
Implementation Advanced Multi-Vector
Variants (efficient update/ subspace tracking)

Klaudius Scheufele

March 31, 2016

1 Implementation IMVJ Restart Approach
Solve non-linear fixed-point equation

Hpxq “ x ô R̃px̃q “ x̃´H´1px̃q “ Hpxq ´ x
!
“ 0 (1)

by means of (quasi-)Newton iterations:

xk`1 “ Hpxkq ´
`

J´1
prev ` pW ´ J´1

prevV qpV
TV q´1V T

˘

Rpxkq

“ x̃k ´
´

J´1
prev `

ĂWkV
:

k

¯

rk

“ x̃k ´

˜

n
ÿ

q“0

ĂWkV
:

k

¸

rk

1.1 General Algorithm
Store matrices

ĂWk “ pWk ´ J
´1
prevVkq

V :k “ pV
TV q´1V T , k “ 1, . . . , n

and compute (quasi-)Newton update without building Jacobian matric explicitly
using only matrix-vector products

xk`1 “ x̃k ´
n
ÿ

q“0

ĂWk

´

V :k ¨ r
k
¯

(2)

1.) compute ĂWn
k :“ pWn

k ´
řn
q“0

ĂWkq

´

V :kq ¨ r
k
¯

2.) compute ∆x “ x̃k ´
řn´1
q“0

ĂWkq

´

V :kq ¨ r
kn
¯

´ĂWkn

´

V :kn ¨ r
kn
¯

3.) if time step converged, store matrices ĂWkn , V
:

kn
. Partition simulation in

chunks of M time steps and store at most matrices from the last M time
steps.

4.) after M time steps, restart.

1



1.2 Update ĂW

In each iteration, ĂWkn changes only slightly, depending on the new columns in
Wk and Vk. Hence, update ĂWk from ĂWk´1. The change in Wk and Vk through
added and/or deleted columns can analogously be applied to widetildeWk. Ex-
ample: insert new column at front. New columns: pWknqi,0 and pVknqi,0.

pĂWknqi,0 “ pWknqi,0 ´

M
ÿ

q“0

ĂWkq

´

V :kq ¨ pVknqi,0

¯

(3)

Similar computation for insertion at arbitrary position. If column with index p
is deleted from matrices Wk and Vk, delete also column with index p in ĂWk.

• locally multiply: V :kq ¨ pVknqi,0 “: α P Rkqˆ1 Ñ ALLREDUCE_SUM

• fully locally multiply: ĂWkq ¨ α (embarrassingly parallel)

The matrix ĂWkn needs to be re-computed if least-squares system is restored
from backup (in case the previous time step converged within one iteration) or
convergence is achieved for the current time step. In the latter case J´1

prev is
updated and hence the old entries in ĂWkn “Wkn ´ J

´1
prevVkn are outdated.

1.3 Compute (quasi-)Newton update ∆x

xk`1 “ ´

M
ÿ

q“0

ĂWkq

´

V :kqr
k
¯

´ĂWkn

´

V :knr
k
¯

(4)

Similar to the update of ĂW , we need a ALLREDUCE_SUM operation and fully local
multiplications of computational cost Opkq ¨ N{pq and Opk2

q ¨
N{pq, respectively.

Hence total cost: M ¨
`

Opk2
q
N{pq `OpALLREDUCE_SUMq

˘

1.4 Restart-Mode for MVJ
The objective is to avoid the explicit computation and storage of the Jacobian
matrix. At the end of each time step, the Jacobian is updated by ĂWknV

:

kn
.

Thus, the Jacobian can be written as

J´1 “ ĂWT
k1V

:

k1
`ĂWT

k2V
:

k2
` . . .`ĂWT

kMV
:

kM
. (5)

2



The matrices ĂWkq and V :kn are tall and skinny, thus the storage requirement
as well as the computational costs for the computation of the (quasi-)Newton
update are low for a small number of time steps. To maintain low complexity,
a restart becomes necessary at some point. To that end, the simulation time is
partitioned into chunks of M time steps. Within one chunk, the MVJ method
computes a (quasi-)Newton update based on the minimization of the difference
between two subsequent Jacobian approximations. However if it comes to restart
at chunk borders, a suitable initial guess J´1

0 has to be found that should retain
as much information as possible from the previous chunks.

We consider three different behaviours at restart:
RS-0. Clear all. This obviously results in OpN ˆK ˆMq costs for both the

storage of J´1 in the form (5) and for the M pairs of matrix-vector multiplica-
tions

y :“ V :kqx and ĂWkqy in J´1x for any vector x P RN .

RS-LS. Clear J´1, but keep columns in V RS´LS and WRS´LS from time

steps within the current chunk, i.e., use the initial guess J´1 :“ 0, ĂW0 :“ W ,
and V :0 :“ pV TV q´1V T . If we reuse at most K̄ columns,the total costs are
OpN ˆ K̄q `OpN ˆK ˆMq.

• For the current implementation we only use the input/output information
from the first _usedColumnsPerTstep=5 iterations for the last
RSLSreusedTimesteps time steps.

• The defined filter for the least-squares system is also applied to V RS´LS
and WRS´LS .

RS-SVD. Do a subspace tracking based on a singular value decomposition
(SVD) of the matrix J´1

J´1 “ ΨΣΦT with Σ “ diagpσ1, σ2, . . . , σN q

3



where σ1 ě σ2 ě . . . ě σN ě 0 are real singular values, and Ψ P RNˆN and
Φ P RNˆN are orthogonal matrices. At restart, we truncate this decomposition
by cutting off all singular values below a given threshold, i.e., we restart with

J´1 “ pΨ¨,jqj“1,...,K̄

“: Ψ

¨

˚

˚

˚

˝

σ1

σ2

. . .
σK̄

˛

‹

‹

‹

‚

“: Σ

pΦ¨,jq
T
j“1,...,K̄

“: Φ
T

. (6)

The costs strongly depend on the efficient realization of the underlying SVD
decomposition. Apart from this step, the total costs are OpN ˆ K̄q ` OpN ˆ

K ˆMq if we truncate the SVD decomposition such that only K̄ values are
left. For the efficient implementation of the SVD, we assume that we have a
truncated singular value decomposition as in (6). At the end of the next chunk,
our new estimate reads

Ψ Σ Φ
T
`

M
ÿ

m“1

ĂWkmV
:

km
(7)

for which we have to compute an updated truncated SVD by performing M
low-rank updates of the form

Ψ Σ Φ
T
`ABT “

“

Ψ A
‰

„

Σ 0
0 I



“

Φ B
‰T (8)

with A,B P RNˆkm . We use the algorithm proposed in [?], i.e., we compute the
orthogonal components of A and B. With the matrices QA and QB defining
an orthonormal basis of the column space of pI ´Ψ Ψ

T
qA and pI ´Φ Φ

T
qB, we

define

RA :“ QTApI ´Ψ Ψ
T
qA, and RB :“ QTBpI ´ Φ Φ

T
qB.

With this, the inverse Jacobian update (8) can be transformed to

Ψ Σ Φ
T
`ABT “

“

Ψ QA
‰

S
“

Φ QB
‰T

with S “

„

Σ 0
0 0



`

«

Ψ
T
A

RA

ff

:“ A

«

Φ
T
B

RB

ff

:“ B

T

Diagonalizing S as Ψ1
T
KΦ1 “ Σ1 finally yields

Ψ Σ Φ
T
`ABT “

`

rΨ QAs Ψ1
˘

Σ1
`

rΦ QBs Φ1
˘T
. (9)

If cA, cB , c :“ maxpcA, cBq is the dimension of the column space of pI´Ψ Ψ
T
qA

and pI ´Φ Φ
T
qB, respectively, the costs for computing an orthonormal basis of

these spaces are Opc2Nq. The matrix S P RpK̄`cAqˆpK̄`cBq can be computed
with OpkmK̄N ` c2Nq (for the computation of A and B) plus OppK̄ ` cq2kmq
(for the matrix-matrix multiplication ABT ) operations. The costs for the SVD
ofK depend only on the small number K̄`c and, thus, not on N . Summarizing,
the costs for the update of the SVD are linear in N . After the update, the new
SVD can be truncated again to keep a small but accurate representation.

4



1.4.1 RS-SVD Algorithm

(1) compute orthogonal components of A and B w.r.t. Φ and Ψ

P̃ :“ pI ´ΨΨT qA, QA :“ orthpP̃ q, QARA “ qrpP̃ q (10)

Q̃ :“ pI ´ ΦΦT qB, QB :“ orthpQ̃q, QBRB “ qrpP̃ q (11)

RA :“ QTApI ´ΨΨT qA, RB :“ QTBpI ´ ΦΦT qB

(2) build S with

S “

„

I rΨTA
0 RA

 „

S 0
0 I

 „

I rΦTB
0 RB

T

“

„

Σ 0
0 0



`

«

Ψ
T
A

RA

ff«

Φ
T
B

RB

ffT

ΨΣΦ
T
`ABT “

“

Ψ QA
‰

S
“

Φ QB
‰T

(3) diagonalizing S: compute SVD of S

S “ Ψ1Σ1ΦT
1

(4) rotate left and right eigenspaces:

ΨΣΦ
T
`ABT “

´

“

Ψ QA
‰

Ψ
1
¯

rΨ

Σ
1

rΣ

´

“

Φ QB
‰

Φ
1
¯T

rΦT

(5) truncate SVD: Cut off if σi

σ1
ă εtrunc

ΨΣΦ
T
Ð rΨrΣrΦT

1.4.2 Parallel Implementation of SVD Update

(1) compute orthogonal component of A w.r.t. Ψ : pI ´ΨΨT qA:

5



(2) compute orthogonal component of B w.r.t. Φ : pI ´ ΦΦT qB

(3) compute matrix S, all components are local, fully local multiplications.

(4) compute SVD of matrix S fully local: S “ Ψ
1
Σ
1
Φ
1T

(5) rotate left and right subspace: Ψ Ð
“

Ψ QA
‰

Ψ
1
and

´

Φ Ð
“

Φ QB
‰

Φ
1
¯T

1.5 Preconditioning of Least-Squares System
Typically the coupling variables (pressure, displacement, ...) differ significantly
in orders of magnitude. Therefore, the least-squares system needs to be scaled
(preconditioned) properly if more than one coupling variable is accelerated by
the quasi-Newton method, i. e., if the vectorial coupling scheme is applied. To
maintain good conditioning of the least-squares system and the computation
of the QR-factorization, the variables are supposed to be in the same order of
magnitude.
Assumption for preconditioner interface: The scaling weights may change in
each iteration for each entry.

Implemented variants:

a) constant: Scaling weights are defined in the <data ... scaling="??"/>
tag for each coupling variable and never change during the simulation.

b) residual: Column-vector entries are scaled with the inverse of the resid-
ual entries (point-wise). Scaling weights change in each iteration but do
not change in iterations converged. The QR-factorization needs to be re-
computed in every iteration. Weights are potentially different for each entry.

c) residual-sum: Sub-vectors of column-vectors are scaled with the inverse L2-
norm of the respective residual sub vectors. Scaling weights change in each
iteration but do not change in iterations converged. The QR-factorization
needs to be re-computed in every iteration. Weights are the same for one
sub-vector.

d) value:

6



The Newton update reads

∆x “ ´J´1
prevr

k ´
``

Wkn ´ J
´1
prevVkn

˘

pV TknVknq
´1V Tkn

˘

rk (12)

The least-squares system needs to be scaled with the preconditioner

P “

¨

˝

P1

P2

P3

˛

‚, with Pi “ diagpω1
i , . . . , ω

n
i q (13)

to maintain good conditioning for the QR-factorization. The canonical approach
is to scale the entire update formula, i. e., all occurring vectors and matrices:

P∆x “ ´PJ´1
prevP´1rk ´

``

PWkn ´ PJ´1
prevP´1PVkn

˘

pV TknP
TPVknq´1V TknP

T
˘

Prk

“ ´
~J´1
prev

qrk ´
´´

|Wkn ´
~J´1
prev

qVkn

¯

pqV Tkn
qVknq

´1
qV Tkn

¯

qrk

“ ´PJ´1
prevr

k ´ PĂWkn

`

R´1QTP´1
˘

Prk

“ P
´

´J´1
prevr

k ´ĂWkn

´

|V :knP
¯

rk
¯

ñ ∆x “ ´J´1
prevr

k ´ĂWknp
|V :knP
loomoon

pR´1QTP´1qP

qrk

With the scaled objects

~J´1
prev :“ PJ´1

prevP´1, |Wkn :“ PWkn ,
qVkn :“ PVkn ,

|

ĂWkn :“ PĂWkn ,
|V :kn :“ V :P´1, qrk :“ Prk

However, from the above it is obvious that it suffices to scale qVkn :“ PVkn
in order to compute the QR-factorization PQR “ PVkn which finally results
in the scaled pseudo inverse |V :kn :“ V :knP

´1. After the computation of the
pseudo inverse it needs to be scaled back such that none of the other objects
needs additional scaling |V :knP “ V :knP

´1P “ V :kn .
This is correct as in particular

}
~J´1
prev ´

}J´1} Ñ min, s. t. ~J´1
prev

qVkn “
|Wkn (14)

results in λ˚ “ ´|ĂWkn
|V : “ ´PĂWknV

:P´1 “ ´
`

PWkn ´ PJ´1
prevP´1PVkn

˘

V :knP
´1

and

}J´1
prev ´ J

´1} Ñ min, s. t. J´1
prevVkn “Wkn (15)

results in λ˚ “ ´ĂWknV
: “

`

W ´ æ´1
prevVkn

˘

V :. Thus, the scaling has no influ-
ence on the norm minimization condition.

Summarizing, the Jacobian update formula reads

J´1 “ J´1
prev `

ĂWkn
|V :knP (16)

7



1.5.1 Preconditioning for MVJ-Restart Mode: SVD Update

For the computation of the SVD update we need to compute QR-factorizations
of matrices that include column vectors of differences of coupling variables,

i. e. rP :“ pI ´ qΨqΨT q
|

ĂWkq and rQ :“ pI ´ qΦqΦT q|V :kq . Therefore, the update

has to be computed from the scaled matrices |

ĂWkq and |V :kq for q “ 1, . . . ,M ,
i. e., we update a SVD of the scaled Jacobian matrix. This means, that for
preconditioners that change their weights throughout the simulation, the
weights need to be fixed to a certain value at the time of the first time step,
i. e., after the first M time steps. However, experiments have shown, that the
preconditioner weights do not change significantly after that first initialization
phase of the simulation and therefore we observe similar quality in convergence
speed.

When restart is triggered, the existing SVD needs to be updated with the
scaled matrices, namely

update: qΨΣqΦ Ð qΨΣqΦ`
M
ÿ

q“0

PĂWkqV
:

kq
P´1 (17)

truncate: qΨΣqΦ Ð qΨΣqΦ (18)

where qΨ :“ PΨ and qΦT :“
`

ΦP´1
˘T .

It is important that PpMq “ Ppk¨Mq for k “ 1, . . ., i. e., the preconditioner
weights keep constant. Otherwise, the matrices Ψ and Φ are not unitary matri-
ces any more and the singular value decomposition properties fall apart.

1.6 QR Decomposition and Re-orthogonalization
1.6.1 Updated QR Decomposition, Standard

We want to compute the factorization of V “ pv1, v2, . . . , vknq

QR “ V (19)

for V P RNˆkn , Q P RNˆk̃n and R P Rk̃nˆk̃n , with k̃n ď kn. The matrix
Q “ pq1, . . . , qknq is unitary and QTQ “ I. We search for q P RN , r P Rk̃n and
ρ P R such that:

pQ, viq “ pQ, qq

ˆ

I r
0 ρ

˙

and QT q “ 0

Then vi “ Qr ` qρ and QT vi “ r. Let v1i :“ qρ, then:

v1i “ v ´Qr “ pI ´QQT qvi (orthogonalization)

Furthermore, }q} !
“ 1, therefore

ρ “ }v1i} and q :“
1

ρ
v1i (normalization)

The normalization step is not possible if ρ “ }v1i} « 0. In this case v “ Qr holds
true and thus v P spantq1, q2, . . . , Qk̃nu.

8



• case kn “ N : Ñ q “ 0, ρ “ 0.

• case kn ă N : choose arbitrary unit vector q that is orthogonal to Q.
This keeps the orthogonality of Q. Q and V still have the same number
of columns but the corresponding diagonal element in R is equal to zero
rii “ 0. This corresponds to deleting column i.
Remark: The QR1 filter would delete this column, as Rpi, iq “ rii “ 0.
The QR2 filter would delete this column, as }v1i}{}vi} ă εQR2.

Re-orthogonalization: Due to round off errors and finite precision it is un-
likely that ρ “ 0 exactly, but 0 ă ε “ ρ ! 1. Gram-Schmidt orthogonalization
tries to make }QT v1i} small relative to }vi} ñ }QT v1i} “ ε}vi}.
Suppose }QT v1i} “ ε|vi} is small for a small ε ą 0. Then, it holds

}QT q} “ ε}vi}{ρ

for qv1i{ρ. the error relative to }vi} can be arbitrarily large for a small ρ and we
do not have necessarily QT q “ 0 or nearly zero, as required.

To keep orthogonality of Q in the case when }v1i}{}vi}, we try to correct v1i
through a further Gram-Schmidt iteration applied to v1i:

s “ QT v1i and v2i “ v1i ´Qs “ v ´Qpr ` sq

and set v1i Ð v2i and r Ð r ` s. this process is repeated until }v2i }{}v1i} is not too
small. Implemented conditions for re-orthogonalization are

}v1i}

}vi}
ď 1{θ “ 0.7

which is similar to the QR2 filter with εQR2 “ 0.7.

1.6.2 Updated QR Decomposition for SVD

When computing the QR-decomposition for pI ´ ΨΨT qA and pI ´ ΦΦT qB,
it is not possible to delete columns in the same way as we did for the QR-
decomposition for the least-squares system. The QR-decomposition need so be
modified correctly in this case. Compute

P̃ “ pI ´ΨΨT qA P̃ “ QARA

Q̃ “ pI ´ ΦΦT qB Q̃ “ QBRB

1. Orthogonalization:

QA.,i “ P̃.,i ´
ÿ

jăi

rijQA.,j

ô 1 ¨QA.,i `
ÿ

jăi

rij ¨QA.,j “ P̃.,i

and RA.,i “ pri,1, ri,2, . . . , ri,i´1, 1, 0, . . . , 0q
T .

9



Figure 1: Eliminating a linear dependent column from the QR-decomposition for pI´ΨΨT qA

2. Normalization:

QA.,i “ QA.,i{}QA.,i}

not possible if }QA.,i} « 0.

In this case the column is eliminated by deleting the corresponding column qi
from QA and deleting the corresponding row from RA, i. e.,
In the least-squares case we delete the column from Q and also column and row
from R. This corresponds to the deletion of one column of the least-squares
system. However, this is not possible here, as A Q ai P imgpΨq is not related to
ΨTA – this means we cannot delete the corresponding column in ΨTA.

Remark: If columns are eliminated as in Figure ?? we have to perform addi-
tional givens rotations to maintain a proper QR-decomposition. However, we
do only eliminate columns at the end of the matrices, therefore only the last
row of RA is eliminated and givens rotations are not necessary.

10


	Implementation IMVJ Restart Approach
	General Algorithm
	Update 
	Compute (quasi-)Newton update x
	Restart-Mode for MVJ
	RS-SVD Algorithm
	Parallel Implementation of SVD Update

	Preconditioning of Least-Squares System
	Preconditioning for MVJ-Restart Mode: SVD Update

	QR Decomposition and Re-orthogonalization
	Updated QR Decomposition, Standard
	Updated QR Decomposition for SVD



