Implementation Advanced Multi-Vector
Variants (efficient update/ subspace tracking)

Klaudius Scheufele
March 31, 2016

1 Implementation IMVJ Restart Approach
Solve non-linear fixed-point equation

Hz)=z < R@E@) =i-H Y &) =H(z)-—2=0 (1)
by means of (quasi-)Newton iterations:

= Hh) — (T, + (W = L L V) VTV) V) R()

prev prev
— " = (Jk, + WV ot
n ~
=7k - (Z ka,j> rk
q=0

1.1 General Algorithm

Store matrices
Wi = (Wi — Jptu Vi)

vie Wty Wt k=1,....n

and compute (quasi-)Newton update without building Jacobian matric explicitly
using only matrix-vector products

R S A ©)
q=0

1.) compute VT/,? =Wy — ZZ:O V[N/kq (VkTq ,Tk)
2.) compute Az = 7* — Z;:é qu (V]jq .rkn) _ Wk" (Van .Tkn)

3.) if time step converged, store matrices Wkn,VJn. Partition simulation in
chunks of M time steps and store at most matrices from the last M time
steps.

4.) after M time steps, restart.

1.2 Update w

In each iteration, Wk changes only shghtly, depending on the new columns in

Wy, and Vj. Hence, update Wk from Wk 1. The change in W and Vj, through
added and/or deleted columns can analogously be applied to widetildeWy,. Ex-
ample: insert new column at front. New columns: (W,)i0 and (Vi,)0

(Wi)io = (Wi,)i Z Wk, (Vk (an)z‘,o) (3)

Similar computation for insertion at arbitrary position. If column with index p
is deleted from matrices W and Vj, delete also column with index p in Wy.

Fn

= =2

-a|2

Vie

n

o locally multiply: V;/ - (Vi,)io =: € R¥*1 — ALLREDUCE_SUM

e fully locally multiply: qu -« (embarrassingly parallel)

The matrix I/IN/kn needs to be re-computed if least-squares system is restored
from backup (in case the previous time step converged within one iteration) or
convergence is achieved for the current time step. In the latter case J,,L, is

updated and hence the old entries in Wkn = Wk, — Jprty Vi, are outdated.

1.3 Compute (quasi-)Newton update az
M
= Z qu (V,jqu) - Wk (VJJ’“) (4)
q=0

Similar to the update of W, we need a ALLREDUCE_SUM operation and fully local
multiplications of computational cost O(k, - N/p) and O(kZ - N/p), respectively.
Hence total cost: M - (O(k2N/p) + O(ALLREDUCE_SUM))

1.4 Restart-Mode for MVJ

The objective is to avoid the explicit computation and storage of the Jacoblan
matrix. At the end of each time step, the Jacobian is updated by W;ka
Thus, the Jacobian can be written as

T =WEVE - WEVE + L+ WE v (5)

J-

&+
]

Az = ik Z Wk (V,jq . rk">

The matrices qu and V,Jn are tall and skinny, thus the storage requirement
as well as the computational costs for the computation of the (quasi-)Newton
update are low for a small number of time steps. To maintain low complexity,
a restart becomes necessary at some point. To that end, the simulation time is
partitioned into chunks of M time steps. Within one chunk, the MVJ method
computes a (quasi-)Newton update based on the minimization of the difference
between two subsequent Jacobian approximations. However if it comes to restart
at chunk borders, a suitable initial guess J;° ! has to be found that should retain
as much information as possible from the previous chunks.

We consider three different behaviours at restart:
RS-0. Clear all. This obviously results in O(N x K x M) costs for both the

storage of J~! in the form and for the M pairs of matrix-vector multiplica-
tions

Y= V,qu and quy in J 'z for any vector zeRY.

RS-LS. Clear J~!, but keep columns in V5—L5 and WES-LS from time

steps Wlthm the current chunk, i.e., use the initial guess J~! := 0, WO =W,
and Vo == (VTV)=VT. If we reuse at most K columns,the total costs are
NXK)+ (N x K x M).

e For the current implementation we only use the input/output information
from the first _usedColumnsPerTstep=5 iterations for the last
RSLSreusedTimesteps time steps.

e The defined filter for the least-squares system is also applied to V#5—LS
and WHES—LS,

RS-SVD. Do a subspace tracking based on a singular value decomposition
(SVD) of the matrix J !

J 7t =9%e? with ¥ = diag(o1,09,...,0N)

where 01 > 09 > ... > oy > 0 are real singular values, and ¥ € R¥*Y and

® € RVXN are orthogonal matrices. At restart, we truncate this decomposition
by cutting off all singular values below a given threshold, i.e., we restart with

01
_ g2 T
Jh = (\II'J)jzl,...,f{ . (q)"j)jzl,...,K' (6)
e — | . e —
= - _. 37

The costs strongly depend on the efficient realization of the underlying SVD
decomposition. Apart from this step, the total costs are O(N x K) + O(N x
K x M) if we truncate the SVD decomposition such that only K values are
left. For the efficient implementation of the SVD, we assume that we have a
truncated singular value decomposition as in @ At the end of the next chunk,
our new estimate reads

S

IS + Y Wi, Vi (7)

for which we have to compute an updated truncated SVD by performing M
low-rank updates of the form

TS 4 ABT - [T A]H ?][cp B 1"

(®)

with A, B € RV k= We use the algorithm proposed in [?], i.e., we compute the
orthogonal components of A and B. With the matrices Q4 and Qp defining

an orthonormal basis of the column space of (I — @@T)A and (I — 66T)B7 we
define

Ra=QL(I-TT A, and Rp:=Q%L(I-33)B.

With this, the inverse Jacobian update can be transformed to

- =T =T
TS® +ABT = [T Qu] S [8Qp]" with 5=| > 0 |+| L A|| 2B
0 0 Ra Rp
L — A JL — B
Diagonalizing S as ¥'7 K&’ = 3/ finally yields
TSD + ABT = ([T QA V) ¥ (& Qs)" . (9)

If ca, ¢p, c:= max(ca,cp) is the dimension of the column space of (IfﬁﬁT)A

and (I — EET)B , respectively, the costs for computing an orthonormal basis of
these spaces are O(c2N). The matrix § € RUS+ea)x(K+e8) can be computed
with O(k,, KN + ¢>N) (for the computation of A and B) plus O((K + ¢)%k,,)
(for the matrix-matrix multiplication ABT) operations. The costs for the SVD
of K depend only on the small number K + ¢ and, thus, not on N. Summarizing,
the costs for the update of the SVD are linear in N. After the update, the new
SVD can be truncated again to keep a small but accurate representation.

K
N[@ Ten
1.4.1 RS-SVD Algorithm
(1) compute orthogonal components of A and B w.r.t. ® and ¥
Pi=(I-w¥7")A, Qa4 :=orth(P), QaRa = qr(P) (10)
Q:= (I - 22")B, Q5 = orth(Q), QgRp = qr(P) (11)
Rai= QLI —wOT)A, Ry = Qh(I — 0T)B
(2) build S with
~ ~ T = T —r_ 17
S_[I \I/TA][S 0”1 @TB]_[E 0]+x11,4 ¢ B
0 Ra 0 I 0 Rp 0 0 Ry Rp

TSP + AB” = [T Q4] S[® Qs]"
(3) diagonalizing S: compute SVD of S
S =vye!

(4) rotate left and right eigenspaces:

>
[I
|i|

v oT

T8+ AB” = ([T Qa|) 2 ([Q6] F)

(5) truncate SVD: Cut off if 25 < €tpync
TS0 — URGT
1.4.2 Parallel Implementation of SVD Update

(1) compute orthogonal component of A w.r.t. ¥ : (I — WWT)A:

=i
1

A kg P P Qa
compute orthogonal component of B w.r.t. ®: (I — ®®T)B

compute matrix S, all components are local, fully local multiplications.
T
compute SVD of matrix S fully local: S = 7S

T
rotate left and right subspace: ¥ « [¥ Q4] T and (5 —[® Q5] 6/>

K& ca K+cp
t [b |

b

1.5 Preconditioning of Least-Squares System

Typically the coupling variables (pressure, displacement, ...) differ significantly
in orders of magnitude. Therefore, the least-squares system needs to be scaled
(preconditioned) properly if more than one coupling variable is accelerated by
the quasi-Newton method, i.e., if the vectorial coupling scheme is applied. To
maintain good conditioning of the least-squares system and the computation
of the QR-factorization, the variables are supposed to be in the same order of
magnitude.

Assumption for preconditioner interface: The scaling weights may change in
each iteration for each entry.

a)

)

Implemented variants:

constant: Scaling weights are defined in the <data ... scaling="77"/>
tag for each coupling variable and never change during the simulation.

residual: Column-vector entries are scaled with the inverse of the resid-
ual entries (point-wise). Scaling weights change in each iteration but do
not change in iterations converged. The QR-factorization needs to be re-
computed in every iteration. Weights are potentially different for each entry.

residual-sum: Sub-vectors of column-vectors are scaled with the inverse L2-
norm of the respective residual sub vectors. Scaling weights change in each
iteration but do not change in iterations converged. The QR-factorization
needs to be re-computed in every iteration. Weights are the same for one
sub-vector.

value:

The Newton update reads

Az Jprlev ((Wkn —Jo Vk) (ij; an)ilvan,) Tk (12)

prev

The least-squares system needs to be scaled with the preconditioner

Py
P = P, ., with P; = diag(w;,...,w!) (13)
Py

to maintain good conditioning for the QR-factorization. The canonical approach
is to scale the entire update formula, i.e., all occurring vectors and matrices:

PAz = —PJL Pk — (PW, — PIL PPV) (VEPTPV,)~ VL PT) Pr
Ty — <(Wk Jz;}ev‘\}kn) (anVlcn)fl‘v/an)7’VIc
= =Pt = PWy, (RTIQTPH) Pr
- 73(Tk — W, (IﬁknP) r’“)
= Av =T, ob W, (Vi, P)t
—

prev

(R-1QTP-1)P

With the scaled objects

Jp_Tlev = ,Pjpir}zvlpila Wkn = PWkn, an = Pan,

Wi, = PW,, ‘\//Tkn =Vipt, k= Pk

However, from the above it is obvious that it suffices to scale ‘7kn = PV,
in order to compute the QR- factorization POR = PVi, which finally results
in the scaled pseudo inverse VJr VJr P~L. After the computation of the
pseudo inverse it needs to. be scaled back such that none of the other objects
needs additional scaling VTknP = VJnP p= Van.

This is correct as in particular

—_—

| ke — T4 = min, s.t. Jpko Vi, = Wi, (14)

results in * = —Wy, VI = =PWy, VIP~1 = — (PW,,, — PJT,L, PPV,) Vi P
and

|t = = min, s.t. Jp L, Vi, = Wi, (15)

prev

results in * = —Wkn Vi = (W e ! Vi,) V1. Thus, the scaling has no influ-

prev
ence on the norm minimization condition.

Summarizing, the Jacobian update formula reads

J =01 + Wk”‘\/jrk"'f) (16)

prev

1.5.1 Preconditioning for MVJ-Restart Mode: SVD Update

For the computation of the SVD update we need to compute QR-factorizations
of matrices that include column vectors of differences of coupling variables,

ie. P:= (I— \IICI/JT)W;% and Q := (I — &/)&/)T)ﬁkq. Therefore, the update

~

has to be computed from the scaled matrices Wkaq and Vqu forg=1,..., M,
i.e., we update a SVD of the scaled Jacobian matrix. This means, that for
preconditioners that change their weights throughout the simulation, the
weights need to be fixed to a certain value at the time of the first time step,
i.e., after the first M time steps. However, experiments have shown, that the
preconditioner weights do not change significantly after that first initialization
phase of the simulation and therefore we observe similar quality in convergence
speed.

When restart is triggered, the existing SVD needs to be updated with the
scaled matrices, namely

. . Mo
update: UNd — TP + Y Py, V) P (17)
q=0
truncate: U5 — I5d (18)
where ¥ := PV and &7 := (<I>7771)T.
It is important that P(M) = P*M) for I — 1,... i.e., the preconditioner

weights keep constant. Otherwise, the matrices ¥ and ® are not unitary matri-
ces any more and the singular value decomposition properties fall apart.

1.6 QR Decomposition and Re-orthogonalization
1.6.1 Updated QR Decomposition, Standard
We want to compute the factorization of V' = (vy,va,...,vg,)
QR=V (19)

for Ve RV*Fn. Q € RV*F and R € RF*Fn with k, < k,. The matrix
Q = (ql,...,qx,) is unitary and QT'Q = I. We search for ¢ € RY, 7 € R¥» and
p € R such that:

(Q,vi)=(Q,Q)<é ;) and QTqg=0

Then v; = Qr + qp and QTv; = 7. Let v} := gp, then:

v =v—Qr=(I-QQT)u (orthogonalization)

Furthermore, |q| L 1, therefore

L

p= il and gq:= ~v]
p

. (normalization)

The normalization step is not possible if p = ||v}|| ~ 0. In this case v = Qr holds
true and thus v € span{qi,¢2,...,Qy, }-

ecasek,=N: -q=0,p=0.

e case k, < N: choose arbitrary unit vector ¢ that is orthogonal to Q.
This keeps the orthogonality of Q. @ and V still have the same number
of columns but the corresponding diagonal element in R is equal to zero
r4; = 0. This corresponds to deleting column 3.

Remark: The QRI1 filter would delete this column, as R(i,i) = ry;; = 0.
The QR2 filter would delete this column, as [vil/jv;| < egro.

Re-orthogonalization: Due to round off errors and finite precision it is un-
likely that p = 0 exactly, but 0 < € = p €« 1. Gram-Schmidt orthogonalization
tries to make |QTv}|| small relative to |v;| = |QTv}| = €|vi|.

Suppose |QTv!| = €|v;| is small for a small € > 0. Then, it holds

1Q qll = ellvel/p

for qvi/p. the error relative to |v;| can be arbitrarily large for a small p and we
do not have necessarily Q7¢ = 0 or nearly zero, as required.

To keep orthogonality of @ in the case when [vil/|v;], we try to correct v]
through a further Gram-Schmidt iteration applied to vj:

s=QTv, and v/ =v,—-Qs=v—Q(r+s)

and set v} < v/ and r < r + s. this process is repeated until [v//|.;| is not too
small. Implemented conditions for re-orthogonalization are

i

<l =0.7
Jlos |

which is similar to the QR2 filter with egra = 0.7.

1.6.2 Updated QR Decomposition for SVD

When computing the QR-decomposition for (I — $W¥T)A and (I — ®@T)B,
it is not possible to delete columns in the same way as we did for the QR-
decomposition for the least-squares system. The QR-decomposition need so be
modified correctly in this case. Compute

el
Il

(I—-weh)A P=QuR4
(I—-o3d")B Q = QpR3p

O
Il

1. Orthogonalization:

QA,J' = pz - rijQA,’j
j<i
< 1-Qa,;+ Z rij-Qa_j =P

j<i

T
and RA,,i = (7"7;_’1,7’2'727. . ,Ti’ifl, 1,0,. . ,0) .

I
X
!
I

(I— 00TV A Qa Qa

Figure 1: Eliminating a linear dependent column from the QR-decomposition for (I —¥W¥T)A

2. Normalization:

Qa.i = 4.5/1Qa sl
not possible if [Qa_ ;| ~ 0.

In this case the column is eliminated by deleting the corresponding column g;
from @4 and deleting the corresponding row from Ry, i.e.,

In the least-squares case we delete the column from) and also column and row
from R. This corresponds to the deletion of one column of the least-squares
system. However, this is not possible here, as A 3 a; € img(¥) is not related to
UT A — this means we cannot delete the corresponding column in W7 A.

Remark: If columns are eliminated as in Figure ?? we have to perform addi-
tional givens rotations to maintain a proper QR-decomposition. However, we
do only eliminate columns at the end of the matrices, therefore only the last
row of Ry is eliminated and givens rotations are not necessary.

10

	Implementation IMVJ Restart Approach
	General Algorithm
	Update
	Compute (quasi-)Newton update x
	Restart-Mode for MVJ
	RS-SVD Algorithm
	Parallel Implementation of SVD Update

	Preconditioning of Least-Squares System
	Preconditioning for MVJ-Restart Mode: SVD Update

	QR Decomposition and Re-orthogonalization
	Updated QR Decomposition, Standard
	Updated QR Decomposition for SVD

