTP_Request2
package) tional task(s)
Net FTP (PEAR pack-Optional; enables SSLhttp:/pear.php.net/package/Net FTP
age) connection in FtpDeploy-

Task
PHP Depend Optional; enables addi-http://www.pdepend.org

tional task(s)

PHP Mess Detector Optional; enables addi-http://www.phpmd.org
tional task(s)

PHP Copy/Paste Detec-Optional; enables addi-http://pear.phpunit.de
tor tional task(s)

O Warning

Phing does not work with safe mode enabled in PHP!

3.2. Obtaining Phing

Phing is free software distributed under the terms of the LGPL.

3.2.1. Distribution Files

There are several ways to get a Phing distribution package. If you do not want to participate in develop-
ing Phing itself it is recommended that you get the latest snapshot or stable packaged distribution. If you
are interested in helping with Phing development, register an account at GitHub as described below.

The easiest way to obtain the distribution package is to visit the Phing website [phing]
[Bibliography.html#phingland download the current distribution package in the format you desire.

As of version 2.0, you have the option of downloading a PEAR-installable package or the full phing
distribution. If you wish to modify phing we suggestion downloading the full version so that you can
(e.g.) create your own PEAR package. If you simply wish to use Phing for your own project or need it
to build another package, download & install the PEAR package.

3.2.2. Getting the latest source from Phing Git repository

The latest snapshot can always be downloaded directly the official Phing Git repository. However, be
warned that there is not guarantee that the momentous state of the repository represents a completely
stable application without any problems.

16

http://pear.php.net/package/PHP_CodeSniffer
http://pear.php.net/package/Archive_Tar
http://pear.php.net/package/Services_Amazon_S3
http://pear.php.net/package/HTTP_Request2
http://pear.php.net/package/Net_FTP
http://www.pdepend.org
http://www.phpmd.org
http://pear.phpunit.de
Bibliography.html#phing
Bibliography.html#phing

PEAR Install

You can download a snapshot as a zip-tarball from:

« https://github.com/phingofficial/phing

3.3. PEAR Install

The easiest way to install Phing is using the PEAR installer. Provided that the package you downloaded
is a the PEAR-ready package, you can install Phing simply from the command line (Unix or Windows):

$> pear channel - di scover pear. phing.info
$> pear install phing/phing

The pear installer will check any dependencies and place the phing script (phing or phing.bat) into your
PHP script directoy (i.e. where the "pear"” script resides).

3.4. Composer Install

Install Phing by adding a dependency to phing/phing [https://packagist.org/packages/phing/phing] to
the r equi r e- dev or r equi r e section of your project's composer.json configuration file, and running
‘composer install’;

"require-dev": {
"phi ng/ phing": "2.*"
}

3.5. Other Install methods

If you are not using the PEAR installer, you will need to setup your environment in order to run Phing.
The distribution of Phing consists of three directories: bi n, docs and cl asses. Only the bi n, cl ass-
es and et c directories are required to run Phing. To install Phing, choose a directory and uncompress
the distribution file in that directory (you may already have done this in a prior step). This directory will
be known as PHI NG_HOVE .

O Warning

On earlier Windows installations, the script used to launch Phing will have problems if PH NG_HOVE
is a long filepath. This is due to limitations in the OS's handling of the "for" batch-file statement. It is
recommended, therefore, that Phing be installed in a short path, such as C: \ opt \ phi ng.

Before you can run Phing there is some additional set up you will need to do perform:

« Add the full path to the bi n/ directory to your path.

17

https://github.com/phingofficial/phing
https://packagist.org/packages/phing/phing
https://packagist.org/packages/phing/phing

Unix

« Set the PHI NG_HQOVE environment variable to the directory where you installed Phing. On some
operating systems the Phing wrapper scripts can guess PHING _HOME (Unix dialects and Windows).
However, it is better to not rely on this behavior.

» Set the PHP_COVIVAND environment variable to where your Php binary is located (including the binary
i.e. PHP_COMMAND=/usr/bin/php).

» Set the PHP_CLASSPATH environment variable (see the section below). This should be set at least
point to PHING_HOME/classes. Alternatively, you can also just add the phing/classes directory to
your PHP include_path ini setting.

* Check your php.ini file to make sure that you have the following settings:
e max_execution_tinme = 0 // unlimted execution tine

e menory limt = 32M // you may need nore nenory depending on size of
your build files

If you are using Phing in conjunction with another application, you may need to add additional paths
to PHP_CLASSPATH.

3.5.1. Unix

Assuming you are running a Unix dialect operating system with the bash bourne shell and Phing is
installed in / opt / phi ng . The following sets up the environment properly:

export PHP_COMVAND=/ usr/ bi n/ php

export PHI NG _HOMVE=/ opt / phi ng

export PHP_CLASSPATH=${ PHI NG HOVE}/ cl asses
export PATH=${ PATH}: ${ PHI NG_HOVE}/ bi n

3.5.2. Windows

On the Windows platform, assuming Phing is installed in c: \ opt \ phi ng. The following sets up your
environment:

set PHP_COWWAND=c: \ opt \ php\ php. exe

set PHI NG_HOVE=c: \ opt \ phi ng

set PHP_CLASSPATH=c: \ opt\ phi ng\ cl asses
set PATH=%PATH% %°H NG_HOVE% bi n

3.5.3. Advanced
There are lots of variants that can be used to run/prepare Phing. You need at least the following:

« If you want Phing to be able to use other packages / classes, you can either add them to the
PHP_CLASSPATH or to PHP's include_path.

» Some Tasks in phi ng/ t asks/ ext may require 3rd party libraries to be installed. Generally, tools
with compatible license (and stable releases) are included in phing/lib so that outside dependencies
can be avoided. PEAR libs will not, however, be bundled with Phing since they are generally bun-
dled with PHP. If you are using a 3rd party task, see the Task documentation to be aware of any
dependencies.

You are now ready to use the phing command at your command prompt, from everywhere in your
directory tree.

18

Calling Phing

3.6. Calling Phing

Now you are prepared to execute Phing on the command line or via script files. The following section
briefly describe how to properly execute phing.

3.6.1. Command Line

Phing execution on the command line is simple. Just change to the directory where your buildfile resides
and type

$ phing [target [target2 [target3] ...]]

at the command line (where [target...] are the target(s) you want to be executed). If no tar-
get is specified Phing will try to execute the default target, as specified in the proj ect tag.
When calling multipe targets, Phing will invoke each target independently of the other targets. Op-
tionally, you may specify command line arguments as listed in Appendix A [appendixes/Appen-
dixA-FactSheet.html#CommandLineArguments].

For example, the following command line calls the default buildscript bui | d. xm using the default
target with the property f t p. upl oad set to true.

$ phing -Dftp.upl oad=true

3.6.2. Supported command line arguments

As of version 2.12.0 the following command line arguments are supported

-h -help print this nessage

-1 -list list available targets in this project

-V -version print the version information and exit

-g -quiet be extra qui et

-S -silent print nothing but task outputs and build failures
-ver bose be extra verbose

- debug print debugging information

-emacs, -e produce | ogging information without adornnents
- di agnostics print diagnostics information

-longtargets show target descriptions during build

-logfile <file> use given file for |og

-1 ogger <cl assnane> the class which is to perform | ogging

-f -buildfile <file> use given buildfile
- D<property>=<val ue> use value for given property

- keep-goi ng, -k execute all targets that do not depend
on failed target(s)
-propertyfile <file> load all properties fromfile
-find <file> search for buildfile towards the root of the

filesystemand use it
-inputhandl er <file> the class to use to handl e user input

19

appendixes/AppendixA-FactSheet.html#CommandLineArguments
appendixes/AppendixA-FactSheet.html#CommandLineArguments
appendixes/AppendixA-FactSheet.html#CommandLineArguments

20

Chapter 4. Getting started

Phing buildfiles are written in XML, and so you will need to know at least some basic things about XML
to understand the following chapter. There is a lot of information available on the web:

» The Standard Recommendation of XML by the W3C http://www.w3.0rg/TR/2000/REC-xml: very tech-
nical but exhaustive.

e XML In 10 Points http://www.w3.0rg/XML/1999/XML-in-10-points: Quick introduction into XML.

A technical introduction to XML http://www.xml.com/pub/a/98/10/guide0.html: Interesting article by
the creator of DocBook.

4.1. XML And Phing

A valid Phing buildfile has the following basic structure:

e The document prolog

« Exactly one root element called <pr oj ect > .

» Several Phing t ype elements (i.e. <property>, <fil eset >, <patt ernset > etc.)

* One or more <t ar get > elements containing built-in or user defined Phing t ask elements (i.e. <i n-
stal | >, <bcc>, etc).

4.2. Writing A Simple Buildfile

The Foobar project installs some PHP files from a source location to a target location, creates an
archive of this files and provides an optional clean-up of the build tree:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<proj ect nane = "FooBar" default = "dist">
<l-- === = o>
<l-- Target: prepare -->
<l-- === = o>
<target name = "prepare">
<echo nsg = "Making directory ./build" />
<nkdir dir = "./build" />
</target>
<l-- === = o>
<!-- Target: build -->
<l-- === = o>
<target nane = "build" depends = "prepare">
<echo nsg = "Copying files to build directory..." />
<echo nsg = "Copying ./about.php to ./build directory..." />
<copy file = "./about.php" tofile = "./build/about.php" />
<echo nsg = "Copying ./browsers.php to ./build directory..." />
<copy file = "./browsers. php" tofile = "./build/browsers. php" />

21

http://www.w3.org/TR/2000/REC-xml
http://www.w3.org/XML/1999/XML-in-10-points
http://www.xml.com/pub/a/98/10/guide0.html

Project Element

<echo nsg = "Copying ./contact.php to ./build directory..." />
<copy file = "./contact.php" tofile = "./build/contact.php" />
</target>
<l-- === = o>
<!-- (DEFAULT) Target: dist -->
<l-- === = o>
<target name = "dist" depends = "build">
<echo nsg = "Creating archive..." />
<tar destfile = "./build/build.tar.gz" conpression = "gzip">
<fileset dir = "./build">
<include name = "*" [>
</fileset>
</tar>
<echo nsg = "Files copied and conpressed in build directory &KI'" />
</target>
</ proj ect >

A phing build file is normally given the name bui | d. xm which is the default file name that the Phing
executable will look for if no other file name is specified.

To run the above build file and execute the default target (assuming it is stored in the current directory
with the default name) is only a matter of calling: $ phi ng

This will then execute the di st target. While executing the build file each task performed will print
some information on what actions and what files have been affected.

To run any of the other target is only a matter of providing the name of the target on the command line.
So for example to run the bui | d target one would have to execute $ phing build

It is also possible to specify a number of additional command line arguments as described in Appen-
dix A, Fact Sheet

4.2.1. Project Element

The first element after the document prolog is the root element hamed <pr oj ect > on line 3. This
element is a container for all other elements and can/must have the following attributes:

Table 4.1: <project> Attributes

Attribute Description Required
name The name of the project No
basedi r The base directory of the project, use "." do denoteNo

the current directory. Note: if none is specified, the
parent directory of the build file is used!

def aul t The default target that is to be executed if noYes
target(s) are specified when calling this build file.

description The description of the project. No

See Section H.1, “Phing Projects” for a complete reference.

4.2.2. Target Element

Atarget can depend on other targets. You might have a target for installing the files in the build tree, for
example, and a target for creating a distributable tar.gz archive. You can only build a distributable when

22

Task Elements

you have installed the files first, so the distribute target depends on the install target. Phing resolves
these dependencies.

It should be noted, however, that Phing's depends attribute only specifies the order in which targets
should be executed - it does not affect whether the target that specifies the dependency(s) gets exe-
cuted if the dependent target(s) did not (need to) run.

Phing tries to execute the targets in the depends attribute in the order they appear (from left to right).
Keep in mind that it is possible that a target can get executed earlier when an earlier target depends
on it, in this case the dependent is only executed once:

<target name="A" />

<target nane="B" depends="A" />
<target nane="C' depends="B" />
<target nane="D' depends="C, B, A" />

Suppose we want to execute target D. Looking at its depends attribute, you might think that first target
C, then B and then A is executed. Wrong! C depends on B, and B depends on A, so first A is executed,
then B, then C, and finally D.

A target gets executed only once, even when more than one target depends on it (see the previous
example).

The optional description attribute can be used to provide a one-line description of this target, which is
printed by the - pr oj ect hel p command-line option.
Target attributes

You can specify one or more of the following attributes within the target element.

Table 4.2: <target> Attributes

Attribute Description Required

name The name of the target Yes

depends A comma-separated list of targets this target de-No
pends on.

if The name of the Property that has to be set inNo

order for this target to be executed

unless The name of the Property that must not be set
in order for this target to be executed.

See Section H.2, “Targets” for a complete reference.

4.2.3. Task Elements

A task is a piece of PHP code that can be executed. This code implements a particular action to
perform (i.e. install a file). Therefore it must be defined in the buildfile so that it is actually invoked by
Phing.

These references will be resolved before the task is executed.

Tasks have a common structure:

<nane attributel="val uel" attribute2="value2" ... />

where nane is the name of the task, at t ri but eNis the attribute name, and val ueN is the value for
this attribute.

23

Property Element

There is a set of core tasks (see Appendix B, Core tasks) along with a number of optional tasks. It is
also very easy to write your own tasks (see Chapter 6, Extending Phing).

Tasks can be assigned an i d attribute:

<tasknanme id="tasklD' ... />

By doing this you can refer to specific tasks later on in the code of other tasks.

4.2.4. Property Element

Properti es are essentially variables that can be used in the buildfile. These might be set in the
buildfile by calling the property task, or might be set outside Phing on the command line (properties
set on the command line always override the ones in the buildfile). A property has a name and a value
only. Properties may be used in the value of task attributes. This is done by placing the property name
between " ${ "and "} " in the attribute value. For example, if there is a BC_BUI LD _DI R property
with the value 'build’, then this could be used in an attribute like this: ${ BC_BUI LD _DI R}/ en . This
is resolved to bui | d/ en.

Built-in Properties

Phing provides access to system properties as if they had been defined using a <pr oper t y> task. For
example, ${ os. nane} expands to the name of the operating system. See Appendix A, Fact Sheet
for a complete list

4.3. More Complex Buildfile

<?xm version="1.0" encodi ng="UTF-8" ?>
<project name = "testsite" basedir = "." default = "nain">
<property file = "./build. properties" />
<property name = "package" value = "${phing.project.nane}" override = "true" />
<property name = "builddir" value = "./build/testsite" override = "true" />
<property name = "srcdir" val ue = "${project.basedir}" override = "true" />
<!-- Fileset for all files -->
<fileset dir ="." id = "allfiles">
<include name = "**" [>
</fil eset>
=l - === = oo
<!-- (DEFAULT) Target: main -->
=l - === =] -->
<target nane = "main" description = "nain target">
<copy todir = "${builddir}">
<fileset refid = "allfiles" />
</ copy>
</target>
<l-- === = o>
<!-- Target: Rebuild -->
<l-- === = o>
<target nanme = "rebuild" description = "rebuilds this package">
<delete dir = "${builddir}" />
<phi ngcal | target = "nmin" />
</target>
</ proj ect >

24

Handling source dependencies

This build file first defines some properties with the <pr oper t y> task call to Pr oper t yTask. Then, it
defines a fileset and two targets. Let us have a quick rundown of this build file.

The first five four within the pr oj ect tag define properties. They appear in the two ways this tag can
occur:

» Thesecond pr operty tag contains only the f i | e attribute. The value has to be a relative or absolute
path to a property file (for the format, see Appendix I, File Formats).

e The other times, the tag has a nane and a val ue attribute. After the call, the value defined in the
attribute val ue is available through the key enclosed in "${" and "}".

The next noticeable thing in the build file is the <f i | eset > tag. It defines a fi |l eset, i.e. a set of
multiple files. You can include and exclude files with the i ncl ude and excl ude tags withinthe fi | e-
set tag. For more information concerning Filesets (i.e. Patterns) see Appendix D, Core Types. The
fil eset isgivenani d attribute, so it can be referenced later on.

One thing is worth noting here though and that is the use of double star expression, i.e. "**" . This
special regexp refers to all files in all subdirectories as well. Compare this with a single " *" which would
only refer to all files in the cur r ent subdirectory. So for example the expression " **/ * . phps" would
refer to all files with suffix "' . phps" in all subdirectories below the current directory.

The first task only contains a call to Copy Task via <copy>. The interesting thing is within the copy tag.
Here, a fileset task is not written out with nested i ncl ude or excl ude elements, but via the r ef i d,
the Fileset created earlier is referenced. This way, you can use a once defined fileset multiple times
in your build files.

The only noticeable thing in the second target is the call to Phi ngTask with the <phi ngcal | > tag
(see Appendix B, Core tasks for more information). The task executes a specified target within the
same build file. So, the second target removes the build directory and calls mai n again, thus rebuilding
the project.

A variant is to override properties defined in the build file with properties specified on the command
line using the - D switch. For example to override the bui | ddi r in the build file above one could call
Phing as

$ phing -Dbuil ddir=/tnp/systemtest

4.3.1. Handling source dependencies

4.4.

A common task required in many build files is to keep some target which has a number of dependencies
up to date. In traditional make files this could for example be an executable that needs to be recompiled
if any of the source files have been updated. In Phing such a condition is handled by the UpToDat eTask
, See Section B.47, “UpToDateTask ” for examples on how this task us used.

Relax NG Grammar

With a little bit of experience it is not that difficult to write and understand Phing build files since the
XML format in itself tends to be quite verbose. However, it can become a bit tedious and the large
(and growing) amount of built-in tasks and filters can sometimes make it difficult to remember the exact
syntax of all the available features.

To help with this the Phing distribution contains a Relax NG Grammar (REgular LAnguage for XML
Next Generation, http://www.relaxng.org/) file that describes the (formal) syntax of the build files. This
grammar can be used to validate build files. However, the most beneficial use of the grammar is together

25

http://www.relaxng.org/

Relax NG Grammar

with a schema aware XML editor. Such an editor can make auto-completion based on the grammar.
This feature makes writing complex build files significantly easier since it is usually enough to enter the
first letter of an element to have the rest of the element written automatically as well as any compulsory
attributes.

Most XML editors can be told to what schema (or model) to use for validation and auto-completion
by adding a specification in the beginning of the XML file. For example, the following two lines in the
beginning of an XML file would do (of course the exact path to the grammar will depend on your system
setup)

<?xm version="1.0" encodi ng="UTF-8"?>

<?xm - nodel xlink: href="/usr/share/ php5/ PEAR/ dat a/ phi ng/ et c/ phi ng- gr ammar . r ng"
type="application/xm"
schemat ypens="http://rel axng. org/ ns/structure/ 1. 0" ?>

Using auto-completion will make it substantially easier to edit large build files. Please note that since
the phing-grammar does not have an official designation we must use the absolute filename to specify
the grammar (instead of a canonical URI that is resolved by the systems XML-catalogue).

This grammar is available (as a plain text file) in the distribution at: / et ¢/ phi ng- gr ammar . r ng

Since we do not want to neither endorse nor forget any particular XML editor with this capability we do
not make available such a list of editors. Instead, spending a few minutes with Google searching for
XML-editors is bound to find a number of editors with this capability.

If you wish to validate your Phing build file, there are numerous options. Links to various validation tools
and XML editors are available at the RELAX NG home page, http://www.relaxng.org/. The command
line tool xm | i nt that comes with libxmlI2 is also able to validate a given XML file against the supplied
grammar.

For example, to use xmllint to validate a Phing build file the following command line could be used:

$ xm lint -noout -relaxng phing-grammar.rng build.xn
bui I d. xml vali dates

26

http://www.relaxng.org/

Chapter 5. Project components

5.1.

This goal of this chapter is to make you familiar with the basic components of a buildfile. After reading
this chapter, you should be able to read and understand the basic structure of any buildfile even if you
don't know exactly what the individual pieces do.

For supplemental reference information, you should see Appendix B, Core tasks, Appendix D, Core
Types and Appendix H, Project Components.

Projects

In the structure of a Phing buildfile, there must be exactly one Pr oj ect defined; the <pr oj ect > tag
is the root element of the buildfile, meaning that everything else in the buildfile is contained within the
<pr oj ect > element.

<?xnm version="1.0"?>

<project nane = "test" description = "Sinple test build file" default = "main" >
<l-- Everything el se here -->
<pr oj ect >

The listing above shows a sample <pr oj ect > tag that has all attributes available for Projects. The
nane and descri pti on attributes are fairly self-explanatory; the def aul t attribute specifies the de-
fault Tar get to execute if no target is specified (Section H.2, “Targets” are described below). For a
complete reference, see Appendix H, Project Components.

5.2. Version

5.3.

Since Phing 2.4.2 it is possible to include a phi ngVer si on attribute in the <pr oj ect > tag. This
attribute allows you to define the minimum Phing version required to execute a build file, in order to
prevent compatibility issues.

<?xm version="1.0"7?>

<proj ect nane = "test" phingVersion = "2.4.2" >
<l-- Everything el se here -->
<pr oj ect >

Project Components in General

Project Components are all the elements found inside a project, i.e. targets, tasks, types, etc. Project
components may have attributes and nested tags. Attributes only contain simple values, i.e. strings,
integers etc. Nested elements may be complex Phing types (like FileSets) or simple wrapper classes
for values with custom keys (see Appendix D, Core Types for example).

Any nested elements must be supported by the class that implements the project component, and
because the nested tags are handled by the project component class the same nested tag may have
different meanings (and different attributes) depending on the context. So, for example, the nested tag
<par am../> within the <phi ngcal | > tag is handled very differently from the<par am . . / > tag within

27

Targets

the <xsl tfil t er > tag -- in the first case setting project properties, in the second case setting XSLT
parameters.

5.4. Targets

Targets are collections of project components (but not other targets) that are assigned a unique name
within their project. A target generally performs a specific task -- or calls other targets that perform
specific tasks -- and therefore a target is a bit like a f uncti on (but a target has no return value).

Targets may depend on other targets. For example, if target A depends on a target B, then when
target A is called to be executed, target B will be executed first. Phing automatically resolves these
dependencies. You cannot have circular references like: "target A depends on target B that depends
on target A".

The following code snippet shows an example of the use of targets.

<target nane = "othertask" depends = "buil dpage" description = "Watever">
<l-- Task calls here -->

<t arget >

<target nane = "buil dpage" description = "Sonme description">
<l-- Task calls here -->

<t arget >

When Phing is asked to execute the ot her t ask target, it will see the dependency and execute bui | d-
page first. Notice that the dependency task can be defined after the dependent task.

5.5. Tasks

Tasks are responsible for doing the work in Phing. Basically, tasks are the individual actions that your
buildfile can perform. For example, tasks exist to copy a file, create a directory, TAR files in a directory.
Tasks may also be more complex such as XsltTask which copies a file and transforms the file using
XSLT, SmartyTask which does something similar using Smarty templates, or CreoleTask which exe-
cutes SQL statements against a specified DB. See Appendix B, Core tasks for descriptions of Phing
tasks.

Tasks support parameters in the form of:
» Simple parameters (i.e. strings) passed as XML attributes, or
» More complex parameters that are passed by nested tags

Simple parameters are basically strings. For example, if you pass avalue "A sinple string." as
a parameter, it is evaluated as a string and accessible as one. You can also reference properties as
described in Chapter 4, Getting started.

Not e: There are special values that are not mapped to strings, but to boolean values instead. The
valuestrue, fal se,yes, no,on and of f are translated to t r ue/f al se boolean values.

<property name = "nmyprop" value = "value" override = "true"/>

However, some tasks support more complex data types as parameters. These are passed to the task
with nest ed t ags. Consider the following example:

<copy> I

28

Types

<fileset dir =".">
<i nclude nane = "**" />
</[fileset>
</ copy>

Here, CopyTask is passed a complex parameter, a Fileset. Tasks may support multiple complex types
in addition to simple parameters. Note that the names of the nested tags used to create the complex
types depend on the task implementation. Tasks may support default Phing types (see Section 5.6, “
Types ") or may introduce other types, for example to wrap key/value pairs.

Refer to Appendix B, Core tasks for a list of system tasks and their parameters.

5.6. Types

5.6.1. Basics

Besides the simple types (strings, integer, booleans) you can use in the parameters of tasks, there are
more complex Phing Types. As mentioned above, they are passed to a task by using nesting tags:

<t ask>
<type />
</task>

<l-- or: -->

<t ask>
<typel>
<subt ypel>
<l-- etc. -->
</ subt ypel>
</typel>
</ task>

Note that types may consist of multiple nested tags -- and multiple levels of nested tags, as you can
see in the second task call above.

5.6.2. Referencing Types

An additional fact about types you should notice is the possibility of r ef er enci ng type instances, i.e.
you define your type somewhere in your build file and assign an id to it. Later, you can refer to that
type by the id you assigned. Example:

<pr oj ect >
<fileset id = "foo">
<i nclude name = "*.php" />

</[fileset>

<l-- Target that uses the type -->
<target nane = "foo" >
<copy todir = "/tnmp">
<fileset refid = "foo" />
</ copy>
</target>

</ proj ect >

As you can see, the type instance is assigned an id with the i d attribute and later on called by passing
aplainfil eset tag to CopyTask that only contains the r ef i d attribute.

29

Basic Types

5.7. Basic Types

The following section gives you a quick introduction into the basic Phing types. For a complete reference
see Appendix D, Core Types.

5.7.1. Fi |l eSet

FileSets are groups of files. You can include or exclude specific files and patterns to/from a FileSet.
The use of patterns is explained below. For a start, look at the following example:

<fileset dir ="/tmp" id = "filesetl">
<i ncl ude nane = "sonetenp/file.txt" />
<i nclude nane = "othertenp/**" />
<excl ude nane = "othertenp/file.txt" />
</fil eset>

<fileset dir = "/hone" id = "fileset2">
<include nanme = "foo/**" [>
<i ncl ude nane = "bar/**/*. php" />
<excl ude nane = "foo/tnp/**" [>

</fil eset>

The use of patterns is quite straightforward: If you simply want to match a part of a flename or dirname,
you use *. If you want to include multiple directories and/or files, you use **. This way, filesets provide
an easy but powerful way to include files.

5.7.2. Fil eLi st

FileLists, like FileSets, are collections of files; however, a FileList is an explicitly defined list of files --
and the files don't necessarily have to exist on the filesystem.

Besides being able to refer to nonexistent files, another thing that Fi | eLi st s allow you to do is specify
flesin a certain order. Filesin Fi | eSet s are ordered based on the OS-level directory listing
functions, in some cases you may want to specify a list of files to be processed in a certain order -- e.g.
when concatenating files using the <append> task.

<filelist dir = "base/" files = "filel.txt,file2. txt,file3.txt"/>

<l-- R -->
<filelist dir = "basedir/" listfile = "files_to_process.txt"/>

5.7.3. Fi |l t er Chai ns and Filters

Fi | t er Chai ns can be compared to Unix pipes. Unix pipes add a great deal of flexibility to command
line operations; for example, if you wanted to copy just those lines that contained the string bl ee from
the first 10 lines of a file called f 0o to a file called bar , you could do:

cat foo | head -nl10 | grep blee > bar

Something like this is not possible with the tasks and types that we have learned about thus far, and
this is where the incredible usefulness of Fi | t er Chai ns becomes apparent. They emulate Unix pipes
and provide a powerful dimension of file/stream manipulation for the tasks that support them.

Fi | t er Chai n usage is quite straightforward: you pass the complex Phing type fil terchai nto a
task that supports FilterChains and add individual filters to the FilterChain. In the course of executing

30

File Mappers

the task, the filters are applied (in the order in which they appear in the XML) to the contents of the
files that are being manipulated by your task.

<filterchain>
<r epl acet okens>
<t oken key = "BC_PATH' value = "${top.builddir}/"/>
<t oken key = "BC PATH USER' value = "${top. builddir}/testsite/user/${lang}/"/>
</ repl acet okens>

<filterreader classnane = "phing.filters. TailFilter">
<param nane = "lines" value = "10"/>
</filterreader>
</filterchain>

The code listing above shows you some example of how to use filter chains. For a complete refer-
ence see Appendix D, Core Types. This filter chain would replace all occurrences of BC_PATH and
BC_PATH_USER with the values assigned to them in lines 4 and 5. Additionally, it will only return the
last 10 lines of the files.

Notice above that Fi | t er Chai n filters have a "shorthand" notation and a long, generic notation. Most
filters can be described using both of these forms:

<r epl acet okens>

<token key = "BC _PATH' value = "${top.builddir}/"/>

<token key = "BC PATH USER' value = "${top.builddir}/testsite/user/${lang}/"/>
</repl acet okens>

<l-- R -->

<filterreader classname = "phing.filters. Repl aceTokens" >
<param type = "token" nane = "BC_PATH' value = "${top.builddir}/"/>
<param type = "token" nane = "BC_PATH'
value = "${top.builddir}/testsite/user/${lang}/"/>

</filterreader>

As the pipe concept in Unix, the filter concept is quite complex but powerful. To get a better understand-
ing of different filters and how they can be used, take a look at any of the many uses of FilterChains
in the build files for the binarycloud Bibliography project.

5.7.4. File Mappers

With Fi | t er Chai ns and filters provide a powerful tool for changing contents of files, mapper s provide
a powerful tool for changing the names of files.

To use a Mapper, you must specify a pattern to match on and a replacement pattern that describes
how the matched pattern should be transformed. The simplest form is basically no different from the
DOS copy command:

copy *.bat *.txt

In Phing this is the gl ob Mapper:

<mapper type = "glob" from= "*.bat" to = "*.txt"/>

Phing also provides support for more complex mapping using regular expressions:

<mapper type = "regexp" from= "~(.*)\.conf\.xm $$" to = "\ 1. php"/>

Consider the example below to see how Mappers can be used in a build file. This example includes
some of the other concepts introduced in this chapter, such as Fi | t er Chai ns and Fi | eSet s. If you

31

Conditions

don't understand everything, don't worry. The important point is that Mappers are types too, which can
be used in tasks that support them.

<copy>
<fileset dir = ".">
<include nane = "*.ent.xm"/>
</[fileset>

<mapper type = "regexp" from= "~(.*)\.ent\.xm $" to = "\ 1. php"/>

<filterchain>
<filterreader classnane = "phing.filters.XsltFilter">
<param nane = "style" value = "ent2php.xsl"/>
</filterreader>
</filterchain>
</ copy>

For a complete reference, see Appendix D, Core Types

5.8. Conditions

Conditions are nested elements of the condition, if and waitfor tasks.

5.8.1. not

The <not > element expects exactly one other condition to be nested into this element, negating the
result of the condition. It doesn't have any attributes and accepts all nested elements of the condition
task as nested elements as well.

5.8.2. and

5.8.3. or

The <and> element doesn't have any attributes and accepts an arbitrary number of conditions as
nested elements. This condition is true if all of its contained conditions are, conditions will be evaluated
in the order they have been specified in the build file.

The <and> condition has the same shortcut semantics as the && operator in some programming lan-
guages, as soon as one of the nested conditions is false, no other condition will be evaluated.

The <or > element doesn't have any attributes and accepts an arbitrary number of conditions as nested
elements. This condition is true if at least one of its contained conditions is, conditions will be evaluated
in the order they have been specified in the build file.

The <or > condition has the same shortcut semantics as the | | operator in some programming lan-
guages, as soon as one of the nested conditions is true, no other condition will be evaluated.

5.8.4. xor

The <xor > element performs an exclusive or on all nested elements, similar to the * operator in PHP. It
only evaluates to true if an odd number of nested conditions are true. There is no shortcutting of eval-
uation, unlike the <and> and <or> tests. It doesn't have any attributes and accepts all nested elements
of the condition task as nested elements as well.

32

0s

5.8.5. 0s

Test whether the current operating system is of a given type.

Table 5.1: OS Attributes

Attribute Description Required

famly The name of the operating system family to expect.Yes

Supported values for the family attribute are:
» windows (for all versions of Microsoft Windows)
» mac (for all Apple Macintosh systems)

« unix (for all Unix and Unix-like operating systems)

5.8.6. equal s

Tests whether the two given Strings are identical

Table 5.2: equals Attributes

Attribute Description Required
argl First string to test. Yes
arg2 Second string to test. Yes
casesensitive Perform a case sensitive comparison. Default isNo

true.
trim Trim whitespace from arguments before comparingNo

them. Default is false.

5.8.7. ver si on- conpar e

5.8.8. ht

Compares two given versions

Table 5.3: version-compare Attributes

Attribute Description Required
version The version you want to compare Yes
desi redVer si on The version you want to compare against Yes
oper at or The operator to use for version comparison. DefaultNo

is >=.
debug Turns on debug mode, that echoes the comparionNo

message. Default is false.

<versi on-conpare version = "${aProperty}" desiredVersion = "1.3" operator = "gt"

/>

This condition internally uses PHP version_compare(). Operators and behavior are the same.

tp

Condition to wait for a HTTP request to succeed.

33

socket

Attributes are:
* url - the URL of the request.
 errorsBeginAt - number at which errors begin at.

Table 5.4: http Attributes

url The URL of the request. Yes
error sBegi nAt Number at which errors begin at. - Default: 400 No
<http url = "http://url.to.test" errorsBegi nAt = "404" />
5.8.9. socket
Condition to test for a (tcp) listener on a specified host and port.
Table 5.5: socket Attributes
server The hostname or ip address of the server. Yes
port The port number of the server. Yes
<socket server = "l|ocal host" port = "80" />

5.8.10. hasfreespace

5.8.11.1i

Condition returns true if selected partition has the requested space, false otherwise.

Table 5.6: hasfreespace Attributes

Attribute Description Required
partition The partition/device to check. Yes
needed The amount of free space required. Yes

<hasfreespace partition = "c:" needed = "10M />
This condition internally uses PHP disk_free_space().
sset
Test whether a given property has been set in this project.

Table 5.7: isset Attributes

Attribute Description Required
property The name of the property to test. Yes

5.8.12. cont ai ns

Tests whether a string contains another one.

34

i strue

Table 5.8: contains Attributes

Attribute Description Required
string The string to search in. Yes
substring The string to search for. Yes
casesensitive Perform a case sensitive comparison. Default isNo
true.
5.8.13.i strue

Tests whether a string evaluates to true.

Table 5.9: istrue Attributes
Attribute Description Required

val ue value to test Yes

<i strue val ue
<i strue val ue

"${soneproperty}"/>
"fal se"/>

5.8.14.i sf al se

Tests whether a string evaluates to not true, the negation of <i st r ue>

Table 5.10: isfalse Attributes
Attribute Description Required

val ue value to test Yes

<i sfal se val ue
<i sfal se val ue

"${soneproperty}"/>
"fal se"/>

5.8.15.ref erenceexi st s

Tests whether a specified reference exists.

Table 5.11: referenceexists Attributes

Attribute Description Required
r ef reference to test for Yes
<referenceexists ref = "${soneid}"/>

5.8.16. avai | abl e
This condition is identical to the Available task, all attributes and nested elements of that task are
supported, the property and value attributes are redundant and will be ignored.

5.8.17.fil esmat ch

Test two files for matching. Nonexistence of one file results in "false", although if neither exists they are
considered equal in terms of content. This test does a byte for byte comparison, so test time scales

35

isfailure

with byte size. NB: if the files are different sizes, one of them is missing or the filenames match the
answer is so obvious the detailed test is omitted.

Table 5.12: filesmatch Attributes

Attribute Description Required
filel First file to test. Yes
file2 Second file to test. Yes

<filesmatch filel = "${filel}" file2 = "${file2}"/>

5.8.18.i sfailure
Test the return code of an executable for failure.

Table 5.13: isfailure Attributes

Attribute Description Required
code The return code to test. Yes
<exec command = "test" returnProperty = "return.code"/>
<if>

<isfailure code
<t hen><echo nsg
<[if>

"${return.code}"/>
"${return.code}"/></then>

36

Chapter 6. Extending Phing

6.1.

Phing was designed to be flexible and easily extensible. Phing's existing core and optional tasks do
provide a great deal of flexibility in processing files, performing database actions, and even getting
user feedback during a build process. In some cases, however, the existing tasks just won't suffice
and because of Phing's open, modular architecture adding exactly the functionality you need is often
quite trivial.

In this chapter we'll look primarily at how to create your own tasks, since that is probably the most useful
way to extend Phing. We'll also give some more information about Phing's design and inner workings.

Extension Possibilities

There are three main areas where Phing can be extended: Tasks, Types, Mappers. The following
sections discuss these options.

6.1.1. Tasks

Tasks are pieces of codes that perform an atomic action like installing a file. Therefore a special worker
class hast to be created and stored in a specific location, that actually implements the job. The worker
is just the interface to Phing that must fulfill some requirements discussed later in this chapter, however
it can - but not necessarily must - use other classes, workers and libraries that aid performing the
operations needed.

6.1.2. Types

Extending types is a rare need; nevertheless, you can do it. A possible type you might implement is
ur | set, for example.

You may end up needing a new type for a task you write; for example, if you were writing the XSLTTask
you might discover that you needed a special type for XSLTParams (even though in that case you
could probably use the generic name/value Parameter type). In cases where the type is really only for
a single task, you may want to just define the type class in the same file as the Task class, rather than
creating an official stand-alone Type.

6.1.3. Mappers

Creating new mappers is also a rare need, since most everything can be handled by the Appendix F,
Core mappers. The Mapper framework does provide a simple way for defining your own mappers to
use instead, however, and mappers implement a very simple interface.

6.2. Source Layout

6.2.1. Files And Directories

Before you are going to start to extend Phing let's have a look at the source layout. You should be
comfortable with the organization of files witch in the source tree of Phing before start coding. After

37

File Naming Conventions

you extracted the source distribution or checked it out from git you should see the following directory
structure:

$PHING_HOME

|-- bin
-- classes

*-- phing
|-- filters

| - util
|-- mappers
|-- parser
|-- tasks
| |- ext
| |- system
| | °--condition
I

-- docs
*-- phing_guide
“-- test
|-- classes
- etc

The following table briefly describes the contents of the major directories:

Table 6.1: Phing source tree directories

Directory Contents

bi n The basic applications (phing, configure) as well as the wrapper
scripts for different platforms (currently Unix and Windows).

cl asses Repository of all the classes used by Phing. This is the base directory
that should be on the PHP include_path. In this directory you will find
the subdirectory phing/ with all the Phing relevant classes.

docs Documentation files. Generated books, online manuals as well as
the PHPDoc generated APl documentation.

t est A set of testcases for different tasks, mappers and types. If you are
developing in git you should add a testcase for each implementation
you check in.

Currently there is no distinction between the sour ce layout and the bui | d layout of Phing. The direc-
tory layout [#phing.dirlayout] shows the file tree that carries some additional files like the Phing website.
Later on there may be a buildfile to create a clean distribution tree of Phing itself.

6.2.2. File Naming Conventions

There are some file naming conventions used by Phing. Here's a quick rundown on the most basic
conventions. A more detailed list can be found in [See Naming And Coding Standards]:

 Filenames consist of no more or less than two elements: nane and ext ensi on .
» Choose short descriptive filenames (must be less than 31 chars)

* Names must not contain dots.

* Files containing PHP code must end with the extension . php .

» There must be only one class per file (no procedural methods allowed, use a separate file for them),
with the exception of "inner"-type / helper classes that can be declared in the same file as the "outer" /
main class.

38

#phing.dirlayout
#phing.dirlayout
#phing.dirlayout

Coding Standards

« The name portion of the file must be named exactly like the class it contains.

« Buildfiles and configure rulesets must end with the extension . xm .

6.2.3. Coding Standards
We are using PEAR coding standards. We are using a less strict version of these standards, but we do
insist that new contributions have phpdoc comments and make explicitly declarations about public/pro-

tected/private variables and methods. If you have suggestions about improvements to Phing codebase,
don't hesitate to let us know.

6.3. System Initialization

PHP installations are typically quite customized -- e.g. different memory_limit, execution timeout val-
ues, etc. The first thing that Phing does is modify PHP INI variables to create a standard PHP environ-
ment. This is performed by the i nit | ayer of Phing that uses a three-level initialization procedure.
It basically consists of three different files:

 Platform specific wrapper scripts in bin/

» Main application in bin/

« Phing class in classes/phing/

At the first look this may seem to be unnecessary overhead. Why three levels of initialization? The main

reason why there are several entry points is that Phing is build so that other frontends (e.g. PHP-GTK)
could be used in place of the command line.

6.3.1. Wrapper Scripts

This scripts are technical not required but provided for the ease of use. Imagine you have to type every
time you want to build your project:

php -qC / path/to/ phi ng/ bi n/ phi ng. php -verbose all distro snapshot

Indeed that is not very elegant. Furthermore if you are lax in setting your environment variables these
script can guess the proper variables for you. However you should always set them.

The scripts are platform dependent, so you will find shell scripts for Uni x like platforms (sh) as well as
the batch scripts for W ndows platforms. If you set-up your path properly you can call Phing everywhere
in your system with this command-line (referring to the above example):

phing -v2 all distro

6.3.2. The Main Application (phing.php)

This is basically a wrapper for the Phing class that actually does all the logic for you. If you look at the
source code for phing.php you will see that all real initialization is handled in the Phing class. phing.php
is simply the command line entry point for Phing.

39

The Phing Class

6.3.3. The Phing Class

Given that all the prior initialization steps passed successfully the Phing is included and
Phi ng: : start up() isinvoked by the main application script. It sets-up the system components, sys-
tem constants ini-settings, PEAR and some other stuff. The detailed start-up process is as follows:

» Start Timer

¢ Set System Constants
» Set Ini-Settings

+ Set Include Paths

After the main application completed all operations (successfully or unsuccessfully) it calls
Phi ng: : shut down(EXI T_CODE) that takes care of a proper destruction of all objects and a grace-
fully termination of the program by returning an exit code for shell usage (see [See Program Exit
Codes] for a list of exit codes).

6.4. System Services

6.4.1. The Exception system

6.5.

Phing uses the PHP5 try/catch/throw Exception system. Phing defines a number of Exception sub-
classes for more fine-grained handling of Exceptions. Low level Exceptions that cannot be handled will
be wrapped in a Bui | dExcept i on and caught by the outer-most catch() {} block.

Build Lifecycle

This section exists to explain -- or try -- how Phing "works". Particularly, how Phing proceeds through
a build file and invokes tasks and types based on the tags that it encounters.

6.5.1. How Phing Parses Buildfiles

Phing uses an ExpatParser class and PHP's native expat XML functions to handle the parsing of build
files. The handler classes all extend the phing.parser.AbstractHandler class. These handler classes
"handle" the tags that are found in the buildfile.

Core tasks and datatypes are mapped to XML tag names in the defaults.properties files -- specifically
phing/tasks/defaults.properties and phing/types/defaults.properties.

It works roughly like this:
1. phi ng. par ser. Root Handl er is registered to handle the buildfile XML document

2. RootHanlder expects to find exactly one element: <pr oj ect >. RootHandler invokes the Projec-
tHandler with the attributes from the <project> tag or throws an exception if no <project> is found,
or if something else is found instead.

3. Proj ect Handl er expects to find <t ar get > tags; for these Pr oj ect Handl er invokes the Tar -
get Handl er . ProjectHandler also has exceptions for handling certain tasks that can be performed
at the top-level: <resol ve>, <t askdef >, <t ypedef >, and <pr operty>; for these Proj ec-

40

Writing Tasks

t Handl er invokes the TaskHandler class. If a tag is presented that doesn't match any expected
tags, then Pr oj ect Handl er assumes it is a datatype and invokes the Dat aTypeHandl er.

4. Tar get Handl er expects all tags to be either tasks or datatypes and invokes the appropriate handler
(based on the mappings provided in the def aul t s. properti es files).

5. Tasks and datatypes can have nested elements, but only if they correspond to a create*() method
in the task or datatype class. E.g. a nested <par an® tag must correspond to a cr eat ePar an{)
method of the task or datatype.

More to cone ...

6.6. Writing Tasks

6.6.1. Creating A Task

We will start creating a rather simple task which basically does nothing more than echo a message
to the screen. See [below] for the source code and the following [below] for the XML definition that is
used for this task.

<?php
requi re_once "phing/ Task. php";

cl ass MyEchoTask extends Task {

/**

* The nessage passed in the buildfile.
*/

private $nmessage = nul |

/**
* The setter for the attribute "nessage"
*/
public function set Message($str) {
$t hi s- >nessage = $str;
}
/**
* The init nethod: Do init steps.
*/
public function init() {
/1 nothing to do here
}

/**
* The main entry point nethod
*/
public function main() {
print ($thi s->message) ;
}
}

2>

This code contains a rather simple, but complete Phing task. It is assumed that the file is nhamed
MyEchoTask. php. For this example, we're assuming that the file is placed in / hone/ exam
pl e/ cl asses. We'll explain the source code in detail shortly. But first we'd like to discuss how we
should register the task to Phing so that it can be executed during the build process.

41

Using the Task

6.6.2. Using the Task

The task shown [above] must somehow get loaded and called by Phing. Therefore it must be made
available to Phing so that the buildfile parser is aware a correlating XML element and it's parameters.
Have a look at the minimalistic buildfile example given in [the buildfile below] that does exactly this.

<?xm version="1.0" ?>

<project nane = "test" basedir = "." default = "test.nyecho">
<i ncl udepat h cl asspath = "/ hone/ exanpl e/ cl asses" />
<t askdef nanme = "myecho" classname = "MEchoTask" />
<target name = "test.nyecho">
<myecho nessage = "Hello World" />
</target>

</ proj ect >

To register the custom task with Phing, the t askdef element (line 5) is used. See Section B.41,
“TaskdefTask ” for a more detailed explanation. Optionally, before the t askdef element, the i n-
cl udepat h element adds a path to PHP's include path. This is of course only required if the men-
tioned path isn't already on the include path. See Section B.24, “IncludePathTask " for a more detailed
explanation.

Now, as we have registered the task by assigning a name and the worker class ([see source code
above)) it is ready for usage within the <t ar get > context (line 8). You see that we pass the message
that our task should echo to the screen via an XML attribute called "message".

6.6.3. Source Discussion

Now that you've got the knowledge to execute the task in a buildfile it's time to discuss how everything
works.

6.6.4. Task Structure

All files containing the definition of a task class follow a common well formed structure:

* Include/require statements to import all required classes

The class declaration and definition
The class's properties

The class's constructor

Setter methods for each XML attribute
Theinit () method

The mai n() method

Arbitrary pri vat e (or pr ot ect ed) class methods

6.6.5. Includes

Always include/require all the classes needed for this task in full written notation. Furthermore you
should always include phi ng/ Task. php at the very top of your include block. Then include all other
required system or proprietary classes.

42

Class Declaration

6.6.6. Class Declaration

If you look at line 5 in [the source code of the task] you will find the cl ass decl ar at i on. This will be
familiar to you if you are experienced with OOP in PHP (we assume here that you are). Furthermore
there are some fine-grained rules you must obey when creating the classes (see also,[naming and
coding standards]):

* Your classname must be exactly like the taskname you are going to implement plus the suffix "Task".
In our example case the classname is MyEchoTask (constructed by the taskname "nmyecho” plus
the suffix "t ask™). The upper/lower case casing is currently only for better reading. However, it is
encouraged that you use it this way.

» The task class you are creating must at least extend "Task" to inherit all task specific methods.

6.6.7. Class Properties

The next lines you are coding are class properties. Most of them are inherited from the Task superclass,
so there's not need to redeclare them. Nevertheless you should decl ar e the following ones by your
own:

» Taskname. Always hard code the t asknane property that equals the name of the XML element that
your task claims. Currently this information is not used - but it will be in the future.

« Your arbitrary properties that reflect the XML attributes/elements which your task accepts.

In the MyEchoTask example the coded properties can be found in lines 7 to 11. Give you properties
meaningful descriptive names that clearly state their function within the context. A couple of properties
are inherited from the superclass that must not be declared in the properties part of the code.

For a list of inherited properties (most of them are reserved, so be sure not to overwrite them with your
own) can be found in the "Phing API Reference" in the docs/ api / directory.

6.6.8. The Constructor

The next block that follows is the class's constructor. It must be present and call at least the constructor
or the parent class. Of course, you can add some initialization data here. It is recommended that you
def i ne your prior declared properties here.

6.6.9. Setter Methods

As you can see in the XML definition of our task ([see buildfile above] , line 9) there is an attribute
defined with the task itself, namely "message" with a value of the text string that our task should echo.
The task must somehow become aware of the attribute name and the value. Therefore the sett er
met hods exist.

For each attribute you want to import to the task's namespace you have to define a method named
exactly after the very attribute plus the string "set" prepended. This method accepts exactly one para-
meter that holds the value of the attribute. Now you can set the a class internal property to the value
that is passed via the setter method.

In the setter method you should also perform any casting operations and/or check if the attribute value
is a valid value. If this is not the case, throw a Bui | dExcept i on. In some cases, such as when you
have three attributes and at least one of them should be set, you may want to check the attribute values
inside the init() or main() method.

43

Creator Methods

In out example the setter is named set Message , because the XML attribute the echo task accepts is
"message". setMessage now takes the string "Hello World" provided by the parser and sets the value
of the internal class property $st r Message to "Hello World". It is now available to the task for further
disposal.

6.6.10. Creator Methods

Creator methods allow you to manage nested XML tags in your new Phing Task.

6.6.11. init() Method

The i nit method gets called when the <t asknanme> xml element closes. It must be implemented
even if it does nothing like in the example above. You can do init steps here required to setup your
task object properly. After calling the Init-Method the task object remains untouched by the parser.
Init should not perform operations related somehow to the action the task performs. An example of
using init may be cleaning up the $strMessage variable in our example (i.e. t ri n($st r Message)) or
importing additional workers needed for this task.

The init method should return true or an error object evaluated by the governing logic. If you don't
implement init method, phing will shout down with a fatal error.

6.6.12. mai n() Method

There is exactly one entry point to execute the task. It is called after the complete buildfile has been
parsed and all targets and tasks have been scheduled for execution. From this point forward the very
implementation of the tasks action starts. In case of our example a message (imported by the proper
setter method) is Logged to the screen through the system's "Logger" service (the very action this task
is written for). The Log() method-call in this case accepts two parameters: a event constant and the
message to log.

6.6.13. Arbitrary Methods

For the more or less simple cases (as our example) all the logic of the task is coded in the Main()
method. However for more complex tasks common sense dictates that particular action should be
swapped to smaller, logically contained units of code. The most common way to do this is separating
logic into private class methods - and in even more complex tasks in separate libraries.

private function nyPrivateMethod() ({
/] definition
}

6.7. Writing Types

You should only create a standalone Type if the Type needs to be shared by more than one Task. If
the Type is only needed for a specific Task -- for example to handle a special parameter or other tag
needed for that Task -- then the Type class should just be defined within the same file as the Task. (For
example, phi ng/filters/ XSLTFi | ter. php also includes an XSLTPar amclass that is not used
anywhere else.)

44

Creating a DataType

For cases where you do need a more generic Type defined, you can create your own Type class --
similar to the way a Task is created.

6.7.1. Creating a DataType

Type classes need to extend the abstract DataType class. Besides providing a means of categorizing
types, the DataType class provides the methods necessary to support the "r ef i d" attribute. (All types
can be given an id, and can be referred to later using that id.)

In this example we are creating a DSN type because we have written a number of DB-related Tasks,
each of which need to know how to connect to the database; instead of having database parameters
for each task, we've created a DSN type so that we can identify the connection parameters once and
then use it in all our db Tasks.

requi re_once "phing/types/ Dat aType. php";

/**

* This Type represents a DB Connecti on.
*/

cl ass DSN ext ends DataType {

private $url;

private $usernane;

private $password;

private $persistent = fal se;

/**
* Sets the URL part: mysql://I|ocal host/ nydat abase
*/
public function setUrl ($Surl) {
$this->url = $url;
}
/**

* Sets usernane to use in connection.
2

public function set Username($user nane) {
$t hi s- >username = $user nane;

}

/**

* Sets password to use in connection.
*/

public function setPassword($password) {
$t hi s- >password = $passwor d;

}

/**
* Set whether to use persistent connection.
* @aram bool ean $per si st
*/
public function setPersistent($persist) {
$t hi s->persi stent = (bool ean) $persi st;

}

public function getUrl (Project $p) {
if ($this->isReference()) {
return $this->get Ref ($p)->get Url ($p);
}

return $this->url;

}

public function get User nane(Project $p) {
if ($this->i sReference()) {
return $thi s->get Ref ($p) - >get User nane($p) ;

45

Using the DataType

}

return $this->usernane;

}

public function get Password(Project $p) {
if ($this->isReference()) {
return $this->get Ref ($p) - >get Passwor d($p) ;
}

return $this->password;

}

public function getPersistent(Project $p) {
if ($this->i sReference()) {
return $this->get Ref ($p) - >get Per si st ent ($p) ;
}
return $this->persistent;

}
/**
* Cets a conbined hash/array for DSN as used by PEAR
* @eturn array
*/
public function get PEARDSN(Proj ect $p) {
if ($this->isReference()) {
return $this->get Ref ($p) - >get PEARDSN($p) ;
}

i ncl ude_once ' DB. php';

$dsni nfo = DB:: par seDSN($t hi s->url) ;

$dsni nfo[' usernanme'] = $t hi s->user naneg;
$dsni nfo[' password'] = $thi s->password;
$dsninfo[' persistent'] = $this->persistent;

return $dsninfo;

*

* Your datatype nust inplenent this function, which ensures that there
* are no circular references and that the reference is of the correct
* type (DSN in this exanple).
*
*
*

@eturn DSN

public function getRef (Project $p) {
if (!'$this->checked) {
$stk = array();
array_push($stk, $this);
$t hi s- >di eOnGi r cul ar Ref er ence($st k, $p);
}
$0 = $t hi s->ref - >get Ref er encedj ect ($p) ;
if (!'(%0 instanceof DSN)) {
t hrow new Bui | dException($this->ref->getRefld()." doesn't denote a DSN');
} else {
return $o;
}
}

6.7.2. Using the DataType

The Typedef Task provides a way to "declare" your type so that you can use it in your build file. Here
is how you would use this type in order to define a single DSN and use it for multiple tasks. (Of course
you could specify the DSN connection parameters each time, but the premise behind needing a DSN
datatype was to avoid specifying the connection parameters for each task.)

46

Source Discussion

<?xm version="1.0" ?>
<project name = "test" basedir = ".">

<typedef name = "dsn" cl assnane = "nyapp.types. DSN' />

<dsn
id = "mindsn"
url = "nysql://1 ocal host/ nydat abase"
username = "root"
password = ""
persistent = "fal se" />
<target name = "nmin">

<ny-speci al - db-t ask>
<dsn refid = "mai ndsn"/>
</ ny-speci al - db-t ask>

<ny- ot her - db- t ask>
<dsn refid = "mai ndsn"/>
</ ny- ot her - db- t ask>

</target>

</ proj ect >

6.7.3. Source Discussion

Getters & Setters

You must provide a setter method for every attribute you want to set from the XML build file. It is good
practice to also provide a getter method, but in practice you can decide how your tasks will use your
task. In the example above, we've provided a getter method for each attribute and we've also provided
an additional method:DSN: : get PEARDSN() which returns the DSN hash array used by PEAR: : DB,
PEAR: : MDB, and Creole. Depending on the needs of the Tasks using this DataType, we may only wish
to provide the get PEARDSN() method rather than a getter for each attribute.

Also important to note is that the getter method needs to check to see whether the current DataType
is a reference to a previously defined DataType -- the Dat aType: : i sRef erence() exists for this
purpose. For this reason, the getter methods need to be called with the current project, because Ref-
erences are stored relative to a project.

The getRef() Method

The get Ref () task needs to be implemented in your Type. This method is responsible for returning a
referenced object; it needs to check to make sure the referenced object is of the correct type (i.e. you
can't try to refer to a RegularExpresson from a DSN DataType) and that the reference is not circular.

You can probably just copy this method from an existing Type and make the few changes that customize
it to your Type.

6.8. Writing Mappers

Writing your own filename mapper classes will allow you to control how names are transformed in tasks
like CopyTask, MoveTask, XSLTTask, etc. In some cases you may want to extend existing mappers

47

Creating a Mapper

(e.g. creating a GlobMapper that also transforms to uppercase); in other cases, you may simply want
to create a very specific name transformation that isn't easily accomplished with other mappers like
d obMapper or RegexpMapper .

6.8.1. Creating a Mapper

Writing filename mappers is simplified by interface support in PHP5. Essentially, your custom file-
name mapper must implement phi ng. mapper s. Fi | eNameMapper . Here's an example of a filename
mapper that creates DOS-style file names. For this example, the "to" and "from" attributes are not
needed because all files will be transformed. To see the "to" and "from" attributes in action, look at
phi ng. mappers. G obMapper or phi ng. napper s. RegexpMapper .

requi re_once "phi ng/ mappers/ Fi | eNaneMapper . php";

/**
* A mapper that nmakes those ugly DOCS fil enanes.
*
/
cl ass DOSMapper inpl enents Fil eNaneMapper {

/**

* The main() nmethod actually perforns the napping.

*

In this case we transformthe $sourceFil enane into
a DOS-conpati ble nane. E. g.

Ext endi ngPhi ng. ht Ml - > EXTENDI ~. DOC

@aram string $sourceFil enane The nane to be covert ed.
@eturn array The matched fil enanes.

/

public function main($sourceFil enanme) {

*
*
*
*
*
*
*

$i nf o = pat hi nf o($sour ceFi | enane) ;

$ext = $info['extension'];

/'l get basenane w o extension

$bname = preg_replace('/\.\wH\$/', "', $info[' basenane']);

if (strlen($bnane) > 8) {
$bname = substr($bnane,0,7) . '~';

}

if (strlen($ext) > 3) {
$ext = substr($bnane, 0, 3);

}
if (!enpty($ext)) {
$res = $bnane . '.' . S$ext;
} else {
$res = $bnane;
}
return (array) strtoupper($res);
}
/**
* The "from!' attribute is not needed here, but nethod nust exist.
2

public function setFrom($fronm {}

/**
* The "from' attribute is not needed here, but nethod nust exist.
*/
public function setTo($to) {}

48

Using the Mapper

6.8.2. Using the Mapper

Assuming that this mapper is saved to nyapp/ mapper s/ DOSMapper . php (relative to a path on
PHP's i ncl ude_pat h or in PHP_CLASSPATH env variable), then you would refer to it like this in your
build file:

<mapper classname = "nyapp. mappers. DOSMapper "/ >

49

50

Appendix A. Fact Sheet

A.l. Built-In Properties

A.2.

Table A.1: Phing Built-In Properties

Property

Contents

appl i cation. st art diCurrent work directory

env. *
host .
host .
host .

host .

host .

host .

host.

i ne.

arch
domai n
fstype

nane

0s

os. rel ease

0S. version

separ at or

0S. nane

phing.file

phing.dir

phi ng. honme

phi ng. versi on

phi ng. proj ect. nanme

php. cl asspat h

php. versi on

proj ect. basedir

user.

honme

Environment variables, extracted from $ SERVER.

System architecture, i.e. i586. Not available on Windows machines.

DNS domain name, i.e. php. net . Not available on Windows machines.
The type of the files ystem. Possible values are UNIX, WINNT and WIN32

Operating System hostname as returned by posi x_unane() . Not available
on Windows machines.

Operating System description as set in PHP_OS variable (see PHP Manual
[http://www.php.net/manual/en/reserved.constants.core.php]).

Operating version release, i.e. 2.2.10. Not available on Windows machines.

Operating system version, i.e. #4 Tue Jul 20 17:01:36 MEST 1999. Not avail-
able on Windows machines.

Character(s) that signal the end of a line, "\n" for Linux, "\\n" for Windows
system, "\r" for Macintosh.

Operating System description as set in PHP_OS variable.
Full path to current buildfile.

Path that contains the current buildfile.

Phing installation directory, not set in PEAR installations.
Current Phing version.

Name of the currently processed project.

The value of the environment variable PHP_CLASSPATH.

Version of the PHP interpreter. Same as PHP constant PHP_VERSI ON (see
PHP Manual [http://www.php.net/manual/en/reserved.constants.core.php]).

The current project basedir.

Value of the environment variable HOVE.

Command Line Arguments

The following table lists the command line arguments currently available.

Table A.2: Phing Command Line Arguments

Parameter

-h -help

Meaning

Display the help screen

51

http://www.php.net/manual/en/reserved.constants.core.php
http://www.php.net/manual/en/reserved.constants.core.php
http://www.php.net/manual/en/reserved.constants.core.php
http://www.php.net/manual/en/reserved.constants.core.php

Distribution File Layout

A.3.

Parameter

-1 -list

-v -version

-q -quiet

-S -silent

-ver bose

- debug

-enacs -e

-di agnostics

-l ongt arget s
-logfile <file>

-1 ogger
pat h.to. Logger

Meaning

List all available targets in buildfile (excluding targets that have their hi dden
attribute setto t r ue)

Print version information and exit

Quiet operation, no output at all

Print nothing but task outputs and build failures
Verbose, give some more output

Output debug information

Produce logging information without adornments
Print diagnostics information

Show target descriptions during build

Use given file for log

Specify an alternate logger. Default is phing.listener.AnsiColorLogger.
Other options include phing.listener.NoBannerLogger,
phing.listener.DefaultLogger, phing.listener.XmlLogger,
phing.listener.TargetLogger and phing.listener.HtmIColorLogger.

-f - bui | df i | eSpecify an alternate buildfile name. Default is build.xml

<file>

Set the property to the specified value to be used in the buildfile

D<pr opert y>=<val ue>

-keep-goi ng -k

-propertyfile
<file>

-find <file>

- i nput handl er
<file>

Execute all targets that to not depend on failed target(s)

Load properties from the specified file

Search for a buildfile towards the root of the filesystem and use that

The class to use to handle user input

Distribution File Layout

$PH NG_HOVE
|-- bin
| -- classes
| “-- phing
| |-- filters
| | T-- outil
I | -- mappers
| | -- parser
| | -- tasks
| | | -- ext
| | | -- system
| | “-- condition
| | T-- user
| T-- types
| -- docs
| “-- phing_guide
T-- test
| -- classes

52

Program Exit Codes

‘ ‘.- etc

A.4. Program Exit Codes

Phing is script-safe - means that you can execute Phing and Configure within a automated script con-
text. To check back the success of a Phing call it returns an exit code that can be captured by your
calling script. The following list gives you details on the used exit codes and their meaning.

Table A.3: Program Exit Codes

Exitcode Description

-2 Environment not properly defined

-1 Parameter or configuration error occurred

0 Successful execution (build succeeded), no errors (there may be warnings)
1 Unsuccessful execution (build failed), errors occurred

A.5. The LGPL License

Source http://www.gnu.org/licenses/Igpl.txt

GNU LESSER GENERAL PUBLI C LI CENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, I|nc

59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permtted to copy and distribute verbati mcopies
of this |license docunent, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version nunber 2.1.]

Preanbl e

The licenses for nost software are designed to take away your
freedomto share and change it. By contrast, the GNU General Public
Li censes are intended to guarantee your freedomto share and change
free software--to nmake sure the software is free for all its users

This license, the Lesser General Public License, applies to sonme
speci al | y desi gnat ed software packages--typically libraries--of the
Free Software Foundati on and ot her authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particul ar case, based on the expl anations bel ow.

Wien we speak of free software, we are referring to freedom of use
not price. Qur Ceneral Public Licenses are designed to nmake sure that
you have the freedomto distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pi eces of
it in new free prograns; and that you are informed that you can do
t hese things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for

53

http://www.gnu.org/licenses/lgpl.txt

The LGPL License

you if you distribute copies of the library or if you nodify it.

For exanple, if you distribute copies of the library, whether gratis
or for a fee, you nust give the recipients all the rights that we gave
you. You nust make sure that they, too, receive or can get the source
code. If you link other code with the I|ibrary, you nust provide
conpl ete object files to the recipients, so that they can relink them
with the library after naking changes to the library and reconpiling
it. And you nust show themthese terns so they know their rights.

W protect your rights with a two-step nmethod: (1) we copyright the
l'ibrary, and (2) we offer you this |icense, which gives you | egal
perm ssion to copy, distribute and/or nodify the library.

To protect each distributor, we want to nmake it very clear that
there is no warranty for the free library. A so, if the library is
nmodi fi ed by soneone el se and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problens that m ght be
i ntroduced by others.

Finally, software patents pose a constant threat to the existence of
any free program W w sh to make sure that a conmpany cannot
effectively restrict the users of a free programby obtaining a
restrictive license froma patent holder. Therefore, we insist that
any patent |icense obtained for a version of the library nust be
consistent with the full freedom of use specified in this |license.

Most GNU software, including sone libraries, is covered by the
ordinary GNU General Public License. This |license, the G\U Lesser
Ceneral Public License, applies to certain designated libraries, and
is quite different fromthe ordinary General Public License. W use
this license for certain libraries in order to permt |inking those
l'ibraries into non-free prograns.

When a programis linked with a library, whether statically or using
a shared library, the conbination of the two is legally speaking a
conbi ned work, a derivative of the original library. The ordinary
CGeneral Public License therefore permts such linking only if the
entire conbination fits its criteria of freedom The Lesser Ceneral
Public License permits nore lax criteria for linking other code with
the library.

W call this license the "Lesser" General Public License because it
does Less to protect the user's freedomthan the ordinary General
Public License. It also provides other free software devel opers Less
of an advant age over conpeting non-free progranms. These di sadvant ages
are the reason we use the ordinary General Public License for nmany
libraries. However, the Lesser |icense provides advantages in certain
speci al circunstances.

For exanple, on rare occasions, there may be a special need to

encour age the wi dest possible use of a certain library, so that it becones

a de-facto standard. To achieve this, non-free prograns nmust be
allowed to use the library. A nore frequent case is that a free
library does the same job as widely used non-free libraries. |In this
case, there is little to gain by limting the free library to free
software only, so we use the Lesser General Public License.

In other cases, perm ssion to use a particular library in non-free
progranms enabl es a greater nunber of people to use a | arge body of
free software. For exanple, perm ssion to use the GNU C Library in
non-free prograns enabl es nany nore people to use the whole GNU
operating system as well as its variant, the GNU Li nux operating
system

Al 't hough the Lesser General Public License is Less protective of the
users' freedom it does ensure that the user of a programthat is

54

The LGPL License

linked with the Library has the freedom and the wherewithal to run
that programusing a nodified version of the Library.

The precise terms and conditions for copying, distribution and
nmodi fication follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived fromthe library, whereas the |atter nust
be combined with the library in order to run

G\NU LESSER GENERAL PUBLI C LI CENSE
TERVS AND CONDI TI ONS FOR COPYI NG, DI STRI BUTI ON AND MODI FI CATI ON

0. This License Agreenent applies to any software |library or other
program whi ch contains a notice placed by the copyright holder or
ot her authorized party saying it may be distributed under the terns of
this Lesser Ceneral Public License (also called "this License")
Each |icensee is addressed as "you".

A "library" nmeans a collection of software functions and/or data
prepared so as to be conveniently linked with application progranms
(which use sone of those functions and data) to form executabl es

The "Library", below, refers to any such software library or work
whi ch has been distributed under these terns. A "work based on the
Li brary" neans either the Library or any derivative work under
copyright law that is to say, a work containing the Library or a
portion of it, either verbatimor with nodifications and/or translated
straightforwardly into another |anguage. (Hereinafter, translation is
included without limtation in the term"nodification".)

"Source code" for a work neans the preferred formof the work for
maki ng nodifications to it. For a library, conplete source code neans
all the source code for all nmodules it contains, plus any associated

interface definition files, plus the scripts used to control conpilation

and installation of the library.

Activities other than copying, distribution and nodification are not
covered by this License; they are outside its scope. The act of
running a programusing the Library is not restricted, and output from
such a programis covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
witing it). Wether that is true depends on what the Library does
and what the programthat uses the Library does.

1. You may copy and distribute verbatimcopies of the Library's
conpl ete source code as you receive it, in any medium provided that
you conspi cuously and appropriately publish on each copy an
appropriate copyright notice and disclainmer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Li brary.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee

2. You may nodify your copy or copies of the Library or any portion
of it, thus formng a work based on the Library, and copy and
distribute such nodifications or work under the terns of Section 1
above, provided that you also neet all of these conditions:

a) The nodified work nust itself be a software library.

b) You nust cause the files modified to carry prom nent notices
stating that you changed the files and the date of any change.

c) You nust cause the whole of the work to be licensed at no
charge to all third parties under the ternms of this License

55

The LGPL License

d) If afacility in the nodified Library refers to a function or a
table of data to be supplied by an application programthat uses
the facility, other than as an argunment passed when the facility

i s invoked, then you nust nake a good faith effort to ensure that,
in the event an application does not supply such function or

table, the facility still operates, and perforns whatever part of
its purpose renmmins meani ngful

(For exanple, a function in a library to conpute square roots has
a purpose that is entirely well-defined i ndependent of the
application. Therefore, Subsection 2d requires that any

appl i cati on-supplied function or table used by this function nust

be optional: if the application does not supply it, the square
root function nmust still conmpute square roots.)
These requirenments apply to the nodified work as a whole. |If

identifiable sections of that work are not derived fromthe Library
and can be reasonably consi dered i ndependent and separate works in
thensel ves, then this License, and its terns, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole nust be on the ternms of
this License, whose perm ssions for other |icensees extend to the
entire whole, and thus to each and every part regardl ess of who wote
it.

Thus, it is not the intent of this section to claimrights or contest
your rights to work witten entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or

coll ective works based on the Library.

In addition, nere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a vol ume of
a storage or distribution medium does not bring the other work under
the scope of this License

3. You may opt to apply the terns of the ordinary GNU General Public
Li cense instead of this License to a given copy of the Library. To do
this, you nust alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordi nary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these noti ces.

Once this change is nade in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to al
subsequent copi es and derivative works nmade fromthat copy.

This option is useful when you wi sh to copy part of the code of
the Library into a programthat is not a library

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terns of Sections 1 and 2 above provi ded that you accompany
it with the conpl ete correspondi ng nmachi ne-readabl e source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medi um custonmarily used for software interchange

If distribution of object code is nmade by offering access to copy
froma designated place, then offering equival ent access to copy the
source code fromthe sanme place satisfies the requirenment to
distribute the source code, even though third parties are not
conpel l ed to copy the source along with the object code

5. A programthat contains no derivative of any portion of the
Li brary, but is designed to work with the Library by being conpiled or

56

The LGPL License

linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
l'ibrary". The executable is therefore covered by this License.
Section 6 states ternms for distribution of such executabl es.

Wien a "work that uses the Library" uses material froma header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by |aw.

If such an object file uses only nunerical paraneters, data
structure | ayouts and accessors, and snmall macros and snall inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executabl es containing this object code plus portions of the
Library will still fall under Section 6.)

O herwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6
Any executabl es containing that work also fall under Section 6
whet her or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may al so conbi ne or
link a "work that uses the Library" with the Library to produce a
wor k containing portions of the Library, and distribute that work
under terms of your choice, provided that the terns permt
nodi fication of the work for the custoner's own use and reverse
engi neering for debuggi ng such nodifications

You nust give prom nent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You nust supply a copy of this License. |If the work
during execution displays copyright notices, you nust include the
copyright notice for the Library anbng them as well as a reference
directing the user to the copy of this License. Also, you nust do one
of these things:

a) Acconpany the work with the conpl ete correspondi ng

machi ne-readabl e source code for the Library including whatever
changes were used in the work (which nust be distributed under
Sections 1 and 2 above); and, if the work is an executable |inked
with the Library, with the conpl ete machi ne-readabl e "work that
uses the Library", as object code and/or source code, so that the
user can nmodify the Library and then relink to produce a nodified
execut abl e containing the nodified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to reconpile the application
to use the nodified definitions.)

b) Use a suitable shared library mechanismfor linking with the

Li brary. A suitable nechanismis one that (1) uses at run tinme a
copy of the library already present on the user's conputer system
rather than copying library functions into the executable, and (2)
will operate properly with a nodified version of the library, if
the user installs one, as long as the nodified version is
interface-conpatible with the version that the work was nmade with.

c) Acconpany the work with a witten offer, valid for at
| east three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no nore
than the cost of performing this distribution.

57

The LGPL License

d) If distribution of the work is nade by offering access to copy
froma designated place, offer equival ent access to copy the above
specified materials fromthe sanme place

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required formof the "work that uses the
Li brary" must include any data and utility progranms needed for
reproduci ng the executable fromit. However, as a special exception
the materials to be distributed need not include anything that is
normal ly distributed (in either source or binary formp with the ngjor
conponents (conpiler, kernel, and so on) of the operating system on
whi ch the executable runs, unless that conponent itself acconpanies
the executabl e.

It may happen that this requirenent contradicts the |icense
restrictions of other proprietary libraries that do not normally
acconpany the operating system Such a contradiction means you cannot
use both them and the Library together in an executable that you
di stribute.

7. You may place library facilities that are a work based on the
Li brary side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a conbi ned
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherw se
permtted, and provided that you do these two things

a) Acconpany the conbined library with a copy of the same work
based on the Library, unconbined with any other |ibrary
facilities. This nust be distributed under the ternms of the
Secti ons above.

b) G ve promi nent notice with the conbined library of the fact
that part of it is a work based on the Library, and expl ai ni ng
where to find the acconpanyi ng unconbi ned form of the sane work.

8. You may not copy, nodify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attenpt otherw se to copy, nodify, sublicense, link with, or

distribute the Library is void, and will automatically term nate your
rights under this License. However, parties who have received copies,
or rights, fromyou under this License will not have their |icenses
term nated so |l ong as such parties remain in full conpliance

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you perm ssion to nodify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
nodi fyi ng or distributing the Library (or any work based on the
Li brary), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or nodifying
the Library or works based on it.

10. Each tinme you redistribute the Library (or any work based on the
Library), the recipient autonatically receives a |license fromthe
original licensor to copy, distribute, link with or nodify the Library
subject to these terns and conditions. You may not inpose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing conpliance by third parties with
this License

11. If, as a consequence of a court judgnent or allegation of patent
infringement or for any other reason (not limted to patent issues),
conditions are inposed on you (whether by court order, agreenent or
ot herwi se) that contradict the conditions of this License, they do not

58

The LGPL License

excuse you fromthe conditions of this License. |f you cannot
distribute so as to satisfy sinultaneously your obligations under this
Li cense and any ot her pertinent obligations, then as a consequence you
may not distribute the Library at all. For exanple, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely fromdistribution of the Library.

If any portion of this section is held invalid or unenforceabl e under any
particul ar circunstance, the bal ance of the section is intended to apply,
and the section as a whole is intended to apply in other circunstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right clainms or to contest validity of any
such clainms; this section has the sole purpose of protecting the
integrity of the free software distribution systemwhich is

i mpl emented by public license practices. Many peopl e have made
generous contributions to the wi de range of software distributed
through that systemin reliance on consistent application of that
system it is up to the author/donor to decide if he or she is willing
to distribute software through any other systemand a |icensee cannot

i mpose that choi ce.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
origi nal copyright hol der who places the Library under this License may add
an explicit geographical distribution Iimtation excluding those countries,
so that distribution is permtted only in or anbng countries not thus
excluded. In such case, this License incorporates the limtation as if
witten in the body of this License

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License fromtime to tine.
Such new versions will be similar in spirit to the present version
but may differ in detail to address new probl ens or concerns

Each version is given a distinguishing version nunber. |If the Library
specifies a version nunber of this License which applies to it and
"any |l ater version", you have the option of following the terns and
conditions either of that version or of any |later version published by
the Free Software Foundation. |f the Library does not specify a

|'i cense version nunber, you may choose any version ever published by
the Free Software Foundati on

14. If you wish to incorporate parts of the Library into other free
progranms whose distribution conditions are inconpatible with these,
wite to the author to ask for perm ssion. For software which is
copyrighted by the Free Software Foundation, wite to the Free
Sof t war e Foundati on; we soneti nes nake exceptions for this. CQur
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of pronoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LI BRARY | S LI CENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LI BRARY, TO THE EXTENT PERM TTED BY APPLI CABLE LAW
EXCEPT WHEN OTHERW SE STATED I N WRI TI NG THE COPYRI GHT HOLDERS AND/ OR
OTHER PARTI ES PROVI DE THE LI BRARY "AS | S" W THOUT WARRANTY OF ANY
KI ND, ElI THER EXPRESSED OR | MPLI ED, | NCLUDI NG, BUT NOT LIM TED TO, THE
| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPCSE. THE ENTI RE RI SK AS TO THE QUALI TY AND PERFCRVANCE OF THE
LIBRARY | S WTH YOU. SHOULD THE LI BRARY PROVE DEFECTI VE, YOU ASSUME
THE COST OF ALL NECESSARY SERVI CI NG, REPAI R CR CORRECTI ON

59

The GFDL License

16. I N NO EVENT UNLESS REQUI RED BY APPLI CABLE LAW CR AGREED TO I N
VWRI TI NG WLL ANY COPYRI GHT HOLDER, OR ANY OTHER PARTY WHO MAY MODI FY
AND/ OR REDI STRI BUTE THE LI BRARY AS PERM TTED ABOVE, BE LI ABLE TO YQU
FOR DAMAGES, | NCLUDI NG ANY GENERAL, SPECI AL, | NCI DENTAL OR
CONSEQUENTI AL DAMACGES ARI SI NG QUT OF THE USE OR I NABI LI TY TO USE THE
LI BRARY (1 NCLUDI NG BUT NOT LIM TED TO LOSS OF DATA OR DATA BEI NG
RENDERED | NACCURATE OR LOSSES SUSTAI NED BY YOU OR THI RD PARTIES OR A
FAI LURE OF THE LI BRARY TO OPERATE W TH ANY OTHER SOFTWARE), EVEN | F
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVI SED OF THE PGCSSI Bl LI TY OF SUCH
DAVAGES.

END OF TERVS AND CONDI TI ONS
How to Apply These Terns to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recomrend naking it free software that
everyone can redistribute and change. You can do so by permtting
redi stribution under these terns (or, alternatively, under the terms of the
ordi nary General Public License).

To apply these terns, attach the followi ng notices to the library. It is
safest to attach themto the start of each source file to nost effectively
convey the exclusion of warranty; and each file should have at |east the
"copyright" line and a pointer to where the full notice is found.

& t;one line to give the library's name and a brief idea of what it does.>
Copyright (C) & t;year> & t;nanme of author>

This library is free software; you can redistribute it and/or

nodi fy it under the terms of the GNU Lesser Ceneral Public

Li cense as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any |ater version.

This library is distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the GNU
Lesser General Public License for nore details.

You shoul d have received a copy of the GNU Lesser CGeneral Public

License along with this library; if not, wite to the Free Software

Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
Al so add information on how to contact you by el ectronic and paper nail.
You shoul d al so get your enployer (if you work as a progranmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sanple; alter the nanes:

Yoyodyne, Inc., hereby disclains all copyright interest in the
library “Frob' (a library for tweaking knobs) witten by James Random Hacker.

& t;signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

A.6. The GFDL License

Source http://www.gnu.org/licenses/fdl-1.3.txt

GNU Free Docunent ati on License

60

http://www.gnu.org/licenses/fdl-1.3.txt

The GFDL License

Version 1.3, 3 Novenber 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundati on,
<http://fsf.org/>

Everyone is pernitted to copy and distribute verbati mcopies

of this license docunent, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to nmake a manual, textbook, or other
functional and useful docurment "free" in the sense of freedom to
assure everyone the effective freedomto copy and redistribute it,
with or without nmodifying it, either conmmercially or noncomrercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for nodifications nade by ot hers.

This License is a kind of "copyleft", which means that derivative
wor ks of the docunent nust thenselves be free in the same sense. |t
conpl enents the GNU General Public License, which is a copyleft

|'i cense designed for free software.

W have designed this License in order to use it for nmanuals for free
sof tware, because free software needs free docunentation: a free
program shoul d conme with nanual s providing the same freedons that the
sof tware does. But this License is not limted to software nanual s;
it can be used for any textual work, regardl ess of subject matter or
whether it is published as a printed book. W reconmend this License
principally for works whose purpose is instruction or reference.

1. APPLI CABI LITY AND DEFI NI TI ONS

This License applies to any manual or other work, in any nedium that
contains a notice placed by the copyright holder saying it can be
distributed under the terns of this License. Such a notice grants a
wor |l d-wi de, royalty-free license, unlimted in duration, to use that
wor k under the conditions stated herein. The "Docunment”, bel ow,
refers to any such manual or work. Any menber of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, nodify or distribute the work in a way requiring permn ssion
under copyright |aw

A "Modified Version" of the Docunent neans any work containing the
Docurment or a portion of it, either copied verbatim or wth
nmodi ficati ons and/or translated i nto another |anguage.

A "Secondary Section" is a named appendi x or a front-matter section of
the Docunent that deals exclusively with the relationship of the
publ i shers or authors of the Document to the Docunent's overall

subj ect (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Docunent is in
part a textbook of mathematics, a Secondary Section may not explain
any mat hematics.) The relationship could be a natter of historical
connection with the subject or with related matters, or of |egal,
conmer ci al, philosophical, ethical or political position regarding

t hem

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Docunent is rel eased under this License. |If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Docunent may contain zero
Invariant Sections. |f the Docunent does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,

I nc.

61

The GFDL License

as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Docunent is released under this License. A Front-Cover Text may
be at nost 5 words, and a Back-Cover Text may be at npst 25 words.

A "Transparent" copy of the Docunent neans a machi ne-readabl e copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the docunent
straightforwardly with generic text editors or (for images conposed of
pi xel s) generic paint prograns or (for draw ngs) sonme w dely avail abl e
drawi ng editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherw se Transparent file
format whose mar kup, or absence of markup, has been arranged to thwart
or discourage subsequent nodification by readers is not Transparent.
An image format is not Transparent if used for any substantial anount
of text. A copy that is not "Transparent” is called "Opaque"

Exanpl es of suitable formats for Transparent copies include plain
ASClI | without markup, Texinfo input format, LaTeX input format, SGW
or XML using a publicly available DID, and standard-conformnng sinple
HTM., Post Scri pt or PDF designed for human nodification. Exanples of
transparent image formats include PNG XCF and JPG Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGW. or XM for which the DTD and/ or
processing tools are not generally avail able, and the
machi ne- generated HTM., Post Script or PDF produced by sone word
processors for output purposes only.

The "Title Page" nmeans, for a printed book, the title page itself,
pl us such foll owi ng pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" neans
the text near the nobst prom nent appearance of the work's title,
precedi ng the begi nning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Docurment to the public.

A section "Entitled XYZ" nmeans a named subunit of the Docunent whose
title either is precisely XYZ or contains XYZ in parentheses follow ng
text that translates XYZ in another |anguage. (Here XYZ stands for a
specific section nane nentioned bel ow, such as "Acknow edgenents",
"Dedi cati ons", "Endorsenments", or "History".) To "Preserve the Title"
of such a section when you nodify the Docunment neans that it renmains a
section "Entitled XYZ" according to this definition.

The Docurent may include Warranty Disclainers next to the notice which
states that this License applies to the Document. These Warranty

Di sclaimers are considered to be included by reference in this

Li cense, but only as regards disclaimng warranties: any other
inmplication that these Warranty Disclainers may have is void and has
no effect on the neaning of this License

2. VERBATI M COPYI NG

You may copy and distribute the Docunent in any nedium either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Docunment are reproduced in all copies, and that you add no

ot her conditions whatsoever to those of this License. You may not use
techni cal neasures to obstruct or control the reading or further
copyi ng of the copies you make or distribute. However, you may accept
conpensation in exchange for copies. |If you distribute a |arge enough
nunber of copies you nust also follow the conditions in section 3.

You may al so | end copies, under the same conditions stated above, and
you may publicly display copies

62

The GFDL License

3. COPYING I N QUANTI TY

If you publish printed copies (or copies in nmedia that comonly have
printed covers) of the Docunent, nunbering nore than 100, and the
Docurent' s |icense notice requires Cover Texts, you nust enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover nust present
the full title with all words of the title equally prom nent and
visible. You may add other material on the covers in addition
Copying with changes limted to the covers, as long as they preserve
the title of the Docunment and satisfy these conditions, can be treated
as verbatimcopying in other respects.

If the required texts for either cover are too volumnous to fit

| egibly, you should put the first ones listed (as nmany as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copi es of the Document nunbering
more than 100, you nust either include a machi ne-readabl e Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a conputer-network | ocation fromwhich the general network-using
public has access to downl oad using public-standard network protocols
a conpl ete Transparent copy of the Docunent, free of added materi al

If you use the latter option, you nust take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at |east one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Docurent wel | before redistributing any |arge nunber of copies, to
give them a chance to provide you with an updated version of the
Docurent .

4. MODI FI CATI ONS

You may copy and distribute a Mddified Version of the Docunment under
the conditions of sections 2 and 3 above, provided that you rel ease
the Modified Version under precisely this License, with the Mdified

Version filling the role of the Document, thus licensing distribution
and nodification of the Mddified Version to whoever possesses a copy
of it. In addition, you nust do these things in the Mdified Version

A. Use in the Title Page (and on the covers, if any) a title distinct
fromthat of the Docunment, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Docunent). You may use the sanme title as a previous version
if the original publisher of that version gives permni ssion

B. List on the Title Page, as authors, one or nobre persons or entities
responsi bl e for authorship of the nodifications in the Mdified
Version, together with at least five of the principal authors of the
Docurment (all of its principal authors, if it has fewer than five)
unl ess they rel ease you fromthis requirenent.

C. State on the Title page the name of the publisher of the
Modi fi ed Version, as the publisher

D. Preserve all the copyright notices of the Docunent.

E. Add an appropriate copyright notice for your nodifications
adj acent to the other copyright notices.

F. Include, imedi ately after the copyright notices, a |license notice
giving the public pernission to use the Mdified Version under the
terns of this License, in the formshown in the Addendum bel ow.

G Preserve in that license notice the full lists of Invariant Sections

63

The GFDL License

and required Cover Texts given in the Docunent's |icense notice.

H. Include an unaltered copy of this License.

|. Preserve the section Entitled "Hi story", Preserve its Title, and add
toit an itemstating at least the title, year, new authors, and
publ i sher of the Mdified Version as given on the Title Page. |If
there is no section Entitled "History" in the Docunent, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Mdified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Docunment for
public access to a Transparent copy of the Docunent, and |ikew se
the network | ocations given in the Docunent for previous versions
it was based on. These nmay be placed in the "H story" section.
You may omit a network |ocation for a work that was published at
| east four years before the Docunment itself, or if the original
publ i sher of the version it refers to gives perm ssion.

K. For any section Entitled "Acknow edgenents" or "Dedications",
Preserve the Title of the section, and preserve in the section all
t he substance and tone of each of the contributor acknow edgenents
and/ or dedi cations given therein.

L. Preserve all the Invariant Sections of the Docunent,
unaltered in their text and in their titles. Section nunbers
or the equivalent are not considered part of the section titles.

M Delete any section Entitled "Endorsenents”". Such a section
may not be included in the Mdified Version.

N. Do not retitle any existing section to be Entitled "Endorsenents"
or to conflict intitle with any Invariant Section.

O Preserve any Warranty Discl ai ners.

If the Modified Version includes new front-nmatter sections or

appendi ces that qualify as Secondary Sections and contain no naterial
copi ed fromthe Docunent, you may at your option designate sone or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Mdified Version's |icense notice.
These titles nmust be distinct fromany other section titles.

You may add a section Entitled "Endorsenents", provided it contains
not hi ng but endorsenents of your Modified Version by various
parties--for exanple, statements of peer review or that the text has
been approved by an organi zation as the authoritative definition of a
st andar d.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Mdified Version. Only one passa