

Steps for Creating a SAS Datasets Scope
1 LIBNAME libref ‘<Path>’; Reference a SAS data library Global

2 FILENAME fileref ‘<Path>’; Reference (Temp) an external file Global

3 DATA ‘SASDataSetName’; Name a SAS data set

4 INFILE ‘file name/fileref’

 OBS=10;

 FIRSTOBS=2;
 Dlm=’,’ DSD;

Identify an external file using INFILE statement
OBS mention the range till which data needs
to be read. Can be used in data and proc print.
Used to verify Data reading without affecting
RAM space much. FIRSTOBS will start to read
data from row2 of raw dataset, DLM/DSD is
Delimiter and Delimiter sensitive data.

5 INPUT <informats>; Describe data

6 Sum_var + var2; + is called accumulator variable.
Defaults to zero initially and in case if values
are missing. Values get summed as dataset is
read. + will automatically retain its value

7 Retain <Sum_var> <val>; Used to initializes Accumulator variable which
is otherwise 0 by default.

8 IF <condition> then Vari=Val; Condition can use any conditional operator:
=/eq,~=/^=/ne, >=/ge, <=/le, >/gt, </lt, in, &, |
Character values need to be of same case in
condition statements, enclosed in ‘‘
Condition inside parenthesis is given high
importance. BODMAS rule apply here.
0/. = False, that is 0 or missing is false
1 = True

9 LENGTH Var1 $ 10 Var2 20; By default, SAS allocates the space of first
value it encounters. Numeric variables have
default size 8.
This should be declared before value is set

10 If <condition> then <stmt>;
Else if <condi2> then <stmt>;
Else <final condition>;

Used for code optimization
Better to arrange else-if operation in
decreasing probability to increase
performance.

11 If <condition> then DELETE; This is used to delete an observation using
condition. Used mostly along with IF

12 DROP = Var1 / KEEP = Var1; This can be used in Data Step as well SAS
procedures.
Doesn’t apply to all output dataset that are
named in Data statement.

13 DROP Var1 / Keep Var1; Cannot be used in proc steps
Applies to all o/p data sets
Based on the count of variables use Drop and
Keep wisely.

14 LABEL Var=’Label Detail’;
FORMAT Var1 DOLLAR12;

Used to provide a permanent label/format to a
variable. However, when used in Proc
statement can override this behaviour.

15 SELECT <Var>; WHEN (“Val”)
stmt; otherwise <stmt>; end;

This is like a Switch-Case statement, this will
use select – when – otherwise - end

16 DO; <SAS Statements>; END; If loop or when can handle only one stmt, do
can handle many statement in its block

Steps for Reading & Combining SAS Datasets
DATA NEWSASDATASET (DROP=COL4 COL5); * Col4-5 participate in any data

manipulation but not available in the final datasets.
 SET <Data Set Name> (…); * Used to read SAS dataset;
(DROP = COL1 COL2 COL3) * COL1-3 will not participate in any data manipulations.

Use DROP/KEEP complimentarily based on the number of variables involved

POINT – Used for direct access of an observation, should be used along with STOP
END = var - Used to read only the last observation in a dataset. Do not use with POINT

1 If (condition);
If (condition) then delete;

1. IF statement is used to subset a data
2. IF – then – delete is used to drop unnecessary data

based on a condition

2 If (condition) then Var1=’’;
Else var1 = ‘’;

IF – then – else can be used to create a new column in a SAS
data file. Also, called as conditional execution.

3 Length var2 $ 5; We cannot set length for already existing variable at this stage
as they would be already defined. This is used when we need to
create a new variable and set explicit length for it.

4 Label var1 = “Variable1”; Label is used to set the label; this can be seem using proc print
with label as its argument.

5 Format var1 COMMA6.; Used to define the format of the variable

6 By COL1 COL2; When By is used, data set must be sorted based on that BY
variable before. Use PROC SORT DATA=<DS> out = <New DS>;
BY Var; command for the same.
When BY is used, SAS produce FIRST.variable and
LAST.variable to keep track on sorted variables data. Used to
fetch first and last observations in Subgroups.
BY can carry more than one variable; but again, both needs to
be sorted before accordingly.

7 Varname = 5;
SET <DS> POINT=<Varname>;
OUTPUT;
STOP;

This is used to read an observation using direct access and not
sequentially using point and observation number accordingly.
Remember, POINT cannot carry a numeric constant, it can
only carry a variable name. So, define a variable with an
observation number and then use it in POINT. More complex
way of using it is in merging the dataset.
Because there is no EoF (end of file) just using POINT will
create an infinite loop. So, it needs to be used with STOP
statement.
Again, this will only write data to PDV, to write the
observation to a target dataset, we need to explicitly OUTPUT
the data obtained as part of POINT.

8 DATA <DS1> <DS2>;
 SET <DS>;

We can create one or more dataset like this. Data in <DS> is
written to both <DS1> and <DS2>.

9 END = <Variable Name> Variable name will carry 1 or zero for the last observation.
Variable contains the EoF marker.

10 SET, RETAIN, SUM,
TEMPORARY

Will retain its values in PDV for each iteration. Other variables
are set to missing values accordingly in each iteration.
Difference in reading the data from SAS is that for each
iteration variables are not assigned to missing but values are
retained with respective older values.

11 _N_, _ERROR_ _N_ = Initial value is 1 and increment as observations are read
ERROR = Initial value is 0 and is set to 1 if error found

Steps for Combining SAS Datasets
DATA NEWSASDATASET (DROP=COL4 COL5); * Col4-5 participate in any data

manipulation but not available in the final datasets.
 SET/MERGE <Data Set Name> (…); * Used to read SAS dataset;

(DROP = COL1 COL2 COL3) * COL1-3 will not participate in any data manipulations.

Use DROP/KEEP complimentarily based on the number of variables involved

1 SET A;
SET B;

1. One to One Mapping
2. Multiple SET statement – No Missing Values – Values

skipped
3. Number of observation in new dataset is equal to the

number of observation in the smallest original dataset;

2 SET A B C; 1. Concatenation
2. Single SET statement - Missing Values - No Values

skipped
3. Like a sanwidge, one data set sit below the other in a

stacked fashion
4. Type of common variables should be the same, else SAS

throw error
5. If no explicit mention of Type, Label, format or

informats are made, SAS will automatically derive them
from first occurring dataset

3 SET A B C;
BY ID;

1. Interleaving
2. Single SET + BY statement - No Missing Value - No

Values Skipped;
3. Multiple matching observation for a single observation

in BY statement
4. Data read based on the order of By Variables defined

4 MERGE A B; 1. One to One Match merging
2. Single MERGE statement – Missing Values - Values

skipped
3. Diff between Concatenation and Simple Merge:

Doesn’t stops its iteration with the smaller dataset,
loop extends to the maximum observations

5 MERGE
A (in=inA RENAME=(VarA=VariableA))
B(in=inB RENAME=(VarA=VariableB);

BY DESCENDING ID;
If inA = 1 and inB=1;

1. Simple Match Merging
2. Single MERGE + BY statement - Missing Values - No

Values skipped
3. PDV will retain its value until the value for all BY

variables changes;
4. Order of Sorting can be changed to descending by

mentioning DECENDING after BY Statement;
5. It must also be done in all PROC SORT steps and as

well in merge statement accordingly;
6. In case any two datasets has same column name, SAS

will overwrite the data with the latest data it
encounters, to prevent this we can rename the
matching variables using RENAME.

7. IN is a temporary variable, used to select only the
observations that appear in both dataset

8. DROP/KEEP in DATA statement means drop those
variable as part of DROP in target dataset

9. DROP/KEEP in merge statement means don’t even
consider while merging, drop them even before PDV is
completely formed

DO Loop – Generating Data with DO loop
DATA NEWSASDATASET (DROP=Var); * BY default SAS will print iterating variable too, to

avoid it in target dataset explicit DROP needed;
 DO Var = 2 TO 10 BY 2; * Default increment is 1, can also use -1 to decrement;
 <Statements>;
 END;

1. DO Var = 1, 2, 3, 4, 5;
 OUTPUT;
END;

1. This is used to specify the series of items as part of
iteration.

2. We will not have start, stop, increment or decrement
values.

3. OUTPUT will force SAS to write data from PDV to Target
dataset and print it as result during execution.

4. Difference between Out and Output is, out is used to
create a new dataset itself, generally used in PROC
SORT; However, output is like a print statement.

2. DO Var1 = 1 to 5;
 DO Var2 = 1 to 3;
 <Statements>;
 END;
END;

1. This is called nested DO loop
2. While using nested DO loop be careful in using the

increment variable, it should be different with
variable used in outer loop, else value will get
overwritten in PDV and will cause undesired output

3. DO UNTIL (Expression);
 <Statements>;
 END;

1. Executes the statements mentioned with in the do
loop at least once.

4. DO WHILE (Expression);
 <Statements>;
 END;

1. Executes only when the expression is true at the first
stage, else loop will not even execute.

5. DO sample=10 to 50 by 10;

 SET Clinic.Cap2000 POINT=sample;

 OUTPUT;

end;

STOP;

2. This is used to create a sample out of a dataset, which
can be generally used during model building

3. We will use Do loop + POINT + OUTPUT + STOP to
derive this

4. However, these are not random samples
5. In this example, we are trying to create a sample by

picking observations with observation number 10, 20,
30, 40 and 50

6 END; 1. End will terminate the loop

ARRAYS – Processing Variables with ARRAYS
DATA NEWSASDATASET (DROP=Array Name); * Array Incrementor can be dropped
 ARRAY <Array Name> {Size} Element1 Element2 Element3…ElementN;

1 ARRAY Quizs[2] Quiz1 Quiz2;
ARRAY Quizs{5} Quiz6 - Quiz10;
ARRAY NUMS{6:10} Num6 - Num10;
ARRAY Sales[3] Sale1 - Sale3;
ARRAY Days(7) Day1 - Day7;

1. This is a one-dimensional array, all variables
in array must be either Number or Character

2. Default array size is 1
3. Array elements must be of same type
4. Array lives only within data step, outside data

step it will expire
5. Array size can be mentioned inside [], {} and

()

2 ARRAY Nums(*) _NUMERIC_;
ARRAY Chars{*} _CHARACTER_;
ARRAY Alls[*] _ALL_;

1. One dimensional array can be created with *
2. _NUMERIC_ implies numeric variables
3. _CHARCTER_ implies character variable
4. _ALL_ implies all variable type

3 ARRAY Scores[2] Score1 Score2;
 Scores[1] = 89;

1. Array element can be referenced using array
name and element number.

2. Scores[1] refer the first element in array
variable scores.

3. Remember SAS starts its indexing from 1

4 array weights[4] weight1-weight4;
 DO i = 1 to DIM(weights);
 weights[i] = weights[i] * 2.24;
 END;

1. Array elements are generally accessed
through DO loop

2. DIM is used to get the dimension size of an
array.

3. Default array dimension size is 1

5 array sizes[2] $ 32;
sizes[1]="PRADEEPSATHYAM";

1. Use $ to declare a character variable;
2. Default Character length is 8;
3. If you need to increase the character element

size, it needs to be mentioned after $;

6 array Nums[3] (1,2,3);
array Digts[4] (1 2 3 4);
array Names[2] $ ('Prady','Srut');
array Temp[2] _TEMPORARY_ (6,7);

1. There are some of the ways to initialize
values to the arrays.

2. _TEMPORARY_ is used to initialize an array
temporarily inside SAS.

3. Values can be initialized with a space or
comma separator, for Char $ is used.

4. One dimensional array is used to do column
wise manipulation for a single observation.

5. One dimensional array without any elements
will create default variables in the SAS.

7 array Temps[3,4] Temp1-Temp12; 1. Multi-dimensional array is created by
mentioning the dimension size of Row and
Column while declaring array.

2. [3,4] implies 3 rows and 4 columns, thus
totally 3*4 = 12 elements.

3. These are accessed with nested DO loops by
referencing individual element at Row and
Column level respectively.

4. Two dimensional arrays can be used to do
row wise manipulation for multiple
observations.

Column Style: [Standard Data + Well Ordered in Column]
1--------10---------20---------30--------40---------50---------60---------70---------80--------90

124 61 Mod Male Pradeep United States

123 76 Ded Female Sruthi India

142 89 Reg Male Sathyamurthy United Kingdom

Special SAS Constants

Example Description

3.

Input()
Numeric

“PRADY”||””
Put()

String

'25dec2012'd Date

'25dec2012:3:45:12pm'dt Date Time

'3:45:12pm't Time

'09'x (tab)

'0c'x (form feed)

Hex Character

PROC PRINT DATA=DATASETNAME
NOOBS *used to avoid printing observation column while printing;

DOUBLE *print double spacing in SAS Output and not in SAS Report;

(OBS=3) * Print only the first 3 observation of the dataset in print;

Scope

 Sum <Col Name>; Calculate the sum of the column Local

 VAR <Col Name>; Mention the variable and its order of
printing

Local

 Label <Col Name>=’’; Define label name for a column
Can mention up to 256 char
Can be defined in single or multiple lines

Local

 Where <Col/col condi>
 CONTAINS ‘str’;
 ? ‘str’;
 IN(‘str1’,’str2’);

Defines the column condition
=, ^=, >, <, >=, <=
CONTAINS is string comparison
AND, OR operator used along with col
name each time
IN operator is used as SQL style in
comparison.

Local

 ID <Col Names>; Act as a primary key, replace OBS column
without explicitly mention of NOOBS.
ID used along with Var will display a
column twice.

Local

 SUM <Col Name>; Will provide the total of the column
specified.

Local

 BY <Col Name>; Col Name should be same as one that is
sorted before using this. Subset results.

Local

 BY <Col Name1>;
 ID <Col Name1>;

When ID used along with BY it will:
1. Supress OBS column
2. ID/BY variable name is printed in

left col
3. Each ID/BY value is printed only

once at the start of each by group
and on the line, that has group
sub-total.

Local

 By <Col Name1>;
 PAGEBY<Col Name1>;

Mostly used along with sum-by-id.
Column used in PAGEBY should be same
as one used in BY.
Used to print each sub-total on a
separate page.

Local

 FORMAT <Col Name>; When defined inside PROC it scopes
within it. To make it permanent FORMAT
or Labels need to be defined in DATA
step

Local/Global

 TITLE ‘str1’; Generally, need to be defined outside a
PROC step.
However, it can be used inside PROC too
TITLE is global. Once defined will stay
forever until title statement is modified,
cancelled or end SAS session.
Cancel of title is done by title;

Global

 FOOTNOTE ‘str2’; Used to print note below a table/graph
It is same as TITLE function, up to 10
footnotes can be defined in SAS.
Cancel of footnote is done by:
Footnote;

Global

PROC SORT DATA=DATASETNAME
OUT=DATASETNAME *o/p SAS dataset

 by <Col Name>;
 by descending <col1>

Sorted by the column mentioned, sort
takes place from right to left columns
mentioned.
If used with descending it will apply to
column which is immediately after it,
rest of the other columns will be sorted in
ascending order.

Local

 NOTSORTED; To explicitly mention not to sort if the
values are equal based on by condition.

Local

PROC FORMAT LIB=library
 LIBRARY/LIB *Defines the SAS library that needs to be referred;

 FMTLIB *print all the user defined format present in the Library mentioned;

Scope

1 LIBNAME library ‘<Path>’; Reference a SAS data library Permanent

2 PROC FORMAT LIB=library
 FMTLIB;

Library can be the SAS library referred above or
it can be a catalog like library.catalog.
FMTLIB will list all the user defined format
present in the library. formats.sas7bcat file is
created in the path mentioned in library.

Permanent

3 Value <format-name> Format name must begin with $ for Char var
Cannot be > 8 char in length
Cannot be the name of existing SAS format
Cannot end with a number
Does not end with a period when defined

Permanent

 Range1=’label1’ Range1= Actual Column Data
Label1= Description of Range1
Numeric => 102=’Manager’
Character => ‘A’=’Good Performance’
Range => low-<12=’Not Teen Age’

Permanent

 Range2=’label2’; Always only the last Range must be ended
with; which implies SAS that PROC FORMAT
statement ends.

Permanent

4 PROC FORMAT; This format will be created in the work
directory which means temporary.

Temporary

 Value <format-name> Scope within that SAS session only Temporary

 Range1=’label1’ Scope within that SAS session only Temporary

 Range2=’label2’; Scope within that SAS session only Temporary

5 PROC CATALOG; You can delete the user defined format Permanent

PROC REPORT DATA=<DATASETNAME>
WD/NOWD *Decides should the o/p be printed in a dedicated report window;
DOUBLE *print double spacing in SAS Output and not in SAS Report;
SPLIT=’<symbol>’ * Symbol can be *, # $ etc., Used to define the label split in reporting;

Scope

1 COLUMN <Col Names> Used to subset the column that is needed to be
displayed in the report.

Local

2 WHERE <Col Condi/Name>
 In (‘value1’,’value2’)

Used to filter out the data required
In used along with where to filter the data
based on values provided, SQL style usage.

Local

3 DEFINE <Col1>/<usage>
DEFINE <Col2>/<attribute>
DEFINE <Col3>/<options>
DEFINE <Col4>/<Justify>
DEFINE <Col5>/<Col Heading>

* Column definition;

PROC REPORT DATA=CARS_SAMPLE

NOWD SPLIT='*' HEADLINE

HEADSKIP;

 define Make/format=$CHAR8.

width=3 spacing=10;

 define Type/'Car*Type';

 define Model/center;

 define Cylinders/order

DESCENDING;

 define Cylinders/group;

RUN;

* Column definition - usage of

group definition;

PROC REPORT DATA=CARS_SAMPLE

NOWD SPLIT='*' HEADLINE

HEADSKIP;

 column cylinders MSRP;

 define cylinders/group;

RUN;

* Specifying statistics;

PROC REPORT DATA=CARS_SAMPLE

NOWD SPLIT='*' HEADLINE

HEADSKIP;

 column cylinders MSRP;

 define cylinders/group;

 define MSRP/mean 'Average

of MSRP';

RUN;

* Column definition - usage of

across definition;

PROC REPORT DATA=CARS_SAMPLE

NOWD SPLIT='*' HEADLINE

HEADSKIP;

 column cylinders type

MSRP;

 define cylinders/across;

 define type/across;

RUN;

Used to build column definitions in report like
column space and width, etc.,
Let to define more than one column attribute
at a time.
Column can be defined in any order and list
options within it in any order as well.

Usage specifies how to use the variables:
By default, Char Variable defined as Display
And Numeric variables defined as Analysis

1. Across – Displays variable horizontally
rather vertically

2. Analysis - Default SUM analysis.
3. Computed – position of compute

variable is very important. Use
compute and endcomp and derive the
value with some formula

4. Display – This is for Char variables
5. Group – to create summary report. To

get a proper result, display/character
variables need to be grouped properly.

6. Order – This is like Grouping and Order,
by default it is ordered in ascending, if
needed we need explicit mention of
value DESCENDING.

Attributes specifies the look of each column:
Width and spacing has its effect only in o/p
window and doesn’t affect HTML window.

1. Format – define SAS/user format,
default is its variable type

2. Width – width of col, default is Max
3. Spacing – No of blank char, default is 2

Options specifies the further formatting option:

1. DESCENDING
2. NOPRINT
3. NOZERO
4. PAGE

Justification specifies arrangements of column:

1. Center – Justify the char in centre
2. Left – default for chars n left justify
3. Right – default for num n right justify

Local

Column Heading is the label definition. Split in report definition is used to split the column label as needed. (e.g. SPLIT=’*’;) define col/c*t;

SI.NO Statistics Definition
1 CSS Corrected sum of squares

2 USS Uncorrected sum of squares

3 CV Coefficient of variation

4 MAX Maximum value

5 MEAN Average
6 MIN Minimum Value
7 N Number of observations with non-

missing values
8 NMISS Number of observations with

missing values
9 RANGE Range
10 STD Standard deviation

11 STDERR Standard error of the mean

12 SUM Sum

13 SUMWGT Sum of the Weight variable

values
14 PCTN Percentage of a cell or row

frequency to a total frequency

15 PCTSUM Percentage of a cell or row sum to
a total sum

16 VAR Variance
17 T Student's t for testing the

hypothesis that the population
mean is 0

18 PRT Probability of a greater absolute
value of student's t

Computing Statistics for Numeric Variable

PROC MEANS DATA=<DATASETNAME>
*By default gives descriptive statistics, with n-count of all non-missing values;
<STATS KEYWORDS> *To suppress default o/p and choose what stats is required for o/p;

MAXDEC=2 *To set the decimal point;

NOPRINT *Supress the result being printed;

Scope

1 VAR <Col Names>; Used to display the variables for which the
statistics are required

Local

2 CLASS <Col Names>; Specifies categorical variables which needed
group processing

Local

3 OUTPUT
 <STATS>=<Col Names>
 OUT = <O/p dataset>

Output is used to structure the final output of
the PORC MEAN above the segregation done
based on a class variable.
<STATS> can be any statistic key-word and col
name specifies on which columns it needs to be
applied.
If <STATS> keywords are not mentioned, then
SAS will produce whole statistics and add
STAT variable along with _TYPE_ and
FREQ

TYPE is a simple binary pattern to summarise
the CLASS variable.

FREQ is the count of class variable occurrence

OUT specifies the output dataset in which the
final statistic result needs to be stored.

Local

Computing Statistics for Numeric Variable

PROC SUMMARY DATA=<DATASETNAME>
PRINT;

Scope

1 VAR <Col Names>; Used to display the variables for which the
statistics are required

2 CLASS <Col Names>; Specifies categorical variables which needed
group processing

3 OUTPUT
 <STATS>=<Col Names>
 OUT = <O/p dataset>

Output is used to structure the final output of
the PORC MEAN above the segregation done
based on a class variable.

Descriptive Statistics
SI.NO Keywords Definition
1 CLM Two-sided confidence limit for the mean

2 CSS Corrected sum of squares

3 CV Coefficient of variation

4 KURTOSIS / KURT Kurtosis

5 LCLM One-sided confidence limit below the mean

6 MAX Maximum value

7 MEAN Average

8 MIN Minimum value

9 N Number of observations with non-missing values

10 NMISS Number of observations with missing values

11 RANGE Range

12 SKEWNESS / SKEW Skewness

13 STDDEV / STD Standard deviation

14 STDERR / STDMEAN Standard error of the mean

15 SUM Sum

16 SUMWGT Sum of the Weight variable values

17 UCLM One-sided confidence limit above the mean

18 USS Uncorrected sum of squares

19 VAR Variance

Quantile Statistics
SI.NO Keywords Definition
1 MEDIAN / P50 Median or 50th percentile

2 P1 1st percentile

3 P5 5th percentile

4 P10 10th percentile

5 Q1 / P25 Lower quartile or 25th percentile

6 Q3 / P75 Upper quartile or 75th percentile

7 P90 90th percentile

8 P95 95th percentile

9 P99 99th percentile

10 QRANGE Difference between upper and lower quartiles: Q3-Q1

Hypothesis Testing
SI.NO Keywords Definition
1 PROBT Probability of a greater absolute value for the t value

2 T Student's t for testing the hypothesis that the
population mean is 0

Computing Statistics for Categorical Variable

PROC FREQ DATA=<DATASETNAME>
WD/NOWD *Decides should the o/p be printed in a dedicated report window;

Scope

1 TABLE <Col Names>
 / NOCUM;

Used to mention the column names based on
which a frequency table needs to be
constructed.
One column name in TABLE will construct a
simple frequency table with frequency and
cumulative frequency and percentage, totally 4
outputs.
NOCUM will supress the display of cumulative
frequency and percentage from the output.

Local

2 TABLE <COL1> - <COL5> This will again create simple frequency table for
columns-1 to column-5

Local

3 PROC FORMAT;
 Value <frmt_name> range1 ‘label-1’
 Range2 ‘label-2’
 Range3 ‘label-3’
RUN;

PORC FREQ data=<datasetnames>;

 Tables <cat_col_name>;
 Format weight <frmt_name>.;

4 TABLE <COL1> * <COL2>; This will create two-way table. This will cross
tabulate 2 different categorical variables.

Local

5 TABLE <COL1> * <COL2> *
<COL3>;

This will create N-way table. This will cross
tabulate N different categorical variables.

Local

6 TABLE <COL1> * <COL2>
 / CROSSLIST;

CROSSLIST will display cross tabulation in a
ODS format. This ODS output can be
customized using the TEMPLATE procedure.

Local

7 TABLE <COL1> * <COL2>
 / LIST;

Produce list output for crosstabulation. Puts
frequency table in a simple and short table.

Local

 TABLE <COL1> * <COL2>
 / nofreq nopercent
norow nocol;

Nofreq will supress the cell frequency
Nopercent will supress the cell percentage
Norow will supress row percentages
Nocol will supress column percentage

Local

