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1. Algorithms and functions 

Divisor employs the non-restoring binary divisor algorithm (NRBD)(K. Jun, and E. 

E.Swartzlander, Modified non-restoring division algorithm with improved delay profile 

and error correction, IEEE).  And square root uses the non-restoring square root 

calculation algorithm (NRSC)(Y. Li, and W. Chu, Implementation of single precision 

floating square root on FPGAs,IEEE). To reduce the area overhead, they are designed 

with one shared control logic and share the used iteration cells. For divisors, to improve 

the accuracy, an extra MSC and adder is added (K. Jun, and E. E.Swartzlander, 

Modified non-restoring division algorithm with improved delay profile and error 

correction, IEEE). 

Both support IEEE 754 for single precision. The three basic components in IEEE 754 

are sign(S), exponent(E) and mantissa(M). 

 

                  Table 1 IEEE 754 for single precision 

 

Precision Sign Exponent Mantissa Bias 

Single 1[31] 8[30:23] 23[22:0] 127 

 

= (−1)𝑠 × (1. 𝑀)𝐸 

                 Table 2 Special bit patterns in IEEE 754    

 M=0 M≠0 

E=0 0 Denormalized with real 

exponent=1 

E=255 ±∞ NaN 

 

The IEEE 754 2008 standard supports all floating point operations. It handles all special 

inputs including signaling NaN, quiet NaN,+Infinity,-Infinity, positive zero and 

negative zero. Our design fully supports IEEE 754 and offers three exceptions namely 

overflow(OF), underflow(UF) and division by zero(DZ). Besides, our design supports 

four different rounding modes: RNE(Round to Nearest, ties to Even, 00), RTZ(Round 

towards Zero, encoding as 01), RDN(Round Down, encoding as 10), RUP(Round Up, 

encoding as 11). 

This document is organized as follows: Chapter 2 will summarize all inputs/outputs. 

Chapter 3 will introduce the architecture. Chapter 4 will address normalization. Chapter 

5 will show the rounding modes. Chapter 6 will present exceptions. Chapter 7 will 

provide some waveforms and latency for simulations. Chapter 8 will give the 

synthesized results. 



2. Inputs and Outputs 

div_sqrt_top_tp is the name of our design, which can be used to divide two floating 

point operands: Operand_a_DI by Operand_b_DI to produce a floating-point quotinent, 

Result_DO, and compute the floating-point square root of a floating-point operand, 

Operand_a_DI. The input RM_SI is a 2-bit rounding mode. A parameter 

Precision_ctl_Enable_S is introduced for enabling precision control with active high.  

When Precision_ctl_Enable_S=1, Precision_ctl_SI can be used to control the needed 

precision. Precision_ctl_SI not only is used to control the finite state machine in 

control_tp module, but also is employed to select the corresponding outputs. The values 

of Precision_ctl_SI are listed in Section 7 with the corresponding latency. 

 

Table 3 Inputs and outputs 

or width direction Function 

Clk_CI 1 IN Clock 

Rst_RBI 1 IN  Reset, active low 

Div_start_SI 1 IN Start the operation of 

divisor. Active high for one 

cycle. 

Sqrt_start_SI 1 IN Start the operation of 

square root. Active high for 

one cycle. 

Operand_a_DI 32bits IN Div: Numerator; 

Sqrt:Radicand 

Operand_b_DI 32bits IN Div: Denominator 

RM_SI 2 bits IN Rounding mode.  

Precision_ctl_SI 5bits IN Precision control 

Result_DO, 

 

32bits OUT Div: Quotient with one 

cycle ;  

Sqrt: Square root of 

Operand_a_DI with  one 

cycle 

Done_SO 1 OUT Active high for one cycle 

Ready_SO 1 OUT Active high. It will hold 

high state until the next 

Div_start_SI or 

Sqrt_start_SI arrives 

 

 



3. Architecture 

According to radix 2 (r=2) NRBD and NRSC, n iterations are needed for n-bit operands. 

For IEEE single precision, 24 iterations are needed with 23-bits mantissa and 1hidden 

bit. 24 iterations can be implemented using an iteration unit with 24 cycles, or using m 

iteration units with 24/m cycles. Thus, the appropriate m should be chosen.  

For division, each iteration can be seen to be same and the control logic is comparatively 

simple. On-the-fly conversion and an extra MSC and adder are used to produce the final 

quotient. The key point of the control logic is how to store the generated quotients each 

cycle and how to select the needed quotient to choose the appropriate operands at the 

first iteration unit. An efficient method is to shift the quotient registers by 24/m each 

cycle. Thus we can use a fixed register to choose.  

The control logic of square root is more complex than that of divisor. It is because each 

iteration of square root is different with different intermediate operands. We have to add 

some fine-grained control. The corresponding selectors are controlled by a finite state 

machine (FSM). 

The employed architecture is shown in Fig.1. div_sqrt_top_tp is the top module, which 

is consisted of three modules: preprocess, nrbd_nrsc_tp and fpu_norm. nrbd_nrsc_tp 

contains a control logic and four iteration units. The design can be seen as three stages: 

the first stage, the middle stage and last stage. To reach the target clock period of 2.8ns, 

using UMC65nm process technology, the solution based on four iteration units at the 

middle stage is chosen. 8(=1+24/4+1) cycles are needed for producing the final results 

for single precision. The first cycle is used to store operands and generate control 

signals at the first stage. The 2nd-7th cycles are used to finish 24 iterations at the middle 

stage. The 8th cycle is used to normalize and round the result. The output result is then 

ready at the last stage (without flip/flops). In other words, the output results can be 

captured at the rising clock edge of the 8th cycle. Precision_ctl_SI is introduced to 

control the needed width of mantissa for variable precision and also the needed latency, 

which is shown in Section 7. Big margins are kept for the inputs and outputs, 1ns for 

the input delay and 0.8ns for the output delay. 

In the preprocess module, two operands are unpacked into two IEEE-754 encoded 

numbers into corresponding sign bits, biased binary exponents, and mantissa. To 

support denormal numbers, two leading zero detectors(LZD) are added to counter the 

number of leading zeros in mantissa part of both operands. With LZD1 and LZD2, two 

operands are normalizated. The resultant exponent for division can be calculated by 

(Exp_a_D-Exp_b_D+Bias+LZ2-LZ1). For square root, the resultant exponent can be 

computed as  

    

Exp_a_D − LZ1 − C_BIAS

2
+ CBIAS

=
ExpaD

− LZ1

2
+ 𝐶_𝐻𝐴𝐿𝐹_𝐵𝐼𝐴𝑆 + (Exp_a_D − LZ1)%2 

The result exponent and normalized operands are stored into flip/flops (Exp_norm_D 

and Mant_norm_D) for next stage. The sign of final result is calculated by using sign 



of both operands or one based on Div_start_SI and Sqrt_start_SI and stored into a 

flip/flop. Operand detection is added to genenrate Inf_a_S, InF_b_S, Zero_a_S, 

Zero_b_S, NaN_a_S and NaN_b_S for normalization of the final result. For the special 

cases NaN_a_S=1 or NaN_b_S=1, the input operands are needed to store into flip/flops 

for normalization. Special case control for low power is based on these signals. 
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Fig.1 The architecture for the shared FP divisor and square root 

** *_D or *_S in a block are flip/flops. 
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 Fig.2  The data flow of the shared divisor and square root in nrbd_nrsc_tp 

 

Fig.2 shows the data flow in nrbd_nrsc_tp. A finite state machine is used to control it. 

The final state of the used finite state machine is set base on the value of the 

Precision_ctl_SI. Sqrt_enable_S is used to choose the operands for square root and 

division.  

For division, in the first iteration the left shift is not needed (Just like “the traditional 

pencil-and-paper method”, when we do a division, no left shift is needed before the first 

substraction. Besides, it breaks through the restriction Mant_a_D < Mant_b_D for some 

divisors) and the 2’complement introduced 1 should be added as carry-in in 

iteration_cell_for first by adding Div_start_dly_SI. First*div_a is chosen from 

Mant_a_norm_D from preprocess or Partical_remiander_DP based on 

Div_start_dly_SI. The other input *div_a of next iteration cell are from Sum of the 

previous iteration cell directly, *_sum . For example, the input sec*div_a of the second 

iteration cell is from first*_sum, the Sum of the first iteration cell. *div_b is chosen 

from +denominator or – denominator according to the Carry_out of the previous 

iteration cell *_carry. All the Carry_outs of iteration cells are stored into Quotient_DP. 

The final quotient Mant_result_prenorm_D depends on Quotient_DP[MANT-1:0] and 

Msc_D based on Precision_ctl_SI, shown in Fig. 2. Herein Partical_remiander_DP and 

Quotient_DP are flip/flops. 

Square root is more complex than division. Sqrt_D* is chosen from 

Sqrt_mant_a_norm_D, 2bits for each iteration. Sqrt_R0 is chosen from ‘0 or 

Partical_remiander_DP based on Sqrt_start_dly_SI. The other input Sqrt_R* of next 

iteration cell are from Sum(*_sum) and D_DO(Sqrt_Da*) of the previous iteration cell 

directly. Sqrt_Q* are different in each iteration with increase numbers, which are the 

Carry_outs of the finished iterations. Mant_result_prenorm_D is the result of square 

root before normalization.  

The control signal from instruction decoder are Div_start_SI and Sqrt_start_SI. They 

will be stored in flip/flops as Div_start_dly_S and Sqrt_start_dly_S, and be used to 

generate Div_enable_S and Sqrt_enable_S in control module. 

Fpu_norm include normalization and rounding and renormalization. The employed 

schemes are shown in Section 4 and rounding in Section 5. The produced exception 

flags will be given in Section 6. 

 

4. Normalization  

4.1 division 

(1)For normal IEEE754 operands, the result mantissa of division should start with 1 or 

01. Therefore, we just need to care about the MSB of the quotient. When the quotient 

is 1.XXX, we check if the resultant exponent Exp_a_D-Exp_b_D+bias is out of the 

range of exponent. When the quotient is 0.1XX, we need to shift the mantissa one bit 

to the left and correct the exponent to: Exp_a_D-Exp_b_D+bias-1.  

        



1. M1

1. M2
= 1. 𝑋𝑋𝑋 𝑜𝑟 0.1𝑋𝑋 

(2)If the numerator is a denormal number,  

0. M1

1. M2
 

The resultant exponent is Exp_a_D-Exp_b_D+bias. May be a negative number. Index 

of LZD should be checked for normalization. If it is a negative number, we have to right 

shift the mantissa by Index of LZD to check if the resultant exponent (E + Index of 

LZD)is negative. If it is negative, it is overflow.  

(3)If the denominator is a denormal number,  

1. M1

0. M2
> 1 

 It is analyzed above. 

(4)If these two operands are denormal numbers, 

 
0. M1

0. M2
 

  We should detect the first ones of these operands. It is the reason that we added two 

LZDs before operation. 

Solution: If the hidden bit is 0, we should detect the first one of operands and left shift 

these two operands to normal mantissas. Thus we just care about exponent. Exponent 

= Exp_a_D-Exp_b_D+Bias+LZ2-LZ1, can be positive or negative. The leading one of 

the quotient should be detected for normalization.  

(5) Other cases 

If 1=<E<=254, it is a normal result, return E and M; 

If E=0 and M≠0, it is a denormal number, return >> (M) and the adjusted E; 

If E is negative, the numbers cannot be represented. UF is signaled and return 

E=0,M=0 (If so,it is all right for testbench. If not, cannot pass the check); 

If E=255 and M≠0,  NaN is signaled and return qNaN; 

If E>255, OF is signaled and return E=255, M=0. 

(6)Special cases 

Table 4 IEEE 754-2008 specification for /x y  

/x y  y  

+0 (sub)normal +∞ NaN 

x  
+0 qNaN +0 +0 qNaN 

(sub)normal +∞ 
( / )x y  

+0 qNaN 

+∞ +∞ +∞ qNaN qNaN 

NaN qNaN qNaN qNaN qNaN 

 

 

“Except when otherwise stated, if the result of a floating-point operation is NaN, it 

is the canonical NaN. The canonical NaN has a positive sign and all significand bits 



clear except the MSB, a.k.a. the quiet bit. For single-precision floating-point, this 

corresponds to the pattern 0x7fc00000.” Risc-spec V2.1 says.  

 

Table 5 Special cases for division 

Division operation  return 

1 a/NaN qNaN* 

2 a/Inf 0, the sign depending on 

the two operands 

3 a/0 Inf, the sign depending on 

the two operands 

4 0/b 0, the sign depending on 

the two operands 

5 Inf/b Inf, the sign depending on 

the two operands 

6 NaN/b qNaN 

7 0/Inf 0, the sign depending on 

the two operands 

8 Inf/0 Inf, the sign depending on 

the two operands 

9 0/0 qNaN 

10 Inf/Inf qNaN 

*qNaN=0x7fc00000 

 

4.2 square root 

(1) The operand is a normal number 

For normal IEEE754 operands, the result mantissa of square root should start with 1. 

Thus, we can check the final exponent. The 1.M will be left shifted one or zero-bit so 

that the new exponent e′  makes e′ − 127  even.  The shifted fraction will be 

1X.XXX or 01.XXX. The result value will be 1.XXX. The resultant exponent can be 

computed as  

    

e − 127

2
+ 127 =

e

2
+ 63 + 𝑒%2 

(2) The operand is a denormal number 

If the input operand is a denormal number, we can left shift like division. e can be a 

negative number. If e is even, it needs left shift 1- bit more. 

(3)Other cases  

 Same to division. 

(4) Special cases 

 

 

 



                      Table 6 IEEE 754-2008 specification for square root 

Operand x +0 +∞ -0 Less than 

zero 

NaN 

Result  r +0 +∞ -0 qNaN qNaN 

 

 

Table 7 Special cases for square root 

Square root  operands  

1 +0  +0 

2 +NaN qNaN  

3 +Inf +Inf 

4 -0 -0 

5* -a qNaN 

* can not be covered by division 

 

5. Rounding 

 

The design supports four different rounding modes: RNE(Round to Nearest, ties to 

Even, 00), RTZ(Round towards Zero, encoding as 01),RDN(Round Down, encoding as 

10),RUP(Round Up, encoding as 11). 

                            Table 8 Rounding modes 

Mode Code 

RNE 00 

RTZ 01 

RDN 10 

RUP 11 

 

 

6. Exceptions  

The design supports three exceptions namely overflow(OF), underflow(UF) and 

division by zero(DZ). 

  Div_zero_SO can be given by the LZD2 with resultant sign directly. Returns infinity 

(positive or negative ) as result 

  Exp_OF_SO is signaled if the exact result has an exponent that cannot be represented 

in the format. Returns infinity (positive or negative ) as result. 

  Exp_UF_SO is signaled when the result is denormal and rounded. 

 

7. Waveforms and latency 

  The design was tested and it works well. Fig.3-9 present some waveforms.  

Div_start_SI or Sqrt_start_SI is coming with the operands when Ready_SO=1. When 

Done_SO=1, the Result_DO is ready. The latency depends on the Precision_ctl_SI.  



 

Table 9 Latency 

Precision_ctl_SI Latency Max loss of mantissa 

8-11 5 2**(23- Precision_ctl_SI) 

with MSC 12-15 6 

16-19 7 

20-23 8 

23(single precision) 8 1 

Special cases* 2 - 

  * No matter which value is Precision_ctl_SI set, the results will be ready at the third 

clock edge, which is shown in Fig. 5, Fig. 8 and Fig. 9. This feature has been removed 

in our transprecision design.  

 

(1)Precision_ctl_SI=20, Latency=8 clock cycles 

 

 
Fig.3 The waveform at the beginning with all inputs delayed by half of clock period 

 

 
Fig.4 The waveform of division and square root 

 

 
Fig.5 The waveform of special cases 

 

(2)Precision_ctl_SI=10, Latency=5 clock cycles 

 



 

Fig.6 The waveform at the beginning with all inputs delayed by half of clock period 

 

 

Fig.7 The waveform of division and square root 

 

 

Fig.8 The waveform of special cases 

 

(3)Precision_ctl_SI=10, Latency=2 clock cycles just for testing special cases 

 

Fig.9 The waveform of special cases 

 

8. Synthesized results 

 

UMC65nm process technology was used for synthesis. 

Tool: Design Compiler 

Operating Conditions: uk65lscllmvbbl_108c125_wc    

Library: uk65lscllmvbbl_108c125_wc 

Input_delay :1ns  

Output_delay:1ns for the original design, 0.8ns for others 



 

Fig.10 The sweep synthesized results 

**The area of a gate equivalent is 1.44um2 

** The direct synthesis will produce 10167um2@2.8ns  for the original design with 

the same constraint, about 7KGE. 

9 Power estimation 

UMC65nm process technology was used for power estimation. 

Tool: Primetime 

Operating Conditions: uk65lscllmvbbl_108c125_wc   

Library: uk65lscllmvbbl_108c125_wc 

Estimation Conditions: Postsyn without spef. 

SDC: from Design Compiler with the clock period of 2.8ns. 

Fig.11 plots the results for 23 special cases (23 vectors). 23 special cases cover all the 

list special cases in Section 4, which is defined in testbench. We just estimate the cases 

of latency=2 and 8 clock cycles. From Fig.1, it can be concluded that the used technique 

is very efficient in low power for special cases. When latency = 8 clock cycles, it can 

achieve more than 40% energy savings. The results of special cases will be ready after 

2 clock cycles with low power. We can compare the needed energy @latency=2 clock 

cycles and @ latency=8 clock cycles. For transprecision with low power, the ratio of 

the needed energy @latency=2 clock cycles and @ latency=8 clock cycles is 27%. The 

power reduces with the increase of latency. This is because the needed energy for an 

operation can be seen to be constant, ignoring the leakage power and other logic. Why 

not reduce rapidly? It is because that the FSM used for control is wake up @ latency=8 

clock cycles. 

mailto:10167um2@2.8ns


Fig.11 Special cases 

Fig.12 plots the results for 1000 vectors including 23 special vectors. Low power 

control will introduce14% more power for single precision. Lower power control will 

introduce about 4% more power for transprecision. Reducing the precision can reduce 

the needed energy. The needed energy of the precision with 5-cycle latecncy is about 

61% of that of the precision with 8-cycle latency for an operation. 

 
Fig.12 All cases 


