
PyInstaller Manual
Version: PyInstaller v1.5.1

Homepage: http://www.pyinstaller.org

Author: Giovanni Bajo & William Caban (based on Gordon McMillan's manual)

Contact: rasky@develer.com

Revision: 1545

Source URL: $HeadURL:
https://src.develer.com/svnoss/pyinstaller/branches/1.5/doc/source/Manual.rst $

Copyright: This document has been placed in the public domain.

PyInstaller Manual -

1

http://www.pyinstaller.org
mailto:rasky@develer.com
https://src.develer.com/svnoss/pyinstaller/branches/1.5/doc/source/Manual.rst

Contents
Requirements 4

Windows 4

Linux 4

Mac OS X 4

Getting Started 4

Installing PyInstaller 4

Configuring your PyInstaller setup 4

Create a spec file for your project 5

Build your project 6

Windows COM Server support 6

Building Optimized 7

A Note on using UPX 7

How one-file mode works 8

.egg files and setuptools 9

PyInstaller Utilities 9

ArchiveViewer 9

bindepend 10

GrabVersion (Windows) 10

Analyzing Dependencies 10

pyinstaller.py 10

Spec Files 11

Introduction 11

TOC Class (Table of Contents) 11

Target Subclasses 13

Analysis 13

PYZ 13

PKG 14

EXE 14

DLL 15

COLLECT 15

Tree 15

When Things Go Wrong 16

Finding out What Went Wrong 16

Buildtime Warnings 16

Getting Debug Messages 16

PyInstaller Manual -

2

Getting Python's Verbose Imports 16

Helping PyInstaller Find Modules 17

Extending the Path 17

Listing Hidden Imports 17

Extending a Package's __path__ 18

Changing Runtime Behavior 18

Adapting to being "frozen" 19

Accessing Data Files 19

Miscellaneous 19

Win9xpopen 19

Self-extracting executables 19

One Pass Execution 20

Two Pass Execution 20

PyInstaller Archives 21

Archives Introduction 21

ZlibArchive 22

CArchive 22

License 23

Appendix 23

Building the bootloaders 24

Development tools 24

Building 24

Linux Standard Base (LSB) binary 25

mf.py: A Modulefinder Replacement 26

ImportTracker 26

analyze_one() 26

Module Classes 26

code scanning 26

Hooks 27

Warnings 27

Cross Reference 27

mf Usage 27

iu.py: An imputil Replacement 28

ImportManager 29

ImportDirector 29

PathImportDirector 29

PyInstaller Manual -

3

Owner 29

Packages 30

Possibilities 30

Compatibility 30

Performance 30

Limitations 30

iu Usage 31

Requirements

Windows
PyWin32

Python extensions for Windows is only necessary for users of Python 2.6+.

Back to Top

Linux
ldd

Console application to print the shared libraries required by each program or shared library.

objdump

Console application to display information from object files.

Back to Top

Mac OS X
Xcode

is a suite of tools for developing software for Mac OS X. It can be also installed from your Mac OS X
Install DVD. It is not necessary to install the version 4 of Xcode. PyInstaller depends on otool
which is installed together with Xcode. otool displays information of object files or libraries.

Back to Top

Getting Started

Installing PyInstaller
First, unpack the archive on your path of choice. Installer is not a Python package, so it doesn't need to
go in site-packages, or have a .pth file. For the purpose of this documentation we will assume
/your/path/to/pyinstaller/. You will be using a couple of scripts in the /your/path/to/pyinstaller/ directory, and
these will find everything they need from their own location. For convenience, keep the paths to these
scripts short (don't install in a deeply nested subdirectory).

Back to Top

Configuring your PyInstaller setup
In the /your/path/to/pyinstaller/ directory, run:

PyInstaller Manual - Requirements

4

http://sourceforge.net/projects/pywin32/files/
http://developer.apple.com/xcode

python Configure.py

This will configure PyInstaller usage based on the current system, and save some information into
config.dat that would otherwise be recomputed every time.

It can be rerun at any time if your configuration changes. It must be run at least once before trying to build
anything.

PyInstaller is dependant to the version of python you configure it for. In other words, you will need a
separate copy of PyInstaller for each Python version you wish to work with or you'll need to rerun
Configure.py every time you switch the Python version).

Back to Top

Create a spec file for your project
[For Windows COM server support, see section Windows COM Server Support]

This is the first step to do. The spec file is the description of what you want PyInstaller to do with your
program. In the root directory of PyInstaller, there is a simple wizard to create simple spec files that cover
all basic usages:

python Makespec.py [--onefile] yourprogram.py

By deafult, Makespec.py generates a spec file that tells PyInstaller to create a distribution directory
contains the main executable and the dynamic libraries. The option --onefile specifies that you want
PyInstaller to build a single file with everything inside.

Elaborating on Makespec.py, this is the supported command line:

python Makespec.py [opts] <scriptname> [<scriptname> ...]

Where allowed OPTIONS are:
-F, --onefile produce a single file deployment (see below).

-D, --onedir produce a single directory deployment (default).

-K, --tk include TCL/TK in the deployment.

-a, --ascii do not include encodings. The default (on Python
versions with unicode support) is now to include
all encodings.

-d, --debug use debug (verbose) versions of the executables.

-w, --windowed, --noconsole Use the Windows subsystem executable, which
does not open the console when the program is
launched. (Windows only)

-c, --nowindowed, --console Use the console subsystem executable. This is
the default. (Windows only)

-s, --strip the executable and all shared libraries will be run
through strip. Note that cygwin's strip tends to
render normal Win32 dlls unusable.

-X, --upx if you have UPX installed (detected by Configure),
this will use it to compress your executable (and,
on Windows, your dlls). See note below.

PyInstaller Manual - Create a spec file for your project

5

-o DIR, --out=DIR create the spec file in directory. If not specified,
and the current directory is Installer's root
directory, an output subdirectory will be created.
Otherwise the current directory is used.

-p DIR, --paths=DIR set base path for import (like using
PYTHONPATH). Multiple directories are allowed,
separating them with the path separator (';' under
Windows, ':' under Linux), or using this option
multiple times.

--icon=<FILE.ICO> add file.ico to the executable's resources.
(Windows only)

--icon=<FILE.EXE,N> add the n-th incon in file.exe to the executable's
resources. (Windows only)

-v FILE, --version=FILE add verfile as a version resource to the
executable. (Windows only)

-n NAME, --name=NAME optional name to assign to the project (from which
the spec file name is generated). If omitted, the
basename of the (first) script is used.

[For building with optimization on (like Python -O), see section Building Optimized]

For simple projects, the generated spec file will probably be sufficient. For more complex projects, it
should be regarded as a template. The spec file is actually Python code, and modifying it should be ease.
See Spec Files for details.

Back to Top

Build your project

python Build.py specfile

A buildproject subdirectory will be created in the specfile's directory. This is a private workspace so
that Build.py can act like a makefile. Any named targets will appear in the specfile's directory.

The generated files will be placed within the dist subdirectory; that's where the files you are interested
in will be placed.

In most cases, this will be all you have to do. If not, see When things go wrong and be sure to read the
introduction to Spec Files.

Back to Top

Windows COM Server support
For Windows COM support execute:

python MakeCOMServer.py [OPTION] script...

This will generate a new script drivescript.py and a spec file for the script.

These options are allowed:
--debug Use the verbose version of the executable.

--verbose Register the COM server(s) with the quiet flag off.

--ascii do not include encodings (this is passed through
to Makespec).

PyInstaller Manual - Build your project

6

--out <dir> Generate the driver script and spec file in dir.

Now Build your project on the generated spec file.

If you have the win32dbg package installed, you can use it with the generated COM server. In the driver
script, set debug=1 in the registration line.

Warnings: the inprocess COM server support will not work when the client process already has Python
loaded. It would be rather tricky to non-obtrusively hook into an already running Python, but the
show-stopper is that the Python/C API won't let us find out which interpreter instance I should hook into. (If
this is important to you, you might experiment with using apartment threading, which seems the best
possibility to get this to work). To use a "frozen" COM server from a Python process, you'll have to load it
as an exe:

o = win32com.client.Dispatch(progid,
 clsctx=pythoncom.CLSCTX_LOCAL_SERVER)

MakeCOMServer also assumes that your top level code (registration etc.) is "normal". If it's not, you will
have to edit the generated script.

Back to Top

Building Optimized
There are two facets to running optimized: gathering .pyo's, and setting the Py_OptimizeFlag. Installer
will gather .pyo's if it is run optimized:

python -O Build.py ...

The Py_OptimizeFlag will be set if you use a ('O','','OPTION') in one of the TOCs building the
EXE:

exe = EXE(pyz,
 a.scripts + [('O','','OPTION')],
 ...

See Spec Files for details.

Back to Top

A Note on using UPX
On both Windows and Linux, UPX can give truly startling compression - the days of fitting something
useful on a diskette are not gone forever! Installer has been tested with many UPX versions without
problems. Just get it and install it on your PATH, then rerun configure.

For Windows, there is a problem of compatibility between UPX and executables generated by Microsoft
Visual Studio .NET 2003 (or the equivalent free toolkit available for download). This is especially
worrisome for users of Python 2.4+, where most extensions (and Python itself) are compiled with that
compiler. This issue has been fixed in later beta versions of UPX, so you will need at least UPX 1.92 beta.
Configure.py will check this for you and complain if you have an older version of UPX and you are using
Python 2.4.

UPX and Unix

PyInstaller Manual - Building Optimized

7

Under UNIX, old versions of UPX were not able to expand and execute the executable in
memory, and they were extracting it into a temporary file in the filesystem, before spawning it.
This is no longer valid under Linux, but the information in this paragraph still needs to be
updated.

For Linux, a bit more discussion is in order. First, UPX is only useful on executables, not shared libs.
Installer accounts for that, but to get the full benefit, you might rebuild Python with more things statically
linked.

More importantly, when run finds that its sys.argv[0] does not contain a path, it will use
/proc/pid/exe to find itself (if it can). This happens, for example, when executed by Apache. If it has
been upx-ed, this symbolic link points to the tempfile created by the upx stub and PyInstaller will fail
(please see the UPX docs for more information). So for now, at least, you can't use upx for CGI's
executed by Apache. Otherwise, you can ignore the warnings in the UPX docs, since what PyInstaller
opens is the executable Installer created, not the temporary upx-created executable.

Back to Top

How one-file mode works

Bootloader
The bootloader (also known as stub in literature) is the small program which starts up
your packaged program. Usually, the archive containing the bytecoded modules of
your program is simply appended to it. See Self-extracting executables for more
details on the process.

A --onefile works by packing all the shared libs / dlls into the archive attached to the bootloader
executable (or next to the executable in a non-elf configuration). When first started, it finds that it needs to
extract these files before it can run "for real". That's because locating and loading a shared lib or linked-in
dll is a system level action, not user-level. With PyInstaller v1.5.1 it always uses a temporary directory
(_MEIXXXXX, where XXXXX is a random number to avoid conflicts) in the user's temp directory. It then
executes itself again, setting things up so the system will be able to load the shared libs / dlls. When
execution is complete, it recursively removes the entire directory it created.

The temporary directory is exported to the program's environment as os.environ['_MEIPASS2']. This
can be used in case you manually modified the spec file to tell PyInstaller to add additional files (eg: data
files) within the executable (see also Accessing Data Files).

This has a number of implications:

• You can run multiple copies - they won't collide.
• Running multiple copies will be rather expensive to the system (nothing is shared).

• On Windows, using Task Manager to kill the parent process will leave the directory behind.

• On *nix, a kill -9 (or crash) will leave the directory behind.

• Otherwise, on both platforms, the directory will be recursively deleted.

• So any files you might create in os.environ['_MEIPASS2'] will be deleted.

• The executable can be in a protected or read-only directory.

Notes for *nix users: Take notice that if the executable does a setuid root, a determined hacker could
possibly (given enough tries) introduce a malicious lookalike of one of the shared libraries during the hole
between when the library is extracted into the temporary directory and when it gets loaded by the

PyInstaller Manual - How one-file mode works

8

execvp'd process. So maybe you shouldn't do setuid root programs using --onefile. In fact, we do not
recomend the use of --onefile on setuid programs.

Back to Top

.egg files and setuptools
setuptools is a distutils extensions which provide many benefits, including the ability to distribute the
extension as eggs. Together with the nifty easy_install (a tool which automatically locates, downloads and
installs Python extensions), eggs are becoming more and more widespread as a way for distributing
Python extensions.

eggs can be either files or directories. An egg directory is basically a standard Python package, with
some additional metadata that can be used for advanced setuptools features like entry-points. An egg file
is simply a ZIP file, and it works as a package as well because Python 2.3+ is able to transparently import
modules stored within ZIP files.

PyInstaller supports eggs at a good level. In fact:

• It is able to follow dependencies within eggs (both files and directories). So if your program imports
a package shipped in egg format, and this package requires additional libraries, PyInstaller will
correctly include everything within the generated executable.

• egg-files are fully supported. To let everything works (entry-points, pkg_resource library, etc.),
PyInstaller either copy the egg-files into the distribution directory (in one-dir mode) or packs
them as-is within the generated executable and unpack them at startup into the temporary directory
(see How one-file mode works).

• egg-directories are partially supported. In fact, PyInstaller at build time treat them as regular
package. This means that all advanced features requiring egg metadatas will not work.

Improved support for eggs is planned for a future release of PyInstaller.

Back to Top

PyInstaller Utilities

ArchiveViewer

python ArchiveViewer.py <archivefile>

ArchiveViewer lets you examine the contents of any archive build with PyInstaller or executable (PYZ,
PKG or exe). Invoke it with the target as the first arg (It has been set up as a Send-To so it shows on the
context menu in Explorer). The archive can be navigated using these commands:

O <nm>

Open the embedded archive <nm> (will prompt if omitted).

U

Go up one level (go back to viewing the embedding archive).

X <nm>

Extract nm (will prompt if omitted). Prompts for output filename. If none given, extracted to stdout.

Q

Quit.

Back to Top

PyInstaller Manual - .egg files and setuptools

9

http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/setuptools

bindepend

python bindepend.py <executable_or_dynamic_library>

bindepend will analyze the executable you pass to it, and write to stdout all its binary dependencies. This
is handy to find out which DLLs are required by an executable or another DLL. This module is used by
PyInstaller itself to follow the chain of dependencies of binary extensions and make sure that all of them
get included in the final package.

GrabVersion (Windows)

python GrabVersion.py <executable_with_version_resource>

GrabVersion outputs text which can be eval'ed by versionInfo.py to reproduce a version resource.
Invoke it with the full path name of a Windows executable (with a version resource) as the first argument.
If you cut & paste (or redirect to a file), you can then edit the version information. The edited text file can
be used in a version = myversion.txt option on any executable in an PyInstaller spec file.

This was done in this way because version resources are rather strange beasts, and fully understanding
them is probably impossible. Some elements are optional, others required, but you could spend
unbounded amounts of time figuring this out, because it's not well documented. When you view the
version tab on a properties dialog, there's no straightforward relationship between how the data is
displayed and the structure of the resource itself. So the easiest thing to do is find an executable that
displays the kind of information you want, grab it's resource and edit it. Certainly easier than the Version
resource wizard in VC++.

Back to Top

Analyzing Dependencies
You can interactively track down dependencies, including getting cross-references by using mf.py,
documented in section mf.py: A modulefinder Replacement

Back to Top

pyinstaller.py

python pyinstaller.py [options] <scriptname> [<scriptname> ...] | <specfile>

Utility pyinstaller.py is new alternative interface for using PyInstaller. It will be the default interface
for using PyInstaller in next major release (PyInstaller v1.6). pyinstaller.py should simplify usage of
PyInstaller by wrapping the fuctionality of scripts Configure.py, Makespec.py and Build.py.

It should accept all optios of Configure.py, Makespec.py and Build.py.

PyInstaller Manual - bindepend

10

Spec Files

Introduction
When you run Makespec.py (documented in section Create a spec file for your project), it generates a
spec file for you. In fact, you can think of Makespec.py just like a wizard that lets you generate a
standard spec file for most standard usages. But advanced users can learn to edit spec files to fully
customize PyInstaller behaviour to their needs, giving beyond the standard settings provided by the
wizard.

Spec files are in Python syntax. They are evaluated by Build.py. A simplistic spec file might look like this:

a = Analysis(['myscript.py'])
pyz = PYZ(a.pure)
exe = EXE(pyz, a.scripts, a.binaries, name="myapp.exe")

This creates a single file deployment with all binaries (extension modules and their dependencies) packed
into the executable.

A simplistic single directory deployment might look like this:

a = Analysis(['myscript.py'])
pyz = PYZ(a.pure)
exe = EXE(a.scripts, pyz, name="myapp.exe", exclude_binaries=1)
dist = COLLECT(exe, a.binaries, name="dist")

Note that neither of these examples are realistic. If you want to start hacking a spec file, use
Makespec.py to create a basic specfile, and tweak it (if necessary) from there.

All of the classes you see above are subclasses of Build.Target. A Target acts like a rule in a
makefile. It knows enough to cache its last inputs and outputs. If its inputs haven't changed, it can assume
its outputs wouldn't change on recomputation. So a spec file acts much like a makefile, only rebuilding as
much as needs rebuilding. This means, for example, that if you change an EXE from debug=1 to
debug=0, the rebuild will be nearly instantaneous.

The high level view is that an Analysis takes a list of scripts as input, and generates three "outputs",
held in attributes named scripts, pure and binaries. A PYZ (a .pyz archive) is built from the
modules in pure. The EXE is built from the PYZ, the scripts and, in the case of a single-file deployment,
the binaries. In a single-directory deployment, a directory is built containing a slim executable and the
binaries.

Back to Top

TOC Class (Table of Contents)
Before you can do much with a spec file, you need to understand the TOC (Table Of Contents) class.

A TOC appears to be a list of tuples of the form (name, path, typecode). In fact, it's an ordered set, not a
list. A TOC contains no duplicates, where uniqueness is based on name only. Furthermore, within this
constraint, a TOC preserves order.

Besides the normal list methods and operations, TOC supports taking differences and intersections (and
note that adding or extending is really equivalent to union). Furthermore, the operations can take a real list
of tuples on the right hand side. This makes excluding modules quite easy. For a pure Python module:

pyz = PYZ(a.pure - [('badmodule', '', '')])

PyInstaller Manual - Spec Files

11

or for an extension module in a single-directory deployment:

dist = COLLECT(..., a.binaries - [('badmodule', '', '')], ...)

or for a single-file deployment:

exe = EXE(..., a.binaries - [('badmodule', '', '')], ...)

To add files to a TOC, you need to know about the typecodes (or the step using the TOC won't know what
to do with the entry).

typecode description name path

'EXTENSION'An extension module. Python internal
name.

Full path name in build.

'PYSOURCE'A script. Python internal
name.

Full path name in build.

'PYMODULE'A pure Python module (including __init__
modules).

Python internal
name.

Full path name in build.

'PYZ' A .pyz archive (archive_rt.ZlibArchive). Runtime name. Full path name in build.

'PKG' A pkg archive (carchive4.CArchive). Runtime name. Full path name in build.

'BINARY' A shared library. Runtime name. Full path name in build.

'DATA' Aribitrary files. Runtime name. Full path name in build.

'OPTION' A runtime runtime option (frozen into the
executable).

The option. Unused.

You can force the include of any file in much the same way you do excludes:

collect = COLLECT(a.binaries +
 [('readme', '/my/project/readme', 'DATA')], ...)

or even:

collect = COLLECT(a.binaries,
 [('readme', '/my/project/readme', 'DATA')], ...)

(that is, you can use a list of tuples in place of a TOC in most cases).

There's not much reason to use this technique for PYSOURCE, since an Analysis takes a list of scripts
as input. For PYMODULEs and EXTENSIONs, the hook mechanism discussed here is better because you
won't have to remember how you got it working next time.

This technique is most useful for data files (see the Tree class below for a way to build a TOC from a
directory tree), and for runtime options. The options the run executables understand are:

Option Description Example Notes

v Verbose
imports

('v', '', 'OPTION') Same as Python -v ...

u Unbuffered
stdio

('u', '',
'OPTION')

Same as Python -u ...

PyInstaller Manual - Spec Files

12

W
spec

Warning
option

('W ignore', '',
'OPTION')

Python 2.1+ only.

s Use site.py ('s', '', 'OPTION') The opposite of Python's -S flag. Note that site.py must be in
the executable's directory to be used.

Advanced users should note that by using set differences and intersections, it becomes possible to factor
out common modules, and deploy a project containing multiple executables with minimal redundancy.
You'll need some top level code in each executable to mount the common PYZ.

Back to Top

Target Subclasses

Analysis

Analysis(scripts, pathex=None, hookspath=None, excludes=None)

scripts

a list of scripts specified as file names.

pathex

an optional list of paths to be searched before sys.path.

hookspath

an optional list of paths used to extend the hooks package.

excludes

an optional list of module or package names (their Python names, not path names) that will be
ignored (as though they were not found).

An Analysis has five outputs, all TOCs accessed as attributes of the Analysis.

scripts

The scripts you gave Analysis as input, with any runtime hook scripts prepended.

pure

The pure Python modules.

binaries

The extension modules and their dependencies. The secondary dependencies are filtered. On
Windows, a long list of MS dlls are excluded. On Linux/Unix, any shared lib in /lib or /usr/lib is
excluded.

datas

Data-file dependencies. These are data-file that are found to be needed by modules. They can be
anything: plugins, font files, etc.

zipfiles

The zipfiles dependencies (usually egg-files).

Back to Top

PYZ

PYZ(toc, name=None, level=9)

toc

PyInstaller Manual - Target Subclasses

13

a TOC, normally an Analysis.pure.

name

A filename for the .pyz. Normally not needed, as the generated name will do fine.

level

The Zlib compression level to use. If 0, the zlib module is not required.

Back to Top

PKG
Generally, you will not need to create your own PKGs, as the EXE will do it for you. This is one way to
include read-only data in a single-file deployment, however. A single-file deployment including TK support
will use this technique.

PKG(toc, name=None, cdict=None, exclude_binaries=0)

toc

a TOC.

name

a filename for the PKG (optional).

cdict

a dictionary that specifies compression by typecode. For example, PYZ is left uncompressed so that
it can be accessed inside the PKG. The default uses sensible values. If zlib is not available, no
compression is used.

exclude_binaries

If 1, EXTENSIONs and BINARYs will be left out of the PKG, and forwarded to its container (usually a
COLLECT).

Back to Top

EXE

EXE(*args, **kws)

args

One or more arguments which are either TOCs or Targets.

kws

Possible keyword arguments:

console

Always 1 on Linux/unix. On Windows, governs whether to use the console executable, or the
Windows subsystem executable.

debug

Setting to 1 gives you progress messages from the executable (for a console=0, these will be
annoying MessageBoxes).

name

The filename for the executable.

exclude_binaries

Forwarded to the PKG the EXE builds.

PyInstaller Manual - PKG

14

icon

Windows NT family only. icon='myicon.ico' to use an icon file, or
icon='notepad.exe,0' to grab an icon resource.

version

Windows NT family only. version='myversion.txt'. Use GrabVersion.py to steal a
version resource from an executable, and then edit the ouput to create your own. (The syntax of
version resources is so arcane that I wouldn't attempt to write one from scratch.)

append_pkg

If True, then append the PKG archive to the EXE. If False, place the PKG archive in a separate
file exename.pkg. The default is taken from a flag in config.dat and depends on whether
Make.py was given the -n argument when building the loader. The default is True on
Windows. On non-ELF platforms where concatenating arbitrary data to an executable does not
work, append_pkg must be set to False.

Back to Top

DLL
On Windows, this provides support for doing in-process COM servers. It is not generalized. However,
embedders can follow the same model to build a special purpose DLL so the Python support in their app
is hidden. You will need to write your own dll, but thanks to Allan Green for refactoring the C code and
making that a managable task.

Back to Top

COLLECT

COLLECT(*args, **kws)

args

One or more arguments which are either TOCs or Targets.

kws

Possible keyword arguments:

name

The name of the directory to be built.

Back to Top

Tree

Tree(root, prefix=None, excludes=None)

root

The root of the tree (on the build system).

prefix

Optional prefix to the names on the target system.

excludes

A list of names to exclude. Two forms are allowed:

name

files with this basename will be excluded (do not include the path).

PyInstaller Manual - DLL

15

*.ext

any file with the given extension will be excluded.

Since a Tree is a TOC, you can also use the exclude technique described above in the section on TOCs.

Back to Top

When Things Go Wrong

Finding out What Went Wrong

Buildtime Warnings
When an Analysis step runs, it produces a warnings file (named warnproject.txt) in the spec file's
directory. Generally, most of these warnings are harmless. For example, os.py (which is cross-platform)
works by figuring out what platform it is on, then importing (and rebinding names from) the appropriate
platform-specific module. So analyzing os.py will produce a set of warnings like:

W: no module named dos (conditional import by os)
W: no module named ce (conditional import by os)
W: no module named os2 (conditional import by os)

Note that the analysis has detected that the import is within a conditional block (an if statement). The
analysis also detects if an import within a function or class, (delayed) or at the top level. A top-level,
non-conditional import failure is really a hard error. There's at least a reasonable chance that conditional
and / or delayed import will be handled gracefully at runtime.

Ignorable warnings may also be produced when a class or function is declared in a package (an
__init__.py module), and the import specifies package.name. In this case, the analysis can't tell if
name is supposed to refer to a submodule of package.

Warnings are also produced when an __import__, exec or eval statement is encountered. The
__import__ warnings should almost certainly be investigated. Both exec and eval can be used to
implement import hacks, but usually their use is more benign.

Any problem detected here can be handled by hooking the analysis of the module. See Listing Hidden
Imports below for how to do it.

Back to Top

Getting Debug Messages
Setting debug=1 on an EXE will cause the executable to put out progress messages (for console apps,
these go to stdout; for Windows apps, these show as MessageBoxes). This can be useful if you are doing
complex packaging, or your app doesn't seem to be starting, or just to learn how the runtime works.

Back to Top

Getting Python's Verbose Imports
You can also pass a -v (verbose imports) flag to the embedded Python. This can be extremely useful. I
usually try it even on apparently working apps, just to make sure that I'm always getting my copies of the
modules and no import has leaked out to the installed Python.

You set this (like the other runtime options) by feeding a phone TOC entry to the EXE. The easiest way to
do this is to change the EXE from:

PyInstaller Manual - When Things Go Wrong

16

EXE(..., anal.scripts,)

to:

EXE(..., anal.scripts + [('v', '', 'OPTION')], ...)

These messages will always go to stdout, so you won't see them on Windows if console=0.

Back to Top

Helping PyInstaller Find Modules

Extending the Path
When the analysis phase cannot find needed modules, it may be that the code is manipulating
sys.path. The easiest thing to do in this case is tell Analysis about the new directory through the
second arg to the constructor:

anal = Analysis(['somedir/myscript.py'],
 ['path/to/thisdir', 'path/to/thatdir'])

In this case, the Analysis will have a search path:

['somedir', 'path/to/thisdir', 'path/to/thatdir'] + sys.path

You can do the same when running Makespec.py:

Makespec.py --paths=path/to/thisdir;path/to/thatdir ...

(on *nix, use : as the path separator).

Back to Top

Listing Hidden Imports
Hidden imports are fairly common. These can occur when the code is using __import__ (or, perhaps
exec or eval), in which case you will see a warning in the warnproject.txt file. They can also occur
when an extension module uses the Python/C API to do an import, in which case Analysis can't detect
anything. You can verify that hidden import is the problem by using Python's verbose imports flag. If the
import messages say "module not found", but the warnproject.txt file has no "no module named..."
message for the same module, then the problem is a hidden import.

Standard hidden imports are already included!
If you are getting worried while reading this paragraph, do not worry: having hidden
imports is the exception, not the norm! And anyway, PyInstaller already ships with a large
set of hooks that take care of hidden imports for the most common packages out there.
For instance, PIL, PyWin32, PyQt are already taken care of.

Hidden imports are handled by hooking the module (the one doing the hidden imports) at Analysis
time. Do this by creating a file named hook-module.py (where module is the fully-qualified Python
name, eg, hook-xml.dom.py), and placing it in the hooks package under PyInstaller's root directory,

PyInstaller Manual - Helping PyInstaller Find Modules

17

http://www.pythonware.com/products/pil/
http://sourceforge.net/projects/pywin32/files/
http://www.riverbankcomputing.co.uk/pyqt/index.php

(alternatively, you can save it elsewhere, and then use the hookspath arg to Analysis so your private
hooks directory will be searched). Normally, it will have only one line:

hiddenimports = ['module1', 'module2']

When the Analysis finds this file, it will proceed exactly as though the module explicitly imported
module1 and module2. (Full details on the analysis-time hook mechanism is in the Hooks section).

If you successfully hook a publicly distributed module in this way, please send us the hook so we can
make it available to others.

Back to Top

Extending a Package's __path__
Python allows a package to extend the search path used to find modules and sub-packages through the
__path__ mechanism. Normally, a package's __path__ has only one entry - the directory in which the
__init__.py was found. But __init__.py is free to extend its __path__ to include other
directories. For example, the win32com.shell.shell module actually resolves to
win32com/win32comext/shell/shell.pyd. This is because win32com/__init__.py appends
../win32comext to its __path__.

Because the __init__.py is not actually run during an analysis, we use the same hook mechanism we
use for hidden imports. A static list of names won't do, however, because the new entry on __path__
may well require computation. So hook-module.py should define a method hook(mod). The mod
argument is an instance of mf.Module which has (more or less) the same attributes as a real module
object. The hook function should return a mf.Module instance - perhaps a brand new one, but more
likely the same one used as an arg, but mutated. See mf.py: A Modulefinder Replacement for details, and
hooks/hook-win32com.py for an example.

Note that manipulations of __path__ hooked in this way apply to the analysis, and only the analysis.
That is, at runtime win32com.shell is resolved the same way as win32com.anythingelse, and
win32com.__path__ knows nothing of ../win32comext.

Once in awhile, that's not enough.

Back to Top

Changing Runtime Behavior
More bizarre situations can be accomodated with runtime hooks. These are small scripts that manipulate
the environment before your main script runs, effectively providing additional top-level code to your script.

At the tail end of an analysis, the module list is examined for matches in rthooks.dat, which is the
string representation of a Python dictionary. The key is the module name, and the value is a list of
hook-script pathnames.

So putting an entry:

'somemodule': ['path/to/somescript.py'],

into rthooks.dat is almost the same thing as doing this:

anal = Analysis(['path/to/somescript.py', 'main.py'], ...

except that in using the hook, path/to/somescript.py will not be analyzed, (that's not a feature - we
just haven't found a sane way fit the recursion into my persistence scheme).

PyInstaller Manual - Extending a Package's __path__

18

http://www.pyinstaller.org/browser/trunk/hooks/hook-win32com.py?rev=latest

Hooks done in this way, while they need to be careful of what they import, are free to do almost anything.
One provided hook sets things up so that win32com can generate modules at runtime (to disk), and the
generated modules can be found in the win32com package.

Back to Top

Adapting to being "frozen"
In most sophisticated apps, it becomes necessary to figure out (at runtime) whether you're running "live"
or "frozen". For example, you might have a configuration file that (running "live") you locate based on a
module's __file__ attribute. That won't work once the code is packaged up. You'll probably want to
look for it based on sys.executable instead.

The bootloaders set sys.frozen=1 (and, for in-process COM servers, the embedding DLL sets
sys.frozen='dll').

For really advanced users, you can access the iu.ImportManager as sys.importManager. See
iu.py for how you might make use of this fact.

Back to Top

Accessing Data Files
In a --onedir distribution, this is easy: pass a list of your data files (in TOC format) to the COLLECT,
and they will show up in the distribution directory tree. The name in the (name, path, 'DATA') tuple
can be a relative path name. Then, at runtime, you can use code like this to find the file:

os.path.join(os.path.dirname(sys.executable), relativename))

In a --onefile distribution, data files are bundled within the executable and then extracted at runtime
into the work directory by the C code (which is also able to reconstruct directory trees). The work directory
is best found by os.environ['_MEIPASS2']. So, you can access those files through:

os.path.join(os.environ["_MEIPASS2], relativename))

Back to Top

Miscellaneous

Win9xpopen
If you're using popen on Windows and want the code to work on Win9x, you'll need to distribute
win9xpopen.exe with your app. On older Pythons with Win32all, this would apply to Win32pipe and
win32popenWin9x.exe. (On yet older Pythons, no form of popen worked on Win9x).

Back to Top

Self-extracting executables
The ELF executable format (Windows, Linux and some others) allows arbitrary data to be concatenated to
the end of the executable without disturbing its functionality. For this reason, a CArchive's Table of
Contents is at the end of the archive. The executable can open itself as a binary file name, seek to the
end and 'open' the CArchive (see figure 3).

On other platforms, the archive and the executable are separate, but the archive is named
executable.pkg, and expected to be in the same directory. Other than that, the process is the same.

PyInstaller Manual - Adapting to being "frozen"

19

Back to Top

One Pass Execution
In a single directory deployment (--onedir, which is the default), all of the binaries are already in the file
system. In that case, the embedding app:

• opens the archive

• starts Python (on Windows, this is done with dynamic loading so one embedding app binary can be
used with any Python version)

• imports all the modules which are at the top level of the archive (basically, bootstraps the import
hooks)

• mounts the ZlibArchive(s) in the outer archive

• runs all the scripts which are at the top level of the archive

• finalizes Python

Back to Top

Two Pass Execution
There are a couple situations which require two passes:

• a --onefile deployment (on Windows, the files can't be cleaned up afterwards because Python
does not call FreeLibrary; on other platforms, Python won't find them if they're extracted in the
same process that uses them)

• LD_LIBRARY_PATH needs to be set to find the binaries (not extension modules, but modules the
extensions are linked to).

The first pass:

• opens the archive

• extracts all the binaries in the archive (in PyInstaller v1.5.1, this is always to a temporary directory).

• sets a magic environment variable

• sets LD_LIBRARY_PATH (non-Windows)

• executes itself as a child process (letting the child use his stdin, stdout and stderr)

• waits for the child to exit (on *nix, the child actually replaces the parent)

• cleans up the extracted binaries (so on *nix, this is done by the child)

The child process executes as in One Pass Execution above (the magic environment variable is what tells
it that this is pass two).

PyInstaller Manual - One Pass Execution

20

figure 3 - Self Extracting Executable

There are, of course, quite a few differences between the Windows and Unix/Linux versions. The major
one is that because all of Python on Windows is in pythonXX.dll, and dynamic loading is so
simple-minded, that one binary can be use with any version of Python. There's much in common, though,
and that C code can be found in source/common/launch.c.

The Unix/Linux build process (which you need to run just once for any version of Python) makes use of
the config information in your install (if you installed from RPM, you need the Python-development RPM).
It also overrides getpath.c since we don't want it hunting around the filesystem to build sys.path.

In both cases, while one PyInstaller download can be used with any Python version, you need to have
separate installations for each Python version.

Back to Top

PyInstaller Archives

Archives Introduction
You know what an archive is: a .tar file, a .jar file, a .zip file. Two kinds of archives are used here.
One is equivalent to a Java .jar file - it allows Python modules to be stored efficiently and, (with some
import hooks) imported directly. This is a ZlibArchive. The other (a CArchive) is equivalent to a
.zip file - a general way of packing up (and optionally compressing) arbitrary blobs of data. It gets its
name from the fact that it can be manipulated easily from C, as well as from Python. Both of these derive
from a common base class, making it fairly easy to create new kinds of archives.

PyInstaller Manual - PyInstaller Archives

21

http://www.pyinstaller.org/browser/trunk/source/common/launch.c?rev=latest

Back to Top

ZlibArchive
A ZlibArchive contains compressed .pyc (or .pyo) files. The Table of Contents is a marshalled
dictionary, with the key (the module's name as given in an import statement) associated with a seek
position and length. Because it is all marshalled Python, ZlibArchives are completely cross-platform.

A ZlibArchive hooks in with iu.py so that, with a little setup, the archived modules can be imported
transparently. Even with compression at level 9, this works out to being faster than the normal import.
Instead of searching sys.path, there's a lookup in the dictionary. There's no stat-ing of the .py and
.pyc and no file opens (the file is already open). There's just a seek, a read and a decompress. A
traceback will point to the source file the archive entry was created from (the __file__ attribute from the
time the .pyc was compiled). On a user's box with no source installed, this is not terribly useful, but if
they send you the traceback, at least you can make sense of it.

Back to Top

CArchive
A CArchive contains whatever you want to stuff into it. It's very much like a .zip file. They are easy to
create in Python and unpack from C code. CArchives can be appended to other files (like ELF and
COFF executables, for example). To allow this, they are opened from the end, so the TOC for a
CArchive is at the back, followed only by a cookie that tells you where the TOC starts and where the
archive itself starts.

CArchives can also be embedded within other CArchives. The inner archive can be opened in place
(without extraction).

Each TOC entry is variable length. The first field in the entry tells you the length of the entry. The last field
is the name of the corresponding packed file. The name is null terminated. Compression is optional by
member.

There is also a type code associated with each entry. If you're using a CArchive as a .zip file, you
don't need to worry about this. The type codes are used by the self-extracting executables.

PyInstaller Manual - ZlibArchive

22

Back to Top

License
PyInstaller is mainly distributed under the GPL License but it has an exception such that you can use it to
compile commercial products.

In a nutshell, the license is GPL for the source code with the exception that:

1. You may use PyInstaller to compile commercial applications out of your source code.

2. The resulting binaries generated by PyInstaller from your source code can be shipped with
whatever license you want.

3. You may modify PyInstaller for your own needs but these changes to the PyInstaller source
code falls under the terms of the GPL license. In other words, any modifications to will have to
be distributed under GPL.

For updated information or clarification see our FAQ at PyInstaller home page.

Back to Top

Appendix

You can stop reading here...
... if you are not interested in technical details. This appendix contains insights of the
internal workings of PyInstaller, and you do not need this information unless you plan
to work on PyInstaller itself.

PyInstaller Manual - License

23

http://www.pyinstaller.org/browser/trunk/doc/LICENSE.GPL?rev=latest
http://www.pyinstaller.org/wiki/FAQ
http://www.pyinstaller.org

Building the bootloaders
PyInstaller comes with binary bootloaders for most platforms, shipped in
/your/path/to/pyinstaller//support/loader. If you need to build the bootloader for your own platform (either
because your platform is not officially supported, or because you tweaked bootloader's source code), you
can follow this guide.

Development tools
On Debian/Ubuntu systems, you can run the following lines to install everything required:

sudo apt-get install build-essential python-dev

On Fedora/RHEL and derivates, you can run the following lines:

su
yum groupinstall "Development Tools"
yum install python-devel

On Mac OS X you can get gcc by installing Xcode. It is a suite of tools for developing software for Mac OS
X. It can be also installed from your Mac OS X Install DVD. It is not necessary to install the version 4
of Xcode.

On Windows you can use MinGW (gcc for Windows) and Visual Studio C++ (msvc) compilers. Python
development libraries are usually installed together with Python.

Note: There is no interdependence between the Visual Studio version used to compile the bootloader and
the Visual Studio version used to compile Python. The bootloader is a self-contained static executable,
that imposes no restrictions on the version of Python being used. So you can simply use any Visual Studio
version you have around.

You can download and install or unpack MinGW distribution from one of the following locations:

• MinGW - stable and mature, uses gcc 3.4 as its base

• MinGW-w64 - more recent, uses gcc 4.4 and up. Please notice that Windows 64-bit is still not
supported by PyInstaller, so building a 64-bit bootloader can be useful only if you plan to contribute
full Windows 64-bit support.

• TDM-GCC - MinGW and MinGW-w64 installers

Building
On Windows, when using MinGW, it is needed to add PATH_TO_MINGW\bin to your system PATH.
variable. In command prompt before building bootloader run for example:

set PATH=C:\MinGW\bin;%PATH%

Change to the /your/path/to/pyinstaller/ source subdirectory. Run:

pyinstaller$ cd source
pyinstaller/source$ python waf configure build install

This will produce support/loader/YOUR_OS/run, support/loader/YOUR_OS/run_d,
support/loader/YOUR_OS/runw and support/loader/YOUR_OS/runw_d, which are the
bootloaders.

PyInstaller Manual - Building the bootloaders

24

http://developer.apple.com/xcode
http://sourceforge.net/downloads/mingw/
http://mingw-w64.sourceforge.net/
http://tdm-gcc.tdragon.net/

On Windows this will produce in the support/loader/YOUR_OS directory: run*.exe (bootloader for
regular programs), and inprocsrvr*.dll (bootloader for in-process COM servers).

Note: If you have multiple versions of Python, the Python you use to run waf is the one whose
configuration is used.

Linux Standard Base (LSB) binary
By default, the bootloaders on Linux are LSB binaries.

LSB is a set of open standards that should increase compatibility among Linux distributions. PyInstaller is
able produce bootloader as LSB binary in order to increase compatibility for packaged applications among
distributions.

Note: LSB version 4.0 is required for successfull building of bootloader.

On Debian- and Ubuntu-based distros, you can install LSB 4.0 tools by adding the following repository to
the sources.list file:

deb http://ftp.linux-foundation.org/pub/lsb/repositories/debian lsb-4.0 main

then after having update the apt repository:

sudo apt-get update

you can install LSB 4.0:

sudo apt-get install lsb lsb-build-cc

Most other distributions contain only LSB 3.0 in their software repositories and thus LSB build tools 4.0
must be downloaded by hand. From Linux Foundation download LSB sdk 4.0 for your architecture.

Unpack it by:

tar -xvzf lsb-sdk-4.0.3-1.ia32.tar.gz

To install it run:

cd lsb-sdk
./install.sh

After having installed the LSB tools, you can follow the standard building instructions.

NOTE: if for some reason you want to avoid LSB compilation, you can do so by specifying --no-lsb on the
waf command line, as follows:

pyinstaller/source$ python waf configure --no-lsb build install

This will also produce support/loader/YOUR_OS/run, support/loader/YOUR_OS/run_d,
support/loader/YOUR_OS/runw and support/loader/YOUR_OS/runw_d, but they will not be LSB
binaries.

Back to Top

PyInstaller Manual - Linux Standard Base (LSB) binary

25

http://ftp.linuxfoundation.org/pub/lsb/bundles/released-4.0.0/sdk/

mf.py: A Modulefinder Replacement
Module mf is modelled after iu.

It also uses ImportDirectors and Owners to partition the import name space. Except for the fact that
these return Module instances instead of real module objects, they are identical.

Instead of an ImportManager, mf has an ImportTracker managing things.

Back to Top

ImportTracker
ImportTracker can be called in two ways: analyze_one(name, importername=None) or
analyze_r(name, importername=None). The second method does what modulefinder does - it
recursively finds all the module names that importing name would cause to appear in sys.modules. The
first method is non-recursive. This is useful, because it is the only way of answering the question "Who
imports name?" But since it is somewhat unrealistic (very few real imports do not involve recursion), it
deserves some explanation.

Back to Top

analyze_one()

When a name is imported, there are structural and dynamic effects. The dynamic effects are due to the
execution of the top-level code in the module (or modules) that get imported. The structural effects have to
do with whether the import is relative or absolute, and whether the name is a dotted name (if there are N
dots in the name, then N+1 modules will be imported even without any code running).

The analyze_one method determines the structural effects, and defers the dynamic effects. For example,
analyze_one("B.C", "A") could return ["B", "B.C"] or ["A.B", "A.B.C"] depending on
whether the import turns out to be relative or absolute. In addition, ImportTracker's modules dict will have
Module instances for them.

Back to Top

Module Classes
There are Module subclasses for builtins, extensions, packages and (normal) modules. Besides the
normal module object attributes, they have an attribute imports. For packages and normal modules,
imports is a list populated by scanning the code object (and therefor, the names in this list may be relative
or absolute names - we don't know until they have been analyzed).

The highly astute will notice that there is a hole in analyze_one() here. The first thing that happens
when B.C is being imported is that B is imported and it's top-level code executed. That top-level code
can do various things so that when the import of B.C finally occurs, something completely different
happens (from what a structural analysis would predict). But mf can handle this through it's hooks
mechanism.

Back to Top

code scanning
Like modulefinder, mf scans the byte code of a module, looking for imports. In addition, mf will pick out a
module's __all__ attribute, if it is built as a list of constant names. This means that if a package
declares an __all__ list as a list of names, ImportTracker will track those names if asked to analyze
package.*. The code scan also notes the occurance of __import__, exec and eval, and can issue
warnings when they're found.

PyInstaller Manual - mf.py: A Modulefinder Replacement

26

The code scanning also keeps track (as well as it can) of the context of an import. It recognizes when
imports are found at the top-level, and when they are found inside definitions (deferred imports). Within
that, it also tracks whether the import is inside a condition (conditional imports).

Back to Top

Hooks
In modulefinder, scanning the code takes the place of executing the code object. mf goes further and
allows a module to be hooked (after it has been scanned, but before analyze_one is done with it). A hook
is a module named hook-fullyqualifiedname in the hooks package. These modules should have
one or more of the following three global names defined:

hiddenimports

a list of modules names (relative or absolute) that the module imports in some untrackable way.

attrs

a list of (name, value) pairs (where value is normally meaningless).

hook(mod)

a function taking a Module instance and returning a Module instance (so it can modify or replace).

The first hook (hiddenimports) extends the list created by scanning the code. ExtensionModules, of
course, don't get scanned, so this is the only way of recording any imports they do.

The second hook (attrs) exists mainly so that ImportTracker won't issue spurious warnings when the
rightmost node in a dotted name turns out to be an attribute in a package module, instead of a missing
submodule.

The callable hook exists for things like dynamic modification of a package's __path__ or perverse
situations, like xml.__init__ replacing itself in sys.modules with _xmlplus.__init__. (It takes
nine hook modules to properly trace through PyXML-using code, and I can't believe that it's any easier for
the poor programmer using that package). The hook(mod) (if it exists) is called before looking at the
others - that way it can, for example, test sys.version and adjust what's in hiddenimports.

Back to Top

Warnings
ImportTracker has a getwarnings() method that returns all the warnings accumulated by the
instance, and by the Module instances in its modules dict. Generally, it is ImportTracker who will
accumulate the warnings generated during the structural phase, and Modules that will get the warnings
generated during the code scan.

Note that by using a hook module, you can silence some particularly tiresome warnings, but not all of
them.

Back to Top

Cross Reference
Once a full analysis (that is, an analyze_r call) has been done, you can get a cross reference by using
getxref(). This returns a list of tuples. Each tuple is (modulename, importers), where importers is
a list of the (fully qualified) names of the modules importing modulename. Both the returned list and the
importers list are sorted.

Back to Top

mf Usage
A simple example follows:

PyInstaller Manual - Hooks

27

>>> import mf
>>> a = mf.ImportTracker()
>>> a.analyze_r("os")
['os', 'sys', 'posixpath', 'nt', 'stat', 'string', 'strop',
're', 'pcre', 'ntpath', 'dospath', 'macpath', 'win32api',
'UserDict', 'copy', 'types', 'repr', 'tempfile']
>>> a.analyze_one("os")
['os']
>>> a.modules['string'].imports
[('strop', 0, 0), ('strop.*', 0, 0), ('re', 1, 1)]
>>>

The tuples in the imports list are (name, delayed, conditional).

>>> for w in a.modules['string'].warnings: print w
...
W: delayed eval hack detected at line 359
W: delayed eval hack detected at line 389
W: delayed eval hack detected at line 418
>>> for w in a.getwarnings(): print w
...
W: no module named pwd (delayed, conditional import by posixpath)
W: no module named dos (conditional import by os)
W: no module named os2 (conditional import by os)
W: no module named posix (conditional import by os)
W: no module named mac (conditional import by os)
W: no module named MACFS (delayed, conditional import by tempfile)
W: no module named macfs (delayed, conditional import by tempfile)
W: top-level conditional exec statment detected at line 47
 - os (C:\Program Files\Python\Lib\os.py)
W: delayed eval hack detected at line 359
 - string (C:\Program Files\Python\Lib\string.py)
W: delayed eval hack detected at line 389
 - string (C:\Program Files\Python\Lib\string.py)
W: delayed eval hack detected at line 418
 - string (C:\Program Files\Python\Lib\string.py)
>>>

Back to Top

iu.py: An imputil Replacement
Module iu grows out of the pioneering work that Greg Stein did with imputil (actually, it includes
some verbatim imputil code, but since Greg didn't copyright it, we won't mention it). Both modules can
take over Python's builtin import and ease writing of at least certain kinds of import hooks.

iu differs from imputil: * faster * better emulation of builtin import * more managable

There is an ImportManager which provides the replacement for builtin import and hides all the semantic
complexities of a Python import request from it's delegates.

Back to Top

PyInstaller Manual - iu.py: An imputil Replacement

28

ImportManager

ImportManager formalizes the concept of a metapath. This concept implicitly exists in native Python in
that builtins and frozen modules are searched before sys.path, (on Windows there's also a search of
the registry while on Mac, resources may be searched). This metapath is a list populated with
ImportDirector instances. There are ImportDirector subclasses for builtins, frozen modules, (on
Windows) modules found through the registry and a PathImportDirector for handling sys.path. For
a top-level import (that is, not an import of a module in a package), ImportManager tries each director
on it's metapath until one succeeds.

ImportManager hides the semantic complexity of an import from the directors. It's up to the
ImportManager to decide if an import is relative or absolute; to see if the module has already been
imported; to keep sys.modules up to date; to handle the fromlist and return the correct module object.

Back to Top

ImportDirector

An ImportDirector just needs to respond to getmod(name) by returning a module object or None.
As you will see, an ImportDirector can consider name to be atomic - it has no need to examine name
to see if it is dotted.

To see how this works, we need to examine the PathImportDirector.

Back to Top

PathImportDirector

The PathImportDirector subclass manages a list of names - most notably, sys.path. To do so, it
maintains a shadowpath - a dictionary mapping the names on its pathlist (eg, sys.path) to their
associated Owners. (It could do this directly, but the assumption that sys.path is occupied solely by
strings seems ineradicable.) Owners of the appropriate kind are created as needed (if all your imports
are satisfied by the first two elements of sys.path, the PathImportDirector's shadowpath will only
have two entries).

Back to Top

Owner

An Owner is much like an ImportDirector but manages a much more concrete piece of turf. For
example, a DirOwner manages one directory. Since there are no other officially recognized
filesystem-like namespaces for importing, that's all that's included in iu, but it's easy to imagine Owners
for zip files (and I have one for my own .pyz archive format) or even URLs.

As with ImportDirectors, an Owner just needs to respond to getmod(name) by returning a module
object or None, and it can consider name to be atomic.

So structurally, we have a tree, rooted at the ImportManager. At the next level, we have a set of
ImportDirectors. At least one of those directors, the PathImportDirector in charge of
sys.path, has another level beneath it, consisting of Owners. This much of the tree covers the entire
top-level import namespace.

The rest of the import namespace is covered by treelets, each rooted in a package module (an
__init__.py).

Back to Top

PyInstaller Manual - ImportManager

29

Packages
To make this work, Owners need to recognize when a module is a package. For a DirOwner, this
means that name is a subdirectory which contains an __init__.py. The __init__ module is loaded
and its __path__ is initialized with the subdirectory. Then, a PathImportDirector is created to
manage this __path__. Finally the new PathImportDirector's getmod is assigned to the package's
__importsub__ function.

When a module within the package is imported, the request is routed (by the ImportManager) diretly to
the package's __importsub__. In a hierarchical namespace (like a filesystem), this means that
__importsub__ (which is really the bound getmod method of a PathImportDirector instance)
needs only the module name, not the package name or the fully qualified name. And that's exactly what it
gets. (In a flat namespace - like most archives - it is perfectly easy to route the request back up the
package tree to the archive Owner, qualifying the name at each step.)

Back to Top

Possibilities
Let's say we want to import from zip files. So, we subclass Owner. The __init__ method should take a
filename, and raise a ValueError if the file is not an acceptable .zip file, (when a new name is
encountered on sys.path or a package's __path__, registered Owners are tried until one accepts the
name). The getmod method would check the zip file's contents and return None if the name is not
found. Otherwise, it would extract the marshalled code object from the zip, create a new module object
and perform a bit of initialization (12 lines of code all told for my own archive format, including initializing a
pack age with it's __subimporter__).

Once the new Owner class is registered with iu, you can put a zip file on sys.path. A package could
even put a zip file on its __path__.

Back to Top

Compatibility
This code has been tested with the PyXML, mxBase and Win32 packages, covering over a dozen import
hacks from manipulations of __path__ to replacing a module in sys.modules with a different one.
Emulation of Python's native import is nearly exact, including the names recorded in sys.modules and
module attributes (packages imported through iu have an extra attribute - __importsub__).

Back to Top

Performance
In most cases, iu is slower than builtin import (by 15 to 20%) but faster than imputil (by 15 to 20%).
By inserting archives at the front of sys.path containing the standard lib and the package being tested,
this can be reduced to 5 to 10% slower (or, on my 1.52 box, 10% faster!) than builtin import. A bit more
can be shaved off by manipulating the ImportManager's metapath.

Back to Top

Limitations
This module makes no attempt to facilitate policy import hacks. It is easy to implement certain kinds of
policies within a particular domain, but fundamentally iu works by dividing up the import namespace into
independent domains.

Quite simply, I think cross-domain import hacks are a very bad idea. As author of the original package on
which PyInstaller is based, McMillan worked with import hacks for many years. Many of them are highly
fragile; they often rely on undocumented (maybe even accidental) features of implementation. A
cross-domain import hack is not likely to work with PyXML, for example.

PyInstaller Manual - Packages

30

That rant aside, you can modify ImportManger to implement different policies. For example, a version
that implements three import primitives: absolute import, relative import and recursive-relative import. No
idea what the Python syntax for those should be, but __aimport__, __rimport__ and
__rrimport__ were easy to implement.

Back to Top

iu Usage
Here's a simple example of using iu as a builtin import replacement.

>>> import iu
>>> iu.ImportManager().install()
>>>
>>> import DateTime
>>> DateTime.__importsub__
<method PathImportDirector.getmod
 of PathImportDirector instance at 825900>
>>>

Back to Top

PyInstaller Manual - iu Usage

31

	Requirements
	Windows
	Linux
	Mac OS X

	Getting Started
	Installing PyInstaller
	Configuring your PyInstaller setup
	Create a spec file for your project
	Build your project
	Windows COM Server support
	Building Optimized
	A Note on using UPX
	How one-file mode works
	.egg files and setuptools

	PyInstaller Utilities
	ArchiveViewer
	bindepend
	GrabVersion (Windows)
	Analyzing Dependencies
	pyinstaller.py

	Spec Files
	Introduction
	TOC Class (Table of Contents)
	Target Subclasses
	Analysis
	PYZ
	PKG
	EXE
	DLL
	COLLECT
	Tree

	When Things Go Wrong
	Finding out What Went Wrong
	Buildtime Warnings
	Getting Debug Messages
	Getting Python's Verbose Imports

	Helping PyInstaller Find Modules
	Extending the Path
	Listing Hidden Imports
	Extending a Package's __path__
	Changing Runtime Behavior
	Adapting to being "frozen"
	Accessing Data Files

	Miscellaneous
	Win9xpopen
	Self-extracting executables
	One Pass Execution
	Two Pass Execution

	PyInstaller Archives
	Archives Introduction
	ZlibArchive
	CArchive

	License
	Appendix
	Building the bootloaders
	Development tools
	Building
	Linux Standard Base (LSB) binary

	mf.py: A Modulefinder Replacement
	ImportTracker
	analyze_one()
	Module Classes
	code scanning
	Hooks
	Warnings
	Cross Reference
	mf Usage

	iu.py: An imputil Replacement
	ImportManager
	ImportDirector
	PathImportDirector
	Owner
	Packages
	Possibilities
	Compatibility
	Performance
	Limitations
	iu Usage

