
Automating interpretability: discovering and testing visual concepts learned by
neural networks

Amirata Ghorbani∗

Stanford University
amiratag@stanford.edu

James Wexler
Google Brain

jwexler@google.com

Been Kim
Google Brain

beenkim@google.com

Abstract

Interpretability has become an important topic of re-
search as more machine learning (ML) models are deployed
and widely used to make important decisions. For high-
stakes domains such as medical, providing intuitive explana-
tions that can be consumed by domain experts without ML
expertise becomes crucial. To this demand, concept-based
methods (e.g., TCAV) were introduced to provide explana-
tions using user-chosen high-level concepts rather than in-
dividual input features. While these methods successfully
leverage rich representations learned by the networks to
reveal how human-defined concepts are related to the predic-
tion, they require users to select concepts of their choice and
collect labeled examples of those concepts. In this work, we
introduce DTCAV (Discovery TCAV) a global concept-based
interpretability method that can automatically discover con-
cepts as image segments, along with each concept’s esti-
mated importance for a deep neural network’s predictions.
We validate that discovered concepts are as coherent to hu-
mans as hand-labeled concepts. We also show that the discov-
ered concepts carry significant signal for prediction by ana-
lyzing a network’s performance with stitched/added/deleted
concepts. DTCAV results revealed a number of undesirable
correlations (e.g., a basketball player’s jersey was a more
important concept for predicting the basketball class than
the ball itself) and show the potential shallow reasoning of
these networks.

1. Introduction
As machine learning (ML) has become a widely used tool

in many applications from medical (e.g., [13]) to commer-
cial [27], gaining insights into ML models’ predictions has
become one of the most important topics of study, and some-
times even a legal requirement [12]. The industry is also
recognizing interpretability as one of the main components
of responsible use of ML[1]; not just a nice-to-have com-
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ponent but a must-have one. The ability to understand and
interact with ML tools is one of the crucial factors to decide
whether ML should be implemented in high risk domains
with potentially severe consequences (e.g. medicine).

One of the unique challenges of interpretability in high
stakes domains is that the users may not be very familiar
with ML. This calls for using more intuitive interpretabil-
ity language designed for laypersons. However, most of the
developments in interpretability methods have been using
less intuitive language, mostly focused on estimating how
important each input feature is for prediction [24, 25, 33].
While this is a useful tool for explaining the prediction of
a single data point (local explanation [7]), the limitations
of this method has been repeatedly shown to be unreliable.
These limitations include potential methodological weak-
ness (e.g., the importance measure has little to do with the
prediction, contradicting its promise[14]), vulnerability to
adversarial attacks [11], and susceptibility to human confir-
mation biases [16]. In other words, using pixels as a medium
requires the subjective judgment of humans, and some stud-
ies have shown that humans are able to find evidence for
completely contradicting conclusions [16]. We argue that
this might be partially due to the fact that humans do not
think or communicate using pixels.

Some recent interpretability methods aim to overcome
this by generating quantitative explanations using high-level
’concepts’ (e.g., diagnostic concepts, gender, race) instead of
input features. TCAV [16] uses a user-chosen set of example
data points to form a concept activation vector (CAV), which
then is used to calculate the importance of the concept for a
prediction. This method uses intuitive language for a layper-
son to express concepts of interest and to understand their
model through those concepts. However, the user has to have
a set of concepts in mind for testing and provide examples of
such concepts. What if users do not have candidates concepts
and/or have ways to provide examples? What if the space of
plausible concepts to test is exponentially large?

In this work, we introduce DTCAV (Discovery TCAV)
which automatically discovers concepts by collecting con-
nected parts of images (segments) that together form im-
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Figure 1: DTCAV algorithm (a) Given a set of concept discovery images, each image is segmented with different resolutions
to find concepts that are captured best at different sizes. (b) After removing duplicate segments, each segment is resized to
the original input size resulting in a pool of resized segments of the discovery images. (c) Resized segments are mapped to a
model’s activation space at a bottleneck layer. To discover the concepts associated with the target class, clustering with outlier
removal is performed. (d) The output of our method is a set of discovered concepts for each class, sorted by their importance
in prediction

portant concepts. We validate via human experiment that
the learned segments form concepts as coherent as human-
labeled concepts. We further validate the learned concepts by
showing that these concepts segments alone often carry suffi-
cient information to be predicted as the corresponding class.
We also add and remove sets of segments sorted by their
importance in prediction and show the resulting significant
impacts on the prediction.

2. Related work

This work focuses on post-training interpretability meth-
ods - finding explanations given an already trained network.
While there is a line of research on building inherently inter-
pretable models [32, 15, 29], we focus on scenarios where
we cannot modify the model. Most common post-training
interpretability methods provide explanations by estimating
the importance of each input feature or training sample for
the prediction of a particular data point [24, 25, 33, 17]. Nat-
urally, these methods can only explain one data point at a
time (local explanation).

While this is useful when only specific data points mat-
ter, these methods have been shown to come with many
limitations, both methodologically and fundamentally. For
example, [14] showed that some input feature-based explana-
tions are qualitatively and quantitatively similar for a trained
model (i.e., making superhuman performance prediction)
and a randomized model (i.e., making random predictions).
This shows that the explanation may have little to do with
prediction, contradicting its goal of explaining predictions.
Other work proved that some of these methods are in fact

trying to reconstruct the input image, rather than estimat-
ing pixels’ importance for prediction [28]. In addition, it’s
been shown that these explanations are susceptible to hu-
mans’ confirmation biases [16]. For example, [16] showed
that given identical input feature-based explanations, human
subjects confidently find evidence for completely contra-
dicting conclusions. Using input features as explanations
also introduces challenges in scaling this method to high
dimensional datasets (e.g., health records). Humans typically
reason in higher abstracted concepts ([20]) than a particular
input feature (e.g., lab results, a particular hospital visit).

A recently developed method uses high-level concepts,
instead of input features. Given a set of examples of a con-
cept of user’s choice, TCAV [16] produces estimates of how
important that a concept was for the prediction. However,
users have to provide examples of the concept, limiting this
method to cases when users have a set of concepts in mind
and are interested their importance measures.

Our method leverages multi-resolution image segmen-
tation methods to There has been a long line of research
on multiscale and hierarchical segmentation of images
([23, 30, 4]). In this work, we use the SLIC [2] superpixel
segmentation method for its simplicity, memory efficiency,
speed, and high quality performance, as shown in [3].

3. Methods

In this section, we first review TCAV, a concept based
interpretation method for interpreting deep neural networks.
We then introduce our method, Discovering and Testing Con-
cept Activation Vectors (DTCAV), by first describing what
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we define as concepts and how we discover them and then
completing the description by testing discovered concepts.

3.1. Testing Concept Activation Vectors (TCAV)

TCAV [16] is a post-training interpretability method that
calculates how important a user-chosen concept is for a deep
neural network’s prediction of a target class, e.g. how im-
portant is stripedness for predicting the zebra class. A user
first provides a set of example data points of the chosen
concept together with random data points that do not be-
long to the concept (i.e., a random counterpart). Then data
points are then mapped to the activation space of a bottle-
neck layer of the user’s choice. Concept Activation Vectors
(CAVs) are defined as the direction orthogonal to a linear
classifier trained to distinguish the concept activations from
the random activations. The importance of the concept is
generated using the directional derivative of the prediction
unit of a particular class with respect to the calculated CAV.
The final TCAV score is simply an aggregated statistic of
these directional derivatives for many images from the target
class. Intuitively, the TCAV score measures how important
the concept (represented as a CAV) is for a class prediction
by conducting a form of sensitivity test [22]. In order to
reject any concepts that were “not learned” by the network, a
statistical testing between TCAV scores with multiple CAVs
of the same concept (using different random counterparts)
and that with random CAVs (using random images in the
place of concept images) is conducted. TCAV output only
includes concepts that pass this test.

While TCAV allows a layperson to express their concept
of interest and conduct hypothesis testing of their choice,
users are in charge of selecting domains where users have
a clear set of concepts in mind, it may not be suitable for
domains where users simply do not know which concepts to
test or have the resources to collect concept examples.

Our method was inspired by the following questions: If
we limit the space of concepts to a set of target class images,
can we automatically discover concepts contained in them?
Can we discover concepts that are coherent to humans while
sufficient for prediction?

3.2. Discovering and Testing Concept Activation
Vectors (DTCAV)

At a high level, the DTCAV method first segments target
class images (i.e., “discovery images”) and applies simple
clustering methods followed by outlier removal to finalize
the set of discovered concepts. The output of the method is a
number of sets of segments of the discovery images, each set
representing a concept, together with a quantitative measure
how important each set of concepts is.

Fig. 1 shows the overall algorithm in detail. First, we cre-
ate a set of images belonging to the target class that we call
“discovery image”. For each discovery image, segmentation

Colors & Textures

Objects & Parts

Figure 2: Examples of discovered concepts. A wide range
of concepts like blue color, asphalt texture, car window,
and human face are detected through the algorithm. Multi-
resolution segmentation helped discovering concepts with
varying sizes. For example, two car windows with different
sizes (one twice as big as the other) were identified as the
same concept.

is applied several times with different levels of resolution; for
instance, using superpixel segmentation with various param-
eters resulting in different number of segments.(Fig. 1(a))
Each segment is then resized to the original input size of
the network and mapped to a chosen bottleneck layer’s ac-
tivation space.(Fig. 1(b)) Clustering with outlier removal is
then applied to the activations of the segments to discover
the concepts. (Fig. 1(c)) A new set of images of the target
class is used to calculate TCAV importance scores using
the method described in [16]. (Fig. 1(d)) While the final
method above is simple, each piece in the method address
many inherent challenges of concept discovery. The first
challenge is that discovered concepts must be location and
scale invariant, since the same concept may appear multi-
ple times in different scales and locations in images. An
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efficient multi-resolution segmentation method (SLIC super-
pixel segmentation[2]) is crucial as one image is segmented
with multiple resolutions (Fig. 1(a)). Since doing so may
create duplicated segments, we use Jaccard similarity to re-
move potential duplicates. The second challenge is effective
filtering for potentially important concepts that are coherent.
In other words, we want to filter out potentially irrelevant
segments, e.g. a human face appearing in one zebra image.
We empirically identified three simple but important fac-
tors: distance, frequency and popularity. The distance factor
is intuitive - we remove segments that are far from all of
the clusters. The frequency factor means that segments in a
cluster must occur across many images (frequency) and not
just small number of images. The popularity factor simply
means that the cluster also must be big enough to be a good
candidate. We filter clusters where neither of these factors
are satisfied (details in Section 4).

After filtering we have set of candidate concepts then are
used to compute the concept activation vectors (CAVs) and
perform statistical testing to obtain TCAV scores.

A number of previous literature supports our assumption
that clustering method is surprisingly effective in distinguish-
ing concepts. An experiment of [16] where in the right bot-
tleneck layer of an image classification network, images of
a concept are linearly separable from random images using
various sets of random images. [5] also verify that simple
linear classifiers were sufficient for discovering concepts.
Another evidence is by [34] that pointed out striking similar-
ities in deep neural network’s learned representations with
that in human perception. A comprehensive discussion of
linearity in deep neural networks activation space is provided
in [16].

Note that DTCAV is not limited to using TCAV scores to
measure the importance. Once the concepts are discovered,
for example, one could use gradient-based importance mea-
sures like saliency maps. The averaged value of importance
scores for all pixels that fall into the segment could be used
as a proxy for importance measure. One can also use cosine
similarity between CAVs of each concept and CAVs of target
images as a measure.

4. Experiments & Results

4.1. Datasets and Implementation Details

All experiments were performed using Inception-V3
model [26] trained on the ILSVRC2012 data set (Ima-
genet) [21]. We randomly chose 100 out of 1000 classes
in the data set for our experiments. We used “mixed 8” bot-
tleneck for this section.

As described, the first step of the DTCAV algorithm in-
volves multi-resolution segmentation. Several superpixel seg-
mentation methods were examined ([2, 9, 19, 31]). The sim-
ple SLIC[2] method was chosen as it strikes good balance

Discovered Hand-labeled

Figure 3: Human subject experiment questionnaire and
results. 30 human subjects were asked to identify one image
out of six that is conceptually different from the rest, mirror-
ing interpretability literature [6]. We show a combined set of
discovered and hand-labeled concepts for comparison. On
average, participants answer the hand-labeled dataset 97%
(14.6/15, ±0.7) correctly, while discovered concepts were
answered 99% (14.9/15, ±0.3) correctly. The grey dotted
line represents a perfect score.

between quality of segments and efficiency. We performed
three-resolution segmentation by changing SLIC’s number
of segments parameter to 15, 50, and 80. After resizing each
segment, since segments are in irregular shapes, we fill in
the empty part of the image with the zero pixel value (117 in
our network, after post-processing). For the choice of cluster,
we performed concept discovery using several clustering
methods including K-means [18], Affinity Propagation [10],
and DBSCAN [8]. When Affinity Propagation was used,
typically a large number of clusters (30-70) were produced,
which was then simplified by another hierarchical clustering
step. The best results, however, were acquired using k-means
clustering followed by removing all points but the n points
that have the smallest `2 distance from the cluster center.
For filtering, as described in Section 3, we remove all but
a) high frequency (segments come from more than 1/2 of
discovery images) b) medium frequency with medium pop-
ularity (more than 1/4 of discovery images and the cluster
size is larger than S/2) and c) high popularity (cluster size
is larger than S). In all the following experiments, n = 40
and S = 80, and we use k-means with k = 25; 50 images
of training set were used for concept discovery.

In what follows, we first show examples of the discovered
concepts using DTCAV algorithm. We first verify that our
method returns coherent sets of concepts via human subject
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Figure 4: Examples of DTCAV. For each target class, four discovered concepts with high TCAV scores and the one with the
lowest score are shown. We randomly chose three segments in each concept. Notice that a TCAV score of 0.91 means that
91% of the images in the target class returned a positive directional derivative, indicating that the discovered concept was
important for the network’s prediction. For example, the fins of the lionfish, the letters on a police van, and basketball jerseys
are all highly associated with their respective classes, while asphalt roads or floors have low or no association. (* stands for a
concept that did not shown to be statistically different from random concepts, meaning that TCAV did not find the concept to
be meaningful for the target class.)

experiment. The results indicate that the discovered concepts
are as coherent to humans as hand-labeled concepts. We
show that our method is able to learn various abstract levels
of concepts; from simple concepts (e.g., color, texture) to
more complex ones (e.g., objects, parts). We also quanti-
tatively verify that these concepts were in fact crucial for
prediction. First, we show that a set of important concepts
are enough to predict the right class. Second, we show that
adding or deleting important concepts significantly impacts
the prediction performance.

4.2. DTCAV can discover simple to complex con-
cepts

The multi-resolution segmentation step of DTCAV natu-
rally returns segments that contain simple concepts such as
color or texture and more complex concepts, such as parts of
body or objects. Among those segments, DTCAV success-
fully identifies concepts with similar level of abstract-ness
with similar semantic meaning (as verified via human ex-
periment). Fig. 2 shows some examples of the discovered
concepts. Note that each segment is re-sized for display.
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4.3. Discovered concepts are semantically coherent
to humans

We designed an intruder detection human experiment
following interpretability literature [6] to verify the quality
of the discovered concepts. At each question, a subject is
asked to identify one image out of six that is conceptually
different from the rest. We created a questionnaire of 34
questions, such as shown in Fig. 3 Among 34 randomly
ordered questions, 15 of them include a set of randomly
chosen DTCAV concepts, and the other 15 questions are
human-labeled concepts from Broaden dataset [5]. The
first four questions were used as training and discarded. On
average, participants answered the hand-labeled dataset 97%
(14.6/15) (±0.7) correctly, while discovered concepts were
answered 99% (14.9/15) (±0.3) correctly. This experiment
confirms that while a discovered concept is only sets of
segments of images, DTCAV was able to identify segments
with coherent concepts.

4.4. Examples of DTCAV with high and low TCAV
scores

For each discovered concept, we compute its CAV and
then test the CAVs using a set of held-out images of the
target class to get the TCAV score of each discovered con-
cept. Note that a TCAV score of 0.9 means that 90%of the
target class images have positive sensitivity to the concept;
intuitively, this means that increasing the presence of that
concept increases the prediction score of the class. Fig. 4
shows the result for running DTCAV on a subset of target
classes. For each class we show four concepts, some with
high and low TCAV scores and some concepts that did not
pass the statistical test (i.e., the concept was not relevant
to the prediction). Three randomly selected segments are
shown for each concept. More examples are provided in
Appendix B.

4.5. Insights from discovered concepts

Reviewing discovered concepts with high TCAV scores
shows what the network pays attention to, which reveals
some surprising correlations. In some cases, we see that the
network picked up on appropriate related concepts. The let-
ters in police van were correctly identified as important in
Fig. 4, while the asphalt road in the background was iden-
tified as not important. Fig. 5(a) shows more examples of
this case. Not surprisingly, we discover some undesirable
correlations. For example, the lionfish prediction considers
the background reef to be important, and basketball predic-
tions consider player jerseys and the wooden floor important
instead of the ball, as seen in Fig. 4. Some classes such as
European gallinule Fig. 4, network considers the background
(grass) much more important (TCAV score 0.73) then parts
of the bird (TCAV score 0.46). This indicates that this clas-
sifier may not be great for robustly detecting this bird, and
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Figure 5: (a) desirable correlations (b) undesirable correla-
tions (c) different parts of an object identified as separate but
important concepts
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Figure 6: (a) Semantically inconsistent concepts achieve
low or no TCAV scores (b) Seemingly duplicated concepts
(to humans) may be discovered

that gathering more training data with various background
might improve the result. Similarly undesirable correlations
are shown in Fig. 5(b).

Another insight we gained was that in some cases when
the object is complex, the network identifies parts of the ob-
ject as separate concepts, and some parts are more important
than others. For example, in Fig. 5(c), carousel lights, poles
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structure, and seats (horses). It is interesting to learn that the
lights were more indicative of the carousel than seats.

Note that some of the discovered concepts may seem du-
plicated to humans. For example, in Fig. 6(b), three different
ocean surfaces (wavy, calm, and shiny) are discovered sep-
arately and all of them have similarly high TCAV scores.
Future work remains to see whether this is because the net-
work represents these ocean surfaces differently, or whether
we can further combine these concepts into one ’ocean’ con-
cept.

While rare, there are concepts that are less coherent to
humans. This may be due to limitations of our method or
because things that are similar to the neural network are
not similar to humans. However, the incoherent concepts
were never in top-5 most important concepts among the 100
classes used for experiments.

Figure 7: Average results of stitching experiment. The suc-
cess rate (the ratio of stitched images with correct predic-
tions) of pattern-based(stitchable) classes along with others.
When concepts with low TCAV scores are stitched, net-
work’s success rate hovers around 1%. For the 100 classes,
about half of the classes are defined as “stitchable”, obtaining
more than a 70% average success rate. Even when classes
are defined as “unstitchable”, the success rate is much higher
than the bottom-4 concepts.

4.6. What does the network see if we stitch concepts
together?

The discovered segments only contain a part of the story
of the target class, especially since it loses the global struc-
ture of the object (e.g., shape). However, it is plausible that
sometimes the mere presence of important concepts of a tar-
get class is sufficient for classification without considering
the global structure of the class images. For example, zebra
pattern could be distinctive enough that stitching together
zebra skin textures may convince the network that it is a
zebra, without having to see the anatomy of the zebra. To
this end, we designed a concept stitching experiment where
we randomly place concept segments on a blank image in a
sorted order of importance.

For each target class, we experimented stitching top-k
highly important concepts and generated 100 stitched im-
ages for each experiment. We then picked the experiment
yielding the highest “success rate”, which is the percentage

Police Van Carousel Dumbbell

Cinema Wine Bottle Jinrikisha

Basketball Zebra King Snake

Bubble Lionfish Electric Guitar

Stitched images sufficient for prediction

Stitched images insufficient for prediction

Figure 8: This experiment tests whether important concepts
are sufficient by stitching together randomly chosen con-
cept segments with high TCAV scores. We discover that
for classes with a strong pattern, that is the case (top). For
instance, basketball jerseys, zebra skin, lionfish, and king
snake patterns all seem to be enough for the Inception-V3
network to classify them as elements of their target class.
On the other hand, the network was not able to predict some
classes via stitched images which may indicate that they
require more ’structure’ to be predicted correctly (bottom).

of stitched images classified as that target class (i.e., accu-
racy with stitched images). We choose k in top-k via greedy
cross-validation. An average success rate of 39.6% was ob-
tained (note that random chance is 0.001%). As a control, we
also ran the experiment of stitching the bottom-5 concepts
yielding a 1% success rate. Interestingly, for zebra, leopard,
and drilling platform classes, the success rate is relatively
high (more than 80%) which shows that the network is only
looking at important concepts (Fig. 8). On the other side,
police van, jinrikisha, and bullet train classes, the success
rate is close to zero which means that the general structure of
the class images is also necessary for correct classification.
Examples of these classes are shown in Fig. 8. Aggregate re-
sults are shown in Fig. 7 where we group the classes into the
ones with a success rate more than 40%, which we consider
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“stitchable” classes, and the other classes which we consider
“unstitchable”. This experiment shed insights on whether the
global structure of the class was crucial for the prediction or
not, revealing potentially shallow reasoning of the network.

Ad
di
tio

n
De

le
tio

n

Top-5Top-2 Top-10 Top-15

Figure 9: Example of sequential addition and deletion (from
left to right) experiments for the guitar and police van
classes.

4.7. Adding or deleting discovered segments signif-
icantly impacts the prediction.

In this experiment, we show the effect of adding or delet-
ing important concepts from images. The idea is that if
a segment’s respective concept is indeed important, then
deleting/adding that segment should decrease/increase the
network’s ability to predict more so than random dele-
tion/addition.

For a set of test images, we add or delete segments with
respect to their associated concept’s TCAV scores. Then we
track the prediction accuracy, one from highest scores (blue
line in Fig. 9) and one from lowest scores (red line from
Fig. 9). To find each segment’s associated concept, we find
its nearest neighbor concept cluster in the bottleneck layer’s
activation space space. Fig. 9 shows two examples of such
addition/deletion.

The results in Fig. 10 show that the discovered concepts
carry important signal for prediction; a small number (5)
of top concepts are sufficient to predict 90% of images cor-
rectly, while the bottom concepts only achieve 20% accuracy.
Note that the relative performance with randomly-ordered
concepts further supports these results. Deleting top/bottom
concepts also lead to the same conclusion. When the top-5
concepts are removed, more than 60% of originally correctly
predicted images were no longer correctly predicted.

Addition Deletion

Number of added concepts Number of removed concepts
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Figure 10: Addition-deletion experiment results Addition-
deletion experiments seek to verify the importance of con-
cepts with high TCAV scores for the network’s prediction
task. As the addition test shows, the presence of only top-5
important concepts is enough for reaching 90% of the orig-
inal accuracy. The deletion experiment shows that around
70% of the original accuracy is lost by removing the top-5
important concepts (blue lines). When we add or delete the
bottom-5 concepts (red lines), we see minimal impact on
the accuracy. Random order of random concepts (green line)
have an effect between the top and bottom concepts.

5. Discussion and conclusion
We note a couple of limitations of our method. This work

is based on image data sets, as the super-pixel segmenta-
tion method is limited to images. While the general idea of
discovering and testing concepts does apply to many other
data types such as texts, it was not tested. Additionally, our
method only can discover concepts that can be expressed
with pixels. While we still discover plenty of insights based
on pixel segments, there might be more complex and ab-
stract concepts that we are unable to discover. Future work
includes better optimizing our method’s performance by tun-
ing the multi-resolution segmentation parameter per class.
This may better capture the inherent granularity of objects;
nature scenes may have a smaller number of concepts than
city scenes. For example, the ”European gallinule” class in
Fig 4 could have been benefited from a segment of the entire
bird itself.

In conclusion, DTCAV is a post-training interpretability
method that automatically discovers high-level important
concepts in the form of image segments. We verified that
the diverse set of discovered concepts are coherent to human
via human experiment, and further validated that discovered
concepts are indeed carry important signals for prediction.
The discovered concepts reveal insights into surprising and
sometimes undesirable correlations that the network has
learned, highlighting networks’ frequent shallow reasoning.
Such insights may help to promote safer use of this powerful
tool, machine learning.
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A. Extra details about the DTCAV algorithm implementation
As mentioned in Section 3 and Section 4, in order discover concepts that are frequently present in a target class, we perform

unsupervised clustering of reszied image segments in the bottleneck layer’s activation space. Outlier removal is then performed
to remove unrelated members of a cluster. In order to make sure that a discovered concept is actually present in target class
images, we introduced three different types of concepts that are acceptable:

• If the members of a concept’s cluster come from majority of discover images, in other words, the segments forming that
concept’s cluster are parts of a large number of discovery images, it could be said that the discovered concepts frequently
appears in the target class images. In the experiments, any concept appearing in more than 50% of discovery images
is considered to be acceptable. On example would be the ball in the basketball class. It’s present in every image and
usually there is one of it. As a result, its respective cluster is not large but it has members coming from a large number of
discovery images.

• If the segments in a concept cluster, appear in a reasonable number of discovery images but the cluster size is large, it
means that the concept has a significant presence in part of the images belonging to the target class. In our experiments, if
a concept appears in 25% to 50% of images but its cluster has more than 40 members, it is an acceptable concept. One
example would be the hand object in the basketball class. Many of the basketball images do not have a hand in them but
hand is highly related concept to the basketball class that appears constantly in a portion of the images.

• If the segments in a cluster come from a small number of images but still the cluster is large, it could be deduced that the
concept has a very distinctive presence in those small portion of discovery images. One example would be the human
crowd concept in the basketball class. A small percentage of images have that concept but when its present, because
it covers a large area of its corresponding image, it will be partitioned into large number of segments; each of which
belonging to the same concept. In our experiments, a cluster with more than 80 segments in it coming from more than
10% of the discovery images is acceptable.

Any concept that is not satisfying one of the aforementioned criteria is removed.
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B. More examples of DTCAV
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Figure 11: Examples of discovered concepts and their respective TCAV scores for class cinema.
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Figure 12: Examples of discovered concepts and their respective TCAV scores for class zebra.
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Figure 13: Examples of discovered concepts and their respective TCAV scores for class volcano.
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Figure 14: Examples of discovered concepts and their respective TCAV scores for class unicycle.
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Figure 15: Examples of discovered concepts and their respective TCAV scores for class hippo.
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Figure 16: Examples of discovered concepts and their respective TCAV scores for class hamster.
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Figure 17: Examples of discovered concepts and their respective TCAV scores for class bullet train.
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Figure 18: Examples of discovered concepts and their respective TCAV scores for class balloon.
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Figure 19: Examples of discovered concepts and their respective TCAV scores for class liner.
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Figure 20: Examples of discovered concepts and their respective TCAV scores for class cassette.
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C. More examples of stitched images

Ba
llo
on

Li
ne
r

Vo
lc
an
o

Su
ng
la
ss
es

jin
rik
is
ha

C
ab

Figure 21: Examples of stitched images classified correctly by the Inception-V3 network.
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Figure 22: Examples of stitched images classified correctly by the Inception-V3 network.
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