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A Energy Initialization and Scale of SGD
Learning Rate for Convergent ML

In this section we discuss some details about initializing the
energy function and scaling the SGD learning rate. Energy
initialization is important for efficient convergent ML but
not crucial for non-convergent ML. We find that convergent
ML is most effective when rt (see Section 3.2) has approx-
imately the same order of magnitude throughout training.
With noise ε = 0.015, we observe that rt typically lies in
the range [0.08, 0.15] for large t. However, when the ini-
tial weights θ1 come from standard ConvNet initialization,
we observe r1 ≈ 10−6. To address this we use the scaled
energy

U(x; θ) =
F (x; θ)

ε2/2
, (1A)

where F is a ConvNet. This is equivalent to using the
Langevin update

X`+1 = X` −
∂

∂x
F (X`; θ) + εZ`. (2A)

When θ1 is obtained from standard ConvNet initialization
and the rescaled energy (1A) is used, we observe that

r1 =

[
1

L+ 1

L∑
`=0

∥∥∥∥ ∂∂yF (Y
(`)
1 ; θ1)

∥∥∥∥
2

]
≈ 0.01

which is within a reasonable magnitude of the approxi-
mate target range [0.08, 0.15]. Additional scaling is required
when r1 ≈ 0.01 is either too low or high for the ideal noise
ε and the target range of rt but the same principles apply.

We note that the rescaling causes further complications,
since the computational loss

dst(θ) =
2

ε2
(Eq[F (X; θt)]− Est [F (X; θt)])

now depends on ε. To address this, we find that is helpful to
use a scaled learning rate γ = ε2

2 γ0 where γ0 ≈ 0.0005, to
obtain the update gradient

γ∆θt = γ0

[
∂

∂θ

(
1

n

n∑
i=1

F (X+
i ; θt) −

1

m

m∑
i=1

F (X−
i ; θt)

)]
(3A)

where ∆θt is given by (8). When using the vanilla SGD up-
date

θt+1 = θt − γ∆θt, (4A)

the scale of the parameter change ‖θt+1 − θt‖2 = ‖γ∆θt‖2
depends only on the scale of ‖ ∂∂θF (x; θt)‖2 and the scale
of γ0 and not on the scale of ε. We find that this enables
standardized weight initialization and LR tuning that is inde-
pendent of ε. In practical training of convergent models we
implement ML learning using (1A), (2A), (3A), and (4A).

B Annealing the Learning Rate
Annealing the learning rate can greatly reduce the number
of weight updates needed for realistic convergent learning.
Approximate MCMC convergence of short-run samples (i.e.
st ≈ pθt ) only needs to occur at the end of training for
convergent learning. Using a high SGD learning rate with
non-convergent learning dynamics early in training helps the
model learn realistic features before annealing the learning
rate to correct the steady-state oversaturation. We use a high
learning rate of 0.05 early in training and anneal to the target
value of 0.0005 over about 100,000 updates.

C Sampling from the Data Distribution
For the 2D toy experiments presented in the paper, one can
easily generate infinite samples from the true density q. Ad-
ditional complications arise when training an EBM pθ to
model image data because typical image datasets only con-
tain a finite number of samples so that the data distribution
q is actually a Dirac-delta distribution over the training im-
ages. In this case the true target distribution q is actually
degenerate over the continuous state space RN .

The discrepancy between the degenerate target distribu-
tion q and the fully-supported distribution pθ can cause in-
stabilities during training. Images with a solid color back-
ground such as MNIST digits can easily be assigned dispro-
portionately low energy, because the energy function pθ can
learn to discriminate between positive and negative samples
based on the behavior of a few consistent pixels in the train-
ing data. If pθ is able to consistently assign lower energy to
positive images based on features do not occur for the nega-
tive images then learning can collapse as dst → −∞.



The instability described above arises because certain lin-
ear dimensions of the training distribution have a much
lower local standard deviation than synthesized samples,
which have a standard deviation of at least ε in all directions
from Langevin sampling. In fact, all dimensions of the train-
ing distribution have a local standard deviation of 0 since q
is a Dirac-delta function. We can overcome this discrepancy
by adding Gaussian noise when sampling images from the
training set:

X+
j = x+ϕ(j) + εdata Qj (5A)

where ϕ(j) ∼ Unif({1, . . . , Ndata}), x+ϕ(j) ∈ {x
+
i }

Ndata
i=1 is

a training image, Qj ∼ N(0, IN ) and εdata ≥ ε. If (5A) is
applied each time that an image is sampled from the training
data, then q becomes a Gaussian mixture model with modes
at the training data and isotropic covariance with standard
deviation εdata around each mode. Therefore q is no longer
degenerate over RN and the minimum local standard devia-
tion ε of the Langevin process is smaller than the minimum
local standard deviation εdata of q as required for stable learn-
ing. We typically use εdata = 2ε.

D A Note on Oscillation
As described in Section 3.1, we always observe that dst is
approximately symmetrically distributed around 0 for suf-
ficiently large values of t for both convergent and non-
convergent ML. We refer to this behavior as oscillation of
energy differences between the positive and negative sam-
ples. We can further identify two types of oscillation: weak
oscillation and strong oscillation.
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Figure 1: Diagnostic plots for ML learning with weak os-
cillation. The values of dst are symmetrically distributed
around 0 (upper left) and the Langevin gradient magnitude
converges to a value that is balanced with ε (upper right) as
expected. However, there is no observable trend in the auto-
correlation of dst (lower right). Although dst does oscillate
around 0, the oscillation is not dependent on the outcome of
recent learning iterations.

Weak oscillation refers to learning outcomes where the
sign of dst is not influenced by the sign of dst0 for t0 < t.

The prototypical case of weak oscillation occurs for perfect
modeling (q = pθt = st) with no learning (learning rate
γ = 0). In this case dst = 0 and the difference of the finite-
sample expectation from the positive and negative samples
will be symmetrically distributed around 0 independently of
the finite-sample expectations from any previous learning it-
eration t0. We observe weak oscillation for toy 2D distribu-
tions and for image datasets when a low SGD learning rate
is used.
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Figure 2: Diagnostic plots for ML learning with strong os-
cillation. The values of dst are symmetrically distributed
around 0 (upper left) and the Langevin gradient magni-
tude converges to a value that is balanced with ε (upper
right) as expected. This time dst has a strong negative auto-
correlation at a short-range lag (lower right). Moreover,
Langevin gradient magnitude shares this short-range nega-
tive auto-correlation (lower right) and the cross-correlation
of dst and rt (lower left) follows the contraction/expansion
relation described in Section 3.1. The oscillation of dst
around 0 is highly dependent on the outcome of recent up-
dates.

Strong oscillation refers to learning outcomes where the
sign of dst in the current learning iteration tends to be the
opposite of the sign of dst0 for recent learning iterations t0.
In other words, expansion updates tend to immediately fol-
low contraction updates and vice-versa when the learning
system experiences strong oscillation, as described in the
Section 3.1. We observe strong oscillation when learning
image datasets with Adam or with SGD and high learning
rate. Strong oscillation appears to occur primarily for high-
dimensional energy functions.

In general, it appears that weak oscillation tends to oc-
cur for convergent ML and strong oscillation tends to occur
for non-convergent ML. The substantial dependence on pre-
vious learning iterations exhibited during strong oscillation
could be an indicator that the model is changing too quickly
to learn a realistic steady-state from the distribution of neg-
ative samples. In contrast, weak oscillation is the expected
outcome in the case of perfect ML learning and a conver-
gent model should also display this behavior.


