
Package Structure

from py-pkgs import CHEAT SHEET

CC BY SA Tomas Beuzen (https://www.tomasbeuzen.com/) & Tiffany Timbers (https://www.tiffanytimbers.com/) • Learn more at https://ubc-mds.github.io/py-pkgs/ • Updated: 2020-08

Packaging Tools1

mypkg
├── CONDUCT.rst
├── CONTRIBUTING.rst
├── docs
├── mypkg
├── .gitignore
├── .github
├── LICENSE
├── pyproject.toml
├── README.md
└── tests

This Python Packaging cheat sheet will help
you build a Python Package in no time! It relies
on the following requirements:

Tool Description

poetry Python dependency & package
management tool

GitHub Online project management & code
version control system

cookiecutter Directory & file templating tool

Python packages have a standard structure.
poetry and cookiecutter can help you set up this
structure quickly with the following steps:

You should end up with a directory structure
similar to that shown below. If you’re after a
package with a command line interface (CLI),
see the CLI package chapter of py-pkgs.

$ pip install cookiecutter

1. Install cookiecutter (if it is not installed):

$ cookiecutter https://github.com/UBC-
MDS/cookiecutter-ubc-mds.git

2. Run the UBC-MDS cookiecutter template
and follow the prompts:

$ cd mypkg

3. Change into the root directory of your new
package (here named “mypkg”) :

$ poetry init

4. Initialize a poetry project:

Write Your Code

Tests4

Documentation

Releasing
CI/CD

Acknowledgments

Once your Python package is set up, you can
start writing your code! Your package may
consist of functions, classes, a command line
interface, or anything other Python code you
wish!

Your package should also contain tests to verify
that code is working as expected. pytest is an
easy to use testing framework, with a typical
workflow of:

$ poetry add --dev pytest

1. Add pytest as a development dependency:

def test_myfunc():
assert mypkg.myfunc(1, 5) == 6
assert mypkg.myfunc(-1, -5) == -6

2. Write tests in mypkg/tests/test_mypkg.py.
Guidelines for writing tests can be found here,
but they typically look something like this:

$ poetry run pytest

3. Run tests and make sure they are passing:

$ poetry add –-dev pytest-cov
$ poetry run pytest --cov=mypkg tests/

4. Calculate test coverage with pytest-cov:

The UBC-MDS cookiecutter template provides
basic package documentation, such as a
README, LICENSE, CONDUCT, CONTRIBUTING
file and a populated docs folder.

You will still need to write documentation for
your code as necessary, including:

1. Inline comments;
2. Block comments;
3. Docstrings.

Documentation can be rendered using sphinx
and sphinxcontrib-napoleon:

$ poetry add –-dev sphinx
sphinxcontrib-napoleon

$ poetry run sphinx-apidoc -f -o
docs/source mypkg

1. Add these tools as package dependencies:

2. Render docstrings into documentation if
required:

$ cd docs
$ poetry run make html

3. Render package documentation in docs:

4. Upload to Read the Docs following these
instructions if desired.

Your package should ideally adopt the
semantic versioning scheme, e.g., v0.1.0. For
help implementing versioning, deprecation, or
the release process in general, see the
Releasing and Versioning chapter of py-pkgs.
Releasing will typically involve the following:

$ poetry version patch/minor/major

1. Bump package version if required:

$ poetry run pytest

2. Ensure tests are passing:

$ poetry build

3

3. Build package

$ poetry config repositories.test-pypi
https://test.pypi.org/legacy/
$ poetry publish -r test-pypi
$ pip install --index-url
https://test.pypi.org/simple/ --extra-
index-url https://pypi.org/simple
mypkg

4. Release to TestPyPI and check you can
install your package.

$ poetry publish

5. If all is working as expected, release to PyPI:

There are many tools available for
implementing CI/CD for your package. In py-
pkgs, we advocate for GitHub Actions.

The UBC-MDS cookiecutter used in Step 2
provides an option for including pre-mase CI
and/or CD workflow files in your package
structure, which can be modified as desired
and are triggered when you push your package
repository to GitHub. Take a look at the CI/CD
chapter of py-pkgs for more information.

This cheat sheet was inspired by the Rstudio
Cheatsheets. Thanks also to Cookiecutter and
Jupyter Book for providing the open-source
frameworks to build and support py-pkgs.

2

4

5

6

7

8

https://ubc-mds.github.io/py-pkgs/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.tomasbeuzen.com/
https://www.tiffanytimbers.com/
https://ubc-mds.github.io/py-pkgs/
https://python-poetry.org/
https://github.com/
https://cookiecutter.readthedocs.io/
https://ubc-mds.github.io/py-pkgs/content/08-cli.html
https://ubc-mds.github.io/py-pkgs/
https://github.com/UBC-MDS/cookiecutter-ubc-mds
https://ubc-mds.github.io/py-pkgs/content/04-testing.html
https://ubc-mds.github.io/py-pkgs/content/05-documentation.html
https://ubc-mds.github.io/py-pkgs/content/05-documentation.html
https://ubc-mds.github.io/py-pkgs/content/05-documentation.html
https://ubc-mds.github.io/py-pkgs/content/05-documentation.html
https://semver.org/
https://ubc-mds.github.io/py-pkgs/content/06-releasing-versioning.html
https://ubc-mds.github.io/py-pkgs/
https://test.pypi.org/
https://pypi.org/
https://docs.github.com/en/actions
https://github.com/UBC-MDS/cookiecutter-ubc-mds
https://ubc-mds.github.io/py-pkgs/content/07-ci-cd.html
https://ubc-mds.github.io/py-pkgs/
https://rstudio.com/resources/cheatsheets/
https://cookiecutter.readthedocs.io/en/1.7.2/
https://jupyterbook.org/intro.html
https://ubc-mds.github.io/py-pkgs/

